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Abstract. Lidar retrievals of atmospheric temperature and
water vapor mixing ratio profiles using the optimal estima-
tion method (OEM) typically use a retrieval grid with a num-
ber of points larger than the number of pieces of indepen-
dent information obtainable from the measurements. Conse-
quently, retrieved geophysical quantities contain some infor-
mation from their respective a priori values or profiles, which
can affect the results in the higher altitudes of the temper-
ature and water vapor profiles due to decreasing signal-to-
noise ratios. The extent of this influence can be estimated
using the retrieval’s averaging kernels. The removal of for-
mal a priori information from the retrieved profiles in the re-
gions of prevailing a priori effects is desirable, particularly
when these greatest heights are of interest for scientific stud-
ies. We demonstrate here that removal of a priori information
from OEM retrievals is possible by repeating the retrieval
on a coarser grid where the retrieval is stable even without
the use of formal prior information. The averaging kernels of
the fine-grid OEM retrieval are used to optimize the coarse
retrieval grid. We demonstrate the adequacy of this method
for the case of a large power-aperture Rayleigh scatter lidar
nighttime temperature retrieval and for a Raman scatter lidar
water vapor mixing ratio retrieval during both day and night.

1 Introduction

Rodgers (2000) introduced an optimal estimation method
(OEM) based on information theory for use in atmospheric
remote sensing retrievals. The OEM has primarily been used
in passive remote sensing (Rodgers, 1976; Cunnold et al.,

1989; Boersma et al., 2004), and it was not until recently that
the OEM was applied to lidar measurements to retrieve at-
mospheric aerosol properties, temperature, and water vapor
profiles (Povey et al., 2014; Sica and Haefele, 2015, 2016).
OEM is advantageous for lidar work not only because the de-
sired geophysical quantities are retrieved (e.g., temperature,
water vapor mixing ratio, etc.), but also because it produces
averaging kernels and a full uncertainty budget on a profile-
by-profile basis. The averaging kernel matrix is a diagnostic
tool that indicates the degree to which the retrieval is deter-
mined by the lidar measurements or by the retrieval a priori
values.

Lidars have high temporal and spatial resolution compared
to passive remote sensing instruments, coupled with high
signal-to-noise (SNR) ratio measurements over much of their
dynamic range and thus have averaging kernels close to unity
for the majority of their retrievals, with a much finer grid
spacing than passive instruments. At most retrieval altitudes,
the majority of the information comes from the lidar mea-
surements. However, near the top of the lidar retrieval range,
and in other regions where the SNR is low, the a priori contri-
bution to the retrieval increases and consequently the amount
of information from the measurement decreases. The a pri-
ori influence at the top of the retrieval should be considered
when comparing OEM lidar measurements, particularly if
different a priori profiles are used.

An estimate of the measurements’ contribution to the re-
trieval, otherwise known as the “measurement response”, can
be calculated by taking the sum of the averaging kernel func-
tions. The measurement response is calculated by multiply-
ing the averaging kernel matrix, A, with a unit vector, u,
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which we will refer to henceforth as Au. The a priori con-
tribution is then 1 minus the measurement response.

An example of the a priori’s influence is shown in Fig. 1
of Jalali et al. (2018). Jalali et al. (2018) used more than 500
nights of measurements from the Purple Crow Lidar (PCL)
in London, Ontario, between 1994 and 2013 to calculate the
OEM temperature climatology. The cutoff height used for
the climatology was the altitude at which the measurement
response equaled 0.9, or where the retrieval is roughly com-
prised of 90 % measurements and 10 % a priori information.
In order to see the influence of the a priori temperature pro-
file on the temperature retrieval, temperature profiles from
two different models, CIRA-86 and the US Standard At-
mosphere (Committee on Extension to the Standard Atmo-
sphere, 1976), were chosen to use as a priori temperatures.
Temperatures were retrieved using both a priori profiles, and
the differences between the two were compared at the alti-
tudes where Au = 0.9 and Au =0.99. The distribution of
the influence of the a priori temperature profiles at these al-
titudes for the entire climatology is shown in Fig. 1 of this
paper. However, the temperature a priori’s effect is always
one or two degrees smaller than the random uncertainties at
these altitudes.

The mean value of the histogram at the altitude where
Au =0.99 is 0.53 £ 1.29K and the mean at Au =0.9 in-
creases to 0.96 £3.25K. There is a positive bias in both
histograms due to the fact that the monthly CIRA-86 tem-
perature profiles are consistently warmer than the yearly US
Standard Atmosphere profile. The effect of the a priori in-
creases as the values of Au decrease. Also, all values in the
histogram are within 20 of the statistical uncertainty of the
PCL climatology.

As Rodgers (2000) suggested, it is important to pick the
most accurate a priori value for the retrieval. We used the
CIRA-86 and US Standard Atmosphere to investigate the in-
fluence of the choice in a priori profile more clearly, as the
differences between these two model temperature profiles is
large. If a priori profile values from the CIRA-72 and CIRA-
86 models had been chosen for comparison, the mean values
on the histogram would have been much smaller.

Several methods for reducing the a priori’s influence on the
retrieval have been suggested by Vincent et al. (2015), Cec-
cherini et al. (2009), von Clarmann and Grabowski (2007),
and Joiner and Silva (1998). Their method to minimize the
effect of the a priori information was based on transform-
ing a regularized to a maximum likelihood retrieval by mov-
ing from a fine grid to a coarser grid. Our work applies
the methodology of von Clarmann and Grabowski (2007)
(henceforth vCG) to a Rayleigh lidar OEM temperature re-
trieval and a Raman lidar OEM water vapor retrieval. The
method uses a grid transformation on the retrieved temper-
ature and water vapor lidar profiles to remove the a priori
temperature and water vapor contribution. The transforma-
tion is applied in such a way that each final grid point car-
ries roughly one degree of freedom (information-centered).
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Then, the retrieved profiles are calculated on the coarse grid
by rerunning the OEM in a way that the effect of the a priori
constraint is minimized.

We have used two lidars in this study, whose specifications
are discussed in more detail in Sect. 2. Section 3 summarizes
some fundamental material of the OEM which will be refer-
enced throughout the paper. Section 4 discusses the a priori
removal methodology with a simple example. The method
is then applied in Sect. 5 for three cases: Raman water vapor
daytime, Raman water vapor nighttime, and Rayleigh nightly
temperature retrievals. Section 6 discusses the differences be-
tween our practical application and the method in vCG and
some of the proposed method’s advantages. Sections 7 and 8
are the Summary and Conclusions respectively.

2 Description of the lidar systems

Two lidars were used in this study, the Raman Lidar for
Meteorological Observation (RALMO) in Payerne, Switzer-
land, and the Purple Crow Lidar (PCL) in London, Ontario.
RALMO was used for the water vapor daytime and nighttime
retrievals, and the PCL was used for the Rayleigh tempera-
ture retrievals.

2.1 RALMO

RALMO is located at the MeteoSwiss research station
in Payerne, Switzerland (46.81°N, 6.94°E; 491 ma.s.l.).
RALMO was built at the Ecole Polytechnique Fédérale de
Lausanne (EPFL) and was designed as an operational lidar
for model validation and climatological research. RALMO
uses a 355nm wavelength laser operating at 30 Hz with a
nominal power of 300 mJ. Measurements are made in 1 min
intervals with an altitude resolution of 3.75m. A typical
30 min water vapor profile will extend to 10-12km at night
and 4-5km during the day. Detailed specifications for the
RALMO can be found in Dinoev et al. (2013) and Brocard
et al. (2013). The water vapor retrieval for daytime and night-
time followed the same procedure as described in Sica and
Haefele (2016), with the exception that we now retrieve the
overlap, which is no longer a model parameter. Only raw (un-
corrected) photo-count measurements are used for the water
vapor retrievals. The lidar input measurements are 30 min
profiles beginning at the same time as the coincident ra-
diosonde launch from the Payerne station. The US Standard
Atmosphere water vapor profile is used as the water vapor a
priori input for both daytime and nighttime retrievals.

2.2 Purple Crow Lidar

The Purple Crow Lidar is located at the Environmen-
tal Sciences Western Field Station (43.07°N, 81.33°W;
275ma.s.l.) near the University of Western Ontario in Lon-
don, Canada. The PCL uses a 532 nm wavelength Nd: YAG
laser with 1000 mJ per pulse power at 30 Hz. The PCL is
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Figure 1. Distribution of the differences in temperatures retrieved at the altitudes where the sum of the averaging kernels (Au) is
0.99 (a) and 0.9 (b) using two a priori temperature profiles — the US Standard Atmosphere and CIRA-86 — for over 500 nights as de-
tailed in Jalali et al. (2018). The red dashed line shows the mean. For each case, the difference in temperatures is always smaller than the

statistical uncertainty at the same altitude.

comprised of two Rayleigh channels, a high-level-Rayleigh
(HLR) channel whose high-gain detector is useful from be-
tween 40 to 110km and a low-level-Rayleigh (LLR) low-
gain channel, which is nearly linear due to the use of a neutral
density filter, above 25 km. Returns from below 25km are
blocked by a mechanical chopper which controls the firing of
the laser. The backscattered photons are collected by a 2.65 m
diameter liquid mercury mirror. The temporal and spatial res-
olution of the PCL is 1 min, or 1800 laser shots, and 7.5 m,
respectively. The details of the PCL OEM Rayleigh temper-
ature retrieval are discussed in Sica and Haefele (2015) and
its application to the PCL data set in Jalali et al. (2018). The
PCL OEM temperature profiles are created using nightly in-
tegrated HLR and LLR measurements and typically reach up
to 100 km. The a priori temperature profiles are the CIRA-86
(Fleming et al., 1988) and US Standard Atmosphere temper-
atures.

3 Theoretical background
3.1 OEM

The optimal estimation method (OEM) is an inverse method
based on Bayesian statistics which calculates the maximum
a posteriori solution by minimizing a cost function involv-
ing both the fit residual and the difference between the result
and the a priori information. The measured signal y can be
represented as

y =F(x,b) +e, (1)

where y is the measurement vector which includes measure-
ment noise (¢), F is the forward model, x is for the state
or retrieval vector, and b is a vector including all model pa-
rameters which are considered by the forward model but not
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retrieved. Note that all vectors and matrices will be in bold
font, but vectors will be written in lower case and matrices
will be capitalized in the same format as Rodgers (2000).

The OEM assumes Gaussian probability density functions
(PDFs) to maximize the a posteriori probability of the atmo-
spheric state, given the value of the measurements (P (x|y))
and choice of a priori value:

P(ylx)P(x)

P(x|)’)=Ty)~ 2

The possible values of measurements and solutions are dis-
tributed by the PDFs P(y) and P(x) respectively, and
P(y|x) is the probability of the measurement given the atmo-
spheric state x. The solution can be optimized in a number of
ways depending on the goal of the observer. The method im-
plemented by Sica and Haefele (2015) and Jalali et al. (2018)
picks the most likely state for the solution by minimizing a
cost function. The cost function (Eq. 3) is a weighted least
squares regression with a regularization term comprised from
measurements and a priori components.

Cost = B(y ~F(x.b)"S ! (y —F(x,b»}

+%<x—xa>TS;1(x—xa>, 3)

where x, is the a priori value for the retrieval vector x and
S. is the corresponding covariance matrix. The first term in
the cost function is the weighted least squares minimization
problem, or the fit residuals. Minimizing the cost function
produces the retrieval solution (x), where the solution is then
the maximum a posteriori solution based on the PDFs and is
given by

2 =x,+K'SS'K+8H'K'SS (y —F(xo))
=x.+G(y —F(xy), “
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where K refers to the Jacobian matrix, G is the gain matrix,
and S, is the covariance matrix of the error measurements.
The gain matrix describes the sensitivity of the retrieval to
the observations:

A

9
G= 8—" = (KTS'K+87 1) 'KTS; . )
y

One of the advantages of the OEM is that, in addition to
obtaining a retrieval/solution vector, the method also pro-
vides diagnostic tools and a full uncertainty budget. The pri-
mary diagnostic tool is the averaging kernel matrix (A) which
represents the sensitivity of the retrieved state to the true state
(Eq. 6):

A=GK. (6)

At each retrieval grid point (level or altitude), the averaging
kernel shows the sensitivity of the retrieval to the measure-
ment. The full width at half maximum of the averaging kernel
at each altitude represents the vertical resolution. Eq. (4) can
be rewritten using the averaging kernel as

X=x,+Ax —x,) +Ge. (7

Equation (7) shows that if the A is the identity matrix the
retrieval is sensitive only to the measurements, with no con-
tribution from the a priori information or value. Wherever the
row sums of A (at each level or altitude) are less than unity,
the a priori information is contributing to the retrieval and the
extent of its contribution can be estimated using the measure-
ment response. The averaging kernel also provides a means
of calculating the number of degrees of freedom (dgf) in the
retrieval by evaluating the trace of A,

dgf = Tr(A). (8)

Ideally, the contribution of the a priori information is zero at
all levels, and dgf equals the number of levels of the retrieved
water vapor or temperature profiles.

3.2 Maximum likelihood solution

A maximum likelihood (ML) solution is an inverse technique
which does not make use of a priori information and finds a
solution which is solely based on the measurement informa-
tion. If a Gaussian probability distribution of measurement
errors is assumed, the maximum likelihood solution is the so-
lution which minimizes the squared covariance-weighted dif-
ferences between the measurements and the forward model

(Eq. 1):
Costmr = (y — Kx)"SZ1 (y — Kx). )
The solution to the ML inverse problem is then

x=(KIS'K)'KTS !y, (10
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which is equivalent to the first term of the OEM solution
without regularization. From Eq. (10), the gain matrix for
ML is

Gy = (K'S7'K)'KT's; ! (11)

Therefore, by definition, the averaging kernel of the maxi-
mum likelihood solution must be equal to the identity matrix.

We see that it is possible to arrive at the maximum likeli-
hood solution mathematically through the OEM solution by
setting S ''=0 in Eq. (4). Additionally, as the solution is
based on Gaussian probability distributions, the uncertainties
are calculated in the same manner as in the OEM. However,
the maximum likelihood uncertainties will be larger than the
OEM uncertainties due to the removal of the inverse of the
covariance matrix from the gain matrix, as the a priori infor-
mation no longer constrains the covariance of the retrieval
to that of the a priori profile. This is not a shortcoming of
the ML solution but simply reflects the fact that the uncer-
tainties of OEM designate different things. The OEM uncer-
tainty estimate describes our combined a priori and measure-
ment knowledge, while the ML error bars refer to the pure
measurement information.

4 Methodology

Our objective in this study is to find a practical method to
remove the a priori information from the retrieval vector.
We have based our work upon the methodology of vCG and
have developed a quick and straightforward method to re-
move the a priori information from the lidar retrieval. vCG
proposed removing the effect of the a priori information by
using an information-centered grid approach. Each level of
the retrieval on the information-centered grid contains one
degree of freedom, and therefore the number of degrees of
freedom of the signal is the same as the number of retrieval
levels. In this condition, the formal a priori information can
be removed without destabilizing the retrieval.

To create an information-centered grid that contains close
to one degree of freedom per level requires the averaging ker-
nel of the fine-grid retrieval. For a lidar, this is either the raw
measurement spacing or a grid found by integrating some
number of raw measurements into larger bins. Therefore, the
first step is to run the OEM retrieval following the same pro-
cedures as in Sica and Haefele (2015) or Sica and Haefele
(2016), which use a slightly nonlinear forward model and
solve the retrieval using the Levenberg—Marquardt method
(Rodgers, 2000). This produces a temperature or water va-
por retrieval along with their respective averaging kernel ma-
trices and uncertainty budgets on the fine grid or first re-
trieval grid. For RALMO water vapor retrievals, the fine-grid
altitude resolution is 100 and 50 m resolution for the day-
time and nighttime retrievals, respectively, and 1024 m for
the PCL Rayleigh temperature retrieval. The fine-grid aver-
aging kernel contains information regarding the degrees of
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Table 1. A simple example for demonstrating the averaging kernel
matrix’s role in finding the coarse grid which resembles the typical
structure of a lidar temperature retrieval averaging kernel. The first
column is the retrieval level which is typically in units of altitude
for lidar OEM retrievals. The second column is the elements along
the diagonal of the averaging kernel matrix A. The third column
is the cumulative trace of A, where the last value determines the
number of degrees of freedom per grid point for the coarse grid
using Eq. (12).

Fine grid  Diagonal elements = Cumulative trace

levels of A of A
1 1 1
2 1 2
3 1 3
4 1 4
5 0.9 49
6 0.8 5.7
7 0.7 6.4
8 0.6 7.0
9 0.5 7.5
10 0.4 7.9
11 0.2 8.1
12 0.1 8.2

freedom of the retrieval along the diagonal elements of the
matrix (see Sect. 3). The cumulative trace of the averaging
kernel is the total degrees of freedom of the retrieval (Eq. 8).

To illustrate the method, we will give a simple example
with the fine-grid levels, diagonal components of the averag-
ing kernel matrix, and the cumulative trace of the averaging
kernel, as shown in Table 1.

We then use the triangular representation from vCG to cre-
ate the information-centered grid using the fine-grid averag-
ing kernel. First, the cumulative trace of the averaging ker-
nel matrix is used to determine the amount of information
needed for each grid point on the coarse grid using Eq. (12):

dgf

int(dgf) — 1 ’ 12)

dgf,
where dgf.. refers to the degrees of freedom per level on the
coarse grid, dgf is the cumulative trace of the fine-grid aver-
aging kernel matrix (Eq. 8), and int(dgf) is the integer value
of dgf (e.g., int(4.8) =4). The degrees of freedom per grid
point is determined by dividing the total degrees of freedom
by one less than the integer value of the total. For example,
if the total degrees of freedom of the retrieval is 8.2, then the
degrees of freedom per grid point is 8.2/(8 —1) = 1.1 de-
grees of freedom per grid point. In the triangular represen-
tation the information is spread over dgf —1 grid points be-
cause the first and last points remain the same as those in the
fine grid. It is then necessary to interpolate the fine grid to the
points where the diagonal elements are equal to the appropri-
ate degrees of freedom to create the coarse grid. As each grid
point contains an equal number of degrees of freedom, the
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Figure 2. The coarse-grid levels are shown for the example case as a
function of the cumulative trace of the averaging kernel matrix. The
total degrees of freedom for the retrieval is 8.2, which is spread over
the entire retrieval grid such that each point has roughly one degree
of freedom. As the SNR of the measurements decreases, more fine-
grid points are used in the coarse grid, and the distance between
points generally increases with altitude.

grid points are distributed irregularly. The final levels which
are used in the coarse grid are shown in Fig. 2. In this case,
we now have coarse-grid points at 1, 2.2, 3.4, 4.6, 6.1, 8, and
12. As the sensitivity of the averaging kernel decreases, the
number of points used in the coarse grid increases.

The resulting coarse grid is then used as the retrieval grid
for a second retrieval run. In this paper we will refer to a
“run” as one retrieval which typically requires 10 iterations
to converge to a solution. However, before running the re-
trieval again we remove the regularization term in Eq. (4) by
choosing an arbitrarily large a priori uncertainty such that the
inverse of the a priori covariance matrix (S; 1) becomes zero.
IfS; 1 is set to zero, the optimal estimation becomes the un-
constrained weighted least squares solution (vCG), which is
the solution of the maximum likelihood problem with the as-
sumption of Gaussian residuals in force. The second retrieval
is then a ML retrieval which uses the new coarse retrieval
grid calculated from the original first OEM retrieval, and the
effect of the a priori is minimal due to minimizing the reg-
ularization term. The ML coarse-grid averaging kernels then
are unity at all levels.
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5 Results

We now apply our information-centered approach, using the
triangular representation from vCG, to lidar OEM retrievals
in order to minimize the effect of the a priori information. We
will examine the method’s effectiveness with RALMO day-
time and nighttime water vapor retrievals, as well as with a
PCL Rayleigh temperature retrieval. This method is also ap-
plicable in general and can be applied to other lidar retrievals.
First, we will discuss the results from the triangular represen-
tation and the creation of the coarse grid and how it is used
as the new retrieval grid. Then we will discuss its effect on
the retrieval, vertical resolution, uncertainty budgets, and av-
eraging kernel for a case study for each type of retrieval. We
will then discuss the results of the method using representa-
tive data sets for all water vapor and temperature retrievals.

5.1 Daytime RALMO water vapor a priori removal
5.1.1 Daytime case study

The daytime water vapor case study retrieval is a 30 min in-
tegration obtained in conjunction with a Vaisala RS92 ra-
diosonde launch from the Payerne station on 22 January 2013
at 12:00 UT. This date was chosen because it shows the large
impact our method has on low signal-to-noise ratios, which
occur during the daytime due to the high solar background
or in dry layers (regions with relative humidities less than
25 %). The input data grid for this case was binned to 50 m
to remove numerical features in the retrieval due to the high
background noise levels.

The diagonal values of the daytime case fine-grid averag-
ing kernels (Fig. 3a) quickly drop below 1 above 2km due
to a dry layer. The measurement response is shown by the
red line which first drops below 0.9 at 2.7km. This is the
uppermost altitude at which we consider the retrieval to not
have significant influence from the a priori information. The
coarse-grid averaging kernels (Fig. 3b), by definition, are all
equal to 1 as discussed in Sect. 4 and reach up to 10km.
While the coarse grid ensures that each altitude has 1 degree
of freedom, we do not necessarily consider the entire retrieval
as meaningful, which will be discussed further below. The
vertical resolution of each point on the fine and coarse re-
trieval grids is shown in Fig. 4. In this case, the fine-grid av-
eraging kernels are never exactly 1, and therefore have some
a priori information, which explains why the resolution of
the fine-grid retrieval is still a little bit coarser than the grid
width. The vertical resolution of the coarse-grid retrieval is
still a bit worse. This is attributed to the loss of a fractional
degree of freedom, resulting from Eq. (12). The penultimate
point in the coarse retrieval grid has a vertical resolution of
over 600 m. The coarse-grid points which have incorporated
more fine-grid points have a lower vertical resolution than
others (i.e., the points between 2.8 and 10 km altitude).
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Figure 3. The clear-sky daytime water vapor averaging kernel ma-
trix for 22 January 2013 at 12:00 UT (a) on the fine grid and (b) on
the coarse grid. Every other averaging kernel has been plotted for
clarity. (a) The measurement response Au is the red solid line. The
horizontal dashed line is the height at which the measurement re-
sponse is first equal to 0.9 and is the line above which we would
consider there to be large influence from the a priori. (b) The coarse-
grid averaging kernels all equal 1 and reach up to the last retrieval
altitude at 10 km.

The daytime water vapor fine- and coarse-grid retrievals
are shown in Figs. 5a and b respectively. The fine- and
coarse-grid retrievals are the same up to 2.5km, at which
point the coarse-grid retrieval (in red) begins to more closely
follow the path of the radiosonde and the traditional pro-
file (dotted blue) and not the fine-grid retrieval (black). The
coarse-grid retrieval agrees with the radiosonde until 4.5 km.
At 4.8 km the statistical uncertainty is above 100 %, and the
last two points are above 80 % statistical uncertainty; there-
fore, the retrieval is no longer meaningful at these altitudes.
All valid points are below the red dotted line. The large peaks
in the fine-grid retrieval above 5km show features that are
not physical. If we consider the last valid point to be 4.5 km
with a statistical uncertainty of 27 %, the a priori removal
method extends the valid altitude range of the daytime OEM
retrievals by 2 km.

The three main components of the uncertainty budget are
shown in Fig. 5b. The uncertainties shown in this study are
relative percent uncertainties, e.g., the uncertainty value di-
vided by the quantity times 100. The fine-grid statistical and
air density uncertainties increase with altitude due to decreas-
ing SNR of the return photo counts and then decrease as the
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Figure 4. The vertical resolution profile on 22 January 2013
12:00 UT. The vertical resolution will decrease on the coarse grid
as the points are used to reach one degree of freedom. The last two
points have vertical resolutions of several hundred meters but are

not considered meaningful points as they have total uncertainties
larger than 60 %.

retrieval falls back to the a priori value as the signal goes to
zero. The coarse-grid statistical uncertainties and the uncer-
tainty due to air density continue to increase with altitude,
instead of falling back to zero, on the coarse grid because the
a priori information has been removed. The a priori infor-
mation has been removed by setting the inverse covariance
matrix to zero in Eq. (5). When the a priori covariance is re-
moved, the solution space is no longer constrained and the
coarse-grid uncertainties increase compared to the fine-grid
uncertainties. The calibration uncertainty also increases but
now remains constant at all altitudes with the exception of
the last point, as it is no longer influenced by the a priori
constraint.

Since the measurement response of the unconstrained
coarse-grid retrieval is unity everywhere by definition, this
quantity is not an adequate criterion for determining the last
useful altitude of a retrieval. Therefore, we use the uncer-
tainty of the retrieval as a criterion instead. A relative un-
certainty of 60 % was chosen as the largest acceptable er-
ror, which resulted in a cutoff height of 4.5 km altitude. We
found this height to correspond with the altitude at which
the signal-to-noise ratio decreases below 1 and noise begins
to dominate the retrieval. However, the choice of the critical
uncertainty is a matter of preference, and depending on the
goal of the research it may be more preferable to cut the re-
trieval at a lower uncertainty. It is also important to take the
presence of dry layers into account to avoid cutting the pro-
file too low if the uncertainty threshold is lowered. It may
also be more useful to determine a threshold based on abso-
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lute errors instead of relative, particularly for the case of dry
regions with low signal. To maintain consistency with Sica
and Haefele (2015, 2016), we have chosen to use relative
errors for this analysis. The second-to-last point in the sta-
tistical uncertainty has a mixing ratio uncertainty of 100 %
due to the lack of signal above 4.5km. Therefore, the ML
coarse-grid retrieval was cut to include measurements below
4.5 km. The maximum uncertainty is 46 % statistical uncer-
tainty at 3.8 km, where the water vapor signal is very small
due to the presence of a dry layer at that altitude. A dry layer
is a layer where the water content has below 25 % relative
humidity. The relative humidity measured by the radiosonde
at 3.8km is 10 %. While the a priori removal technique in-
creases the maximum retrieval altitude, in addition to remov-
ing the contribution from the a priori profile, it will increase
the statistical uncertainty of the retrieval as well. It should,
however, be noted that uncertainties of OEM and maximum
likelihood retrievals signify different things. The OEM un-
certainties characterize the a posteriori knowledge including
a priori and measurement information, while the maximum
likelihood uncertainties characterize the pure measurement
information.

Finally, we compare the fine- and coarse-grid retrievals
with the radiosonde profile in Fig. 6. To highlight the dif-
ferences in the OEM fine- and ML coarse-grid retrievals,
we have interpolated the radiosonde onto both the fine and
coarse grids for comparison, and the 1o uncertainties in the
percent difference are shown as the shaded regions on each
side of the percent difference profile. The radiosonde uncer-
tainties used to calculate the percent difference uncertainties
were calculated by propagating pressure, temperature, and
relative humidity uncertainties through the mixing ratio for-
mulae of Hyland and Wexler (1983). The uncertainty val-
ues were assumed constant with height using the values pre-
sented in Dirksen et al. (2014). The percent difference calcu-
lated on the fine grid is cut at the 0.9 measurement response
cutoff height. At all altitudes the retrievals agree with the ra-
diosonde within their respective 1o uncertainties. The large
uncertainties and the large difference from the radiosonde at
2.2km are due to the presence of a dry layer where the sig-
nal is much weaker. The radiosonde detects much less water
vapor compared to both lidar retrievals. That altitude is not
included in the coarse-grid retrieval due to its lack of infor-
mation; therefore a similar feature is not seen in the coarse-
grid percent difference profile.

5.1.2 Daytime representative data set

The a priori removal technique was tested on 5 additional
days to study the differences between the fine- and coarse-
grid cutoff heights as well as their agreement to the ra-
diosonde (Fig. 7). The daytime water vapor OEM profiles
typically reach up to around 3-5 km on the fine grid and up
to 6 km on the coarse grid. There is an average of 1.5 km dif-
ference between the two cutoff heights. In some cases, the
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Figure 5. (a) The retrieved daytime water vapor profile for 22 January 2013 12:00 UT. The fine-grid retrieval is in black and includes the a
priori information. The coarse-grid retrieval is in red and the a priori (grey) has been removed. The radiosonde is shown in green. The points
which we do not consider meaningful because their uncertainties are larger than 80 % in the retrieval are shown in dashed red lines. The
coarse-grid retrieval increases the last valid point by 2 km (red dashed line) and now more closely resembles the radiosonde above the original
cutoff altitude of 2.7 km (black dashed line). (b) The three primary contributors to the uncertainty budget on 22 January 2013 12:00 UT are
shown for comparison: the statistical uncertainty, the uncertainty due to the calibration constant, and the uncertainty due to air density. The
solid lines are the relative uncertainties from the fine-grid retrieval, and the dashed lines are from the coarse-grid retrieval. The a priori begins

influencing the profile above 2 km where the uncertainty increases.

differences are much larger, and this is usually due to the
presence of dry layers causing the averaging kernel to de-
crease at a lower altitude. The large difference between the
final altitudes on each grid is typically due to a slow decrease
in averaging kernel values with height, as was shown in the
case study. Additionally, in some cases, such as on 28 Febru-
ary 2012, the uncertainty never rose above 60 %, in which
case the second-to-last point on the coarse grid was chosen
as the cutoff point.

The daytime water vapor OEM fine- and coarse-grid pro-
files show similar differences to the radiosonde profile within
their respective uncertainties. For each case, with the excep-
tion of 5 May 2009, there are very few differences between
the fine- and coarse-grid retrievals from the radiosonde. On
5 May 2009, the coarse-grid retrieval was shifted with respect
to the fine-grid OEM retrieval, possibly due to poor calibra-
tion on that day.

The daytime fine- and coarse-grid retrievals agree with ra-
diosonde measurements within their respective uncertainties,
and the coarse-grid retrievals significantly increase the final
meaningful retrieval altitude by an average of 1.5 km. Day-
time water vapor retrievals are often limited in altitude due
to the high solar background in both the water vapor and ni-
trogen channels. Increasing the final meaningful altitude by
up to 2km is highly valuable for forecasting and validation
purposes.
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5.1.3 Examining cutoff heights using signal-to-noise
ratios

To confirm our choice of cutoff heights for the fine- and
coarse-grid retrievals, we looked at the SNR profiles for the
digital water vapor signal for each of the daytime compar-
isons (Fig. 8). The water vapor signals are roughly 10 times
weaker than the nitrogen signal and therefore determine the
amount of information available to the retrieval. The SNR
profiles were calculated using the raw digital input signals to
the OEM retrieval. As digital signals follow Poisson statis-
tics, the SNR was calculated using the following equation:

N(z)—B
JN@

where z is altitude, N is the number of photon counts, and B
is the mean background signal calculated as an average of the
counts from 55 to 60 km for the water vapor measurements.
It stands to reason that as the SNRs of the measurements
drop, the OEM dependence on the measurements should also
decrease (and the a priori’s increase) due to the increase in
noise. Typically, the SNR level drops below between 3 and
4km altitude for daytime measurements due to the high so-
lar background. The 0.9 measurement response cutoff height
used for the fine-grid OEM results is shown by the blue
dashed line in Fig. 8. For each daytime retrieval, the 0.9
measurement response cutoff falls between a SNR of 1 and

SNR(z) = 13)
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Figure 6. The relative percent difference between the radiosonde
and the fine- and coarse-grid retrievals on 22 January 2013
12:00 UT. The 1o uncertainties for percent difference are shown
as shaded regions. The fine-grid results are shown in blue and the
coarse-grid results in red. The largest percent difference for the fine
grid is 600 % and is not shown.

2. The green dashed lines are the last heights at which the
measurement response is larger than 0.8. The 0.8 cutoff is
consistently located at the heights were the signal-to-noise
ratio is unity and usually 500 m to 1km or higher than the
0.9 cutoff. The coarse-grid cutoff height, shown by the red
dashed line, corresponds typically to the boundary where the
SNR drops below 1 into the region where noise dominates.
The location of the coarse-grid cutoff then makes sense, as
this would be the altitude where no more information could
be gathered and the uncertainties increase beyond what we
would consider meaningful or useful. The coarse-grid cut-
off sometimes coincides with the location of the 0.8 cutoff
but is typically below the coarse-grid point. The SNRs of
the 0.9 measurement response cutoff correspond to the tradi-
tional limits of water vapor measurements for the RALMO
lidar, which are typically cut where the water vapor SNR
drops below 2. Therefore, for a fine-grid OEM retrieval, we
find that the 0.9 cutoff is a consistent choice with regards to
the traditional method. The 0.8 cutoff height could be used,
but we would caution against it as it may induce unwanted
amounts of a priori water vapor information into the retrieval.
The coarse grid utilizes the amount of information available
from the measurements to produce an information-centered
profile; therefore, we also find its height appropriate as it bor-
ders where the noise begins to dominate the measurements.
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Figure 7. Daytime water vapor mixing ratio retrievals for 5 ad-
ditional nights. Black lines are the original OEM retrieval on the
fine grid, red solid lines are the ML coarse-grid retrievals, and the
dashed green lines are the radiosonde mixing ratio measurements.
The black dashed line is the original 0.9 measurement response cut-
off height, and the red dashed lines are the coarse-grid cutoff heights
which were chosen as the last altitude whose measurements had less
than 60 % total uncertainty.

5.2 Nighttime RALMO water vapor a priori removal
5.2.1 Nighttime case study

The nighttime case study retrieval uses a 30 min integration
on 24 April 2013 00:00 UT which coincides with the time
of radiosonde launch. The fine retrieval grid for the RALMO
water vapor retrieval is 50 m.

The averaging kernel matrix for the fine- and coarse-grid
retrievals is shown in Fig. 9a and b, respectively. The alti-
tude where Au first equals 0.9 for the fine-grid retrieval is
at 9.1 km, which is typical for a 30 min nighttime measure-
ment. The coarse-grid averaging kernels all equal 1, with the
second-to-last altitude at 11 km.

Unlike the daytime case, the nighttime vertical resolution
between the fine- and coarse-grid retrievals is very close up
to Skm where they begin to diverge (Fig. 10). This is be-
cause the nighttime averaging kernels are very close to 1 un-
til 5km. As the a priori information enters the signal, more
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Figure 8. Daytime water vapor SNRs (black). The various cutoff
heights are shown in dashed lines. The 0.9 measurement response
cutoff is blue, the 0.8 measurement response cutoff is green, and the
coarse-grid cutoff is in red.

points from the fine grid are used to create the coarse grid, re-
sulting in larger coarse-grid averaging kernels and decreasing
the vertical resolution.

Figure 11 shows the final water vapor retrievals on the
fine and coarse grid as well as a Global Climate Observing
System (GCOS) Reference Upper-Air Network (GRUAN)
Vaisala RS92 radiosonde profile. Both fine- and coarse-grid
profiles agree past the 0.9 cutoff and up to 9 km, at which
point the coarse-grid retrieval diverges from both the fine-
grid retrieval and the radiosonde. We do see small differences
in dry layers where the signal level is lower; however, the dif-
ferences are inside the total uncertainty. The last four points
in the retrieval are shown in dashed lines because we do not
consider them to be meaningful points as their total uncer-
tainties are 70 % or larger.

The uncertainties for the nighttime retrievals are shown in
Fig. 11b. Similarly to the daytime retrievals, we have shown
the top three uncertainty contributors for comparison. Below
5 km the uncertainties are the same, as there is no influence
from the a priori information. However, above 5 km the un-
certainties begin to increase due to the removal. The statisti-
cal uncertainty increases to almost 100 % uncertainty at the
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Figure 9. The averaging kernel matrix for the nighttime water vapor
retrieval on 24 April 2013 00:00 UT. (a) The fine-grid retrieval with
a maximum altitude of 9.1 km (black dashed line). The measure-
ment response is shown in red. (b) The coarse-grid retrieval, where
each averaging kernel is 1 for all altitudes.

second-to-last point due to the lack of signal above 11 km.
The mixing ratio uncertainty due to the calibration uncer-
tainty is now constant with altitude, which we would intu-
itively expect, and contributes roughly 5 % uncertainty to the
mixing ratio measurements. The uncertainty due to air den-
sity increases by a maximum of 0.2 % at the second-to-last
point. We would consider anything above 9.7 km to be in-
valid since points above that height have a total uncertainty of
60 % or higher. The last valid point has a total uncertainty of
52 % at 9.7 km. Therefore, the a priori removal technique in-
creases the maximum valid altitude of the retrieval by 600 m.

The fine- and coarse-grid retrievals do not change very
much with respect to each other until 9.1 km where the aver-
aging kernels begin to drop off significantly. They both pro-
duce similar differences with the radiosonde (Fig. 12), ex-
cept between 5 and 7 km, likely due to the dry layer present
at those altitudes and smoothing from the coarser grid. The
uncertainties for the nighttime percent differences are more
variable than the daytime percent difference uncertainties
due to the fact that we used a GRUAN RS92 radiosonde on
this night which calculates the uncertainties of the radiosonde
as a function of altitude. Mixing ratio uncertainties were cal-
culated in the same way as the daytime radiosonde mixing
ratio uncertainties.
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Figure 10. The vertical resolution for 24 April 2013 00:00 UT. The
vertical resolution on the coarse-grid retrieval decreases as more
points are added to ensure that each bin has one degree of freedom.
The coarse-grid resolution is shown in red and each point is marked.
The fine grid has points every 50 m; therefore they are not shown

individually.

5.2.2 Nighttime representative data set

The a priori removal method was applied to eight additional
nighttime retrievals (Fig. 13). The nighttime cutoff heights in
Fig. 13 show a general increase in cutoff height when using
the a priori removal method, albeit not as large. As with the
daytime retrievals, the coarse-grid cutoffs were chosen to be
the last altitude below with a total uncertainty less than 60 %.
Choosing a maximum uncertainty of 40 % would result in
cutoff heights closer to the original fine grid’s. In all cases,
the coarse grid increases the maximum acceptable altitude,
however, in some cases by only a few hundred meters. On
those nights, the averaging kernels decrease quickly after the
original fine-grid cutoff height; therefore there is very little
information with which to create the coarse grid.

In all cases, the water vapor nighttime OEM fine-grid and
ML coarse-grid retrievals produced profiles which agreed
with the radiosondes within their respective uncertainties.
Differences larger than 0.4 gkg™!, between both retrievals
and the radiosonde profile, can be seen on 25 May 2012.
This was likely due to lack of colocation with the lidar, as
the balloon was 10 km away from the lidar at that altitude.

Using the a priori removal technique for nighttime re-
trievals may be helpful when trying to improve water va-
por measurements of the upper troposphere and lower strato-
sphere (UTLS) region. However, in this case, because the
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nighttime measurements have large SNRs and a rapid change
from high to low signal values, we do not see as large of a dif-
ference between the coarse- and fine-grid retrievals as we do
in the daytime retrievals. For nighttime retrievals, the coarse
grid may not provide an operational advantage but can still
be used to homogenize a data set for trend analysis or clima-
tological studies which would require no a priori influence.
This will be discussed further in Sect. 6.

5.2.3 Nighttime cutoff heights and SNRs

Similarly to the daytime water vapor measurements, we have
also compared the SNR values with the fine-grid and coarse-
grid cutoff heights (Fig. 14). As before, the fine-grid 0.9 mea-
surement response cutoff corresponds to the last point where
the measurement response is greater than 0.9 and is shown by
the blue dashed line in Fig. 2. We have also included the 0.8
measurement response cutoff height (green dashed line) for
comparison, which is calculated in the same way as the 0.9
measurement response cutoff. Lastly, we have included the
cutoff height for the coarse grid, chosen as the last height at
which the total uncertainty of the retrieval is less than 60 %.

In all cases, the 0.9 measurement response cutoff corre-
sponds to a SNR of 2. When we compare the 0.8 measure-
ment response cutoff height with the 0.9 cutoff height, we see
that the 0.8 cutoff is typically between a few hundred meters
to 1 km higher. However, unlike the daytime measurements,
the 0.8 cutoff and the coarse-grid cutoff are very close and
are either close to 1 or at the boundary where the SNR starts
to be noise-dominated. Therefore, we would suggest when
using fine-grid nighttime OEM water vapor retrievals to use
the 0.9 measurement response as a cutoff height since the 0.8
cutoff height may be in the region where noise dominates,
which would lead to larger amounts of the a priori entering
the retrieval.

5.3 Purple Crow Lidar Rayleigh temperature a priori
removal

We picked a sample night, 12 May 2012, from the Rayleigh
temperature climatology in Jalali et al. (2018) to illustrate
the a priori removal procedure for a Rayleigh temperature
retrieval. The original OEM retrieval fine grid was 1024 m,
and the a priori temperatures were taken from the CIRA-86
model. The details regarding the OEM retrieval are discussed
in Sica and Haefele (2015), and its results applied to the cli-
matology are discussed in Jalali et al. (2018).

The averaging kernels for the fine-grid and coarse-grid
retrievals are shown in Fig. 15a and b. The red line is the
measurement response or the estimate of the averaging ker-
nel’s sensitivity to the measurements. The height at which
the measurement response equals 0.9 was chosen as a cutoff
height in Jalali et al. (2018), which is shown in Fig. 15a with
a dashed line. After applying the a priori removal, the av-
eraging kernel on the coarse grid is equal to 1 at each point.
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Figure 11. (a) The water vapor retrieval for 24 April 2013 00:00 UT. The fine-grid retrieval is in black; the coarse-grid retrieval is in red. In
general, both OEM retrievals on the coarse and fine grid and the radiosonde agree until the original cutoff altitude at 9.1 km (dashed black
line). The dashed red lines above 9.7 km show the points we do not consider meaningful due to their large uncertainties. Therefore, the a
priori removal technique increases the last altitude bin by 600 m. The method is limited by the lack of water vapor in the upper troposphere
which causes a large and rapid drop in signal. (b) The three largest relative uncertainty components are compared here on the fine and coarse
grid. The drawback of the a priori removal technique is that while you gain in altitude, you increase the uncertainty. At 9.7 km the statistical
uncertainty is 52 %, above which is where we no longer consider the rest of the retrieval to be viable.
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Figure 12. The percent difference from the radiosonde for both the
fine- and coarse-grid retrievals. Both show similar differences with
the radiosonde and the last valid height is 9.7 km.
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Fig. 15b shows that at the coarse-grid points, according to the
averaging kernel, the temperature retrieval is completely sen-
sitive to the measurements and therefore there is no a priori
contribution.

The vertical resolution for both grids is similar up to 85 km
altitude (Fig. 16). Above this height the coarse grid incor-
porates more points from the fine grid, and thus the verti-
cal resolution decreases. The values of the vertical resolu-
tion (Fig. 16) of the two highest points for the coarse grid
are 10km at 100 km and 8 km at 110 km. However, the cor-
responding total uncertainties at these altitudes are above
100 % and 60 %; therefore we do not consider them to con-
tribute to the retrieval.

Figure 17a shows the OEM fine- and ML coarse-grid tem-
perature retrievals compared to the Chanin and Hauchecorne
(HC) temperature calculation (Hauchecorne and Chanin,
1980). The two OEM and ML retrievals are identical up to
88 km. Above 88 km the coarse-grid retrieval differs from the
fine-grid retrieval and provides only four additional levels.
The last two levels are shown with dashed lines in Fig. 17a
and are points that we would not consider in the retrieval due
to their large uncertainties. The last meaningful point shown
in Figure 17a is around 100 km, where the corresponding
statistical uncertainty is 15K and the systematic uncertain-
ties due to the tie-on pressure and ozone cross section are
9 and 2.3 K, respectively. Therefore, the last valid point of
the retrieved temperature on the fine grid is within the total
uncertainty of the coarse grid, and the final retrieval altitude
increases by 4 km.
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Figure 13. All nighttime water vapor retrievals. The radiosonde is
shown by the green dashes, the fine-grid retrieval in black, and the
coarse-grid retrieval in red. The 0.9 cutoff height for the fine grid is
shown by the black dashed line, while the coarse-grid cutoff height
is the horizontal red dashed line.

In this case, it cannot be concluded if the HC result is
closer to the fine- or coarse-grid result. In order to investi-
gate, we used nine additional nights randomly picked from
PCL measurements, and the percent difference between the
fine- and coarse-grid retrieval with the HC method was cal-
culated (Fig. 18). In general, the method does just as well as
the regular OEM, or better, with respect to the HC method re-
sults. We may also conclude that, in general, the a priori tem-
peratures do not have a large effect on the profiles retrieved
with the OEM for most nights; however, for nights such as
24 and 28 May 2012 the a priori information seems to have
had a larger effect which is removed by our technique.

A consequence of applying this method is that the un-
certainties in the retrieval increase where the coarse grid is
not equal to the fine grid. Figure 17b shows the statistical
uncertainty on the fine and coarse grid, as well as two of
the largest systematic uncertainties, including the uncertainty
in the retrieved temperature due to the tie-on pressure and
ozone cross section. The most sensitive uncertainty param-
eter is the statistical uncertainty, which changes from 13 to
20K at 98 km. The details of the systematic uncertainties on
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Figure 14. Nighttime SNR calculations for each nighttime water
vapor OEM retrieval. The dashed lines are the corresponding cut-
off heights: 0.9 measurement response (blue), 0.8 measurement re-
sponse (green), and coarse grid (red).
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Figure 15. The PCL averaging kernels for the temperature retrieval
on 12 May 2012 on the fine grid (a) and on the coarse grid (b).
The Au = 0.9 cutoff height on the fine grid is shown by the black
horizontal dashed line at 97 km. The red lines on the edges of the
averaging kernels are the measurement response. The coarse grid
extends the temperature upwards by 4 km.
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Figure 16. The PCL vertical resolution for 12 May 2012 on the fine
and coarse grid. The vertical resolution is similar up to 85km on
both grids. Above this height the vertical resolution decreases until
it is 10 km in resolution above 100 km altitude (dotted red line). We
consider 100km to be the highest meaningful point on the coarse
grid due to large uncertainties above that height.

the fine grid are discussed in Sica and Haefele (2015) and
Jalali et al. (2018). The systematic uncertainties increase af-
ter a priori removal due to the gain matrix (Eq. 5) increasing
after the regularization term is removed. In general, all un-
certainties on the coarse grid (Fig. 17b) increase at higher
altitudes, where contribution from the a priori temperature
profile starts. The increasing of the random uncertainties at
the highest altitudes is due to decreasing photo counts from
the exponential decrease in air density.

To illustrate that the a priori information is in fact being
removed, we compared the temperature retrievals using two
very different a priori temperature profiles, one calculated
by CIRA-86 and one calculated by the US Standard Atmo-
sphere (Fig. 19). The difference between the two tempera-
tures on the fine-grid retrieval is shown by the black curve
and is about 2K at the 0.9 cutoff line, within the statisti-
cal uncertainty. The difference increases rapidly above that
height. The same temperature difference after the a priori in-
formation is removed is shown in red and is on the order of 0
at all altitudes.

The HC method considers the fact that the atmosphere
consists of isothermal layers and uses a seed pressure (or
temperature) at the top of each measurement profile to calcu-
late the temperature in the lower layers. The maximum height
at which there is enough information in the signal is at SNR
equals 2. Therefore, the seed value usually is chosen at the
altitude that the SNR of 2 and 10 km from the top of the tem-
perature profile is removed due to the seed value uncertainty.
We also examined the relationship with the Rayleigh temper-
ature retrieval and the SNR of the Rayleigh channel signal to
determine if there was a similarly consistent value associated
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with the measurement response cutoff height as there was for
the water vapor retrievals. However, based on the examina-
tion of all 500+ nights in the Jalali et al. (2018) study, remov-
ing 10km below the altitude at which the SNR =2 yields
cutoff altitudes higher than the measurement response of 0.8,
which suggests that removing 15 km instead of 10km may
be more consistent with the OEM technique.

6 Discussion

We have developed a method to remove the influence of the
a priori temperature and water vapor profiles on the retrieval
based on the method discussed in vCG. These authors pre-
sented a method to re-regularize the retrieval in a way that
the original a priori information is removed and the regular-
ization on the fine grid emulates a coarser grid. These re-
regularized profiles can then be resampled on a coarse grid
without additional loss of information. The optimal coarse
grid is determined from the averaging kernel matrix of the
original retrieval. This method effectively removes the prior
information from the retrieval while keeping the retrieval sta-
ble by the use of the coarser final grid. This independence of
a priori information can be diagnosed by the averaging kernel
matrix, which is unity on the coarse grid.

vCG presented two approaches, a “staircase” representa-
tion and a “triangular” representation, to transform the re-
trieval from the fine to the coarse grid. The cumulative trace
of A shows the total degrees of freedom of the retrieval. In
these representations, the cumulative trace of the averaging
kernel matrix A as a function of altitude is calculated and is
then interpolated to the coarse grid based on the centered in-
formation approach. As each space contains only one degree
of freedom, the spaces are distributed. The staircase repre-
sentation with its discontinuities at the layer boundaries is not
a realistic representation of the atmosphere; therefore we use
the triangular representation here to create the coarse grid.
In the triangular representation, the highest and lowest level
of the coarse grid are considered to be the same as the fine
grid, and the rest of the grid points are distributed such that
each layer between two levels represents approximately one
degree of freedom.

Our method differs from vCG in that we do not re-
regularize the retrieval to remove the a priori information. In-
stead, after the initial retrieval, we remove the regularization
term from the retrieval and rerun the retrieval using the coarse
grid. This second run of the retrieval is then equivalent to a
maximum likelihood retrieval whose results are solely based
on the information provided by the measurements. Both the
proposed method and that of vCG are equally effective; how-
ever, our method is more of a brute-force technique but eas-
ier to practically implement since it is trivial to rerun the re-
trieval a second time.

For lidars, the triangular coarse-grid calculation results in
a grid that is very close to the original OEM retrieval at the
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Figure 17. (a) PCL temperature retrieval for the fine and coarse grids on 12 May 2012. The temperature and its uncertainty for the last
coarse-grid point has a large value and it is not shown. (b) The statistical and systematic uncertainties due to the tie-on pressure and ozone
cross section for the PCL temperature retrieval. The other systematic uncertainty terms included in our retrieval are not shown.
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removed) with the HC method (red line). Below 80 km the retrievals
are identical, as the coarse and fine grid are identical.
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sphere and CIRA-86 as the a priori temperature profiles.

lower retrieval altitudes where there is more signal and the
averaging kernels of the OEM are close to unity. However, at
higher altitudes, where the OEM averaging kernels decrease,
the information is spread over more altitudes, and therefore
the coarse-grid spacing becomes larger to compensate for the
lack of information. An information-centered regridding ap-
proach is important for a ML retrieval because it is not guar-
anteed that any inhomogeneous grid will produce a stable
a priori-free retrieval. Additionally, a statistical gridding ap-
proach is easily automated and creates a grid that represents
the physical conditions of the atmosphere.

We have shown how the a priori removal method works for
three sample retrievals: water vapor during both daytime and
nighttime, and a nighttime Rayleigh temperature. The a priori
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removal technique is most useful when the SNR is low, such
as for daytime water vapor measurements. The method can
increase the daytime retrieval altitude by up to 2 km, which is
highly beneficial for meteorological studies that rely on ac-
curate tropospheric measurements. The nighttime water va-
por retrieval was provided for contrast to illustrate how the a
priori removal technique does not provide significantly more
information when the signal level falls off rapidly.

For Rayleigh temperature retrievals, we used measure-
ments from the PCL in London, Ontario. Jalali et al. (2018)
suggested that the 0.9 level be used as the valid cutoff height.
In the case of the PCL, we see that the second-to-last point
on the coarse grid has a vertical resolution not much larger
than the fine-grid retrieval (Fig. 16) and is very close to the
same height; therefore, the 0.9 measurement response value
seems to be a conservative choice for a valid cutoff. We also
showed that the effect of the a priori is removed completely
in the Rayleigh temperature retrieval when we compared the
differences in the retrieved temperature using the values from
CIRA-86 and from the US Standard Atmosphere as the a pri-
ori profiles (Fig. 19). The presented method provides us with
higher altitudes for the retrieved temperature profiles. Addi-
tionally, where the retrieved temperature profile in the coarse
grid is the same as it is for the fine grid, we can be confident
the temperature retrieval has a negligible contribution from
the chosen a priori temperature profile.

An advantage of our method over OEM is that the entire
coarse-grid profile is a priori-free, in the sense that the regu-
larization term does not contribute to the retrieval. In regions
where the SNR is low or the averaging kernel is significantly
less than 1, the a priori removal method improves the va-
lidity of the retrieval. An a priori-free profile is especially
useful for trend analyses and climatological studies which
must not include prior information and must be wholly based
on measurements. The advantage of an information-centered
grid for a typical measurement may be used for multiple re-
trievals. A grid which is optimal for one atmospheric state
will in most cases be close to optimal for a similar atmo-
spheric state. With this consistent grid choice, the altitude
resolution of a multiyear time series will be consistent, which
is important when working with data over long time periods
or conducting trend analyses. Varying information content of
the individual measurements will lead to error bars of dif-
ferent size. The coarse grid allows time series analysis or
trend analysis for single altitudes without problems caused
by varying vertical resolution.

The important trade-off with this technique is that the un-
certainties of the retrieval increase when moving from an
OEM fine-grid retrieval to a ML coarse-grid retrieval. Both
the systematic and statistical uncertainties in the second ML
retrieval increase due to the removal of the inverse of the a
priori covariance matrix from the gain equation (Eq. 5). The
vertical resolution of the profile also increases as a conse-
quence of the method. We also lose the ability to determine
the maximum useful retrieval altitude by using the averaging
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kernels. In this case, it is necessary to use the uncertainties to
determine the maximum altitude. While the a priori removal
gives us more confidence in the retrieval, we may not con-
sider the entire profile meaningful due to high uncertainties.
Hence, the last few points with unity averaging kernel value
on the coarse grid may not be recognized as valid retrieval
levels.

7 Summary

We have developed a practical and robust method which re-
moves the effect of a priori information in lidar OEM re-
trievals. The method utilizes an information-centered coarse
grid which is derived using the averaging kernels from the
initial fine-grid retrieval. The resulting coarse grid is then
used, alongside setting the inverse of the a priori covariance
matrix to zero, to create the final ML retrieval without any a
priori information. The method has little computational cost;
the OEM retrieval is extremely fast even on a laptop com-
puter, so having to do the retrieval twice for each profile is
not critical. We illustrated the method using a simple exam-
ple in Sect. 4 and demonstrated the removal method using
the water vapor signal from the RALMO and the Rayleigh
temperature signal from the PCL. We summarize the results
from both of these examples as follows.

1. Figure 1b shows that 90 % of the nights in the temper-
ature climatology from Jalali et al. (2018) had less than
a 5 K influence from the a priori temperature profiles at
the Au = 0.9 cutoff height. Additionally, in all cases the
a priori temperature influence was less than the statisti-
cal uncertainty, as was illustrated in Fig. 6 in Jalali et al.
(2018). Although small, the a priori temperature profile
does contribute to the retrieved temperature in regions
where the measurement response is smaller than 1.

2. The a priori removal technique increased the maximum
altitude of the water vapor daytime retrieval by an av-
erage of 1km and up to a maximum of 2km; how-
ever, the maximum altitude is on the same order of the
fine-grid retrieval height if a lower uncertainty thresh-
old is adopted. Both OEM fine-grid and ML coarse-
grid retrievals produced similar differences with respect
to the radiosonde which agreed within their respective
uncertainties (Fig. 6). While the nighttime coarse-grid
retrievals did not show a significant increase in cutoff
height, they did increase on average by a few hundred
meters. The nighttime water vapor averaging kernels de-
crease quickly with height and therefore have very little
information to add to the retrieval, thereby resulting in
very small increases in altitude when using the coarse
grid.

3. Applying the method to the PCL temperature retrieval
showed useful retrievals above the Au =0.9 cutoff
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height by 2 km, validating the choice of Au = 0.9 for
a cutoff made in Jalali et al. (2018) to form their cli-
matology up to an altitude where tie-on pressure effects
were minimal. The temperatures below the cutoff height
were the same.

4. In all cases, the vertical resolution of the OEM retrieval
decreases after a priori removal.

5. The systematic uncertainties after a priori removal in-
crease roughly by a factor of 2 but remain on the same
order of magnitude as before the a priori removal. The
values of the systematic uncertainties also remain sig-
nificantly smaller than the statistical uncertainties.

6. The temperature difference between the PCL retrieved
temperature profiles using two different a priori profiles
was used to show the effectiveness of the a priori re-
moval method. The temperature difference before re-
moval around the 0.9 cutoff height was more than 2 K
however, this value was zero for the entire range after a
priori removal.

7. The water vapor measurement response values of 0.9
consistently corresponded to a SNR of 2 for the night-
time retrievals and between 1 and 2 for the daytime re-
trievals. Therefore, it is our recommendation that tradi-
tional water vapor retrievals be cut at a SNR of 2 to com-
pare with the OEM water vapor retrievals. Additionally,
measurement response values of 0.8 or higher corre-
sponded to SNR values of 1 or less than 1; therefore we
would not suggest cutting the water vapor retrievals at
heights above which the measurement response is less
than 0.9.

8. The Rayleigh temperature measurement response 0.9
cutoff height was also compared to the SNR of the
Rayleigh signal. However, no correlation could be
found between the cutoff height and the SNR value. In
fact, removing 10 km below a SNR of 2 tended to corre-
spond to measurement response values of less than 0.8,
which suggests that it may be more appropriate to re-
move 15 km from the altitude at which the SNR equals
2 to achieve results more consistent with the OEM.

8 Conclusions

When designing an OEM retrieval, it is often desirable to
understand the effect of the chosen a priori parameters or
profiles. This effect has been explored in detail for satellite-
based and passive ground-based instruments but not for the
new area of applying OEM to active-sensing measurements
such as lidar. Lidars are high-resolution instruments with sig-
nificant amounts of information available from their mea-
surements, as evidenced by the retrieval averaging kernels.
The OEM helps to illustrate the robustness of the lidar data
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products with the advantage of providing diagnostic tools,
such as the averaging kernel and a full uncertainty budget.

The a priori removal technique may be helpful for check-
ing the a priori’s influence on the retrieval and in determin-
ing the appropriate a priori. It is also important to note that
the differences between the fine-grid OEM retrieval and the
coarse-grid ML retrieval may be smaller if one uses an a
priori closer to the true atmospheric state. Often, reanalysis
model profiles are used as a priori for OEM retrievals be-
cause they are closer to the atmospheric true state than a cli-
matological profile. However, the nature of the a priori profile
should depend on the design of the instrument and the goal
of the work.

In this study, the US Standard Atmosphere water vapor
profile was chosen as the a priori profile to accommodate the
operational nature of RALMO lidar water vapor measure-
ments, which requires a minimal number of dependencies
in the code as possible and preferably no need for internet.
The CIRA temperature profile was used for the temperature
a priori because there are very few model temperature a pri-
ori profiles above 80 km for the PCL and coincident satellite
measurements are not always available. Additionally, when
conducting trend analyses or climatological studies it may be
more useful to use a consistent a priori profile throughout the
analysis to avoid inducing trends or biases into the results.

The removal method is most operationally useful for lidar
measurements with low signal to noise and a slow transition
from regions of high signal to low signal. The method is less
effective at increasing the maximum retrieval altitude when
signal strength changes rapidly, such as when the nighttime
water vapor measurements quickly enter the dry upper tro-
posphere or lower stratosphere. However, the method is most
useful for homogenizing large data sets for trend analyses.
One representative coarse grid would be applied to an entire
data set and a ML retrieval would be run to remove a pri-
ori information from all measurements, thereby making them
suitable for trends.

In the future, this method will be applied to the entire
10 years of RALMO measurements to retrieve the water va-
por daytime and nighttime measurements and create a water
vapor climatology. We anticipate that this technique will in-
crease the altitude of the daytime water vapor retrievals by
several kilometers. It is also our hope that this method may
provide statistically significant measurements in the UTLS
region. Finally, the RALMO water vapor climatology will be
used to find trends.

Data availability. RALMO data are available upon request from
Alexander Haefele by email: alexander.haefele@meteoswiss.ch.
PCL data are available upon request from Robert J. Sica by email:
sica@uwo.ca. GRUAN radiosonde data from Payerne can be down-
loaded via the GRUAN website (http://www.gruan.org, GRUAN,
2019).
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