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Efficient full spin–orbit torque switching in a single
layer of a perpendicularly magnetized single-
crystalline ferromagnet
Miao Jiang1, Hirokatsu Asahara1, Shoichi Sato1, Toshiki Kanaki1, Hiroki Yamasaki1, Shinobu Ohya1,2,3 &

Masaaki Tanaka1,2

Spin–orbit torque (SOT), which is induced by an in-plane electric current via large spin-orbit

coupling, enables an innovative method of manipulating the magnetization of ferromagnets

by means of current injection. In conventional SOT bilayer systems, the magnetization

switching efficiency strongly depends on the interface quality and the strength of the intrinsic

spin Hall Effect. Here, we demonstrate highly efficient full SOT switching achieved by

applying a current in a single layer of perpendicularly magnetized ferromagnetic semi-

conductor GaMnAs with an extremely small current density of ∼3.4 × 105 A cm−2, which is

two orders of magnitude smaller than that needed in typical metal bilayer systems. This low

required current density is attributed to the intrinsic bulk inversion asymmetry of GaMnAs as

well as its high-quality single crystallinity and large spin polarization. Our findings will con-

tribute to advancements in the electrical control of magnetism and its practical application in

semiconductor devices.
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Spin–orbit torque (SOT) magnetization switching, which is
induced by a spin current that is generated by a charge
current, is a promising phenomenon that can be used to

improve the performance of magnetoresistive random access
memory devices. SOT switching allows the read and write paths
to be separated and thus enables the independent co-optimization
of readability, access latency and energy consumption, thereby
decreasing the read error rate. At present, SOT switching has
been achieved in metal systems1–4 and topological insulator
systems5,6, which essentially require two functional layers,
namely, one ferromagnetic layer and one paramagnetic layer to
generate the spin current and inject it into the ferromagnetic
layer. The spin current then exerts a torque on the magnetic
moment to reverse it2,7–9. Hence, the switching efficiency strongly
depends on the quality of the interface between the two layers.
Furthermore, a large spin polarization in the nonmagnetic layer is
necessary for efficient spin injection. Thus, heavy metals and
topological insulators with large spin Hall angles, such as Pt, Ta,
W, and BiSb10–12, are usually used for SOT switching. While
topological insulators have been also proposed to achieve an
efficient SOT switching using the surface state effect, the
switching process is still improvable in terms of the switching
hysteresis and its completeness13.

Here, we demonstrate highly efficient full SOT switching that is
achieved by applying a current in a single layer of perpendicularly
magnetized ferromagnetic semiconductor GaMnAs (Fig. 1a). In a
GaMnAs thin film, due to the intrinsic bulk inversion asymmetry
of its strained zinc-blende crystal structure and the structural
inversion asymmetry induced by the heterostructure, intrinsic
spin–orbit interactions couple the spin of a hole with its
momentum and generate the effective magnetic field14–21. The
effective field is contributed by two parts (Fig. 1b), the
Dresselhaus-like field (HD) and Rashba-like field (HR). Here, the
sign and the magnitude of HD can be changed by the state of
strain20. Chernyshov et al. showed partial in-plane magnetization
rotation of 90° using the field-like torque in a GaMnAs thin film
with in-plane four-fold magnetic anisotropy; however, the pro-
longed switching process and the efficiency still need to be
improved for the realization of full magnetization switching17. In
this work, we show that the effective fields due to the spin–orbit
interactions can induce a spin component whose direction
depends on the current orientation and that this spin component
can exert a damping-like torque on the magnetic moment, thus

enabling efficient 180° magnetization switching with an extremely
low current density. In our high-quality single-crystalline GaM-
nAs thin film, we can expect a low spin-scattering rate, a large
effective magnetic field due to the high momentum of the holes
originating from impurity-band conduction22–25, and a high spin
polarization26, leading to the successful realization of efficient full
SOT switching.

Results
Magnetization reversal in the Ga0.94Mn0.06As single layer. The
sample examined in this study is composed of Ga0.94Mn0.06As
(7 nm)/In0.3Ga0.7As (500 nm)/GaAs (50 nm) grown on a GaAs
(001) substrate via molecular beam epitaxy (MBE) (see Supple-
mentary Note 1). The 500-nm In0.3Ga0.7As layer applies a tensile
strain to the Ga0.94Mn0.06As thin film to induce perpendicular
magnetic anisotropy (PMA). The film is patterned into a cross-
bar device for transport measurements, as shown in Fig. 1a, with a
channel width and length of 5 μm and 20 μm, respectively.

As shown in Fig. 2a, b, we can successfully achieve current-
induced magnetization reversal in the proposed device. We note
that the error bar of our experiments is smaller than the size of
the data points. Before the transport measurement depicted in
Fig. 2a, a large magnetic field of 10 kOe was applied along the –z
direction to align the initial magnetization M0 in this direction
(point a in Fig. 2a). After decreasing this magnetic field to zero,
we applied an external magnetic field Hy along the ½�110� direction
(the current direction) to assist in SOT switching and to ensure
deterministic magnetization reversal (see Fig. 1a). Then, we
measured the Hall resistance (RH) by measuring the voltage
between electrodes A and B shown in Fig. 1a, sweeping a direct
current (with a density denoted by J) along the y direction in the
order indicated by steps 1 to 5 on the black curve (Hy=+500 Oe)
in Fig. 2a. With this variation of J, RH varies within approximately
±1.6 kΩ, which is consistent with the RH value of the anomalous
Hall effect (see Supplementary Note 2 and Supplementary Fig. 2a,
i.e., ∼±1.7 kΩ), indicating that the magnetization is fully reversed
between the +z and −z directions by the current. When the
current is applied along the ½�110� direction (the +y direction),
both HD and HR are generated along the ½�1�10� (−x) direction (see
the dark colored arrows in Fig. 1b). Thus, as shown in Fig. 2c, the
hole spin has an x component σx in the minus direction due to
these two effective magnetic fields. σ̂x induces a damping-like
torque (DLT) τ̂ST that is proportional to m̂´ σ̂x ´ m̂ and whose
direction is the same as that of σ̂x

2,27. Here, m̂ represents the unit
magnetization vector, and σ̂x is the x component of the spin
polarization vector. In addition to the DLT, there is a torque τ̂an
that is induced by the perpendicular anisotropy field Han, i.e.,
τ̂an ¼ �m̂ ´ Ĥan, and a torque τ̂ext that is induced by Hy, i.e.,
τ̂ext ¼ �m̂ ´ Ĥy . When Hy=+500 Oe, in the initial magnetiza-
tion state M0 along the −z direction, the magnetization is slightly
tilted towards the +y direction. In this case, when J > 0, τ̂ST points
in the same direction as τ̂ext, which is opposite to the direction of
τ̂an (Fig. 2c). With increasing J, τ̂ST is enhanced and reverses the
magnetic moment with the assistance of τ̂ext (step 1 on the black
curve in Fig. 2a). Subsequently, as J decreases to 0, τ̂ST becomes 0,
and the magnetic moment then points in the +z direction (step 2
on the black curve). Similarly, when J < 0, the magnetic moment
is pulled back to the −z direction via the y > 0 side (steps 3 and 4
on the black curve), where the directions of τ̂ST, τ̂an and τ̂ext are
the opposite of what they are in the abovementioned case of J > 0.
Finally, as J again increases in the positive direction (step 5 on the
black curve), the switching process occurs in the same way as in
step 1 on the black curve, which indicates that the current-
induced switching process is repeatable. By contrast, when Hy=
−500 Oe (see the illustrations of the torques in Fig. 2d), the
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Fig. 1 Schematic illustrations of the device structure and the effective
magnetic field. a Schematic of SOT switching and illustration of the cross-bar
device structure of the Ga0.94Mn0.06As (7 nm)/In0.3Ga0.7As (500 nm)/GaAs
(50 nm) thin film grown on a GaAs (001) substrate. The channel width of the
cross-bar is 5 μm. The charge current is applied along the +y direction, and
the spin component in the −x direction (σ̂x) exerts a torque on the magnetic
moment (m̂) and reverses it. b Dresselhaus-like (red) and Rashba-like (blue)
effective magnetic fields (HD and HR, respectively) for hole momenta
along different crystallographic directions in the tensile Ga0.94Mn0.06As
thin film. (kx, ky) is the wave vector of the holes. The dark colored arrows
labeled HD and HR correspond to the effective magnetic fields when J > 0
in the y direction
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switching polarity can be symmetrically changed with the reversal
of the sign of Hy (see the black and red curves in Fig. 2a), which is
a typical characteristic of SOT switching in PMA thin films7.
Here, the critical switching current density Jc is 3.43 × 105 A cm−2

with Hy= 500 Oe at 40 K. This value of Jc is two orders of
magnitude less than that in metal systems, which is usually on the
order of 107 A cm–2 1,7,28.

We can see that by changing the directions of J and the external
magnetic field from ½�110� to [110] (i.e., Hx), the HD is dominant
whereas the HR is negligibly small in our GaMnAs film, as shown
below. In this case, when J > 0 (in the +x direction), HD is
generated along ½1�10�, but HR is along ½�110�, as shown in Fig. 1b.
As shown in Fig. 2b, the current-induced SOT switching curves
with an Hx of ±500 Oe, which start with the initial magnetization
state in the −z direction (point a), present the opposite polarities
relative to the results in Fig. 2a. This finding indicates that the
direction of the total effective magnetic field relative to the
current direction in Fig. 2b is different from that in Fig. 2a. As
shown in Fig. 1b, while the direction of HR relative to J [//(+x)] is
the same as that when J // (+y), the relative direction of HD is the
opposite. Thus, HD is dominant in our system. Furthermore,
based on the nearly identical values of Jc between Fig. 2a, b, we
can conclude that HR is negligibly small. Because the Rashba
effect is relevant only near the interfaces, whereas the current
flows mainly in the bulk of the GaMnAs layer in our study, this
conclusion is reasonable.

Estimation of the heating effect and switching phase diagram.
As shown in Fig. 3a, to estimate the heating effect during the
measurement shown in Fig. 2a, b, we made another cross-bar
device with electrodes covered with Au (100 nm)/Cr (5 nm) as
heat sinks (see the yellow parts in Fig. 3a), using the same MBE-
grown wafer. The temperature (T) dependence of the SOT
switching in this device is shown in Fig. 3b, indicating that the
magnetization switching process is basically stable at T up to
60 K. As shown in Fig. 3c, both Jc and the remanent magneti-
zation (MR) nearly disappear at T= 70 K. Hence, we conclude

that the heating effect is negligibly small in this device with metal
electrodes.

We summarize the switching behavior shown in Fig. 3b as a
phase diagram in Fig. 3d, which indicates that Jc decreases with
the increase of T. Combining these results with the magnetization
hysteresis curves of the Ga0.94Mn0.06As thin film measured with
various magnetic field orientations (see Supplementary Fig. 3),
the decrease of Jc can be attributed to the decrease in the
anisotropy field. The actual temperature during the measurement
shown in Fig. 2a, b might be around 10 K higher than the set
value (Tset= 40 K) because the critical switching current density
of 3.4 × 105 A cm−2 is closed to the value of 4.2 × 105 A cm−2

obtained at T= 50 K in the device with the Au/Cr capping layer.
This estimation is also consistent with the fact that the shape of
the switching curve is firmly square-like in Fig. 2a, b at Tset= 40
K like the ones obtained at T below 50 K in the device with the
Au/Cr capping layer (Fig. 3b). In addition, we carried out
measurements of SOT switching with various external magnetic
fields Hy applied along the y direction and summarized them as a
switching phase diagram as shown in Fig. 3e, indicating that Jc
decreases with the increase of Hy when Hy is lower than 500 Oe
but increases with the increase in Hy when Hy is larger than 500
Oe. When Hy is lower than 500 Oe, Hy assists the SOT switching
and decreases the switching current density, which is consistent
with the typical SOT switching. However, the origin of the
behavior when Hy is larger than 500 Oe is unclear at present and
needs further studies. Hy may tilt part of the magnetization along
this magnetic-field direction, and the magnetization switching
may also occur near the film plane17. In this case, large Hy does
not aid the switching process but hinders it, resulting in the
increase of the switching current density.

Spin–orbit torque strength in the Ga0.94Mn0.06As thin film.
The SOT strength can be quantitatively characterized by the
equivalent magnetic field (Hequi)29. We measured RH at 40 K with
a current of ±0.3 mA applied along the ½�110� direction and a fixed
external magnetic field of 500 Oe applied at an angle β from the
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½�110� direction in the y-z plane as shown in Fig. 4a, b. When the
current is positive (see the blue lines in Fig. 4a), τ̂ST is along the –
x direction, which gives a force to the magnetization in the
counterclockwise direction when we see it from the +x direction
(see Fig. 2c). At point A in Fig. 4a with the magnetization in the –
z direction, the increase in β helps the magnetization rotate in this
counterclockwise direction, and thus the magnetization can easily
rotate. However, at point B in Fig. 4a with the magnetization in

the +z direction, because the magnetic field direction is the
opposite to the rotation direction of the magnetization, it does not
rotate until the –z component of the magnetic field becomes large
when β is increased in the negative direction. Therefore, one can
see that the asymmetry of the data around β= 0 between the
different sweep directions of β in Fig. 4 is related to the SOT.
When the angle β is small, the effective magnetic field Hequi that is
equivalent to the SOT strength is given by Hext·βav29. Here, βav is
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the average of the β values at the magnetization switching with
the different sweep directions of β for positive and negative
current directions: βav= (|β(+, →)+ β(+, ←)|+ |β(−, →)+ β(−, ←)|)/4,
where the subscript arrow represents the sweeping direction of β,
and ± represent the current direction. Here, βav is estimated to be
(7.91°+ 11.49°)/2= 9.7°. Thus, Hequi is estimated to be 500 ×
9.7 × π/180= 84.6 Oe and the efficiency of the equivalent field,
χ=Hequi/Jc, where Jc is 8.5 × 105 A cm−2 at 40 K in Fig. 3b, is
estimated to be 99 Oe/(106 A cm−2), which is almost two orders
of magnitude lager than that [1.7 Oe/(106 A cm−2)] in the Pt/Co
bilayer system, indicating that very efficient magnetization
switching is realized in GaMnAs. Figure 4c, d shows the SOT
strength measured at T= 50 K and T= 60 K with a current of
I= ±0.1 mA (less than the switching current), from which Hequi is
estimated to be 31 Oe at T= 50 K and 17 Oe at T= 60 K. Hence,
we can conclude that the SOT strength decreases with the
increase of temperature because the effective field becomes weak.

Landau–Lifshitz–Gilbert (LLG) simulation. The obtained RH− J
curves are well reproduced by the LLG equation, which confirms
the scenario described above. Here, we consider the SOT
switching result obtained at 40 K for the device with metal elec-
trodes as heat sinks (see Fig. 3b) (i.e., J // y with Hy). The LLG
equation is expressed as

_
bm ¼ �γ m̂ ´ Ĥþ α m̂ ´ _̂mþ ζDLT m̂ ´ σ̂x ´ m̂ð Þ þ ζFLT σ̂x ´ m̂ð Þ;

ð1Þ

where _
bm is the derivative of m̂ with respect to time; Ĥ is the

effective field consisting of the external field, the anisotropy field,
HD and HR; γ is the gyromagnetic ratio; α is the damping constant;
ζDLT is the DLT coefficient; and ζFLT is the field-like torque (FLT)
coefficient. Here, we replace ζDLTσ̂x with rγŜx and ζFLTσ̂x with
γð1�rÞ

α Ŝx , where Ŝx is the effective magnetic field in the x direction
and r expresses the strength of the DLT relative to the total SOT:
when r is 0, only the FLT is present, and when r is 1, only the DLT

is present. As shown in Supplementary Note 4, the LLG equation
can be transformed into

_̂m
γ′

¼ �m̂´ ðĤþ βŜxÞ � αm̂ ´ m̂ ´ Ĥþ 1
α
Ŝx

� �

; ð2Þ

where

γ′ ¼ γ

1þ α2
; β ¼ 1� rð1þ α2Þ

α
: ð3Þ

When Hy= 500 Oe, Han= 2.13 kOe (for the estimation of Han,
see Supplementary Note 2), and α= 0.0530, by solving the LLG
equation for various r values, we obtained the quasi-static
magnetization state in which _̂m becomes zero for various Sx as
shown in Fig. 5a. When r is 0, only the FLT is present, and no
switching occurs. With increasing r, the switching curve shows
characteristics much more similar to those of the experimental
results, especially when r is 0.95, as shown in Fig. 5b, indicating that
both the DLT and FLT act on SOT switching but that the DLT is
dominant. Note that the direction of the J axis in Fig. 5b is reversed
because the signs of J and Sx are opposite [e.g., when J > 0, Sx
(or σx) < 0, as shown in Fig. 2c]. Figure 5c shows the calculated
values ofmx,my andmz, which are the x, y and z components of m̂,
respectively, as functions of Sx. After the magnetic moment rotates
to the opposite direction at Sx=−0.8 kOe,my andmz become close
to 0 and mx becomes close to –1 as Sx increases to −2.4 kOe,
indicating that the magnetic moment ultimately points along the
−x axis (in the same direction as the DLT).

Discussion
In this work, we have found that SOT switching can be achieved
in a single-crystalline ferromagnet with intrinsic bulk inversion
asymmetry, strong spin–orbit interactions and a large spin
polarization. Furthermore, the switching current density Jc is very
low (3.43 × 105 A cm−2) because of the large effective magnetic
field, which is expected due to the large momentum of the holes
originating from impurity-band conduction22–25. Our results
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provide us with guidance in selecting appropriate materials and
offer a new possibility for achieving more efficient electrical
control of magnetism, which will facilitate the development of
SOT switching devices for practical applications.

Methods
Sample preparation. The Ga0.94Mn0.06As thin film was grown on a semi-
insulating GaAs (001) substrate in an ultrahigh-vacuum MBE system. After the
removal of the surface oxide layer of the GaAs substrate at 580 °C, a 50-nm-thick
GaAs buffer layer was grown to obtain an atomically smooth surface. After that, the
substrate was cooled down to 450 °C for the growth of In0.3Ga0.7As with a thickness
of 500 nm to induce a tensile strain on the Ga0.94Mn0.06As layer, giving rise to
PMA. Then, the sample was cooled down to 243 °C for the growth of the 7-nm
Ga0.94Mn0.06As layer. The growth process was monitored in situ by means of
reflection high-energy electron diffraction. The Curie temperature of the
Ga0.94Mn0.06As layer was estimated to be 88 K (see Supplementary Note 1).

Device preparation and electrical measurements. The sample was patterned
into a cross-bar device with a width of 5 μm using photolithography and argon ion
milling. For the SOT measurements, a Keithley 2636 A instrument was used as the
current source for applying the direct current. The Hall voltage was measured with
a Keithley 2400 apparatus. The measurements were carried out at 40 K.

Data availability
The datasets analyzed during this study are available at the 4TU. ResearchData repository,
https://doi.org/10.4121/uuid:ede92a7d-6b44-4dcd-b555-7d9f76993dcc (ref. 31).
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