

The role of black carbon in cloud formation and climate

Ulrike Lohmann

F. Friebel, Z.A. Kanji, F. Mahrt, A.A. Mensah, D. Neubauer

Bond et al., 2013

Climate forcing of soot and co-emitted species (1750-2005)

Bond et al., 2013

- Can soot particles act as cloud condensation nuclei (CCN) at atmospheric conditions?
- Can soot particles act as ice nucleating particles (INPs) at atmospheric conditions?
- Can cloud processing of soot particles improve their INP ability?

Is soot a good cloud condensation nucleus?

Air

Continuous-flow Stirred Tank Reactor (CSTR)

- 100 nm soot particles
- 16 h aging time
- miniCAST brown (organic carbon rich soot)

Ozone oxidation of 100 nm organic-rich soot

Adding 200 ppb ozone \rightarrow adsorption

Continuous exposure to 200 ppb ozone

Activation time *t*act

Activation time vs. ozone concentration

Temperature dependency at 200 ppb O₃

Activation times of soot in Zürich

year 2018

Climate impact of ozone-aged soot

 \rightarrow 93% increase in cloud droplet burden north of 60 $^{\circ}$ N for 10h activation time

Climate impact of ozone-aged soot

--> Largest impact of ozone as CCN at around 60 °N

Is soot a good ice nucleating particle?

Ice nucleation onset supersaturations (S_i) and temperatures

Hoose and Möhler, 2012

Ice nucleation onset for different soot types

Ice nucleation activity of soot particles

Ice nucleation activity of soot particles

- Different soot types have different physicochemical properties.
- Strong temperature dependence of ice formation.
- Implies involvement of liquid water.

Mahrt et al., ACP, 2018

Pore condensation and freezing

Non-porous particle

lce

Porous particle

*RH*_w ≥ 100 %

 $RH_{\rm w} < 100 \%$ T < HNT

- Water is taken up by capillary condensation at $RH_{w} < 100\%$.
- Pore water freezes homogeneously at T < 235 K

Marcolli, ACP, 2014; David et al., PNAS, 2019

How often do we find soot with pores?

Atmospherically aged soot

> Diesel soot

Lamb black

Aircraft soot

Cloud processing for cirrus clouds

Mahrt et al., JGR, subm.

Cloud processing

Unprocessed soot

- - - Homogeneous freezing of solution droplets

Cloud processing

Unprocessed soot Processed (Cirrus)

- - - Homogeneous freezing of solution droplets

Impact of processing vs. transition

2.00

1 st

Cloud processing

Unprocessed soot Processed (Cirrus) Processed (MPC) Pre-cooling

- - - Homogeneous freezing of solution droplets

Hydrometeor formation changes soot morphological properties

 Cloud processed soot aggregates are more compacted.

Impact on ice crystal number concentration

 \rightarrow Cloud processing of soot makes soot potentially as important as mineral dust

Impact on ice crystal number concentrations (ICNC)

Take-home messages

How important is soot as a CCN?

1.

- It depends on the organic carbon content
- It can be important if aged with ozone at atmospheric conditions and can increase the cloud droplet burden significantly on the Northern Hemisphere
- 1. How important is soot as an INP?
 - This depends on the soot type; in general soot types with pores are favoured
 - Soot INP could noticeably increase the ice crystal concentration in mid latitudes
- 2. How important is cloud processing of soot for cirrus clouds?
 - It lowers onset RHw by 10% and can then rival with other INPs
 - Depending on how much soot act as INPs, the global ice crystal burden can be decreased or increased

Questions?

Quantifying the ice nucleation activity of soot using the Horizontal Ice Nucleation Chamber (HINC)

Active Fraction = $\frac{N(Ice)}{N(Aerosol)}$

NABEL station: Jungfraujoch

year 2018

Different soot types

Atmospherically aged soot

> Diesel soot

Lamb black

Aircraft soot

Cirrus cloud regime: 400 nm soot particles

Can particle morphology (pores) give insight?

Mahrt et al., ACP, 2018

Langmuir-adsorption: O₃ adsorption is the bottleneck for soot aging

Ozone / ppb

