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a b s t r a c t 

The collapse of a nano-bubble near a solid wall is addressed here exploiting a phase field model recently 

used to describe the process in free space. Bubble collapse is triggered by a normal shock wave in the 

liquid. The dynamics is explored for different bubble wall normal distances and triggering shock inten- 

sities. Overall the dynamics is characterized by a sequence of collapses and rebounds of the pure vapor 

bubble accompanied by the emission of shock waves in the liquid. The shocks are reflected by the wall to 

impinge back on the re-expanding bubble. The presence of the wall and the impinging shock wave break 

the symmetry of the system, leading, for sufficiently strong intensity of the incoming shock wave, to the 

poration of the bubble and the formation of an annular structure and a liquid jet. Intense peaks of pres- 

sure and temperatures are found also at the wall, confirming that the strong localized loading combined 

with the jet impinging the wall is a potential source of substrate damage induced by the cavitation. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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1. Introduction 

The collapse of vapor bubbles near solid boundaries has been

deeply investigated in the last century. The triggering episode goes

back to the finding of the destructive effects of cavitation phenom-

ena on the propellers of the great ocean liners at the beginning of

the 20th century. Similar effects have been observed successively

on the blade of big hydraulic machines like turbines and pumps

( Silberrad, 1912; Leighton, 2012 ). Only recently, due to the increas-

ing impact of the micro and nano-technologies, the attention from

millimeter-size bubbles has shifted downwards, toward micro or

sub-micro bubbles. Indeed in microfluidic devices, the so called lab

on a chip , cavitation phenomena can be employed for microfluidic

pumping ( Dijkink and Ohl, 2008 ), to enhance mixing by means of

vorticity generation during the final stage of bubble collapse and

for surface cleaning purposes ( Ohl et al., 2006 ). Cavitation bub-

bles are also used in advanced medical procedures like high in-

tensity focused ultrasound (HIFU) and extracorporeal shock wave

lithotripsy (ESWL) ( Coussios and Roy, 2008 ) to enhance drug de-

livery or increase local heat deposition deep within the body, to

control localized cell membrane poration ( Sankin et al., 2010 ), and

to comminute kidney stones ( Zhu et al., 2002 ). Moreover, the use

of femtosecond lasers, generating nanometric bubbles, has recently
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 Vogel et al., 2005; 2008 ). 

The experimental investigation has played the most important

art in the understanding of bubble–wall interactions, so far. The

mprovements in the bubble generation techniques led to cleaner

nd better reproducible data, starting from the kinetic impulse

echnique ( Benjamin and Ellis, 1966 ). This approach suffers from

he disadvantage that the bubble must be located before the ap-

lication of the impulse. Successively the problem of localization

as been overcome by means of the generation of the bubble by

sing an electric spark ( Naudé and Ellis, 1961; Tomita and Shima,

986 ). As a drawback, the electrodes perturb the bubble motion

n the last stage of the collapse. At the moment, the best bubble

eneration technique is, probably, the non-intrusive pulsed-laser

ischarge ( Vogel et al., 1989 ) that can focus an intense local

eating and vaporization of the liquid through application of a

hermal impulse. The visualization of the bubble dynamics can

e performed by illuminating the scene with diffuse backlighting

 Blake and Gibson, 1981 ) and by means of high-speed cameras, up

o 20 million frames per second ( Ohl et al., 1995 ). More recently,

he μ-PIV technique has been used to measure the flow field

uring the bubble collapse ( Sankin et al., 2010 ). The experiments

llowed the visualization of the jet formation during the bubble

ollapse near solid surfaces and the assessment of the role of

hock-wave emission, jet-wall interaction and chemical effects on

avitation damage ( Benjamin and Ellis, 1966; Plesset and Ellis,

955 ). Notwithstanding the extreme frame-rate of modern cam-

ras, the complete and detailed description of thermo-acoustic and
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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ow fields, is still lacking. The temperature and pressure inside

he bubble at the collapse instant is not easily accessible with

on-intrusive measurements. The pressure indeed can be only ex-

rapolated by measuring it with an hydrophone at some distance

rom the bubble and by assuming a classical 1/ r decay ( Lauterborn

nd Vogel, 2013 ). The temperature instead can be estimated by

atching a blackbody radiation with the measured spectrum of

he emitted light upon collapse ( Flannigan and Suslick, 2005 ). 

On the other hand, the mathematical modeling of cavitation is

till a great challenge. The cornerstone in the theory of bubble dy-

amics was the pioneering work of Rayleigh (1917) who described

he collapse of a bubble immersed in a unbounded incompressible

iquid. Despite the significant simplifying assumptions, the corre-

pondence with experimental results is still impressive. The model

as been successively refined by taking into account compress-

bility effects in the liquid ( Keller and Kolodner, 1956; Hickling

nd Plesset, 1964 ) and the presence of a dilute gas in the bub-

le. These refined models provided an estimate of the pressure

eaks reached inside the bubble on the order of hundred times

he pressure of the liquid environment. Numerical simulations and

ore complex analysis followed ( Plesset and Chapman, 1971; Ples-

et and Prosperetti, 1977; Shima and Sato, 1981 ) in order to de-

cribe the effect of a nearby boundary. Different numerical tech-

iques have been used in order to capture the interfacial dynamics,

anging from the Boundary Element Method (BEM) for irrotational

onditions ( Blake and Gibson, 1981 ) to the Arbitrary Lagrangian

ulerian (ALE) schemes ( Tipton et al., 1992; Ding and Gracewski,

996 ). Recently more sophisticated models have been proposed to

ain new insights on the effects of dissolved gas and phase change

 Akhatov et al., 2001 ) and to obtain a deeper knowledge in fasci-

ating phenomena like sonoluminescence ( Brenner et al., 2002 ). Of

articular interest is the diffuse interface approach which enables

 natural description of interfacial flows, changes of topology, va-

or/liquid and vapor/supercritical fluid phase changes which have

een shown to be crucial for the correct description of the final

tages of the bubble collapse ( Magaletti et al., 2015 ). 

In this work we will exploit the diffuse interface model to nu-

erically investigate the collapse of a sub-micron vapor bubble

ear solid boundaries. The effect of the initial bubble–wall dis-

ance will be analyzed and the visualization of the entire flow and

hermo-acoustic fields will be provided. Particular attention will be

aid to the stress distribution on the solid wall and we will address

he role of the different pressure waves on cavitation damage. 

The paper is organized as follows: in Section 2 the diffuse in-

erface model and the relevant conservation equations is derived;

ection 3 provides details on the numerical scheme and describes

he numerical setting of the simulations; finally, the results of the

umerical experiments will be discussed in Section 4 to finally

raw conclusions and provide final comments in the last Section 5 .

. Mathematical model 

hermodynamics of non-homogeneous systems 

We exploit an unsteady diffuse interface description ( Anderson

t al., 1998 ) of the multiphase flow in a domain D based on the

an der Waals gradient approximation of the free energy functional

 [ ρ , θ ] ( Dell’Isola et al., 1995; Jamet et al., 2001 ): 

 [ ρ, θ ] = 

∫ 
D 

ˆ f dV = 

∫ 
D 

(
ˆ f 0 ( ρ, θ ) + 

λ

2 

| ∇ ρ| 2 
)

dV, (1)

here ˆ f = 

ˆ f 0 + λ/ 2 |∇ρ| 2 with 

ˆ f 0 ( ρ, θ ) the classical Helmholtz

ree energy density per unit volume of the homogeneous fluid at

emperature θ and mass density ρ . The coefficient λ( ρ , θ ), in gen-

ral function of the thermodynamic state, embodies all the infor-

ation on the interfacial properties of the liquid–vapor system (i.e.
urface tension and interface thickness). In particular, for a van der

aals fluid, the free energy reads 

ˆ f 0 ( ρ, θ ) = R̄ ρθ

[
−1 + log 

(
ρ K θ1 /δ

1 − bρ

)]
− aρ2 , (2) 

ith δ = R̄ /c v , R̄ the gas constant, c v the constant volume specific

eat, a and b the van der Waals coefficients and K a constant re-

ated to the de Broglie length ( Zhao et al., 2011 ). 

quilibrium conditions 

The present paragraph summarizes, for the reader convenience,

esults concerning thermodynamic equilibrium for systems de-

cribed by the free energy functional (1) . Although well known to

pecialists, we deemed useful to present a short summary to ratio-

alize this classical material which is hardly described comprehen-

ively in literature, Jamet (1998) . 

At given temperature, equilibrium is characterized by the mini-

um of the free energy functional in Eq. (1) , where variations are

erformed with respect to the density distribution ρ . The evalua-

ion of the functional derivative leads to the following equilibrium

ondition: 

0 
c − ∇ ·

(
λ∇ ρ

)
= const, (3) 

here the temperature is constrained to be constant, θ = const,

nd μ0 
c = ∂ ̂  f 0 /∂ρ| θ is the classical chemical potential. The equa-

ion defines a generalized chemical potential μc = μ0 
c − ∇ ·

(
λ∇ ρ

)
hat must be constant at equilibrium. 

The consequence of the above equilibrium conditions is better

llustrated in the simple case of a planar interface, where the only

irection of inhomogeneity is x , under the assumption of constant

. The constant temperature appears in the equilibrium problem

s a parameter and will not be further mentioned throughout the

resent section. Hence, determining the equilibrium density distri-

ution amounts to finding a solution of 

c = μ0 
c (ρ) − λd 2 ρ/dx 2 = μeq , (4)

here the chemical potential in the bulk fluid (the vapor phase,

ay), far from the interface where d ρ/d x = 0 , determines the con-

tant μeq = μ0 
c (ρV ) = μ0 

c (ρL ) . By multiplying Eq. (4) by d ρ/ dx and

ntegrating between ρ∞ 

= ρV and ρ , leads to 

ˆ 
 0 (ρ) − ˆ w 0 (ρV ) = 

λ

2 

(
dρ

dx 

)2 

, (5) 

here ˆ w 0 (ρ) = 

ˆ f 0 (ρ) − μeq ρ . Eq. (5) shows that ˆ w 0 has the same

alue in both the bulk phases, where the spatial derivative of mass

ensity vanishes: ˆ w 0 (ρL ) = ˆ w 0 (ρV ) . 

The grand potential, defined as the Legendre transform of the

ree energy, 

= F −
∫ 
D 
ρ

δF 

δρ
dV = 

∫ 
D 

ˆ w dV, (6) 

as the density ( actual grand potential density) 

ˆ 
 [ ρ] = ̂

 f − μc ρ = 

ˆ f 0 + 

λ

2 

(
dρ

dx 

)2 

−
(

μ0 
c − λ

d 2 ρ

dx 2 

)
ρ, (7) 

mplying that, in the bulk, ˆ w = ˆ w 0 , i.e. ˆ w 0 is the bulk grand poten-

ial density. 

Given the form of ˆ w 0 (ρ) , the solution of Eq. (5) provides the

quilibrium density profile ρ( x ): 

 = 

√ 

λ

2 

∫ ρ

ρv 

dρ√ 

w 0 (ρ) − w 0 (ρV ) 
+ const. (8) 
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Eq. (8) provides the equilibrium density profile characterized by

two bulk regions separated by a thin layer. The layer thickness can

be estimated as 

ε = 

ρL − ρV 

d ρ/d x | max 
. (9)

The equilibrium condition, Eq. (5) , provides the interface thickness

in terms of the bulk grand potential density ˆ w 0 (ρ) and of the pa-

rameter λ, 

ε = ( ρL − ρV ) 

√ 

λ

2 

[
ˆ w 0 ( ̄ρ) − ˆ w 0 (ρV ) 

] , (10)

without explicitly addressing the density profile. ρ̄ is the den-

sity corresponding to the maximum of d ρ/ dx , achieved where

d ̂  w 0 /dρ = 0 , Eq. (5) . 

The surface tension can be defined as the excess ( actual ) grand

potential density, 

σ = 

∫ x i 

−∞ 

(
ˆ w [ ρ] − ˆ w [ ρV ] 

)
d x + 

∫ ∞ 

x i 

(
ˆ w [ ρ] − ˆ w [ ρL ] 

)
d x 

= 

∫ ∞ 

−∞ 

(
ˆ w [ ρ] − ˆ w [ ρV ] 

)
dx, (11)

where x i is the position of the Gibbs dividing surface, whose pre-

cise value is not influential since ˆ w [ ρV ] = ˆ w [ ρL ] (we stress that,

e.g., ˆ w [ ρV ] should be interpreted as the functional (7) evaluated

on the constant density ρV ). Given the definition of ˆ w [ ρ] , Eq. (7) ,

and exploiting the equilibrium condition for the chemical poten-

tial, Eq. (4) , it follows that 

σ = 

∫ ∞ 

−∞ 

[ 

ˆ f 0 + 

1 

2 

λ

(
dρ

dx 

)2 

− μeq ρ − ˆ w 0 (ρV ) 

] 

dx 

= 

∫ ∞ 

−∞ 

[ 

ˆ w 0 + 

1 

2 

λ

(
dρ

dx 

)2 

− ˆ w 0 (ρV ) 

] 

dx. (12)

Using Eq. (5) one finds 

σ = 

∫ + ∞ 

−∞ 

λ

(
dρ

dx 

)2 

dx = 

∫ ρL 

ρV 

λ
dρ

dx 
dρ

= 

∫ ρL 

ρV 

√ 

2 λ
(

ˆ w 0 (ρ) − ˆ w 0 (ρV ) 
)

dρ, (13)

where the second expression can be evaluated with no a priori

knowledge of the equilibrium density profile. We observe that, as

for the interface thickness, the surface tension only depends on

the form of the bulk grand potential density ˆ w 0 (ρ) in the density

range between the two equilibrium values, [ ρV ; ρL ], and on the

parameter λ. 

Eq. (5) applied to the two bulk regions where d ρ/d x = 0 implies

the mechanical equilibrium condition p 0 (ρL ) = p 0 (ρV ) , where 

p 0 = −∂ f 0 
∂v 

= −∂ ˆ f 0 /ρ

∂v 
= ρμ0 

c − ˆ f 0 (14)

is the classical thermodynamic pressure, f 0 = 

ˆ f 0 /ρ the spe-

cific bulk free energy, and v = 1 /ρ the specific volume. Indeed

Eq. (5) implies ˆ w 0 (ρV ) = ˆ w 0 (ρL ) , which corresponds to the equal-

ity of the pressures given that p 0 = − ˆ w 0 . 

Equations of motion 

The dynamics of the inhomogeneous system is described by the

conservation equations for mass ρ , momentum ρu , and total en-

ergy E densities of 

∂ρ

∂t 
+ ∇ · ( ρu ) = 0 , (15)
∂ρu 

∂t 
+ ∇ · ( ρu � u ) = ∇ · τ, (16)

∂E 

∂t 
+ ∇ · ( u E ) = ∇ · [ τ · u − q e ] . (17)

he system ( 15 –17 ) needs to be complemented with thermody-

amically consistent constitutive relations for the stress tensor τ
nd the energy flux q e . Their derivation is outlined below for

he simplest case of constant λ, following the general approach

or non-equilibrium processes described in De Groot and Mazur

2013) . 

It is instrumental to rewrite the energy equation in terms of

pecific internal energy U , obtained by subtracting the equation for

he kinetic energy from Eq. (17) 

D U 

Dt 
= τ : ∇ u − ∇ · q e , (18)

here D/Dt = ∂ /∂ t + u · ∇ is the material derivative. By definition

 = f + θ η, with f = 

ˆ f /ρ the specific Helmholtz free energy and

the specific entropy. The total derivative of U reads 

 U = 

∂ f 

∂ρ
d ρ + 

∂ f 

∂ ∇ ρ
· d ∇ ρ + θd η. (19)

he partial derivatives of the specific free energy can be derived

rom its definition, Eq. (1) , and from the definition of the thermo-

ynamic pressure, Eq. (14) . Explicitly, one finds 

D U 

Dt 
= 

1 

ρ2 

(
p 0 − λ

2 

| ∇ ρ| 2 
)

Dρ

Dt 

+ θ
Dη

Dt 
+ 

λ

ρ
∇ ρ · D ∇ ρ

Dt 
. (20)

he material derivative of the density gradient (last term in the

HS of Eq. (20) ) can be evaluated by applying the gradient operator

o the equation of mass conservation, Eq. (15) : 

λ

ρ
∇ ρ · D ∇ ρ

Dt 
= −λ

ρ
∇ ρ · ∇ 

(
ρ∇ · u 

)
− λ

ρ
∇ ρ � ∇ ρ : ∇ u . (21)

fter substitution of Eqs. (15) , ( 20 ), ( 21 ) into Eq. (18) , a few more

lementary manipulations allow to write the evolution equation

or the entropy as 

Dη

Dt 
= ∇ ·

(
λρ∇ ρ∇ · u − q e 

θ

)

+ 

1 

θ2 
[ λρ∇ ρ∇ · u − q e ] · ∇ θ

+ 

1 

θ

[
τ + 

(
p 0 − λ

2 

| ∇ ρ| 2 − ρ∇ ·
(
λ∇ ρ

))
I 

λ∇ ρ � ∇ ρ
] 

: ∇ u . (22)

he term under divergence defines the entropy flux. Since the

ntropy production must be positive definite in terms of the

hermodynamic forces (Clausius-Duhem inequality), the other two

ontributions on the right hand side are required to be positive.

ssuming linear dependence of thermodynamic fluxes – terms in

quare brackets in (22) – on thermodynamic forces – ∇ θ and ∇ u –

eads to identify the stress tensor with the following expression, 

= −p 0 I + �

= 

(
−p 0 + 

λ

2 

| ∇ ρ| 2 + ρ∇ ·
(
λ∇ ρ

))
I 

−λ∇ ρ � ∇ ρ

+ μ
[ (∇ u + ∇ u 

T 
)

− 2 

3 

∇ · u I 

] 
, (23)
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Fig. 1. Phase diagram in the p − ρ plane. In the zone (I) where p > p c and θ > θ c 

the fluid is in supercritical state. Zone (II), characterized by p < p c but θ > θ c , is the 

gas region. Conversely, zone (III) where p > p c but θ < θ c is the compressible-liquid 

region. In zone (IV) and (V) the fluid is in liquid or vapor state, respectively. Under 

the binodal curve, which represent the saturation conditions, we find zones (VI) 

and (VII) of metastable liquid and metastable vapor state, respectively. The spinodal 

curve, defined as ∂ p/∂ ρ| θ = 0 , separates the metastable regions from the unstable 

region (VIII). Finally, in subset of the unstable region, zone (IX), c 2 = ∂ p/∂ ρ| η < 0 , 

i.e. the sound speed becomes imaginary. 
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here the usual viscous terms with μ > 0 in the last line are the

ource of mechanical irreversibility (for the sake of simplicity we

ave assumed the second viscosity coefficient equal to −2 μ/ 3 ).

oncerning the energy flux, positive entropy production, second

ine in Eq. (22) , calls for 

 e = λρ∇ ρ∇ · u − k ∇ θ, (24) 

here k > 0 is the thermal conductivity. 

Hereafter we assume constant values for μ and k and we adopt

he van der Waals free energy density ˆ f 0 , Eq. (2) , to obtain 

p 0 = R̄ 

ρθ

1 − bρ
− aρ2 , (25) 

 = 

R̄ 

δ
θ − aρ + 

λ

2 ρ
| ∇ ρ| 2 , (26)

here the last term corresponds to the capillary contribution to

he internal energy, U c = 

λ

2 ρ
| ∇ ρ| 2 . 

imensionless parameters 

By introducing the dimensionless (or reduced) variables 

∗ = ρ/ρc , p ∗ = p/p c , θ ∗ = θ/θc , 

here 

c = 

1 

3 b 
, p c = 

a 

27 b 2 
, θc = 

8 a 

27 ̄R b 

re the critical values of density, pressure and temperature, respec-

ively, the caloric and thermal equations of state take the form 

 

∗ = 

8 

3 δ
ρ∗θ ∗ − 3 ρ∗2 + 

1 

2 

ρ∗| u 

∗| 2 + 

1 

2 

C | ∇ 

∗ρ∗| 2 , (27) 

p ∗0 = 

8 θ ∗ρ∗

3 − ρ∗ − 3 ρ∗2 , (28) 

here u R = 

√ 

p c /ρc is a reference velocity and L R is a reference

ength. Time is made dimensionless with respect to the refer-

nce time t R = L R /u R . C = λρ2 
c / (p c L 

2 
R 
) is a dimensionless parameter

uantifying the relevance of capillary stress to the dynamics. 

For the reader’s convenience, the constitutive laws are rewrit-

en in dimensionless variables to highlight the relevant control pa-

ameters. The asterisk ( ∗) is hereafter suppressed for the ease of

otation: 

= 

(
−p 0 + 

C 
2 

| ∇ ρ| 2 + Cρ∇ 

2 ρ
)

I − C ∇ ρ � ∇ ρ

+ 

1 

Re 

[ (∇ u + ∇ u 

T 
)

− 2 

3 

∇ · u I 

] 
, (29) 

 e = C ρ∇ ρ∇ · u − 1 

Re P r 
∇ θ . (30) 

e = L R 
√ 

p c ρc /μ is a Reynolds number based on critical quantities

nd P r = 3 μR̄ / (8 k ) is the analogous for a van der Waals fluid of

he familiar Prandtl number. 

. Algorithms and solution techniques 

The numerical solution of the system of equations (15–17 ) is

hallenging due to a combination of different physical phenomena,

hich all require a specialized numerical technique. 

Apart from the extremely thin liquid–vapor interface that re-

uires a high numerical resolution, the system supports i) the

ropagation of shock waves; ii) viscous diffusion and capillary dis-

ersion; iii) phase change and transition to and from supercritical

onditions. 
From a numerical point of view, compressibility and shock

ave propagation would suggest the adoption of specialized shock-

apturing methods, like the Essentially Non Oscillatory schemes,

r their Weighted WENO extension ( Shu, 1998 ). However hyper-

olic features conflict with the diffusive and dispersive behavior

nduced by viscosity and capillarity. Moreover, at least for the van

er Waals equation of state, (28) , a region of the thermodynamic

hase space exists where ∂ p 0 / ∂ ρ| η < 0. As well known, in ordi-

ary conditions, this derivative defines the square of the sound

peed, implying that where c 2 < 0 hyperbolic behavior changes

nto parabolic, see Fig. 1 for an explanatory diagram. The strat-

gy conceived to deal with this complex mathematical structure,

s based on two basic ingredients: 1) Identification of the hyper-

olic part of the operator and its extension to the parabolic re-

ion where c 2 < 0; 2) Operator splitting into hyperbolic and non-

yperbolic part. For convenience, these two ingredients will be dis-

ussed in reverse order. 

perator splitting 

As discussed in Section 2 , the state of the system is identified

y three basic, conserved fields, namely mass, momentum and to-

al energy density, to be collectively addressed here as the state

ector U ( x , t) = ( ρ, ρu , E ) T . Formally system ( 15 –17 ) can be writ-

en as 

∂ U 

∂t 
= N [ U ] = H e [ U ] + P [ U ] , 

here H e is the extension to the whole phase space of the hyper-

olic part of the operator and P = N − H e is defined accordingly.

he explicit expressions of the two operators H e and P will be pro-

ided below. After the operator is split as explained, the state vec-

or can be evolved in time exploiting a solution strategy in terms

f Strang splitting ( Strang, 1968 ). Denoting F N (t) the full propaga-

or such that 

 (t + τ ) = F N (τ ) U (t) , 

or small τ we can approximate 

 N (τ ) = F P (τ / 4) F H e 
(τ / 2) F P (τ / 4) 

here F P (τ ) is the propagator of system 

∂ U = P [ U ] , 

∂t 
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while F H e (τ ) is defined by 

∂ U 

∂t 
= H e [ U ] . 

Strang splitting allows for using different algorithms, specialized

for each component of the system. The algorithms we selected

are a third order WENO ( Shu, 1998 ) scheme for the hyperbolic

part and a second order accurate, centered finite difference scheme

for the parabolic part. We performed the time integration of the

hyperbolic part with a full explicit, third-order TVD Runge–Kutta

scheme. The parabolic operator is advanced in time with a mixed,

implicit-explicit scheme, where the linear terms (viscous stress and

heat flux) are treated implicitly in order to increase the stability

limit. 

Definition of the operators above the binodal 

In the region of phase space where the sound speed is well de-

fined, the hyperbolic step is 

∂ρ

∂t 
= −∇ · ( ρu ) , (31)

∂ρu 

∂t 
= −∇ · ( ρu � u + p 0 I ) , (32)

∂E 0 
∂t 

= −∇ · [ u ( E 0 + p 0 ) ] − ∂ ( ρ U c ) 

∂t 
. (33)

where E 0 = ρ
(
U 0 + 1 / 2 | u | 2 ) is the total energy density deprived

of the capillary contribution, which reproduces the classical Euler

equation. The capillary contribution to the energy ( ρ U c ) is treated

as an explicit forcing term depending on the density gradient.

Here, as already stated, a van der Waals fluid is assumed in the

equations of state. The parabolic part of the operator corresponds

to 

∂ρ

∂t 
= 0 , (34)

∂ρu 

∂t 
= ∇ · �, (35)

∂E 

∂t 
= ∇ ·

(
−1 

2 

λ| ∇ ρ| 2 u + � · u − q e 

)
, (36)

where the capillary contribution (first term in the right hand side

of the equation for E ) has been included in the energy flux. 

Definition of the operators below the binodal 

In the coexistence region below the binodal (or coexistence

curve, Fig. 1 ), which contains the region where c 2 < 0, a Maxwell-

like rule is used. Using the additivity of specific volume and en-

tropy, mass density and specific entropy can be written as 

1 

ρ
= (1 − α) 

1 

ρV (θ ) 
+ α

1 

ρL (θ ) 

ηsat = (1 − α) ηV (θ ) + αηL (θ ) 

where subscript L and V denote pure liquid and vapor at the given

temperature. The above relations can be inverted to yield 

α = α(ρ, ηsat ) 

θ = θ (ρ, ηsat ) . 

For the mixture of vapor and liquid, the saturation pressure de-

pends only on temperature, such that 

p sat = p sat (θ ) = p sat (ρ, ηsat ) . 
his expression allows to extract the sound speed as 

 

2 
sat = 

∂ p sat 

∂ρ

∣∣∣
ηsat 

> 0 

hose final expression is 

 

2 
sat = 

(
d p sat 

d θ

)2 

ρ2 

(
d ηL 

d θ
+ 

1 

ρ2 
L 

d p sat 

d θ

d ρL 

d θ
− ρ − ρL 

ρρL 

d 

2 p sat 

d θ2 

) . (37)

he interested reader is referred to Michaelides and Zissis

1983) for details on the thermodynamic derivation of the sound

peed for the mixture. 

In fact, the actual pressure differs from the saturation pres-

ure, 

p 0 = p 0 (θ, ρ) = p sat (θ ) + δp(θ, ρ) , 

o the extent that c 2 = ∂ p/∂ ρ| η may become negative. We stress

owever that c 2 sat > 0 , thereby allowing to identify the hyperbolic

art of the evolution operator in the region below the binodal

which includes the region where c 2 < 0). 

Concerning the energy density, we consistently address the en-

rgy of the liquid–vapor mixture, 

 sat = 1 / 2 ρ| u | 2 + ρ[ (1 − α) U V + αU L ] . 

gain, the actual energy is 

 = E sat + δE. 

ith the above position, the split system in the region below the

inodal reads 

∂ρ

∂t 
= −∇ · ( ρu ) , (38)

∂ρu 

∂t 
= −∇ · ( ρu � u + p sat I ) , (39)

∂E sat 

∂t 
= −∇ · [ u ( E sat + p sat ) ] − ∂δE 

∂t 
, (40)

or the hyperbolic part and 

∂ρ

∂t 
= 0 , (41)

∂ρu 

∂t 
= −∇ δp + ∇ · �, (42)

∂E 

∂t 
= ∇ · [ −u ( δE + δp ) + � · u − q e ] , (43)

or the parabolic part, respectively. 

We stress that the definitions of the operators given separately

or the two regions of phase space join continuously at the binodal

urve. 

hermodynamic state of the liquid–vapor mixture 

Concerning the thermodynamics of the homogeneous vapor–

iquid mixture below the binodal, the saturation densities ρV ( θ )

nd ρL ( θ ), are evaluated as follows. Given the state of the system

n terms of density and temperature, the corresponding chemical

otential is 

0 
c = 

8 

3 

θ

[
ρ

3 − ρ
− log 

(
K (3 − ρ) θ1 /δ

3 ρ

)]
− 6 ρ. (44)
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Fig. 2. Sketch of the simulation setup. 
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Fig. 3. Time evolution of the bubble volume for different initial wall–bubble dis- 

tance z 0 . The initial distance does not substantially affect the bubble dynamic dur- 

ing the first collapse, indeed the collapse time remains unaltered in all the numer- 

ical experiments. The characteristic frequency of collapse and re-expansion is not a 

function of the initial position. Conversely, the dynamic of the re-expansion and of 

the successive collapses is influenced by the initial position in a nontrivial way. In 

the inset it is reported the comparison between the shock-induced collapse near a 

wall (the solid red curve, z 0 = 1 . 3 ) and in free space (dotted black curve) where the 

bubble does not experience a volume plateau after the collapse. (For interpretation 

of references to color in this figure legend, the reader is referred to the web version 

of this article.) 

4

 

q  

t  

b  

t  

a  

r  

t  

t  

b  

b  

t  

f

E

 

t  

a  

a  

u  

E

μ

w  

c  

i

 

s

p  

s  
hemical, thermal and mechanical equilibrium require equality of

emperature, θV = θL = θ, pressure, p V = p L , and chemical poten-

ial μ0 
V 

= μ0 
L 
. After some algebra, one ends up with the following

on-linear 2 × 2 system for ρL and ρV 

8 θρL 

3 − ρL 

− 3 ρ2 
L = 

8 θρV 

3 − ρV 

− 3 ρ2 
V , 

θ

[
3 ( ρL − ρV ) 

( 3 − ρL ) ( 3 − ρV ) 
+ log 

(
ρL ( 3 − ρV ) 

ρV ( 3 − ρL ) 

)]

= 

9 

4 

( ρL − ρV ) , 

hich is solved by a standard Newton algorithm. 

imulations setup 

All the simulations have been performed using an axisym-

etric code, exploiting cylindrical symmetry, see the sketch in

ig. 2 . The system is initialized with a vapor bubble of radius

 eq centered in z 0 , the distance between the wall and the bubble

enter. The effect of the initial distance is analyzed by performing

 simulations at different z 0 . The vapor bubble is in equilibrium

ith the confining liquid at temperature θ/θc = 0 . 6 . A shock wave

ith intensity I = (p 2 − p 1 ) /p 1 , with p 2 and p 1 the pressure in the

erturbed and the unperturbed state, respectively, is initialized to

it the bubble and trigger the collapse. In most of the results to

e discussed, I = 75 . A further case at I = 400 is also considered,

o highlight the destabilizing effect of the impinging shock inten-

ity. The fluid domain has dimension 4 R eq × 4 R eq and has been

iscretized with a uniform grid 2048 × 2048. The mesh influence

as been analyzed by comparing the bubble evolution on a coarser

esh, 1024 × 1024. Since the results are nearly indistinguishable,

nly those obtained with the finer mesh has been produced here

ince the accuracy, in particular during the final stage of the

ollapse, is expected to be slightly better. An adaptive timestep,

anging from 10 −5 down to 10 −8 , has been used during the

imulations to comply with stability and accuracy requirements.

n particular, the smaller ones are used during the collapse stage,

hen the shockwaves are formed, in order to follow the large

nd fast changes experienced by the field. Selecting L R = R eq , the

imensionless parameters of the simulations are: Re = 50 , P r = 0 . 2

nd C = 1 . 6 × 10 −4 . These values correspond, e.g., to a bubble

adius order of 100 nm with typical viscosity, thermal conductivity,

urface tension and critical values of water. 
. Results and discussions 

Overall, the dynamics of the bubble is characterized by a se-

uence of rebounds, as shown by the plots of bubble volume vs.

ime reported in Fig. 3 for different wall normal distances of the

ubble and for the triggering shock strength I = 75 . Generically,

he first collapse phase (volume decreasing in time), is only slightly

ffected by the initial wall distance. After the minimum volume is

eached, a plateau is observed. It will be shown to be related to

he interaction of the bubble with the shock wave which is emit-

ed when the collapse is arrested and is successively reflected back

y the wall. After the shock/bubble interaction is completed, the

ubble starts expanding up to a maximum volume, which is sys-

ematically lower than the initial value. The process ends with the

ull condensation of the bubble. 

quilibrium vapor bubble 

Before discussing in detail the actual dynamics observed in

he simulations, it may be instrumental to identify the effect of

 compression on an equilibrium bubble. Given the temperature,

 system formed by a vapor bubble in equilibrium with the liq-

id should satisfy the conditions of constant chemical potential,

q. (4) , 

μ0 
c (ρL , θ ) = μeq 

0 
c (ρV , θ ) = μeq , 

here the equilibrium state is parametrized by θ and μeq , and the

hemical potential for a van der Waals fluid is explicitly provided

n Eq. (44) . 

The equilibrium conditions are described in Fig. 4 , where a con-

tant chemical potential line, thin solid line, is plotted in the ρ − p

lane. An isotherm is also reported as a red solid line. The inter-

ection of the two curves determines three points in the plane. The
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Fig. 4. Illustration of the iso-chemical potential (black curves), isotherm (red curve, 

θ̄ = 0 . 6 ) and isobar (blue curve) for a van der Waals equation of state in the ρ–p 

plane. The range of very low densities is enlarged in the top inset. The equilibrium 

properties (same chemical potential, temperature and pressure) identify the satura- 

tion densities ( ρVsat and ρLsat ) as the intersection of the iso-chemical potential μsat 

(thicker black curve) and the isotherm and isobar. The two colored regions span the 

chemical potential values where a vapor bubble (light blue) or a liquid drop (light 

red) can be found as a metastable equilibrium condition for the fluid system. In 

the bottom inset the effect of reducing the liquid pressure, p L , under the saturation 

value on the equilibrium pressure difference, p , between the vapor bubble and 

the external liquid, is plotted for different fixed temperatures. The corresponding 

bubble radius can be obtained by the classical Young–Laplace equation. (For inter- 

pretation of references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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low density one corresponds to the vapor, ρV , p V , and is hardly

visible on the scale of the plot, see the enlargement on the up-

per part of the figure. The intersection at largest density corre-

sponds to the liquid, ρL , p L . The third intersection, at intermedi-

ate density ρspi 
V 

(θ ) < ρun < ρspi 
L 

(θ ) , always belongs to the unstable

region of the phase space, below the spinodal, see Fig. 1 . The re-

gion of the phase space where the above three intersections exist

is shown by the colored band in the figure. More specifically, de-

noted by μspi 
L 

(θ ) and μspi 
V 

(θ ) the chemical potential at the liquid

and vapor spinodal, the condition μspi 
L 

(θ ) < μeq < μspi 
V 

(θ ) defines

the relevant range of chemical potential. Outside the colored band,

only one intersection is found, corresponding to vapor or liquid,

according to the condition μeq < μspi 
L 

or μeq > μspi 
V 

, respectively. 

The pressure, of the vapor, say, is recovered from the pressure

equation of state (25) , in combination with the expression for the

chemical potential Eq. (44) , to yield p V = p V (μeq , θ ) . The chemi-

cal potential at saturation, black thick line in Fig. 4 , is such that

p V (μsat , θ ) = p L (μsat , θ ) = p sat (θ ) . As a property of the solution,

p L � p V when μeq � μsat . It follows that, in order to have a bubble

( p V > p L ), the chemical potential must be smaller than the satura-

tion value, μspi 
L 

< μeq < μsat , light blue band in Fig. 4 . In this case

the vapor is stable (i.e. the vapor point is above the binodal) and

the liquid is metastable (liquid between binodal and spinodal). The

other case, μspi 
V 

> μeq > μsat , corresponds to a drop of stable liquid

in metastable vapor (light red band in the figure). 

By inverting the relationship p L = p L (μeq , θ ) and inserting it in

the expression for vapor pressure, p V = p V (μeq , θ ) , allows to ex-

press the pressure difference between vapor and liquid as a func-

tion of the liquid pressure, 

p = p V − p L = f (p L , θ ) , 
here p > 0 (vapor bubble) when p L < p sat . This relation, il-

ustrated in the lower inset of Fig. 4 for several temperatures, is

ardly distinguishable from a straight line on the adopted scale.

ince μspi 
L 

< μeq < μsat , the corresponding range of liquid pressure

s p 
spi 
L 

< p L < p sat (θ ) , where p 
spi 
L 

is the pressure at the liquid spin-

dal. When the liquid pressure belongs to the allotted interval, the

quilibrium radius of the bubble can then be estimated by using

he Young–Laplace equation, R eq = 2 σ/ p (the exact solution re-

uires solving the corresponding problem in the phase field con-

ext Dell’Isola et al., 1995 ). 

Let us consider the bubble–liquid system in equilibrium with

 given pressure p L in the liquid. Assume the liquid is now com-

ressed to a new state, p ′ L = p L + δp L . If the compression is such

hat p ′ 
L 

< p sat , the bubble will find a new equilibrium condition,

ith a new pressure p ′ 
V 

and a new radius R ′ eq . A counterintu-

tive effect is that, under compression of the liquid, the radius of

he new equilibrium bubble increases. This is opposite to the be-

avior expected from a gas bubble, and is explained by the inset

f Fig. 4 where the pressure jump across the interface is shown

o be a decreasing function of the liquid pressure. A little more

hough immediately provides the clue for understanding this be-

avior. In fact, increasing the pressure, the liquid gets closer to

aturation conditions, implying that also the vapor inside the bub-

le approaches saturation, see the inset of Fig. 4 . The consequence

s that the pressure difference p between vapor and liquid de-

reases, leading to a larger equilibrium radius as a consequence of

he Young–Laplace equation. 

If the compression exceeds the saturation pressure, no vapor

ubble can exist in equilibrium with the compressed liquid: in this

ase the vapor condenses altogether, and the new equilibrium state

orresponds to a single phase, pure liquid. Our interest here is fo-

used on the nonequilibrium process that leads to such eventual

ondensation, when the compression is associated to a shock wave

n the liquid impinging the vapor bubble. In order to achieve full

ondensation the shock wave amplitude p 2 − p 1 should be larger

han p sat − p 1 , i.e. I > p sat /p 1 − 1 , where p 1 is the liquid pressure

n equilibrium with the initial vapor bubble. 

on-equilibrium process 

Experiments on laser induced bubbles in water ( Noack and Vo-

el, 1998 ) show that energy deposition by a focused laser beam

eads to a fast local vaporization and the compression of the liq-

id. By measuring the speed of the shock wave, the authors could

nd the intensity of the shock wave as a function of the energy of

he laser pulse. It is found that pressures in excess of 10 GPa are

asily excited in water at standard conditions. Clearly the strength

f the shock wave decreases with the distance from the focusing

oint, confirming that almost planar waves can easily be gener-

ted in the liquid with the intensity we are using here to trigger

he collapse of the bubble ( I ∈ [75, 400]). 

The evolution of the vapor bubble is represented in Figs. 5

nd 6 for two different initial wall distances, z 0 = 1 . 3 and z 0 = 1 . 9 ,

espectively. The weak impinging shockwave and the proximity of

he wall is not sufficient to immediately break the spherical sym-

etry and to produce the classical liquid jet that porates the bub-

le, clearly observed in millimeter-bubble experiments ( Benjamin

nd Ellis, 1966; Lauterborn and Bolle, 1975; Ohl et al., 2006 ). At

ub-micron scale the surface tension is, in fact, predominant and

reserves the nearly spherical shape during the first part of the

volution. Symmetry breaking eventually occurs when the bubble

hrinks to its minimum volume and a non-spherical shockwave is

mitted. By comparing Figs. 5 and 6 , the asymmetry is stronger

or the bubble closer to the wall, where, instead of being more

r less spherical, the shockwave produced at collapse consists of

wo curved shock fronts that propagate toward and away from
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Fig. 5. Snapshots during the evolution of a collapsing bubble with z 0 = 1 . 3 . 

The sequence runs from left to right and from top to bottom and is not 

uniformly spaced in time ( t = 0 , 2 . 237 , 2 . 261 , 2 . 28 , 2 . 316 , 2 . 376 , 2 . 527 , 4 . 152 , 6 . 407 , 

7 . 474 , 7 . 683 , 7 . 736 ). The grey tones from darker to lighter represent the density 

field from smaller (vapor phase) to higher (liquid phase). The black lines are 

Schlieren-like iso-lines obtained as S = exp (−| ∇ p 0 | / | ∇ p 0 | max ) . The drawn iso-levels 

are S = 0 . 9 and S = 1 in order to highlight the regions with the highest pressure 

gradients, i.e. the vapor–liquid interface and the shockwaves. 
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Fig. 6. Snapshots during the evolution of a collapsing bubble with z 0 = 1 . 9 taken at 

times t = 0 , 2 . 266 , 2 . 319 , 2 . 395 , 2 . 399 , 2 . 771 , 4 . 545 , 4 . 627 , 7 . 04 , 7 . 533 , 7 . 736 , 9 . 482 . 

The grey tones and the iso-lines are the same of Fig. 5 . 
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he wall. The former is eventually reflected by the solid wall and

trikes again the re-expanding bubble. During this stage the bub-

le becomes flatter (elongated in the radial direction) and moves

oward the wall. The expansion stage is strongly affected by the

ubble–wall distance, with the closest bubble ( Fig. 5 ) touching the

all and the farthest one (e.g. in Fig. 6 ) remaining detached. Dur-

ng the bubble expansion, the liquid in the thin layer between

apor and wall is compressed and a new shockwave is observed,

hird row of Fig. 6 . This sequence of events completely breaks the

pherical symmetry, thereby reducing the strength of the succes-

ive collapse. Eventually, the field becomes more and more com-

lex, until dissipation prevails. It is worth noting that, at a qualita-

ive level, the configuration of the shock waves compares very well

ith results found in experiments in similar conditions, Tomita and

hima (1986) . It should be stressed however that in the experi-

ents the bubble is usually much larger, typically millimeter size.

owever femtosecond lasers allow to generate nano-sized bubbles,

ee Vogel et al. (2008) . 

Increasing the strength of the impinging shockwave, liquid-jet

ormation is observed. In Fig. 7 the evolution of the vapor bubble

riggered by a shockwave of intensity I = 400 is represented up to

he first re-expansion stage. The shape of the collapsing bubble be-

omes much flatter than observed at weaker shock strengths and

he strong vorticity generated at the periphery of the bubble gives
ise to the bubble poration by inducing a liquid jet focused toward

he wall. In the third row of Fig. 7 , during the re-expansion stage,

he bubble acquires an annular shape and the liquid jet impinges

he wall and produces a radial flow. 

A direct comparison of the flow induced by the bubble collapse

t different strengths of the triggering shockwave is reported in

ig. 8 . The liquid jet directed toward the wall is more pronounced

or I = 400 and the flow is strong enough to pierce the bubble

eading to an annular shape. In fact, although a wall-directed flow

s observed also in the case of the weaker initial shockwave, at

 = 75 the bubble is not flat enough to be pierced by the liquid

et and the overall effect reduces to a displacement of the bubble

oward the wall. 

A crucial aspects of the phenomenology is the transition to

upercritical conditions during the last stage of the collapse

 Magaletti et al., 2015 ). The formation of an incondensable phase

revents the complete collapse of the bubble, reverting the motion

o an outward expansion. Overall, a sequence of oscillations sets

n, as shown in Fig. 3 , where the quantity reported on the ordinate

s the volume of the non-liquid phase in the system (vapor and

upercritical phases). During each successive collapse, the vapor is

ompressed and its temperature raises locally bringing the system

n supercritical conditions. As already anticipated, Fig. 3 , the vol-

me during the first collapse stage is almost independent of the

ubble–wall distance. On the contrary, the re-expansion stage is

ffected by the initial position. The following dynamics is affected

y the complex interactions between the reflected shockwaves and

he bubble motion. The time of the successive collapses are slightly
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Fig. 7. Snapshots during the evolution of a collapsing bubble with z 0 = 2 . 2 and 

a trigger shockwave with intensity I = 400 . The time instants correspond to t = 

0 , 0 . 948 , 0 . 985 , 1 . 007 , 1 . 068 , 1 . 156 , 1 . 766 , 2 . 36 , 2 . 822 . The grey tones and the iso- 

lines are the same of Fig. 5 . The stronger impinging shock initiates the liquid jet 

formation and leads to the bubble poration. 

Fig. 8. Comparison of the flow fields for two different shock intensities. On the left 

the case I = 400 where it is apparent the liquid jet formation. On the right the case 

I = 75 . The plotted vectors are not at the maximum grid resolution to increase the 

clearness of the figure. 

 

 

 

 

 

 

 

 

 

Fig. 9. Time evolution of eccentricity for different initial distance. The first stage 

of the collapse is substantially spherical for all the initial distances. The break of 

symmetry occurs during the final stage of the collapse with the nearest bubble (red 

curve in the online version) that slightly extends toward the wall while the others 

in the radial direction. During the shock-interaction stage all the bubbles assumes a 

pronounced flat shape and remains elongated in the radial direction through all the 

re-expansion phase. The more drastic change of topology occurs during the second 

collapse when all the bubbles rapidly invert the elongation toward the wall. (For 

interpretation of references to color in this figure legend, the reader is referred to 

the web version of this article.) 

Fig. 10. Evolution of the position of the bubble center. The faster migration toward 

the wall occurs between the collapse and the re-expansion stages when the flow 

produced during the bubble collapse is stronger and convects the bubble. The two 

snapshots in the insets show the velocity vectors in two different stages: on the left 

it is highlighted the axial flow during the bubble migration, while on the right it is 

shown the characteristic quasi-radial flow during the re-expansion phase that stops 

the axial motion of the bubble. 
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different for the different cases (differences up to 10%) and the

maximum volume achieved after the second re-expansion is not

monotonous with z 0 . In the inset of Fig. 3 we compare the volume

evolution of a shock-induced collapse in free space (black dotted

curve) with the one near the wall (red solid curve, z 0 = 1 . 3 ). The

overall dynamics is again a series of collapses and rebounds but,

after each collapse, the bubble in free space does not experience

the volume plateau which is an effect of the interaction between

the re-expanding bubble and the shockwave reflected back by the
all. The reflected shock counteracts the re-expansion and keeps

he bubble small for a longer time. 

The eccentricity of the bubble, e = a/b, where a is the semi-

xis in the z -direction and b is the other semi-axis of the ellipsoid

ith the same volume of the bubble, V = 4 πab 2 / 3 , can be used

o quantify the change in bubble shape, with e < 1 for a flat bub-

le (elongated in the radial direction). The time evolution of the

ccentricity is reported in Fig. 9 , for several initial distances z . 
0 
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Fig. 11. Time evolution of the maximum pressure recorded in the whole fluid domain for the five different initial wall–bubble distances. As a reference the dotted curve 

reports the bubble volume evolution. The most intense pressure peaks are observed when the bubble reaches its minimum volume. In the case of z 0 = 1 . 3 , the maximum 

value is reached at the second collapse because the bubble is pinned on the solid boundary and its collapse is more intense. Of particular interest are the pressure peaks 

observed during the re-expansion stage for the cases z 0 = 1 . 6 and z 0 = 2 . 2 which are related to the compression of the liquid film between the bubble and the wall, as 

explained in the text. In the inset we report the time evolution of the maximum pressure in the case with the higher triggering shock intensity. 
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Fig. 12. Time evolution of maximum temperature recorded in the whole fluid do- 

main. As well as the pressure peaks, the temperature reaches the local maxima 

when the collapse is completed. Again, it is possible to observe a temperature peak 

during the re-expansion stage, but it is less apparent than its pressure equivalent. 

In the inset we report the time evolution of the maximum pressure in the case 

I = 400 . 

b  

c  

s  

2  

o  

n  

p  

i  

s  

s  
Let us focus on the first collapse stage. As anticipated, during

he initial phase of the first collapse, all the bubbles remain al-

ost spherical. The initial distance affects, instead, the shape in

he final part of the collapse in such a way that the farther bub-

les take a flatter shape ( e < 1) while the closer ones get slightly

longated toward the wall ( e > 1) . This trend is the consequence

f two counteracting effects of the triggering shockwave. On one

and the impinging shock flattens the bubble during the collapse.

n the other hand the bubble-shock interaction weakens the pres-

ure wave and slows it down locally in the region occupied by

he bubble (see the second and third snapshots in the first row

f Fig. 7 ). Its reflection at the wall produces a non-uniform shock-

ave impinging again the bubble. The reflected shock is now more

ntense on the sides than on the center of the bubble thereby en-

ancing the elongation in the z -direction. The effect is clearly more

ntense for bubbles closer to the wall. 

After the first collapse, up to the re-expansion stage, all the

ubbles flatten as a consequence of the radial flow occurring near

he wall. The second collapse is characterized by a rapid reduction

f the radial semi-axis b (see the third and the forth rows of Fig. 6 )

nd therefore by a quick increase of the eccentricity as a conse-

uence of the local high curvature at the equator of the bubble in

ssociation with surface tension. 

The flow produced during the bubble collapse and the conse-

uent bubble motion is investigated in Fig. 10 showing the po-

ition of bubble center of mass, z c . A strong axial flow, clearly

isible in the inset on the left, is produced near the bubble axis

uring the collapse stage. This flow is responsible for the bubble

igration toward the wall after the collapse ( t > 2). Overall, de-

pite the difference in lengthscale, the observed phenomenology

s entirely consistent with the experimental observations on mil-

imeter bubbles reported in Philipp and Lauterborn (1998) . During

he re-expansion stage the flow is directed radially outward (in-

et on the right), stopping the bubble motion toward the wall. The

ubsequent collapse regenerates the axial flow and the bubble ap-

roaches the wall again. 

Shockwaves and jets formed during bubble collapse are asso-

iated with intense pressure and temperature peaks. At each time

nstant maximum pressure and temperature are recorded and

eported in the plots of Fig. 11 and 12 , respectively. The first peak,
 t  
oth in pressure and temperature, occurs at the end of the first

ollapse stage, when the bubble stops shrinking. This peak is the

trongest one for a bubble collapsing in free space ( Magaletti et al.,

015 ). Fig. 11 shows that the end of the first collapse is the instant

f maximum pressure also for most cases of bubbles collapsing

ear the wall. However there are conditions where a successive

eak exceeds by far the first one. When it occurs, such extremely

ntense pressure peak is due to the bubble experiencing the

econd collapse after it translated to get in touch with the wall,

ee the snapshots in the last row of Fig. 5 . It may even happen

hat an intermediate pressure peak occurs between the first and
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Fig. 13. Spatial evolution of the maximum pressure values recorded on the wall 

during propagation of the shock wave for each initial condition. The pressure val- 

ues are decreasing with increasing of initial bubble distance from the wall. It is 

possible to observe that for the bubbles placed at distances closer to the wall the 

shape of the envelope varies strongly due to interaction with the shockwave reflec- 

tion. Inset: Radial evolution of the pressure range recorded on the wall for initial 

condition z 0 = 2 . 2 . The different dotted lines correspond to different time instants 

and the purple line corresponds to the envelope of the maximum pressure values. 

(For interpretation of references to color in this figure, the reader is referred to the 

web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Comparison of the maximum pressure and temper- 

ature reached during the first collapse in three dif- 

ferent geometrical configurations. In all the cases the 

overpressure that triggers the collapse is of intensity 

I = 75 . The data shown as representative of the shock 

induced collapse in proximity of the wall is referred 

to the case with z 0 = 1 . 6 . 

p max / p c θmax / θ c 

Spherical 3 × 10 5 708 

Shock induced – no wall 175.16 3.29 

Shock induced – near wall 384 8.22 
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the second collapse. When present, this is due to the expansion

of the bubble at a suitable distance to the wall that generates a

compression of the fluid between bubble and wall (third row of

Fig. 6 ). As already commented, the increase in the triggering shock

intensity leads to bubble poration and jet development. Interest-

ingly, at the moment of jet formation, a peak in the pressure field

is observed, inset of Fig. 11 . The origin of the pressure peak is

purely hydrodynamical, since no corresponding temperature peak

occurs, see inset of Fig. 12 . Since the jet-induced pressure peak

is comparable with that of the shock, the present results seem to

confirm the high damaging potential of the jetting phase. 

The collapsing bubble induces a strong stress on the solid wall.

Fig. 13 reports the envelope of the pressure maxima at the wall

for different initial bubble positions. The inset illustrates the way

the envelope is constructed from instantaneous pressure distribu-

tions at the wall at successive time instants. By comparing with

the pressure maxima in the field, Fig. 11 , it is clear that the pres-

sure at the wall is much weaker than the maximum inside the

field. Nevertheless the typical pressure at the wall is very large,

order ten times the critical pressure of the fluid. For water, this

would correspond to a pressure in the order of 200 MPa, a figure

which compares well with experimental measurements on collaps-

ing bubbles near solid walls ( Tomita and Shima, 1986 ). Concerning

the temperature at the wall, in the present conditions extreme val-

ues were never experienced, except in cases where the collapsing

bubble came in direct contact with the wall. 

5. Conclusions 

We have numerically studied the collapse of a pure vapor

nanobubble near a solid boundary by applying a diffuse interface

approach. The model is especially suitable to describe in a con-

sistent and unified way the complex phenomena occurring during

cavitation, namely: phase change, latent heat release, shock wave

formation and propagation, transition to supercritical conditions.
ike in the case of spherically symmetric collapse, a pure vapor

ubble is found to collapse with a sequence of volume oscillations,

ssociated to a sequence of successive collapses which are arrested

nd inverted by the formation of the incondensable, supercritical

hase due to compression and latent heat release. In comparison

ith symmetric collapse, the peak pressures and temperature are

ignificantly lower in the case of aspherical bubble collapse, see

able 1 . Interestingly, the peak pressure for shock wave induced

ollapse in free space leads to even lower pressure and tempera-

ures in comparison with those reached when the collapse is trig-

ered near the wall. This indicates that the wall, by confining the

adial expansion of the bubble and reflecting the triggering shock

nhances the peak pressure level. Despite the pressure peak real-

zed at the wall is significantly lower than the maxima found in-

ide the field, still large level of stress is transferred to the wall, as

otential source of damage. A strong jet is found when the trigger-

ng shock strength is sufficiently large. In fact, jet impingement on

he wall is often quoted as a concurrent cause of material damage

 Tomita and Shima, 1986 ). 

It is worthwhile noting that the peak pressure and temperature

evels obtained in the present simulations are expected to overes-

imate the experimental values. The reason is the simple equation

f state used to make the computations more easily affordable. In

articular, a pressure equation of state better suited to model a

eal fluid could help to reduce the peak temperature and pressure

alues. Moreover, unless extremely weak forcing is used to initi-

te the bubble collapse, the large temperatures reached inside the

ubble are expected to lead to dissociation and ionization phenom-

na, which concur in substantially limiting the peak temperature. 

A further aspect to be considered for future works is the pres-

nce of dissolved gas in the liquid to reproduce the condition

f partially gas-filled cavitation bubbles that are more commonly

ound in applications. 
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