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Abstract

DNA methylation and demethylation are opposing processes that when in balance

create stable patterns of epigenetic memory. The control of DNA methylation pat-

tern formation in replication dependent and independent demethylation processes has

been suggested to be influenced by Tet mediated oxidation of a methylated cytosine,

5mC, to a hydroxylated cytosine, 5hmC. Based only on in vitro experiments, sev-

eral alternative mechanisms have been proposed on how 5hmC influences replication

dependent maintenance of DNA methylation and replication independent processes

of active demethylation. In this thesis we design an extended and easily generaliz-

able hidden Markov model that uses as input hairpin (oxidative-)bisulfite sequencing

data to precisely determine the over time dynamics of 5mC and 5hmC, as well as to

infer the activities of the involved enzymes at a single CpG resolution. Developing

the appropriate statistical and computational tools, we apply the model to discrete

high-depth sequenced genomic loci, and on a whole genome scale with a much smaller

sequencing depth. Performing the analysis of the model’s output on mESCs data, we

show that the presence of Tet enzymes and 5hmC has a very strong impact on repli-

cation dependent demethylation by establishing a passive demethylation mechanism,

implicitly impairing methylation maintenance, but also down-regulating the de novo

methylation activity.
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Zusammenfassung

DNA-Methylierung und Demethylierung sind gegenläufige Prozesse, die im

Gleichgewicht stabile Muster des epigenetischen Gedächtnisses erzeugen. Es wird

angenommen, dass die Kontrolle der DNA-Methylierungsmusterbildung in replika-

tionsabhängige und unabhängige Demethylierungsprozesse durch Tet-regulierte Oxi-

dation eines methylierten Zytosins (5mC) zu einem hydroxylierten Zytosin (5hmC)

beeinflusst wird. Aufgrund von In-Vitro-Experimenten, wurden verschiedene

Mechanismen vorgeschlagen wie 5hmC die replikationsabhängige Aufrechterhal-

tung der DNA-Methylierung und die replikationsunabhängigen Prozesse der ak-

tiven Demethylierung beeinflusst. In dieser Arbeit entwerfen wir ein erweitertes

und leicht verallgemeinertes Hidden Markov Modell, das mit Hilfe von Hairpin

(oxidative-)Bisulfit Sequenzierung gewonnener Daten die Zeitdynamik von 5mC und

5hmC genau bestimmt und die Aktivitäten der beteiligten Enzyme auf der Ebene

einzelner CpGs schätzt. Wir entwickeln geeignete statistische Methoden, um das

Modell sowohl auf der Ebene der sequenzspezifischen Tiefensequenzierung einzelner

Loci, als auch auf genomweiter Ebene mit stark verringerter Sequenzierungstiefe

anzuwenden. Wir zeigen, dass die Anwesenheit von Tet-Enzymen und 5hmC einen

sehr starken Einfluss auf die replikationsabhängige Demethylierung hat, indem sie

einen passiven Demethylierungsmechanismus etabliert, der die Methylierungserhal-

tung implizit beeinträchtigt, aber auch die de novo-Methylierung herunterreguliert.
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Chapter 1

Introduction

DNA methylation is an essential epigenetic modification that regulates the transcrip-

tional access to genetic information and controls the genome stability and genome

function [11, 53, 37, 78]. During development the distribution of DNA methylation is

under strict control to maintain a temporal and cell type specific persistence of epige-

netic information [68]. In mammals DNA methylation is restricted to the C-5 position

of cytosine and it is predominantly found in a palindromic CpG di-nucleotide context

[6, 17, 77, 100, 56]. The generation of a 5-methyl cytosine (5mC) is controlled by the

DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b that catalyze the transfer of

a methyl group from s-adenosyl methionine to the fifth carbon atom of cytosine.

Methyltransferase Dnmt1 is responsible for maintaining an existing methylation

pattern after cell replication. Via interaction with Uhrf1 and PCNA, Dnmt1 is tightly

associated with the replication machinery [51, 14, 10]. The palindromic nature of a

CpG sequence in which 5mC occurs allows the recognition of a 5mC hemimethylated

state after semi-conservative replication and the copying of the parental methylation

pattern to the newly synthesized DNA strand [35, 10, 81]. This process is known as

maintenance methylation and it is described in Figure 1.1. In contrast to Dnmt1,

methyltransferases Dnmt3a and Dnmt3b act without any preference on both hemi-
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Figure 1.1: DNA Maintenance methylation. After DNA replication Dnmt1 is re-
cruited to the replication fork via its association with Uhrf1 [10] and PCNA [14], that
confer processivity to polymerases (green ring). Dnmt1 recognizes a hemimethylated
site [73], i.e., a pair of CpG dinucleotides with a 5-methylcytosine on the original
strand and a normal cytosine on the newly synthesized strand. Once Dnmt1 binds
to the hemimethylated site, it transfers a methyl group onto the newly synthesized
cytosine base.

as well as unmethylated CpGs, and their activity is not coupled to DNA replication

[69, 68, 25]. Both of these enzymes are highly regulated and regarded as the main

enzymes to establish new methylation patterns1. For this reason they are classified

as de novo DNA methyltransferases.

Besides the establishment and the persistence of methylation, its removal, called

demethylation, is also of major biological importance. Demethylation events can

occur on a local scale in case of individual gene activation, but also on a genome-

wide scale in the early zygote, on embryonic stem cells (ESCs), as well as during

the maturation of primordial germ cells (PGCs) [84, 71, 30], where genomes are

reprogrammed for new developmental functions [28, 52]. In all these types of cells the

stability of DNA demethylation is influenced by the oxidation of a 5-methylcytosine

1There is evidence that a strict separation of Dnmt1 and Dnmt3a/b activity is not coherent and
that under certain conditions these enzymes exhibit cooperation, the details of which are not yet
well understood [65, 55, 46]. For instance, Dnmt1, at least in the absence of Dnmt3a/b, may also
de novo methylate unmethylated dyads [58, 1]. Nevertheless, the observed Dnmt1 de novo activity
is usually very small and hence it seems fair to categorize Dmnts in the way we did above [25, 40].
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(5mC) into 5-hydroxymethylcytosine (5hmC) and, potentially, into further oxidized

forms (oxCs) as 5-formylcytosine (5fC) [3, 76, 45] and 5-carboxylcytosine (5caC)

[90, 38]. The subsequent conversions to oxC modifications happen via the activity

of a family of di-oxigenases, the ten-eleven translocation enzymes Tet1, Tet2 and

Tet3 [70, 59, 39] in a sequence of steps, that change the chemical properties and

the biological function of each base. As a consequence it has been observed that

disturbances or depletion of Tet enzymes in the previously mentioned cells result in

massive changes of 5hmC and lead to developmental consequences [95, 26, 15].

Based solely on in vitro experiments, several possible explanations have been

proposed regarding the connection of the oxidative cytosine derivatives and the Tet

enzymes with DNA demethylation. According to these, oxCs might serve as an inter-

mediate during the course of either active, or passive demethylation [32, 92, 41, 34, 61,

98], which consequently results to the impairment of replication dependent copying

of 5mC. Active demethylation is defined as the demethylation that happens within a

cell-replication cycle, by the gradual transformation of 5mC to 5hmC, 5fC and 5caC

and then to simple cytosine (Figure 1.2). On the contrary, passive demethylation

is the decrease of methylation levels among two consecutive cell replications due to

the impairment of maintenance methylation machinery, or possibly the interference

of oxC derivatives with this machinery. In vitro observations hint towards such inter-

ference for instance, stating that Dnmt1 binds to 5hmC with a much lower a�nity

than to 5mC [32]. The truthfulness of the above theories, however, has never been

tested in vivo, and the detailed underlying mechanisms that demethylation processes

take place are still under debate. Questions such as how oxCs are inherited across

cell replication, or what is really their impact on maintaining or changing an existing

methylome, remain still elusive.

The goal of this doctoral thesis is to shed light on the in vivo dynamics of DNA

demethylation in ESCs by studying mainly the influence of the most abundant ox-
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Figure 1 | Potential pathways for DNA demethylation. Genomic 5‑methylcytosine (5mC) can be 
removed passively during replication, but several pathways for active demethylation have also been 
proposed, including those in which 5‑hydroxymethylcytosine (5hmC) is an intermediate. 
Deamination of either 5mC or 5hmC by the activation‑induced cytidine deaminase (AID)/apolipo-
protein B mRNA editing enzyme, catalytic polypeptide (APOBEC) family of cytidine deaminases 
produces mismatches that are recognized by DNA glycosylases, producing an abasic site that is then 
repaired by the base excision repair (BER) machinery27,33. Alternatively, 5hmC may be further oxidized 
to 5‑formylcytosine (5fC) and 5‑carboxylcytosine (5caC) by TET enzymes24,25. Although it remains 
possible that deformylation of 5fC and decarboxylation of 5caC convert these intermediates directly 
back to cytosine, no enzymatic activities have been described to date. Instead, thymine DNA glyco-
sylase (TDG) has been shown to cleave 5fC and 5caC24,34, again implicating the BER pathway in DNA 
demethylation. 5hmU, 5‑hydroxymethyluracil; DNMT, DNA methyltransferase; MBD4, methyl‑CpG‑
binding domain protein 4; SMUG1, strand‑selective monofunctional uracil‑DNA glycosylase 1.

demethylation of the brain-derived neuro-
trophic factor (Bdnf) and fibroblast growth 
factor 1 (Fgf1 ) gene promoters as part of a 
physiological response to electroconvulsive 
stimulation23. One seemingly inconsistent  
example is that of myeloid tumours  
carrying TET2  mutations that decrease 
its activity, where decreased global 5hmC 
levels are actually associated with CpG 
hypomethylation, but it is possible that the 
methylation machinery is also impaired in 
these tumours10. Finally, loss of 5mC from 
the paternal genome in the fertilized egg 
correlates with an increase in 5hmC in the 
male pronucleus at a time when the female 
pronucleus remains methylated and contains 
low levels of 5hmC18–20. This striking asym-
metry is highly suggestive of an involvement 
of 5hmC in demethylation of the paternal 
genome, and indeed TET3-depleted zygotes 
fail to demethylate the male pronucleus18,20 
and, in particular, certain promoter regions 
(for example, Oct4 (also known as Pou5f1 ) 
and Nanog)18. This is compelling evidence 
that TET3 is involved in DNA demethyla-
tion, potentially through oxidation of 5mC. 
Nonetheless, a direct link to the catalytic 
activity of the enzyme is still missing, and 
it is possible that there is a non-catalytic 
function of TET3 in demethylation. More 
recently, it was shown by immunostaining 
that paternal 5hmC is lost passively through 
replication during pre-implantation develop-
ment29, suggesting that 5mC is converted 
to 5hmC, which is then removed through 
replication. Because immunostaining is not 
quantitative, it remains possible that only a 
portion of 5mC is converted to 5hmC, and 
the remaining 5mC is removed by a distinct 
pathway. Indeed, demethylation of trans-
posable elements is apparent by bisulphite 
sequencing before replication is initiated30.

Potential mechanisms. Conversion of 5mC 
to 5hmC could promote passive demethyla-
tion at the time of replication by preventing 
DNMT1 activity at hydroxymethylated 
CpGs. But, whereas DNMT1 is not active at 
hemi-hydroxymethylated CpGs31 in vitro, 
the chaperone UHRF1 (which is also known 
as NP95 and is crucial for DNMT1 func-
tion) binds both 5mC and 5hmC with 
similar affinities32, potentially promoting 
DNMT1 activity at hydroxymethylated 
CpGs. Current in vivo evidence from pre-
implantation embryos suggests that 5hmC 
is passively removed through replication29, 
but further studies are required to clarify 
this point.

In terms of potential active demethylation 
pathways, 5hmC may be removed through a 

deamination pathway that is similar to that 
discussed above, in which AID/APOBEC 
deaminases act on 5mC (FIG. 1). Indeed, over-
expression of AID/APOBEC deaminases in 
neural cells promotes the removal of 5hmC, 
and both TET1 and AID overexpression lead 
to a global accumulation of 5-hydroxymeth-
yluracil (5hmU), the deamination product 
of 5hmC23. Furthermore, both single-strand-
selective monofunctional uracil-DNA 
glycosylase 1 (SMUG1) and TDG glycosy-
lases have strong activity towards 5hmU:G 
mismatches and appear to be involved in 
this pathway23,33. The potential redundan-
cies between the multiple deaminase and 
glycosylase activities that operate in vivo are 
likely to complicate future studies of such 
mechanisms.

Another active pathway that has been 
proposed involves further oxidation steps 
that would modify 5hmC first to 5fC and 
then to 5caC (FIG. 1). Indeed, all three TETs 

were recently shown to catalyse these addi-
tional oxidation steps, and both 5fC and 
5caC were detected in ESCs, albeit at very 
low levels22,24,25. Reduced preference of TETs 
towards 5hmC as a substrate (in comparison 
to 5mC)25 and/or fast removal of 5fC and 
5caC could explain their low abundance. 
Interestingly, TDG can remove both 5fC and 
5caC24,34, raising the suggestion that the BER 
machinery might operate in this pathway as 
well. However, it is possible that activities 
that deformylate 5fC or decarboxylate 5caC 
(generating C) also exist.

It is likely that there are multiple  
pathways for the removal of 5mC from the 
genome and that TET enzymes are involved 
in several of them. One interesting possibil-
ity is that different tissues might use dif-
ferent demethylation pathways, depending 
on whether demethylation is genome-wide 
or local and on its targets in the genome, 
for example.
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Figure 1.2: Potential pathways for DNA demethylation. Genomic 5-methylcytosine
(5mC) can be removed passively during replication, but several pathways for
active demethylation have also been proposed, including those in which 5-
hydroxymethylcytosine (5hmC) is an intermediate. Alternatively, 5hmC may be fur-
ther oxidized to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) by Tet enzymes
[34, 38]. Although it is possible that the deformylation of 5fC and decarboxylation
of 5caC convert these intermediates directly back to cytosine, no enzymatic activities
have been described to date. Instead, thymine DNA glyco-sylase (TDG) has been
shown to cleave 5fC and 5caC [34, 61], producing an abasic site that is then repaired
by the base excision repair (BER) machinery. Adapted from “Uncovering the role
of 5hydroxymethylcytosine in the epigenome,” by Miguel R. Branco, 2012, Nature
Reviews Genetics, 13, p.7. Copyright 2011 by the Nature Publishing Group.

idative variant [23, 48, 88], 5hmC, and of Tet enzymes on DNA demethylation over

subsequent cell-replications. For this purpose a completely novel stochastic model is

designed. Based on reasonable assumptions regarding the current knowledge about

the function of Dnmt and Tet enzymes, the model is able i) to accurately determine

the evolution of methylation and hydroxylation patterns for both complementary

DNA strands over time, as well as ii) to estimate the e�ciencies of maintenance, de

novo and hydroxylation enzymes. The sequencing data given as input is from mouse

embryonic stem cells (mESCs) which are transfered from Serum medium containing

LIF (primed state) to a synthetic 2i medium and show, therefore, a gradual genome-

wide loss of methylation [18, 29]. The model is applied to single CpGs of specific loci

with ultra-deep sequencing, as well as on a genome-wide scale with less deep sequenc-



5 1.1. Related Work

ing. Its output analysis o↵ers particularly valuable insights into DNA demethylation

mechanisms in ESCs.

1.1 Related Work

There are several approaches in the literature for estimating 5mC levels and modeling

methylation dynamics on various cell types. In one of the earliest models Genereux

et al. [21] derived a system of simple non-linear equations in order to estimate site

specific maintenance and to investigate di↵erent assumptions regarding the de novo

methylation of upper and lower strand. They used for this purpose hairpin bisulfite

PCR data at a single CpG resolution. Sontag et al. [85] developed a simple Markov

Chain in order to explain how the methylation levels of hypo or hyper-methylated

regions remain stable despite a cell division process as well as possible sporadic tran-

sitions between the two equilibria. In the same direction Fu et al. [19] apply a hidden

Markov model (HMM) to hairpin bisulfite PCR data to study the association and

processivity, as well as, the substrate specificity of Dnmts on three di↵erent loci of

human genome. Similar to Sontag, Arand et al. use a simple HMM to identify each of

the Dnmt enzymes’ static activities and specificities in a sequence of wild-type (WT)

and KO experiments.

Regarding capturing 5hmC and estimating hydroxylation levels of single CpGs,

the MLML tool [74] was the first to produce consistent estimates for methylation and

hydroxylation levels getting as input any two of bisulfite sequencing (BS-seq), oxida-

tive bisulfite sequencing (oxBS-seq) [9], or Tet-assisted bisulfite sequencing (TAB-seq)

data. The tool makes use of an expectation maximization (EM) algorithm, but it does

not take into account any of the possible conversion errors during the sequencing and

can not cope with time course data. An extended version of this work was done by

Äijö et al., where Bayesian Inference is used to compute the levels of 5mC, 5hmC
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and also of further oxidative modifications 5fC and 5caC, given that data from other

sequencing methods as MAB-seq, fCAB-seq, redBS-seq, or CAB-seq is available. In

[94] von Meyenn et al. the authors use genome-wide data to study the demethylation

process in mESCs. Their modeling approach consists of solving the mean field equa-

tions of a 6-state Markov chain. Since they do not have hairpin TAB-seq or oxBS-seq

data they assume 5hmC is uniformly distributed to all possible double stranded states

with at least one 5hmC. This unavoidably leads to an inaccurate model. In addition,

a possible mis-recognition of 5hmC by the maintenance methyltransferase that can

be a potential mechanism for passive demethylation has also not been investigated

in this paper, due to the unavailability of double stranded oxBS or TAB data. As a

result, in a contradicting, to our opinion, finding the authors report that the presence

of 5hmC plays a very minor role in the demethylation dynamics in ESCs.

We follow here a di↵erent approach that is more complete in capturing 5mC/5hmC

dynamics compared to the methods used in the work described above. The strength

of our approach is based on the neat combination of two innovative parts. The first

part is the production of single CpG double strand time course data available via the

development of two new protocols that are characterized by the original application

of a hairpin setup [50] on both BS-seq and oxBS-seq. The second part is the design

of the stochastic model described in this thesis that is able to take advantage of

this sequencing data to accurately estimate the changes of 5mC/5hmC levels for a

single CpG over time. This is achieved via the novel combination of two HMMs,

one for each sequencing method, that incorporate all possible conversion errors that

can happen during each experiment. Based on realistic biological assumptions about

the underlying epigenetic subprocesses, the presented model is additionally capable of

inferring the dynamic activity of certain enzymes, and studying potential mechanisms

involved in the creation and the loss of 5mC/5hmC. As a result, the model results

provide the opportunity to investigate several hypotheses about the behavior of factors
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relevant to loss of methylation, and thus greatly deepen our understanding on what

causes DNA demethylation.

1.2 Contributions

The contributions of this doctoral thesis consist of:

• Design of a novel stochastic model that gives (hydroxy-)methylation levels’ esti-

mates for single CpGs over time, while simultaneously provides estimates about

the activities of Dnmt and Tet enzymes over time.

• Development of a numerical optimization algorithm to e�ciently identify the

unknown model parameters along with their respective confidence intervals and

performance of hypothesis tests regarding the behavior of the individual en-

zymes.

• Generalization of the above model to cope with generalized enzymatic e�ciency

functions, a larger number of experiments and cell types, and predict estimations

for further oxidative forms other than hydroxylation.

• Implementation of the above functions in a software called H(O)TA with a very

simple user-interface especially targeted to be used by biologists.

• Model’s application on a genome-wide scale via the development of inference

methods that cope with medium or small coverage and an e�cient parallel

implementation for the model’s execution on a large cluster of machines.

• Development of a sophisticated clustering approach for identifying distinct pro-

files in the genome-wide data, spatial and temporal analysis of the model’s

genome-wide output, and detailed biological interpretation of the results.
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These contributions have been published in parts or in whole in the following research

papers:

P. Giehr⇤, C. Kyriakopoulos⇤, G. Fisz, V. Wolf, J. Walter: The Influence

of Hydroxylation on Maintaining CpG Methylation Patterns: a HMM approach,

PLOS Computational Biology, 2016

M. A. Eckersley-Maslin, V. Svensson, C. Krüger, T. Stubbs, P. Giehr, F. Krüger,

R. Miragaia, C. Kyriakopoulos, et al. MERVL/Zscan4 Network Activation Re-

sults in Transient Genome-wide DNA Demethylation of mESCs, Cell Reports,

2016

C. Kyriakopoulos, P. Giehr, V. Wolf: H(O)TA: estimation of DNA methyla-

tion and hydroxylation levels and e�ciencies from time course data, Bioinfor-

matics, 2017

P. Giehr, C. Kyriakopoulos, V. Wolf, J. Walter: Two are better than one:

HPoxBS - Hairpin oxidative Bisulfite Sequencing, Nucleic Acids Research,

2018

C. Kyriakopoulos, P. Giehr, A. Lück, J. Walter, V. Wolf, : A Hybrid HMM

Approach for the Dynamics of DNA Methylation, HSB 2019

C. Kyriakopoulos⇤, P. Giehr⇤, K. Nordström, S. Abdulrahman, F. Müller, F.

von Meyenn, G. Ficz, W. Reik, V. Wolf, J. Walter: Genome-wide single-base

resolution e�ciency profiling reveals modulation of maintenance and de novo

methylation by Tet di-oxygenases, (under review)

⇤These authors have contributed equally to this work.
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1.3 Structure

We sketch below the contents of the chapters of this thesis, while in Figure 1.3 we

point at the dependencies of the chapters on each other. A solid line indicates an

explicit relation, and a dashed line an implicit relation between two chapters.

Chapter 2: Definition of the basic mathematical concepts that are used in this

thesis. Formal introduction of discrete- and continuous-time Markov Chains, as well

as Hidden Markov Models. Brief description of the two biological protocols from

which the data used in this thesis has been produced.

Chapter 3: In detail presentation of the core hidden Markov model we build in

order to study the demethylation process of ESCs. Derivation of an e�cient gradient

descent numerical optimization approach to estimate the values of the unknown pa-

rameters and to approximate the confidence intervals of these estimators. Validation

of the model output. In detail presentation of a hybrid generalization of the core

model.
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Chapter 4: Report and analysis of the results from the application of the core-

model to individual genome regions of high-depth sequencing. Validation of the

model’s behavior in known phenomena via control-regions. Examination of concrete

biological hypotheses regarding possible mechanisms of demethylation in mESCs.

Chapter 5: Presentation of the H(O)TA tool that incorporates all previous analysis

in a user-friendly software specifically targeted to biologists interested in studying a

(de-)methylation process at certain DNA loci.

Chapter 6: Description of the inference methods developed to cope with genome-

wide single CpG resolution data of medium coverage and of the parallel implemen-

tation on a cluster of computing machines. Presentation of a clustering method to

identify regions of similar enzymatic activity in the genome. Report and in depth

biological interpretation of the model results on the genome-wide scale.

Chapter 7: Summary of models, computational methods and tools developed in

this thesis, as well as short outline of the major biological findings. List of possible

future extensions of the current work towards the better understanding of the various

epigenetic processes.



Chapter 2

Preliminaries

2.1 Mathematical Formalism

In this Section we give the formal definitions of discrete- and continuous-time Markov

chains and we distinguish between time-homogeneous and time-inhomogeneous

Markov chains. We introduce then the main stochastic model that is being used

along this thesis, the hidden Markov models (HMMs).

A Markov chain is a countable family of random variables that take values in a

discrete set S (called state space) obeying the Markov property. They typically de-

scribe the temporal dynamics of a process (or system) over time and can be separated

into chains that act in continuous and chains that act in discrete time.

2.1.1 Discrete-time Markov chains

Definition 1: Discrete-time Markov chain

BDefinition 1

A discrete-time Markov chain (DTMC) X is a sequence of random variables

(RVs) Xn : ⌦ ! S, n 2 N0, on a countable state space S s.t. for all n 2 N0 and
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for all x0, . . . , xn, xn+1 2 S

P (Xn+1 = xn+1 | Xn = xn, Xn�1 = xn�1, . . . , X0 = x0)

= P (Xn+1 = xn+1 | Xn = xn).

(2.1)

Eq. (2.1) is known as Markov (or memoryless) property and expresses the assump-

tion that the future state of the system (Xn+1) is dependent only on the information

about the present state, i.e., Xn = xn, whereas additional information about the past

states Xj = xj, j  n� 1 is irrelevant.

W.l.o.g. we can assume that S ✓ N1 and we subsequently write pij = P (Xn+1 =

j | Xn = i) for the transition probabilities from state i to state j, for i, j 2 S. We can

arrange the transition probabilities in a matrix P = (pij)i,j2{1,2,...}. The matrix P is

called the transition probability matrix of the DTMC X. In case that all the entries

of P are independent of the time unit n we call the Markov Chain time-homogeneous,

whereas we call the Markov Chain time-inhomogeneous if there is at least one entry

of transition matrix P that is dependent on n.

Transient distribution

As transient distribution we name the discrete probability distribution of the states

of the Markov chain at a certain time step. Let ⇡(0) be the row vector that contains

the initial distribution of the Markov chain at time zero, i.e., the entries ⇡(i, 0) =

P (X0 = i) for all states i 2 S. From the law of total probability it holds

P (X1 = j) =
X

i2S

P (X1 = j | X0 = i) · P (X0 = j), 8i 2 S (2.2)

1This we do by simply enumerating all states in S such that S = {x1, x2, . . .} and then just write
X = i instead of X = xi.
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and, hence, writing Eq. (2.2) as a vector-matrix multiplication we get the transient

distribution of the DTMC after one time unit (step) as ⇡(1) = ⇡(0) ·P. In the same

fashion, successive application of this argument, i.e., n multiplications with transition

matrix P, give us the vector ⇡(n) of transient probabilities after n steps

⇡(n) = ⇡(n� 1) ·P = . . . = ⇡(0) ·Pn.

Note that P is a stochastic matrix, i.e., the row sums are one and it has only non-

negative entries. The n-th power of the transition matrix, Pn, is also stochastic and

essentially contains for each state the probability of reaching any other state after n

steps.

Consequently, given P and ⇡(0), we have two ways of computing the vector ⇡(n) of

state probabilities after n steps. Either we successively compute ⇡(1), ⇡(2), . . . , ⇡(n)

by multiplying the vector with P, or we compute the matrix product Pn and multiply

it with ⇡(0). The former approach is usually preferable since it requires significantly

less computational work and it also needs less memory2. Note that even if P is

a sparse matrix the powers of P will typically not be sparse. Finally, note that

both of the previous methods are possible if the DTMC is time-inhomogeneous. The

di↵erence is that at every update step, whether computing the matrix or the vector-

matrix product, one has to multiply with matrix P(n), containing the transition

probabilities at time unit n.

Example 1: A simple DTMC

BExample 1

2In case P is large matrix multiplication needs O(|S|3) time, and O(|S|2) space, while matrix-
vector multiplication is of O(|S|2) time and of O(|S|) space complexity.
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Consider the following simple DTMC that makes a weather forecast based on

the weather of the current day. The states are 1:=sunny, 2:=cloudy, 3:=rainy.

1

2

3
0.3

0.3

0.5

0.4

0.2

0.1

0.40.6
0.2

The matrix

P =

0

BBB@

0.6 0.3 0.1

0.3 0.2 0.5

0.2 0.4 0.4

1

CCCA

contains the transition probabilities of the DTMC. Let ⇡0 = (1, 0, 0) be the initial

distribution of the chain. Then the transient distribution after three steps is

⇡3 = ⇡0 ·P3 = (0.4160, 0.2970, 0.2870)

that is, for instance, P (X3 = 2) = 0.2970.

2.1.2 Continuous-time Markov chains

Definition 2: Continuous-time Markov chain

BDefinition 2

A continuous-time Markov Chain (CTMC) is a sequence of random variables

Xt : ⌦ ! S, t � 0, on a countable state space S s.t. for all x0, . . . , xk, i, j 2 S,

all � > 0, t � 0 and all t0, . . . , tk 2 [0, t) with t0 <, . . . , < tk

P (Xt+� = j | Xt = i, Xtk = xk, . . . , Xt0 = x0)

= P (Xt+� = j | Xt = i).

(2.3)
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Eq. (2.3) is the Markov property defined for continuous time. Using the time deriva-

tives of the transition probabilities of Eq. (2.3) one defines the infinitesimal generator

matrix Q as shown in Eq. (2.4).

Qij =

8
>><

>>:

limh!0
P (Xh=j | X0=i)

h if i 6= j, and

�
P

k 6=i Qik otherwise.

(2.4)

For i 6= j the entry Qij is the transition rate of state i to state j, while the negative

diagonal entries �Qii contain the total exit rate to take any transition from state i.

The infinitesimal generator matrix Q uniquely determines the behavior of a CTMC.

Let, similar to DTMCs, ⇡(t) be the transient distribution of the chain at time

point t 2 R, and P(�) the matrix that contains the transition probabilities for time

interval � 2 R, i.e., P(�) = (P(�)ij)i,j2S = (P (X� = j | X0 = i))i,j2S . From this

definitions we get then ⇡(t) = ⇡(0)P(t), and combining with the Kolmogorov forward

equation d
dtP(t) = P(t)Q we can prove that the time derivative of the transient

distribution d
dt⇡(t) is described by Eq. (2.5) as a set of ordinary di↵erential equations

(ODEs) that depend on the infinitesimal generator matrix Q [47].

d

dt
⇡(t) = ⇡(t) ·Q. (2.5)

For a finite state space CTMC the solution of these ODEs (Eq. (2.6)) gives us the

transient probability distribution over time.

⇡(t) = ⇡(0) · eQ·t. (2.6)
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Example 2: A simple CTMC

BExample 2

1

2 3

2
5

3

1

The Q matrix of the above CTMC is

Q =

0

BBB@

�7 2 5

0 �1 1

3 0 �3

1

CCCA
.

Assuming the initial distribution is ⇡(0) = (0.5, 0.5, 0), the transient distribution

after 2.5 time units is going to be ⇡(2.5) = ⇡(0)·eQ·2.5 = (0.1864, 0.3779, 0.4356)

2.1.3 Hidden Markov Models

A hidden Markov model (HMM) is a Markov chain of finite state space and of discrete-

or continuous-time in which the system being modeled is assumed to have unobserved

(hidden) states. An HMM extends a Markov chain in that besides the state space

of the Markov chain, i.e., the set S = {1, . . . , |S|} of hidden states, there is also a

set O = {1, . . . , |O|} of observable states. This intuitively expresses the fact that

an observed output might not be the true (hidden state) of the system, but it does

not necessarily mean that the sets S and O are disjoint. For instance, in case the

observed states are the result of some observation error over the hidden states, the

two sets coincide. W.l.o.g. a formal definition of an HMM of discrete time follows.

Definition 3: Hidden Markov model

BDefinition 3

A hidden Markov model (HMM) is a combination of two stochastic processes

X and Y. X is a DTMC with Xn : ⌦ ! S, n 2 N0, on a hidden state space S,
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while Y, with (Yn) : ⌦0 ! O, n 2 N0, is dependent on X and it is defined on a

countable state space O which can be observed.

In order to define an HMM of discrete time we need the transition matrix P of

the underlying DTMC3 and the emission probability matrix E. The Ei,j entry of the

emission matrix equals the probability that we observe state j 2 O, given that the

hidden state of the system is i 2 S, i.e, Ei,j = P (Yn = j | Xn = i) for all n.

Given for an HMM the initial distribution ⇡(0), the transition probabilities (or

rates), the emission matrix E, and a sequence of observed states, we state some typical

problems that can arise.

i Compute the probability distribution over the last hidden state of the observed

sequence (filtering).

ii Compute the probability distribution over a hidden state in the middle of the

observed sequence (smoothing).

iii Find the most likely sequence of hidden states that produced the given sequence

of observed states (most likely explanation).

In order to solve the problem of filtering we use the forward algorithm, while for

solving smoothing the forward-backward algorithm needs to be used [75]. To find the

most likely explanation for a given sequence of observed states, we use the Viterbi

algorithm [93]. Since problem (i) is a subcase of problem (ii), we present in the sequel

the forward-backward and the Viterbi algorithm.

Forward-backward algorithm

Given a sequence of k+1 observations o = {o0, . . . , ok} = o0:k at discrete time points,

we want to compute the probability P (X` = i | o) of every possible hidden state i

3For an HMM of continuous time we would need the infinitesimal generator matrix Q.
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after ` steps. From Bayes law and the conditional independence of o :0:` and o`+1:k

given X` we get

P (o | X` = i) = P (o,X`=i)
P (o)

= P (o0:`,X`=i)P (o`+1:k|o0:`,X`=i)
P (o)

= P (o0:`,X`=i)P (o`+1:k|X`=i)
P (o)

(2.7)

for all i 2 S. We compute the probability P (o0:`, X` = i) = f`(i) of (2.7) by the `-th

step of the forward algorithm, while we can compute the probability P (o`+1:k | X` =

i) = b`(i) by the (k � `)-th step of the backward algorithm for all i 2 S. We write

then

P (X` = i | o) = f`(i)b`(i)P
i f`(i)b`(i)

.

For the probability of the forward algorithm it holds:

f`(i) = P (o0:`, X` = i)

=
P
x0

. . .
P
x`�1

P (o0,` | X0 = x0, . . . , X`�1 = x`�1, X` = i)

·P (X0 = x0, . . . , X`�1 = x`�1, X` = i)

=
P
x0

. . .
P
x`�1

P (X0 = x0, . . . , X`�1 = x`�1, X` = i) ·
`�1Q
n=0

Exn,onEn,o`

=
P
x0

. . .
P
x`�1

P (X` = i | X`�1 = x`�1) · . . . · P (X1 = x1 | X0 = x0)P (X0 = x0)

`�1Q
n=0

Exn,onEi,o`

=
P
x0

P (X0 = x0)Ex0,o0

P
x1

P (X1 = x1 | X0 = x0)Ex1,o1 . . .

P
x`�1

P (X`�1 = x`�1 | X`�2 = x`�2)Ex`�1,o`�1
P (X` = i | X`�1 = x`�1)Ei,o`

(2.8)
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Given an initial distribution ⇡(0) for the hidden states we can write the above sum

as the following vector-matrix product to get the row vector containing the forward

probabilities of Eq. (2.8) for every hidden state i 2 S, i.e.,

f` = ⇡(0)T0PT1P . . .T`�1PT`,

where Tn, n = {0, . . . , k}, is a diagonal matrix of the same size as P whose diagonal

entry of i-th row is equal to Ei,on . Exploiting in a very similar way the probability

b`(i) = P (o`+1:k | X` = i) it arises that we can get the conditional probability (column)

vector of the backward algorithm as:

b|` = PT`+1 . . .PTk�
|
k,

where �k = 1|S|.

Note that the combined use of the forward-backward algorithm makes only sense

in case we are interested in finding the most possible hidden state for an o` in the

middle of the observation sequence. If ` = k, then it is enough to compute only the

forward probability vectors.

Baum-Welch Finally, we mention that it is possible to estimate the initial distri-

bution ⇡0, as well as the transition and the emission probabilities of an HMM, given

an observation sequence o. If ✓ is a vector that contains all unknown parameters,

the Baum-Welch algorithm iteratively alternates between computing the probability

distribution of the hidden states P (X | o, ✓), X = {X0, . . . , Xk} using the forward-

backward algorithm, and estimating the parameter vector value ✓⇤ that maximizes

the conditional expected log-likelihood EX|o,✓[logP (X | ✓)] until a predefined conver-

gence.
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Viterbi algorithm

For a given sequence of observations o = o0:k we would like to find the most likely

sequence of hidden states x⇤ = x⇤
0, x

⇤
1, . . . , x

⇤
k. The Viterbi algorithm determines x⇤ =

argmaxx P (x | o), which is due to the Bayes law equivalent to x⇤ = argmaxx P (x, o),

by iteratively computing for all i 2 S the value

w`(i) = max
x0,x1...x`�1

P (X0 = x0, . . . , X`�1 = x`�1, X` = i, o0:`)

for ` 2 {0, . . . , k}. The value w`(i) gives the maximal probability of all paths that

produce the observed sequence o0:`, and end up in state i after ` steps. Note, then,

that maxi wk(i) = P (x⇤, o) gives us the maximal probability among all paths that

produce the whole observed sequence o. By induction it is not hard to show that for

all i, j 2 S and ` = {0 . . . , k � 1} it holds

w`+1(j) = max
i

(w`(i) pij)Ej,o`+1
.

Hence, we can iteratively compute the vectors w0, w1, . . . , wk and track the sequence

of states that corresponds to the maximum as described in Algorithm 1.

Example 3: A simple HMM

BExample 3

1

2

3

W S C

0.7 0.3

0.3 0.4 0.3

0.3 0.7
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Algorithm 1: Viterbi algorithm

Input: ⇡(0),P,E, o
Output: P (x⇤, o), x⇤

1 Initialize w0 with entries w0(i) = ⇡(i, 0)Ei,o0 .
2 For all ` 2 {1, 2, . . . , k} compute the vector w` with entries

w`(j) = max
i

(w`�1(i) pij)Ej,o` , j 2 S

and store the states that correspond to the maximum in the vectors s` with
entries

s`(j) = argmax
i

(w`�1(i) pij), j 2 S.

3 Return the probability P (x⇤, o) = maxi wk(i) and the last maximal state
x⇤
k = argmaxi wk(i).

4 Backtrack the remaining states of the optimal sequence x⇤ by setting

x⇤
` = s`+1(x

⇤
`+1), ` = k � 1, . . . , 1, 0

Consider the DTMC of Example 1 where the DTMC’s transition and the self-

loops probabilities remain the same (not shown here). Imagine, though, the

Markov process describing each day’s weather can not be directly observed and

the only thing that we, as external observers, know is a certain person’s activity:

whether she went for a walk (W), she went shopping (S), or she cleaned (C). The

transition probability matrix P and the emission probability matrix E follow.

P =

0

BBBB@

0.6 0.3 0.1

0.3 0.2 0.5

0.2 0.4 0.4

1

CCCCA
, E =

0

BBBB@

W S C

1 0.7 0.3 0

2 0.3 0.4 0.3

3 0 0.3 0.7

1

CCCCA
.
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Given ⇡(0) = (0, 0.5, 0.5) the probability of observing the sequence o = S, C, W

is P (o) = ⇡(0)T0PT1PT2e = 0.0372, where

T0 =

0

BBB@

0.3 0 0

0 0.4 0

0 0 0.3

1

CCCA
,T1 =

0

BBB@

0 0 0

0 0.3 0

0 0 0.7

1

CCCA
,T2 =

0

BBB@

0.7 0 0

0 0.3 0

0 0 0

1

CCCA
.

In addition, using the steps of Viterbi algorithm described above we compute that

the most likely sequence of hidden states is x⇤ = argmaxx P (x, o) = {3, 2, 1} and

the joint probability of this sequence and observation o is P (x, o) = 0.00378.

2.2 Experimental Methods

In this section we describe in short the two main biological experiments from which

the data to produce the results of this thesis was extracted. The two experimental

protocols developed and executed in the Epigenetics Lab of Saarland University by P.

Giehr. The first protocol, named HPoxBS, is described in detail in Giehr et al. 2018

[22] and provides us with double strand (hydroxy-)methylation data for individual

genomic loci, whereas the second protocol RRHPoxBS is its genome-wide analog.

2.2.1 Protocol HPoxBS for individual loci

The experimental protocol hairpin oxidative bisulfite sequencing (HPoxBS) is the

first protocol that produces data that allows for the tracking of 5hmC fate at

a single base resolution level. To get measurements that provide double strand

(hydroxy-)methylation information we applied for the first time a hairpin linker

setup on DNA samples taken from both bisulfite sequencing (BS-seq) and oxidative

bisulfite sequencing (oxBS-seq) methods. The combination of this novel application

of the hairpin linker [50] on both BS-seq and oxBS-seq with our specific modeling
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approach presented in Chapter 3 is what gives us the possibility to determine the

levels of each modification status at both sites of any individual CpG dyad within

a sequenced loci. In addition, the incorporation of the hairpin linker is what also

allows us to accurately measure possible conversion errors during the two treatments.

To achieve a su�cient coverage (>1000x) per CpG we used a very deep NGS

based sequencing on selected DNA loci referred as “single-copy genes”. To addi-

tionally cover larger parts of the genome we also included the analysis of mobile

elements which occur in multiple identical copies across the genome and to which

we refer as “repetitive elements”. Our analysis covers about 91% of all annotated

IAP(IAPLTR1a mM) (N=1635), 20% of L1md A (N=3287), 12% for L1md T (N =

2784) and 7% of mSat (N=44) elements. In the case of these multi-copy regions the

>1000x coverage has to be seen as the aggregate coverage of all individual copies of

a given repetitive element.

Protocol 1: HPoxBS

BProtocol 1

Digestion

Ligation

BS or oxBS Treatment

PCR

Sequencing
and 

Data Analysis

Hairpin Linker

= Cytosine converted
 to Uracil

= Cytosine

= 5mC

= 5hmC
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Figure 2.1: Schematic outline of HPoxBS. The hairpin BS and hairpin oxBS
sequencing methods are based on enzymatic digestion of genomic DNA and
the covalent connection of upper and lower DNA strands by ligating a hair-
pin oligonucleotide. PCR enrichment of the BS/oxBS treated sample is used for
amplicon generation followed by sequencing and data analysis.

Figure 2.1 outlines the main experimental steps of the HPoxBS protocol. In the

first step the region to be analyzed is located via the reference sequence, and the

genomic DNA is digested using restriction enzymes which generate cuts close to

the gene/locus selected for methylation analysis. In a following reaction both

DNA strands are ligated to a back-folding “hairpin”-oligonucleotide. Next the

DNA is unfolded and subjected to a bisulfite or oxidative bisulfite treatment

followed by a locus specific PCR amplification. PCR primers contain Mi-Seq

platform (Illumina®) compatible sequencing adapters to perform deep (paired

end 2x300bp) sequencing (up to 10K/product). Sequencing data are processed

using the in-house software BiQ-HT and a Python script. In the bisulfite only

reaction 5mC (red) and 5hmC (yellow) remain as cytosines, whereas the un-

modified C (gray) is converted to uracil and finally to thymine. In the oxidative

bisulfite reaction only 5mC remains as cytosine, and 5hmC, C are both converted

to uracil/thymine.

Coversion errors Each individual sequence includes the hairpin linker which

contains modified and unmodified cytosines at known positions. This allows us

to monitor the e�cacy of bisulfite and oxidative bisulfite reactions per molecule

and calculate for each modification accurate conversion rates by dividing the

number of wrongly converted bases by the total number of them.

Additional information about the protocol is given in Section A.1 together with

more details about the reference-, primer- and linker-sequences that have been used.



25 2.2. Experimental Methods

2.2.2 Protocol RRHPoxBS for the whole genome

The first genome-wide hairpin approach developed by Zhao et. al. in 2014 presents

a powerful technique for the detection of double strand methylation information [99]

but come together with a very high sequencing cost, and demands large amounts

of DNA. The RRHPoxBS protocol restricts the analysis to around 3 million CpGs

equally distributed across the genome, and as a result it reduces the sequencing cost

and provides a higher coverage for the informative CpGs. In addition, its pipeline

only uses about one tenth of the DNA amounts formerly needed and can probably be

scaled down further. Below we highlight the di↵erences of the RRHPoxBS protocol

compared to HPoxBS.

Protocol 2: RRHPoxBS

BProtocol 2

Figure 2.2 outlines the main steps of the RRHPoxBS protocol. First DNA is

divided into three equal parts, each digested with a distinct restriction enzyme

(AluI, HaeII and HpyCH4V) that cuts a distinct sequence of bases (1). As

a result, short DNA fragments are formed (2) and be subjected to ligation of

the hairpin linker and the sequencing adapter (3). As ligation is a stochastic

process, it might, besides fragments with sequencing adapter on one side and

hairpin on the other, also create unwanted fragments with sequencing adapters

on both sidesa (4). However, because hairpins carry biotin molecules which are

exclusively used to bind to streptavidin beads, the non hairpin fragments, i.e.,

sequencing adapter on both sides, will not bind to the beads and subsequently

not processed for sequencing. Similar to HPoxBS, the hairpin fragments are split

then in two parts, with the first part subjected to BS and the second to oxBS

treatment, respectively. The treated DNA will finally be amplified and prepared

for sequencing by PCR using primers specific for the sequencing adapters (5).
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Figure 2.2: Schematic outline of RRHPoxBS. Ligation can create fragments with
sequencing adapters on both sides, but only hairpin fragments carrying biotin
molecules are going to bind to streptavidin beads and processed for PCR ampli-
fication and sequencing.

aLigation might create fragments with hairpin on both sides as well, but these will anyway
not bind to the sequencer later on.



Chapter 3

The Modeling Approach

3.1 A Hidden Markov Model for Hydroxylation

The main goal of our work was to develop a model which describes the 5hmC depen-

dent molecular mechanisms that cause this loss of DNA methylation upon consecutive

rounds of replication and describes the evolution of both methylation and hydroxy-

lation patterns over time. The suggested model allows that methylation can be lost

only as a result of cell replication while methyl groups can be added due to either

maintenance or de novo enzyme activity [1, 85]. In addition, all methylated sites can

potentially be hydroxylated within the cycle of one cell replication.

Since every epigenetic modification, such as 5mC or 5hmC, can be observed only

implicitly in both bisulfite and oxidative bisulfite experiments we first define a DTMC

which models the hidden state of a cytosine and then for each of the two sequencing

methods we define a hidden Markov model (HMM) that represents the output of the

method. For each experiment we construct a likelihood function based on a time

series observational data for several di↵erent days, where the time span of one day

corresponds to a cell replication cycle.
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maintenance de novocell-replication

parent cell

daughter cell 2

hydroxylation

daughter cell 1

Figure 3.1: DNA demethylation: When a cell divides each of the daughter cells keeps
the epigenetic information only of either the upper or the lower parental strand. The
complementary strand of the new cell has only unmethylated cytosines (blue color).
maintenance machinery which is associated with cell replication methylates a hemi-
methylated CpG. De novo methylation is known to act independently of the status
of the opposite CpG site and follows maintenance. At last an already methylated
cytosine (5mC, red color) can be oxidized by Tet enzymes to a hydroxy-cytosine
(5hmC, yellow color).

If we are interested only in the (hydroxy)-methylation levels we can combine

the two likelihoods, in an approach similar to [74] and derive estimations for

(hydroxy-)methylation levels at each time point. In order to exploit further the

mechanisms behind DNA demethylation and be able to shed light on how the

di↵erent enzymes are involved in a demethylation process we increase the complexity

of our model. We relate the unknown model parameters to the activities of these en-

zymes over time and not to the levels, i.e, probabilities, of the HMM’s hidden states.

We automatically get predictions for the hidden states’ probabilities during the

process of estimating the HMM’s unknown parameters via a numerical optimization

approach.

Hence, based on observations at many di↵erent time points the combination of the

two likelihoods allows us to first determine the initial distribution of the hidden states,

and next the methylation and hydroxylation e�ciencies over time. As a consequence,

our model accurately predicts the evolution of the (hydroxy-)methylation patterns,

while it enables us to test di↵erent assumptions about the activities of the involved

enzymes.



29 3.1. A Hidden Markov Model for Hydroxylation

3.1.1 Hidden state space

Our model considers a CpG site (alternatively dyad) over time and describes its

state as a (discrete time) Markov chain {X (t), t 2 N} taking values in the set S =

{u,m, h}2. Each state (s1, s2) (for s1, s2 2 {u,m, h}) encodes whether the upper

strand (lower strand) is unmethylated (u), methylated (m) or hydroxylated (h). For

instance, in state (s1, s2) = (u, h) the upper strand is unmethylated and the lower

strand is hydroxylated. For the simplicity of notation we will often in this thesis write

(s1s2) instead of (s1, s2).

The time parameter t corresponds to the number of cell divisions and the state

transitions are triggered by three consecutive events (or subprocesses): cell division,

methylation and hydroxylation. The corresponding transition probability matrices

are D(t), M(t), and H(t), respectively. Thus, the combined transition probability

matrix of X is defined as

P(t) = D(t) ·M(t) ·H(t),

with entries Pij(t) that equal the probabilities that given X (t) = i = (s1s2), the next

state is X(t+1) = j = (s01s
0
2) for all i, j 2 S. Note here we assume that hydroxylation

occurs after methylation to ensure that between two cell divisions a transition from u

to m and then to h is always possible. Moreover, note that we allow P(t) to change

over time, so that we capture the case that the (hydroxy-)methylation e�ciencies do

not remain constant over time. This makes the Markov chain time-inhomogeneous

and the whole analysis quite more complicated. In the sequel we give a detailed

description of each subprocess and the corresponding matrices D(t), M(t), and H(t).
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Figure 3.2: Cell Division: Possible transitions of the 9 di↵erent states of a CpG site,
where 5mC or 5hmC marks of either the lower or the upper strand are removed after
a cell divides.

Demethylation through cell division

DNA replication/cell division temporarily results in a direct loss of methyl or hydroxyl

groups. During a DNA replication each of the two daughter cells is created by one

parental strand and a newly synthesized strand. While the epigenetic pattern of the

parental strand remains unchanged, the newly formed strand initially consists only

by unmodified cytosines. Hence, a previously methylated CpG site in a daughter cell

keeps only half of its (hydroxy-)methylated state. By averaging over all daughter cells,

if the current state is (mm) then immediately after cell division the new state is either

(um) or (mu) each with probability 0.5 (depending on whether the newly synthesized

strand is the upper or the lower strand). Similarly, with probability 0.5 the process

enters (uh) or (hu) from (hh). The transition probabilities of the remaining states are

defined in a similar way and we illustrate the corresponding matrixD(t) in Figure 3.2.

Methylation

The loss of methylation by DNA replication is counteracted by a restored methylation

due to the combined activity of the three methyltransferases Dnmt1, Dnmt3a and

Dnmt3b. We distinguish between maintenance methylation catalyzed by Dnmt1 and
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Figure 3.3: Methylation: 5mC marks are added due to maintenance (µm) or de novo
methylation (µd). For the methylation on a hemimethylated dyad we allow both
maintenance and de novo methylation, while we make the assumption that de novo
enzymes’ e�ciency is the same on hemi- and unmethylated sites.

de novo methylation catalyzed by Dnmt3a and Dnmt3b. We assume that a cytosine

of an unmethylated dyad can only be methylated by a de novo event, while both

maintenance and de novo methylation are possible on a hemimethylated dyad. Based

on related in vitro experiments [68] and the in vivo results of [1], we assume that

Dnmt3a/b act on hemimethylated sites with the same e�ciency as on unmethylated

sites.

We define µm(t) and µd(t) as the probabilities of maintenance and de novo methy-

lation of a cytosine, respectively, where the corresponding methylation event occurs

within the t-th cell division cycle (t 2 {1, 2, . . .}). In addition, we define �(t) to be

the total methylation e�ciency on a hemimethylated site. It holds that

�(t) = µm(t) + µd(t)� µm(t) · µd(t),

because maintenance is associated with the replication machinery and happens im-

mediately after replication with e�ciency µm(t). In case maintenance methylation

by Dnmt1 is not successful the site can still be methylated with de novo methyla-
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tion e�ciency µd(t) which then gives �(t) = µm(t) + (1 � µm(t)) · µd(t). We write

µ̄m(t) = 1� µm(t), µ̄d(t) = 1� µd(t) and �̄(t) = 1� �(t) for the complements of the

above probabilities and we omit the time parameter t whenever it is not relevant.

Note that if a CpG site has two unmethylated cytosines then two de novo methy-

lation events are possible. Assuming independence between them, all transition prob-

abilities of the corresponding state (uu) are the product of two event probabilities.

We illustrate the corresponding methylation matrix M(t) in Figure 3.3. Here p is the

probability that maintenance methylation is not applied to the states (hu) and (uh),

i.e., the hydroxyl group prevents the maintenance process, i.e., the methylation of the

unmodified cytosine on the opposite strand. As a result, from these states the states

(hm) and (mh) can only be entered via de novo methylation. In the opposite case,

with probability p̄ = 1 � p, states (hu) and (uh) are seen as hemimethylated during

maintenance and can enter states (hm) and (mh) with probability � for both main-

tenance and de novo methylation (see Figure 3.3). Besides, the states (mh), (hm),

and (hh) have only self-loops since the Dnmts do not modify hydroxyl groups.

Hydroxylation

Let ⌘(t) be the probability that before the (t+1)-th cell division a methylated position

becomes hydroxylated, i.e, the probability of a transition from m to h. Similarly

as above, we write ⌘̄(t) for 1 � ⌘(t) and omit t whenever convenient. Assuming

again independence between two hydroxylation events, the corresponding matrixH(t)

is illustrated in Figure 3.4. Note that without an active hydroxylation mechanism

(⌘ > 0) the level of 5hmC would half after each replication since newly synthesized

strands do not inherit the hydroxyl groups of the mother strand.

Hydroxylation is the last modification that we consider before the next cell divi-

sion. Thus, between two cell divisions an unmethylated position may transition from

u to m and then to h.
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Figure 3.4: Hydroxylation: Probabilities that 5mC marks are hydroxylated (⌘) by
Tet enzymes under the assumption that the hydroxylation of the two sites of a CpG
dyad happens independently.

3.1.2 Observable state space and conversion errors

Before defining the observable states and the corresponding emission probabilities, we

have to remind the reader some details of the hairpin (oxidative) bisulfite sequencing.

After the DNA is cut by a restriction enzyme, the DNA fragments are linked covalent

to a hairpin linker resulting in the connection of upper and lower strand. The resulting

hairpin fragments are divided into two halves, from which one is treated with a

standard bisulfite reaction and the other is subjected to an oxidation followed by

bisulfite treatment.

As a result of the above procedure, in the ideal case of no conversion errors, an

unmethylated cytosine (C) will first transform to uracil (U) and it will appear after

sequencing as thymine (T) in both oxidative (oxBS) and non-oxidative bisulfite (BS)

treatment. A methylated cytosine (5mC) will stay una↵ected and present itself as

a cytosine (C) after sequencing, again during both treatments. On the contrary, a

hydroxylated cytosine (5hmC) will remain una↵ected and appear as C at the end of

a simple BS treatment, whereas it will get oxidized to 5fC, converted during bisulfite

to 5fU, and appear as T at the end of the oxBS experiment.
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(ox.) bis.
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Figure 3.5: Schematic outline of the conversion of Cytosine, 5mC and 5hmC during
BS and oxBS treatment and after sequencing: In the bisulfite reaction a cytosine
(C) is converted to uracil (U), whereas 5mC and 5hmC remain untouched. In the
oxidative bisulfite sequencing only 5mC remains untouched and cytosine as well as
5hmC is converted to uracil (U). The conversion errors are illustrated as dashed red
arrows and c, d, e, f are the conversion probabilities.

Since every base will eventually transform into a thymine (T) or a cytosine (C),

the set of the observable states for a CpG dyad with two cytosines is Sobs = {T,C}2.

All transitions from a site’s possible hidden states to the observable ones are shown

in Figure 3.5, where the blacked arrows indicate the conversion probabilities c, d, e, f

and the red dashed arrows correspond to possible conversion errors. The entries of

the complete emission matrices Ebs(t) and Eox(t) for the transitions from hidden to

all observable states in each treatment can be found in Table 3.1.

Measuring the conversions errors To accurately measure the conversion proba-

bilities c, d, e, f , we artificially incorporated an unmodified cytosine, as well as a 5mC

and a 5hmC into the hairpin linker (see A.1.1 for more technical details) and com-

puted the ratio of right conversions in the individual measurements (around 5 · 103x

on average). Note that the values of c and d can di↵er between the two treatments

and that the conversion probabilities can also di↵er over time.
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bisulfite sequencing ox. bisulfite sequencing

TT TC CT CC TT TC CT CC

uu c2 c · c̄ c · c̄ c̄2 c2 c · c̄ c · c̄ c̄2

um c · d̄ c · d c̄ · d̄ c̄ · d c · d̄ c · d c̄ · d̄ c̄ · d
mu c · d̄ c̄ · d̄ c · d c̄ · d c · d̄ c̄ · d̄ c · d c̄ · d
uh c · ē c · e c̄ · ē c̄ · e c · f c · f̄ c̄ · f c̄ · f̄
hu c · ē c̄ · ē c · e c̄ · e c · f c̄ · f c · f̄ c̄ · f̄
hm d̄ · ē d · ē d̄ · e d · e d̄ · f d · f d̄ · f̄ d · f̄
mh d̄ · ē d̄ · e d · ē d · e d̄ · f d̄ · f̄ d · f d · f̄
mm d̄2 d · d̄ d · d̄ d2 d̄2 d · d̄ d · d̄ d2

hh ē2 e · ē e · ē e2 f 2 f · f̄ f · f̄ f̄ 2

Table 3.1: Transition probabilities from hidden to the observable states in BS and
in oxBS. The conversion errors of single bases c̄, d̄, ē, f̄ represent the complements
1� c, 1� d, 1� e, 1� f of a right conversion probability.

3.2 Estimation of Model Parameters

Given the number of times nbs(j, t) and nox(j, t) that state j 2 Sobs = {T,C}2 has

been observed during independent BS and oxBS measurements at time t we use a

maximum likelihood approach to estimate the unknown parameters of the HMMs.

These are, the initial distribution of the hidden states, S = {u,m, h}2, the unknown

functions µd(t), µm(t) and ⌘(t) of the enzymatic e�ciencies, as well as the probability

p at which a 5hmC site is not considered during maintenance.

Formally, let ⇡(t) be the row vector of the (hidden) state probabilities of DTMC X

after t cell divisions, where ⇡(0) is the initial distribution of the hidden states in serum

conditions. Both HMMs corresponding to BS and oxBS have the same distribution

⇡(t) for the hidden states as for both experiments the same cell population is used

and when the parameter values are fixed, for a time-inhomogeneous Markov chain

⇡(t) is given by the equation

⇡(t) = ⇡(0) ·
tY

k=1

P(k). (3.1)
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For i 2 S let ⇡(i, t) = P (X (t) = i) denote the entry of ⇡(t) that corresponds to

state i. In general, the probability of observing state O(t) = j 2 Sobs at time t is

given according to the law of total probability by

P (O(t) = j) =
X

i2S

P (O(t) = j | X (t) = i) · ⇡(i, t),

where P (O(t) = j | X (t) = i) is the emission probability of observing j, when the

hidden state is i 2 S. For the two treatments BS and oxBS this yields in matrix-vector

form

⇡bs(t) = ⇡(t) · Ebs(t) and ⇡ox(t) = ⇡(t) · Eox(t), (3.2)

respectively, where ⇡bs(t) and ⇡ox(t) are the vectors with the distribution over the

observable states at time t.

Our strategy to estimate the “optimal” values for the unknown parameters is to

first estimate an “optimal” initial distribution for the hidden states, and then based

on this estimation and Eq. (3.1), (3.2) to apply a numerical optimization algorithm

to find the values of the enzymatic e�ciencies that maximize the likelihood (MLE)

of our data. Note that due to the high coverage, the information for the observable

states given at t = 0 su�ces for an accurate estimation of the initial hidden states’

distribution. We choose, hence, to split the parameter inference into two (global)

optimization problems in order to avoid the curse of dimensionality of one high-

dimensional parameter space. Each optimization problem involves the maximization

of a likelihood for the solution of which it is convenient to minimize its negative log-

arithm. Deriving expressions for the first and second derivatives of the log-likelihood

is in both cases possible and it guarantees a fast convergence of a gradient descent

optimization routine (interior-point method), even with multiple starting values. A

formal description of the two optimization problems follows in Section 3.2.1, 3.2.2.
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3.2.1 Initial hidden states’ distribution

Let L1 be the combined likelihood of the observed data in conventional serum con-

ditions. Due to the small number of cells measured compared to the size of the pool

that they are sampled from around 107, it is very unlikely that we pick two cells with

a common descendant and it is consequently meaningful to assume independence

between the measurements. Hence, we get

L1(⇡(0)) =
Y

j2Sobs

⇡bs(j, 0)
nbs(j,0) · ⇡ox(j, 0)

nox(j,0) (3.3)

We estimate the initial distribution ⇡(0)⇤ based on the initial independent BS and

oxBS measurements by solving the following maximization problem:

maximize
⇡(0)

L1(⇡(0))

subject to
X

i

⇡(i, 0) = 1.
(3.4)

Since L1 depends only on the unknown vector ⇡(0) and on the known emission ma-

trices we can determine the initial distribution of the hidden states, if we maximize

the likelihood over all vectors ⇡(0) that sum up to one.

To solve (3.4) we consider the log-likelihood

logL1(⇡(0)) =
X

j2Sobs

nbs(j, 0) · log ⇡bs(j, 0) + nox(j, 0) · log ⇡ox(j, 0)). (3.5)

For a gradient descent optimization procedure we need its derivative w.r.t. ⇡(0) given

by

d

d⇡(0)
logL1(⇡(0)) =

X

j2Sobs

nbs(j, 0) ·
d

d⇡(0)⇡bs(j, 0)

⇡bs(j, 0)
+ nox(j, 0) ·

d
d⇡(0)⇡ox(j, 0)

⇡ox(j, 0)
. (3.6)



38 3.2. Estimation of Model Parameters

Letting, now, ⇡bs(t), ⇡ox(t) be the vectors with entries ⇡bs(j, t), ⇡ox(j, t), 8j 2

Sobs, 8t 2 Tobs, we can write the derivatives d
d⇡(0)⇡bs(j, 0) and d

d⇡(0)⇡ox(j, 0) in a

vector-matrix notation

d

d⇡(0)
⇡bs(0) =

d

d⇡(0)
⇡(0)·Ebs(0) = Ebs(0),

d

d⇡(0)
⇡ox(0) =

d

d⇡(0)
⇡(0)·Eox(0) = Eox(0),

which after insertion into Eq. (3.6) gives us the gradient of the log-likelihood function

w.r.t. the initial distribution of the hidden states.

Finally, note that the above MLE procedure for estimating the initial distribution

over the hidden states can be applied, exactly the same way, at any time point t 2 Tobs

for which we have measurements, in order to estimate the distribution of the hidden

states at this time point.

3.2.2 Estimation of the e�ciency functions

Given an estimate for ⇡(0), and a fixed value for the parameter vector v, we can

compute for t 2 {1, 2, . . .} the state probabilities ⇡(t) of the hidden states and consider

the common likelihood

L2(v) =
Y

t2Tobs\{0}

Y

j

⇡bs(j, t)
nbs(j,t) · ⇡ox(j, t)

nox(j,t) (3.7)

for the observations at all remaining observation time points t 2 Tobs \ {0}. Here we

assume that the cells divide every 24 hours, hence t ranges over all days at which

measurements were made, and as above we assume independence between all ntot =
P

t2Tobs

P
j nbs(j,t) + nox(j,t) cell measurements.

The parameter vector v in Eq.(3.7) consists of the unknown functions µm(t), µd(t),

⌘(t) and the unknown probability p, where µm stands for maintenance, µd for de novo,

⌘ for hydroxylation e�ciency, and p is the probability that 5hmC is not considered
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during maintenance. Hence the value of v uniquely defines the DTMC’s transition

matrix P(t) = D(t) ·M(t) ·H(t), where1

D =

0

BBBBBBBBBBBBBBBBBBBBBBBB@

uu um mu uh hu hm mh mm hh

uu 1 0 0 0 0 0 0 0 0

um 1/2 1/2 0 0 0 0 0 0 0

mu 1/2 0 1/2 0 0 0 0 0 0

uh 1/2 0 0 1/2 0 0 0 0 0

hu 1/2 0 0 0 1/2 0 0 0 0

hm 0 1/2 0 0 1/2 0 0 0 0

mh 0 0 1/2 1/2 0 0 0 0 0

mm 0 1/2 1/2 0 0 0 0 0 0

hh 0 0 0 1/2 1/2 0 0 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCCA

,

M(t) =

0

BBBBBBBBBBBBBBBBBBBBBBBB@

uu um mu uh hu hm mh mm hh

uu µ̄2
d µd ·µ̄d µd ·µ̄d 0 0 0 0 µ2

d 0

um 0 �̄ 0 0 0 0 0 � 0

mu 0 0 �̄ 0 0 0 0 � 0

uh 0 0 0 p ·µ̄d+p̄·�̄ 0 0 p·µd+p̄·� 0 0

hu 0 0 0 0 p·µ̄d+p̄·�̄ p·µd+p̄·� 0 0 0

hm 0 0 0 0 0 1 0 0 0

mh 0 0 0 0 0 0 1 0 0

mm 0 0 0 0 0 0 0 1 0

hh 0 0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCCCCCCCCCCCCCA

,

1Note that for D(t) we can omit the time parameter t since it is time-independent.
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and

H(t) =

0

BBBBBBBBBBBBBBBBBBBBBBBB@

uu um mu uh hu hm mh mm hh

uu 1 0 0 0 0 0 0 0 0

um 0 ⌘̄ 0 ⌘ 0 0 0 0 0

mu 0 0 ⌘̄ 0 ⌘ 0 0 0 0

uh 0 0 0 1 0 0 0 0 0

hu 0 0 0 0 1 0 0 0 0

hm 0 0 0 0 0 ⌘̄ 0 0 ⌘

mh 0 0 0 0 0 0 ⌘̄ 0 ⌘

mm 0 0 0 0 0 ⌘ · ⌘̄ ⌘ · ⌘̄ ⌘̄2 ⌘2

hh 0 0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCCCCCCCCCCCCCA

.

In more detail, let v = (�µm
0 , �µm

1 , �µd
0 , �µd

1 , �⌘
0 , �

⌘
1 , p) be the vector of seven un-

known parameters, containing the coe�cients of each e�ciency linear time function,

e.g., µm(t) = �µm
0 + t · �µm

1 , and the constant over time probability p. Given ⇡(0)⇤ as

the solution of Eq.(3.4) we want to compute the MLE v⇤ = argmaxvL2(v). The con-

straints of this optimization problem arise from the requirement that the e�ciencies

should be probabilities for all the considered time points, and the same constraint

should hold for p. Hence, the maximization problem we solve is:

maximize
⇡(0)

L2(v)

subject to 0  p  1 and

0  �x
0 + �x

1 · t  1, 8x 2 {µm, µd, ⌘}, 8t 2 Tobs.

(3.8)

Note that the above constraints are linear with straightforward algebra they can be

deduced to 0  �x
0  1 and �1

tmax
 �x

1  1��x
0

tmax
.

To ease the computations of Eq. (3.8) we derive the log-likelihood

logL2(v) =
X

t2Tobs\{0}

X

j2Sobs

nbs(j, t) · log ⇡bs(j, t) + nox(j, t) · log ⇡ox(j, t),
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we get the score-vector w.r.t. to v

d

dv
logL2(v) =

X

t2Tobs\{0}

X

j2Sobs

nbs(j, t) ·
d
dv⇡bs(j, t)

⇡bs(j, t)
+ nox(j, t) ·

d
dv⇡ox(j, t)

⇡ox(j, t)
,

and we write the matrix-vector form of the derivatives d
dv⇡bs(j, t) and

d
dv⇡ox(j, t) as

d

dv
⇡bs(t) =

d

dv
⇡(t) · Ebs(t) and

d

dv
⇡ox(t) =

d

dv
⇡(t) · Eox(t), 8t 2 Tobs,

where the entries of the emission matrices Ebs(t) and Eox(t) are given in Table 3.1.

Considering, now, the forward Kolmogorov equation for the discrete Markov chain

and its derivative w.r.t. the parameter vector it su�ces to simultaneously solve the

following two equation systems.

⇡(t) = ⇡(t� 1) ·P(t)

d

dv
⇡(t) =

d

dv
⇡(t� 1) ·P(t) + ⇡(t� 1)

d

dv
P(t), 8t � 1 (3.9)

with d
dv⇡(0) = 0 and ⇡(0) = ⇡(0)⇤. The derivative of the transition matrix is

d

dv
P(t) =

d

dv
(D ·M(t) ·H(t)) = D ·

⇣ d

dv
M(t) ·H(t) +M(t) · d

dv
H(t)

⌘

E.g. applying the chain rule and writing µm instead of µm(�
µm
0 , �µm

1 , t) we get

d

d�µm
0

M(µm) =
d

dµm
M(µm) ·

d

d�µm
0

µm =
d

dµm
M(µm)

and
d

d�µm
1

M(µm) =
d

dµm
M(µm) ·

d

d�µm
1

µm =
d

dµm
M(µm) · t.

In the same way we get the first derivatives w.r.t. all the other components of

the parameter vector v. Applying once more the product rule in Eq. (3.9), and using
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similar arguments as above we, additionally, compute the second partial derivatives

d
dvidvj

logL2(v) which will give us the (i, j)-th entry of the Hessian matrix H = rrT

logL2(v).

Confidence intervals of the estimators

Due to the large number of samples (Table A.4, A.5) we expect our maximum like-

lihood estimators (MLEs) to be approximately unbiased and normally distributed.

Moreover, we can compute the observed Fisher information matrix (FIM) and thus

derive confidence intervals for all parameters [16].

In particular, the observed Fisher information is defined as J (v⇤) = �H(v⇤),

where v⇤ is the maximum likelihood estimator. The expected Fisher information

is I(v) = E[J (v)] and its inverse is a lower bound for the covariance matrix of the

MLE. Thus, here we approximate the standard deviations of the estimates as �(v⇤) =
p

Var(v⇤) =
p

diag(�H�1(v⇤)). In order to approximate the standard deviations of

the e�ciencies over time, i.e. �(µm(t)), �(µd(t)) and �(⌘(t)), we exploit the fact that

for a linear function f(t) = �0 + �1 · t it holds that Var(f(t)) = Var(�0 + �1 · t) =

Var(�0) + t2 Var(�1) + 2tCov(�0, �1).

Given, now, the variances of the estimated e�ciencies we can compute the variance

of the total methylation �(t), for any t as

Var(�) =Var(µm) + Var(µd) + 2Cov(µm, µd) + Var(µmµd)

� 2Cov(µm, µmµd)� 2Cov(µd, µmµd),
(3.10)

For Eq. (3.10) we compute

Cov(µm, µd) = Cov(�µm
0 , �µd

0 ) + tCov(�µm
0 , �µd

1 ) + tCov(�µm
1 , �µd

0 ) + t2 Cov(�µm
1 , �µd

1 ),



43 3.2. Estimation of Model Parameters

using basic properties of the covariance and we exploit the last three terms

Var(µmµd) = E[µ2
mµ

2
d]� E[µmµd]

2 (3.11)

Cov(µm, µmµd) = E[µ2
mµd]� E[µm]E[µmµd] (3.12)

Cov(µd, µmµd) = E[µ2
dµm]� E[µd]E[µmµd] (3.13)

using the identity E[XY ] = Cov(X, Y ) + E[X]E[Y ] for random variables X, Y. Since

the MLEs are approximately normally distributed, every linear combination of them

such as µm, µd and ⌘ follows also a normal distribution. From the raw third and

fourth moments of the bivariate normal distribution we get then

E[µ2
mµd] = E[µm]

2 E[µd] + Var(µm)E[µd] + 2Cov(µm, µd)E[µm]

E[µ2
dµm] = E[µd]

2 E[µm] + Var(µd)E[µm] + 2Cov(µm, µd)E[µd]

E[µ2
mµ

2
d] = E[µm]

2 E[µd]
2 +Var(µm) Var(µd) + Var(µd)E[µm]

2 +Var(µm)E[µd]
2

+2Cov(µm, µd)
2 + 4Cov(µm, µd)E[µm]E[µd],

and hence all terms in Eq. (3.11) - (3.13) are now known.

Obtaining this way the standard deviations of all the e�ciencies over time one

can create the corresponding confidence intervals for a fixed confidence level, here

� = 95% was chosen. For instance the confidence interval for the total methylation

on hemimethylated sites will be

�± z · �(�) = �± z ·
p

Var(�),
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where z = F�1
�
�+1
2

�
and F is the cumulative distribution function (cdf) of the stan-

dard normal distribution. Similarly, we get the confidence intervals for all remaining

parameters.

Hypothesis testing

For estimates taken from maximum likelihood a number of hypotheses tests, such as

likelihood ratio, score test, or Wald test are possible. Here we describe the details

of the Wald test which is the one we mainly used to validate our results, because

of the easiness it o↵ers in testing multiple hypotheses in parallel. We mention that

the use of all the alternative tests mentioned before returned similar p-values for our

estimates and did not lead to a di↵erent result regarding the cases that one rejects

H0.

Wald test Given a maximum likelihood estimate v⇤ of an unknown parameter

vector v0 2 V ✓ Rp we want to test the null hypothesis H0 that g(v0) = 0, where

g : Rp ! Rr is a vector valued function with r  p. We define the Wald statistic for

this estimate as

w = g(v⇤)|
⇥
Jg(v

⇤) · b⌃ · Jg(v⇤)|
⇤�1

g(v⇤),

where Jg(v⇤) is the Jacobian of g, i.e., the r ⇥ p matrix of the partial derivatives of

the entries of g with respect to the entries of v, and b⌃ is a consistent estimate of the

asymptotic covariance matrix, here equal to the inverse of the negative Hessian of v⇤.

Note that w here is a realization of a random variable Wv⇤ as it is a function of v⇤

which is a random variable itself depending on the observed data.

Under the regularity assumptions that for all v 2 V, the entries of g are contin-

uously di↵erentiable w.r.t. all entries of v and that Jg(v) has rank r, the following

holds: If the null hypothesis is true, i.e., g(v0) = 0, then the distribution of Wv⇤

converges to a Chi-square distribution with r degrees of freedom [89].
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Thus, conducting the Wald test consists of comparing the Wald statistic with a

critical threshold z = F�1(1�↵), where F is the cdf of a Chi-square random variable

with r degrees of freedom and ↵ is a predefined significance level, e.g., ↵ = 1%. If

w > z then we can safely reject the null hypothesis. The p-value of the test is the

probability p = P (Wv⇤ > w) = 1� P (Wv⇤  w) ⇡ 1� F (w) and so equivalently one

also rejects the null hypothesis if p  ↵.

3.2.3 Model validation

Leave One Out Cross Validation

To further exclude the possibility of over-fitting for our model due to the imposed

linear assumption for the e�ciencies, we perform leave-one-out cross-validation

(LOOCV) to estimate the test error of our model with constant e�ciencies versus a

linear model. More precisely, we compute the test error of the model by performing

LOOCV for the two following competing assumptions:

1. “The enzymes’ e�ciencies are constant over time”

2. “The enzymes’ e�ciencies are linear over time”.

We test the prediction of the model for each single CpG, having trained it on the

data of the other CpGs and finally we average the test error. For comparing the

prediction ability of the model for each of the two cases 1 and 2 we used two di↵er-

ent distribution distance measures (Kullback-Leibler divergence and Bhattacharyya

distance) between the data distribution P and the distribution Q predicted by the

model. Kullback-Leibler (KL) divergence is defined as DKL(P ||Q) =
P

i P (i) log P (i)
Q(i)

and the Bhattacharyya (BC) distance as BC(P,Q) = � log
�P

i

p
P (i)Q(i)

�
, where

i goes here over the observable states.
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Sensitivity Analysis

To validate the robustness of the model, a sensitivity analysis of the parameters has

been conducted. Perturbing one parameter at a time (OAT) by ±1% we examined

the absolute change of the model’s output, i.e., in this case the predicted levels of the

hidden states.

3.3 A Hybrid Generalization of the Model

For the core-model of this thesis described in Section 3.1 we made the following two

main assumptions:

1. There is no active demethylation (Figure 3.6 right) in the system. Once a

5hmC is formed, the only way to fade out is via cell replication and passive

demethylation (Figure 3.6 left).

2. All methylation and hydroxylation events are discrete time events that happen

once after each cell division.

Assumption 1 was obligatory since according to the given information from BS and

oxBS experiments there is no way to distinguish between a simple cytosine C and

a formylcytosine (5fC) or a carboxylcytosine (5caC). Assumption 2 was meaningful

because we were interested only in the total e↵ect of each subprocess within a cell

replication cycle.

Nevertheless, in reality the formation of 5fC/5caC and active demethylation can

potentially happen in both kinds of cells; cells that undergo, but also cells that do

not undergo mitosis (cell division). In dividing ESCs active demethylation might

contribute to the demethylation dynamics and to the e↵ect of passive demethylation

to a larger or smaller extent. In systems, on the other hand, where no cell division

happens we know with certainty that active demethylation is the exclusive reason of
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⌘
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Passive demethylation Active demethylation

Figure 3.6: Let for simplicity the enzymes of the system act only on the lower strand,
maintenance methylation to be perfect, i.e, µm = 1, and assume 5hmC is not recog-
nized by the maintenance machinery. Left: The DTMC of a fully methylated CpG
dyad during passive demethylation. If a methylated site gets hydroxylated, the dyad
will return to mm state only in one from two daughter cells. In any case, though,
we are not going to observe a loss of 5mC before the next cell division. Right: The
CTMC of a fully methylated CpG dyad during active demethylation. An unmethy-
lated (u) site gets methylated (m) by the maintenance machinery, then it becomes
hydroxylated (h), this turns into (formyl-)/(carboxyl-)cytosine (f) and then it goes
back to unmethylated cytosine (u) within one cell division period.

the methylation loss over time. Examples of such cells are monocyte-macrophages,

cardiac muscle cells, neurons, osteocytes and the majority of mature blood cells.

Hence, given data from a sequencing method such as mabBS-seq, fCAB-seq,

redBS-seq, or CAB-seq, that is able to identify further oxidative forms 5fC/5caC,

it might be of interest to compute how many times a particular subprocess, e.g., de

novo, or hydroxylation, has happened within a certain time interval or to answer

questions such as “what is the average time of a whole DNA demethylation cycle”

(Figure 3.6 right). In this case the only subprocesses that needs to be described as

events of discrete time are (only in case of dividing cells) the cell division and the

subsequent maintenance methylation. All other events that follow, namely de novo,

hydroxylation, formylation and active demethylation, can theoretically happen many

times within a cell cycle and thus a continuous-time assumption is appropriate.
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In the sequel we present an extension of the core-model in the following aspects:

• Given data from mabBS experiments in addition to BS and oxBS, we consider

a third HMM that captures the observational states of mabBS and gives us

the possibility to reveal the status of a further oxidized modification of 5hmC

such as 5fC or 5caC. For this, we, naturally, extend the previous state space to

{u,m, h, f}2, where f accounts for both of the further oxidized forms 5fC and

5caC.

• We define a hybrid model that consists of both discrete- and continuous-time

events. The discrete time events are cell replication and maintenance methyla-

tion. The continuous part of the model includes the subsequent de novo, hy-

droxylation, formylation, and active demethylation events, that happen within

a cell replication cycle, possibly multiple times.

• Motivated by preliminary results from the application of the core-model in

di↵erent cell types from ESCs, such as monocyte-macrophages, we generalize

the behavior of the system’s enzymes by loosing the previously imposed linear

time constraints. Using instead piecewise polynomials of a certain degree, we

can capture more complicated activity patterns over time and potentially apply

the model to various cell types.

3.3.1 Estimation of model parameters

Initial distribution of the hidden states

Similarly to Section 3.2.1 let ⇡(0) be the unknown initial distribution of the 16, here,

hidden states and let ⇡(i, t) = P (X (t) = i) represent the entry of ⇡(t) that cor-

responds to state i 2 S. To compress the notation we define, now, the set of the

di↵erent sequencing methods E = {bs, ox,mab}, where bs stands for bisulfite, ox for

oxidative bisulfite and mab for mab bisulfite sequencing. We denote as ne(j, t) the
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number of times that state j 2 Sobs has been observed during independent measure-

ments of sequencing method e 2 E, as Ee(t) its emission matrix of at time point t

and as ⇡e(t) the probability distribution over the observable states of this method.

We solve the problem: ⇡(0)⇤ = argmax⇡(0) L1(⇡(0)), subject to the constraint
P

i2S ⇡(i, 0) = 1, where the likelihood to be maximized is

L1(⇡(0)) =
Y

e2E

Y

j2Sobs

⇡e(j, 0)
ne(j,0).

In a similar fashion to Section 3.2.1 we consider the log-likelihood

logL1(⇡(0)) =
X

e2E

X

j2Sobs

ne(j, 0) · log ⇡e(j, 0).

and deriving its derivative we apply a gradient descent numerical optimization pro-

cedure to compute ML estimator for the hidden states’ distribution.

Estimation of the e�ciencies of the hybrid HMM using cubic splines

In order to model a more complicated behavior of the enzymes we assume, here, that

the e�ciencies of the enzymes (probabilities and rates since we have a hybrid model)

are polynomial functions over time. More concretely, in order to cope with possible

over-fitting, we define the e�ciencies of the model as piecewise cubic polynomials.

Additionally, to impose smoothness on the e�ciency functions, we require that the

rate function, as well as its first and second derivative are continuous functions over

time. The choice that simultaneously fulfills all previous criteria is cubic splines.

For an enzymatic e�ciency function r 2 {µm, µd, ⌘,�, �}, where µm stands for

maintenance, µd for de novo, ⌘ for hydroxylation, � for formylation, and � for active

demethylation e�ciency a cubic spline has the following form:

r(t) = �r
0 + . . .+ �r

3t
3 + �r

4h(t, ⇠1) + . . .+ �r
K+3h(t, ⇠K), (3.14)
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where ⇠i, is the i-th knot, i = {1, . . . , K}, and h is the truncated power basis function

defined as

h(t, ⇠) = (t, ⇠)+ =

8
>><

>>:

(t� ⇠)3 t � ⇠

0 otherwise.

Let vr = {�r
0 , �

r
1 , . . . �

r
K+3} be the vector of the unknown parameters, i.e., the coef-

ficients of a qubic spline function with K knots. Then v = (vµm ,vµd
,v⌘,v�,v�, p),

is the vector of all unknown parameters of all e�ciencies, and the probability p that

5hmC is not considered during maintenance.

We consider a continuous-time Markov chain (CTMC) with a discrete update

step at every time unit that a cell division happens. Since cell division is always

being followed by a maintenance event we define the transition matrix of the discrete

Markov chain at time unit t is P(t) = D ·Mm(t), where

D =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

uu um uh uf mu mm mh mf hu hm hh hf fu fm fh ff

uu 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

um 1/2 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

uh 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

uf 1/2 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0

mu 1/2 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0

mm 0 1/2 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0

mh 0 0 1/2 0 1/2 0 0 0 0 0 0 0 0 0 0 0

mf 0 0 0 1/2 1/2 0 0 0 0 0 0 0 0 0 0 0

hu 1/2 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0

hm 0 1/2 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0

hh 0 0 1/2 0 0 0 0 0 1/2 0 0 0 0 0 0 0

hf 0 0 0 1/2 0 0 0 0 1/2 0 0 0 0 0 0 0

fu 1/2 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0

fm 0 1/2 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0

fh 0 0 1/2 0 0 0 0 0 0 0 0 0 1/2 0 0 0

ff 0 0 0 1/2 0 0 0 0 0 0 0 0 1/2 0 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,
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Mm(t) =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

uu um uh uf mu mm mh mf hu hm hh hf fu fm fh ff

uu 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

um 1� µm 0 0 0 0 µm 0 0 0 0 0 0 0 0 0 0

uh 0 0 1� µm + pµm 0 0 0 p̄µm 0 0 0 0 0 0 0 0 0

uf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

mu 0 0 0 0 0 1� µm µm 0 0 0 0 0 0 0 0 0

mm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

mh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

mf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

hu 0 0 0 0 0 0 0 0 1� µm + pµm p̄µm 0 0 0 0 0 0

hm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

hh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

hf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

fu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

fm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

fh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

After applying the discrete step we let the time run “continuously” multiplying with

the Q(t) matrix

Q(t) =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

uu um uh uf mu mm mh mf hu hm hh hf fu fm fh ff

uu �2µd µd 0 0 µd 0 0 0 0 0 0 0 0 0 0 0

um 0 �µd � ⌘ ⌘ 0 0 µd 0 0 0 0 0 0 0 0 0 0

uh 0 0 �µd � � � 0 0 µd 0 0 0 0 0 0 0 0 0

uf � 0 0 �µd � � 0 0 0 µd 0 0 0 0 0 0 0 0

mu 0 0 0 0 �⌘ � µd µd 0 0 ⌘ 0 0 0 0 0 0 0

mm 0 0 0 0 0 �2⌘ ⌘ 0 0 ⌘ 0 0 0 0 0 0

mh 0 0 0 0 0 0 �⌘ � � � 0 0 ⌘ 0 0 0 0 0

mf 0 0 0 0 � 0 0 �⌘ � � 0 0 0 ⌘ 0 0 0 0

hu 0 0 0 0 0 0 0 0 ��� µd µd 0 0 � 0 0 0

hm 0 0 0 0 0 0 0 0 0 ��� ⌘ ⌘ 0 0 � 0 0

hh 0 0 0 0 0 0 0 0 0 0 �2� � 0 0 � 0

hf 0 0 0 0 0 0 0 0 � 0 0 ��� � 0 0 0 �

fu � 0 0 0 0 0 0 0 0 0 0 0 �µd � � µd 0 0

fm 0 � 0 0 0 0 0 0 0 0 0 0 0 �� � ⌘ ⌘ 0

fh 0 0 � 0 0 0 0 0 0 0 0 0 0 0 �� � � �

ff 0 0 0 � 0 0 0 0 0 0 0 0 � 0 0 �2�

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

that incorporates the processes of de novo (µd), hydroxylation (⌘), formation of 5fC-

5caC from 5hmC, let us name it formylation, (�), and active demethylation (�),

i.e., the transition from 5fC and 5caC back to unmethylated cytosine. The biological
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interpretation of the rates of the above processes is the number of events of the process

happening within one cell replication.

Given, now, ⇡(0)⇤, we seek for the maximum likelihood estimator (MLE)

v⇤ = argmaxv logL2(v), (3.15)

where

L2(v) =
Y

e2E

Y

t2Tobs\{0}

Y

j2Sobs

⇡e(j, t)
ne(j,t). (3.16)

It holds

logL2(v) =
X

e2E

X

t2Tobs\{0}

X

j2Sobs

ne(j, t) · log ⇡e(j, t)

and we get the score vector of the log-likelihood function as

d

dv
logL2(v) =

X

e2E

X

t2Tobs\{0}

X

j2Sobs

ne(j, t) ·
d
dv⇡e(j, t)

⇡e(j, t)
.

To compute the above likelihood and its score vector we need the transient prob-

abilities vector and its derivative w.r.t. the parameters. Let us assume we have L

time points ti for i 2 {0, . . . , L � 1}, at which cell-division happens. Computing

the transient distribution of the hidden states in our hybrid model means solving

the Chapman-Kolmogorov Eq. (3.1) of the continuous Markov chain along with the

derivatives equation system within every interval [ti, ti+1]. Hence, it su�ces to simul-

taneously solve the following two di↵erential equation systems.

d

dt
⇡(t) = ⇡(t) ·Q(t)

d

dv
⇡(t) =

d

dv
⇡(t) ·Q(t) + ⇡(t)

d

dv
Q(t), 8t 2 [ti, . . . ti+1] (3.17)
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with ⇡(t0) = ⇡(0)⇤ and d
dv⇡(t0) = 0 updating in parallel the transient distribution

⇡(ti) := ⇡(ti) · P (ti) and the derivatives vector

d

dv
⇡(ti) :=

d

dv
⇡(ti) ·P(ti) + ⇡(ti) ·

d

dv
P(ti) (3.18)

at every cell division time point, where the derivative of the transition matrix is

d
dvP(t) = d

dv(D · Mm(t)) = D · d
dvMm(t). To compute the derivatives d

dvQ(t) and

d
dvMm(t) we have to apply the chain rule and writing r(t) instead of r(vr, t) we get

8 �r
i 2 vr :

d

d�r
i

Q(t) =
d

dr(t)
Q(t) · d

d�r
i

r(t),

where r denotes one of {µm, µd, ⌘,�, �}. Since the parameter of non-recognition prob-

ability p is not a function of time we can directly compute d
dpMm(t).

Having computed the distribution of the hidden states and its derivative for all

t 2 Tobs, we get the the observable states’ distribution

⇡e(t) = ⇡(t) · Ee(t) and
d

dv
⇡e(t) =

d

dv
⇡(t) · Ee(t),

for a sequencing method e 2 E. The entries of the emission matrices Ee(t) for all

e 2 E are given in Table 3.2. A schematic outline of the conversion errors of each

experiment which define the entries of the experiment’s emission matrix is shown in

Figure 3.7.

Applying once more the product rule in Eq. (3.17) and (3.18) and using similar

arguments as above we compute the second partial derivatives d2

dvidvj
logL2(v) which

will give us the (i, j)-th entry of the Hessian matrix H = rrT logL2(v).
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BS

T C C T

U 5mC 5hmC 5fU�

C 5mC 5hmC 5fC�

oxBS

T C T T

U 5mC 5fU 5fU�

C 5mC 5hmC 5fC�

mabBS

T C C T

U 5mC 5hmC 5fU�

C

C 5mC 5hmC 5fC�

c d e g c d f g c d e g

µ

1

Figure 3.7: Schematic outline of the conversion of Cytosine, 5mC, 5hmC and 5fC*
(5fC or 5caC) during BS, oxBS and mabBS sequencing. In both BS and oxBS 5fC*
can not be distinguished from C. Hence, in mabBS we apply a preliminary step that
transforms C to 5mC and then we apply bisulfite sequencing. As a result in the ideal
case of no conversions errors only 5fC* is seen at the end as T. The conversion errors
are illustrated as dashed red arrows and the conversion probabilities c, d, e, f, g, µ as
black arrows.

Non-linear constraints

First note that in order the parameters of the hybrid model of Figure 3.6 to be identi-

fiable we need to have observation time points within the period of an active demethy-

lation cycle. The constraints for the optimization problem of Eq. (3.15), (3.16) are

that the e�ciencies at all considered time points are either between 0 and 1, in case

they are probabilities (this holds only for maintenance methylation), or between 0

and some positive upper bound ub, in case they are rates. I.e. 0  µm(t)  1, and

0  µd(t)  ub, 8t 2 {0, tmax} for all other e�ciencies. For the 5hmC non-recognition

probability p, it should also hold 0  p  1.

Note that if we don’t provide an upper bound ub, to the optimization algorithm,

we can again run into unidentifiability problems since, no matter how many data

points we get within one period, the demethylation cycle can happen arbitrarily fast.

We set a value for the upper bound ub = 12 for each rate by assuming that the total

time of a subprocess r can not be less than 1/12 hours, i.e. 1
r(t) � 1

12 8t 2 [0, tmax],
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bisulfite sequencing ox. bisulfite sequencing mab. bisulfite sequencing

TT TC CT CC TT TC CT CC TT TC CT CC

uu c2 c · c̄ c · c̄ c̄2 c2 c · c̄ c · c̄ c̄2 j̄2 j · j̄ j · j̄ j2

um c · d̄ c · d c̄ · d̄ c̄ · d c · d̄ c · d c̄ · d̄ c̄ · d d̄ · j̄ d · j̄ d̄ · j d · j
uh c · ē c · e c̄ · ē c̄ · e c · f c · f̄ c̄ · f c̄ · f̄ ē · j̄ e · j̄ ē · j e · j
uf c · g c · ḡ c̄ · g c̄ · ḡ c · g c · ḡ c̄ · g c̄ · ḡ g · j ḡ · j g · j̄ ḡ · j̄
mu c · d̄ c̄ · d̄ c · d c̄ · d c · d̄ c̄ · d̄ c · d c̄ · d d̄ · j d̄ · j̄ d · j d · j̄
mm d̄2 d̄ · d d · d̄ d2 d̄2 d̄ · d d · d̄ d2 d̄2 d̄ · d d · d̄ d2

mh d̄ · ē d̄ · e d · ē d · e d̄ · f d̄ · f̄ d · f d · f̄ d̄ · ē d̄ · e d · ē d · e
mf d̄ · g d̄ · ḡ d · g d̄ · g d̄ · g d̄ · ḡ d · g d · ḡ d̄ · g d̄ · ḡ d · g d · ḡ
hu c · ē c̄ · ē c · e c̄ · e c · f c̄ · f c · f̄ c̄ · f̄ ē · j̄ ē · j e · j̄ e · j
hm d̄ · ē d · ē d̄ · e d · e d̄ · f d · f d̄ · f̄ d · f̄ d̄ · ē d · ē d̄ · e d · e
hh ē2 ē · e e · ē e2 f 2 f · f̄ f · f̄ f̄ 2 ē2 ē · e e · ē e2

hf ē · g ē · ḡ e · ḡ e · g f · g f · ḡ f̄ · ḡ f̄ · g ē · g ē · ḡ e · ḡ e · g
fu c · g c̄ · ḡ c · g c̄ · ḡ c · g c̄ · ḡ c · g c̄ · ḡ g · j̄ ḡ · j g · j̄ ḡ · j
fm d̄ · g d · g d̄ · ḡ d · ḡ d̄ · g d · g d̄ · ḡ d · ḡ d̄ · g d · g d̄ · ḡ d · ḡ
fh ē · g e · g ē · ḡ e · ḡ f · g f̄ · g f · ḡ f̄ · ḡ ē · g e · g ē · ḡ e · ḡ
ff g2 g · ḡ g · ḡ ḡ2 g2 g · ḡ g · ḡ ḡ2 g2 g · ḡ g · ḡ ḡ2

Table 3.2: Transition probabilities from hidden to the observable states in BS, oxBS
and mabBS. For mabBS we write the probability of a desired conversion from C!C
as j = P(C!C) = µd+(1�µ)(1�c) and the complementary probability j̄ = P(C!T)
= (1� µ)c+ µ(1� d).

based on the fact that the average turnover time E[Tturnover] =
1
µd

+ 1
⌘ + 1

� + 1
↵ in

certain promoters of human cells is between 75 and 120 minutes [43, 66].

The above condition gets simplified to the following two non-linear constraints:

0  r(t)  ub () 0  r(targmin) and r(targmax)  ub (3.19)

for targmin, targmax 2 [0, tmax].

Hence, we only have to compute the critical points of the spline function by

considering the points where the first time derivative of r(t) becomes zero, i.e.,

d
dtr(t) = �r

1 + �r
2t + 2�r

3h(t � ⇠1)1/2 + . . . + 2�r
K+3h(t � ⇠K)1/2 = 0, and deciding
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whether each critical point is a maximum or a minimum by evaluating the second

derivative d2

dt2 r(t) at this point.

Defining the constraint function gr(vr) : R|vr| ! R2 of each rate r as gr(vr) =

[g1,r(vr), g2,r(vr)], where g1,r(vr) = ub � r(targmax), and g2,r(vr) = r(targmin), we

get Vs =
S

Vr as the feasible parameter space of the optimization problem, where

Vr = {vr : g1,r(vr), g2,r(vr) � 0} is the feasible space for e�ciency r. Computing the

Jacobian matrix Jgr(vr) of the constraint function gr we can steer the optimization

algorithm towards parameters’ feasible regions.

Standard deviations and confidence intervals

Similarly to Section 3.2.2 we approximate the covariance matrix of v⇤ as the inverse

of the Hessian matrix H(v⇤) at the point of the maximum likelihood estimate and we

get the standard deviation estimates as �(v⇤) =
p
diag(�H�1(v⇤)). In order to get

the standard deviations of the e�ciency functions over time, i.e., �(µm(t)), �(µd(t))

and �(⌘(t)), we exploit the fact that if

r(t) = �0 + �1t+ �2t
2 + �3h(t� ⇠1) + . . .+ �K+2h(t� ⇠K),

where ⇠i, is the i-th knot, i = {1, . . . , K} then

Var(r(t))

= Var(�0 + �1t + �2t
2 + �3h(t � ⇠1) + . . . + �K+2h(t � ⇠K))

= Var(�0) + t2Var(�1) + t4Var(�2) + h(t � ⇠1)
2Var(�3) + . . . + h(t � ⇠K)2Var(�K+2)

+2t Cov(�0, �1) + 2t2 Cov(�0, �2) + 2h(t � ⇠1) Cov(�0, �3) + . . . + 2h(t � ⇠K) Cov(�0, �K+2)

+2t3 Cov(�1, �2) + 2h(t � ⇠1)t Cov(�1, �3) + . . . + 2h(t � ⇠K)t Cov(�1, �K)

+2 Cov(�2, �3)h(t � ⇠1) + . . . + 2 Cov(�2, �K)h(t � ⇠2)

+ . . . , (3.20)
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where ⇠i is the i-th knot, i = {1 . . . K}. Eq. (3.20) can be written in a much simpler

form if we define the vector tp = [0, t, t2, h(t�⇠1), . . . , h(t�⇠K)]. Then we can write (t>p ·

tp)⌦Covvr , where Covvr is the submatrix of Cov that corresponds to vr parameters.

Obtaining the standard deviations of all the e�ciencies over time one can create

the corresponding confidence intervals for a fixed confidence level, i.e., � = 95%, as

r(t)± z · �(r(t)) = r(t)± z ·
p

Var(r(t)),

where z = F�1
�
�+1
2

�
and F is the cumulative distribution function (cdf) of the

standard normal distribution.

Model selection - choosing the knots’ number and location

The only thing that remains regarding the use of the cubic spline functions is to

decide the maximum number of knots which is necessary for our model so that we

avoid overfitting, and also define the points that the knots should be placed. We do

it by applying one of the following strategies.

• Decide a priori the number and / or the location of the knots by observing the

“specifications” of the input data patterns for a certain locus.

• Apply a LOOCV similarly to Section 3.2.3 training the data in all but one CpGs

of a region every time. Choose the model that provides the smallest test error

based on KL divergence.

• Compute for every model either Akaike Information Criterion AIC = 2d �

2 logL2(v⇤) or Bayesian Information Criterion BIC = log(ntot)d� 2 logL2(v⇤),

where ntot is the total number of observations over all time points and experi-

ments, and d is the number of estimable parameters (degrees of freedom)2. Both

2In case of the cubic spline with K knots we get 4(K +1)�3K = K +4 actual degrees of freedom
due to the continuity up to the second derivative in each knot.
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of these terms provide a compromise between a very good fit of the data and

model’s simplicity by correcting for the number of unknown parameters. We

choose as ‘optimal’ the model that minimizes either of the above criteria.



Chapter 4

Individual Genomic Loci Analysis

4.1 Results

We run the core-model presented in Section 3.1 and the inference and validation

methods presented in Section 3.2 on an ultra-deep generated DNA methylation data

set of selected loci in mouse ES cells (mESCs) collected at defined time points after

cultivation in 2i. For our analysis we choose four multi-copy, repetitive elements,

IAPs (intracisternal A particle), L1mdA and L1mdT (both Long interspersed nuclear

elements) and mSat (major satellite), as well as four single-copy loci in the genes

Afp, Snrpn, Ttc25 and Zim3. Most of the above repetitive were already known to

be subject to demethylation. Ttc25 and Zim3 where previously shown to exhibit a

less pronounced loss of methylation in the absence of Tet1/Tet2 in 2i medium [18],

whereas imprinted genes such as Snrpn were shown to be “resistant” to demethylation

in 2i.

Deep locus specific DNA methylation profiles were generated from mESCs grown

in conventional serum/LIF medium (day0) and after their transfer and cultivation

into 2i medium for 24h (day1), 72h (day3) and 144h (day6), respectively. During this

period the ESCs undergo a maximum of six cell divisions (as inferred from cell densi-
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ties). For each time point and locus we performed consecutive bisulfite and oxidative

hairpin bisulfite reactions using high coverage Mi-Seq sequencing (see Section 2.2.1).

Following sequence processing (alignment, trimming, QC filtering) we obtained two

data sets for each locus: one describing the combined 5mC+5hmC status (BS-Seq)

and one describing the 5mC status alone (oxBS-Seq). Then, the hairpin refolding of

sequences of Section 2.2.1 in combination with the HMMs described in Section 3.1

let us determine the accurate double strand CpG methylation levels in a given locus

(hemi-, fully- or unmethylated).

4.1.1 Estimation of the enzymatic activities

We used our model on the above data to estimate the amount of 5mC and 5hmC in

these loci and to predict the e�ciencies of maintenance methylation, de novo methy-

lation and hydroxylation over time. In our modeling we analyzed both aggregated

and single CpG behavior for each locus. Single CpG modeling largely returned similar

results with the average data of the same locus (with slightly increased confidence

intervals) and therefore in our further analysis and model’s interpretation we refer to

the average data. The results for the single CpG modeling of all examined regions

can be found in Section A.3.

In Table 4.1 we present the MLEs returned by our global optimization routine

for the parameter vector v and the corresponding vector of standard deviations �(v),

given the data of Table A.4, A.5 for each of the eight genome loci. Table 4.2 shows the

computed coe�cients of the total methylation �(t), which can be implicitly taken from

the maintenance and de novo estimated coe�cients (see Section 3.1.1, Maintenance).

In Figure 4.1 we plot the functions µm(t), µd(t), ⌘(t) and �(t) over time together

with their estimated standard deviations. Note that the estimated standard devia-

tions of all the e�ciencies are very small (maximum half width of all confidence in-

tervals is 0.031). For the exact estimates and their standard deviations see Table 4.3,
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Table 4.1: Estimated coe�cients of the functions µd(t), µm(t) and ⌘(t) and their ap-
proximate standard deviations. The p-values have been taken conducting a hypothesis
test H0 : �1 = 0 using the Wald statistic.

IAP: (hydroxy)
methylation prob. �0 �(�0) �1 �(�1) p-value

µm 0.9155 0.0256 -0.0097 0.0072 0.180
µd 0.3977 0.0545 -0.0624 0.0106 < 10�5

⌘ 0.0134 0.0132 0.0055 0.0045 0.226
p 1 0.2577 - - -

L1mdA: (hydroxy)
methylation prob. �0 �(�0) �1 �(�1) p-value

µm 0.8682 0.0104 -0.0052 0.0040 0.190
µd 0.0168 0.0007 -0.0027 0.0002 < 10�5

⌘ 0.1249 0.0074 0.0149 0.0023 < 10�5

p 1 0.0238 - - -

L1mdT: (hydroxy)
methylation prob. �0 �(�0) �1 �(�1) p-value

µm 0.7317 0.0040 -0.0102 0.0044 0.020
µd 0.0229 0.0010 -0.0038 0.0002 < 10�5

⌘ 0.1013 0.0046 0.0220 0.0015 < 10�5

p 1 0.0468 - - -

mSat: (hydroxy)
methylation prob. �0 �(�0) �1 �(�1) p-value

µm 0.8304 0.0080 0.0026 0.0019 0.186
µd 0.3879 0.0133 -0.0478 0.0025 < 10�5

⌘ 0.0002 0.0038 0.0026 0.0011 0.024
p 0.8025 0.1966 - - -

Afp: (hydroxy)
methylation prob. �0 �(�0) �1 �(�1) p-value

µm 0.7817 0.0041 0.0006 0.0015 0.717
µd 0.1772 0.0058 -0.0295 0.0011 < 10�5

⌘ 0.0473 0.0028 0.0160 0.0010 < 10�5

p 1 0.0208 - - -

Ttc25: (hydroxy)
methylation prob. �0 �(�0) �1 �(�1) p-value

µm 0.7440 0.0064 -0.0435 0.0003 < 10�5

µd 0.0000 0.0018 -0.0000 0.0003 1
⌘ 0.0000 0.0072 0.0544 0.0023 < 10�5

p 1 0.0670 - - -

Zim3: (hydroxy)
methylation prob. �0 �(�0) �1 �(�1) p-value

µm 0.8530 0.0027 -0.0965 0.0014 < 10�5

µd 0.0000 0.0022 -0.0000 0.0005 1
⌘ 0.0000 0.0087 0.0922 0.0047 < 10�5

p 1 0.0255 - - -

Snrpn: (hydroxy)
methylation prob. �0 �(�0) �1 �(�1) p-value

µm 1.0000 0.0253 0.0000 0.0076 1
µd 0.0000 0.0029 0.0016 0.0008 0.047
⌘ 0.0517 0.0170 -0.0086 0.0038 0.030
p 0.5 0.0807 - - -

Table 4.2: Estimated coe�cients of the function �(t) and their approximate standard
deviations. The p-values have been taken conducting a hypothesis test H0 : ��

1 =
0 ^ ��

2 = 0 using the Wald statistic.

DNA region ��
0 ��

1 ��
2 p-value

IAP 0.9491 -0.0111 6.05 · 10�4 < 10�5

L1mdA 0.8705 -0.0055 1.40 · 10�5 0.187
L1mdT 0.7378 -0.0011 3.89 · 10�5 0.005
mSat 0.8962 -0.0065 1.21 · 10�4 < 10�5

Afp 0.8203 0.0059 1.68 · 10�5 < 10�5

Ttc25 0.7440 -0.0435 �2.95 · 10�14 < 10�5

Zim3 0.8530 -0.0965 �1.16 · 10�14 < 10�5

Snrpn 1.0000 �2.89 · 10�11 �4.44 · 10�14 1.000



62 4.1. Results

4.2. From the above e�ciencies one can deduce the impact of de novo methylation

activity on the hemimethylated dyads as the di↵erence between the total methylation

e�ciency and maintenance methylation, i.e., �(t)�µm(t) = µ̄m(t) ·µd(t). Our results

indicate that persistence of DNA methylation in IAP, Afp and mSat elements clearly

depends as well on de novo enzymes acting on hemimethylated CpGs.

Wald Test

For each e�ciency, we performed a statistical test with a confidence level of 1% for

the null hypothesis that the slope of the corresponding function is zero, i.e., that

the e�ciencies are constant functions of time. Hence, the p-value of the e�ciencies

µm, µd and ⌘ corresponds to the null hypothesis H0 : �1 = 0, where �1 is the gradient

of the corresponding e�ciency, and for the total methylation � it takes the form

H0 : ��
1 = 0 ^ ��

2 = 0, since � is a quadratic function of time.

From the performed Wald test we found a statistically significant decrease for the

de novo, and the total methylation e�ciencies in all eight loci (besides de novo at

Ttc25, Zim3 and Snrpn where it is absent and total methylation in L1mdA). Simi-

larly, the increase of hydroxylation for five out of eight loci is statistically significant.

However, for the maintenance function we have to accept the null hypothesis in most

of the loci (namely all repetitive elements and Afp), that is, we cannot exclude the

possibility that for these loci maintenance is constant over time.

Sensitivity Analysis

To validate the robustness of the model sensitivity analysis of the parameters has been

examined. Perturbing one parameter at a time (OAT) by ±1% we get a maximum

(over all loci, time points and parameters) absolute change of 0.0053 for the total

hydroxylation level and 0.0198 for the total methylation level. This ensures that the

model is su�ciently robust.
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Figure 4.1: The diagrams show the predicted by the model enzymatic e�ciencies
and their standard deviations for maintenance (red), de novo (blue), hydroxylation
(yellow) and total e�ciency on a hemimethylated CpG (dark red) for all (a) multi-
and (b) single-copy studied loci.
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4.1.2 Goodness of fit and validation

Using the estimated values of the model’s unknown parameters for each region we

could predict the probabilities of the observable states and compare them to the

frequencies of the measured data (Table A.4, A.5) at various time points. As we

observe in Figure 4.2 the model accurately describes the dynamics for all loci except

for some underestimations of two states CC and TT for oxBs in Ttc25 and Zim3,

respectively.

Leave One Out Cross Validation

To validate the linear assumption for the e�ciencies in our model we performed

LOOCV (see Section 3.2.3 for details). The results in Table 4.3 show that the linear

assumption for the enzymes’ e�ciencies improves the prediction up to 38.3%, com-

pared with constant e�ciencies. For all loci the test error becomes evidently smaller

for the case where we allow e�ciencies to be linear over time using either Kullback

Leibler (KL) divergence or Bhattacharyya (BC) distance as a distance measure. The

improvement (“gain”) KLconst�KLlinear
KLconst

of the test error using the linear model over the

constant varies from 0.6% (in mSat) to 38.3% (in Zim3) for the Kullback-Leibler dis-

tance, and from 0.3% to 38.1% for the BC distance. Note that the predictive potential

gain of the model described by the above ratio depends on the available number of

CpGs for the training data and also on how much the e�ciencies deviate from con-

stant behavior over time. Clearly, though, it is in general very well supported by the

data that the linear assumption for the e�ciencies evidently increases the model’s

predictive ability.

4.1.3 Prediction of hidden states’ levels

Figure 4.3 shows the probabilities of the hidden states in all single and multi-copy

gene loci, where the parameters are chosen according to the results of the maximum
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Figure 4.2: Comparison of predicted modification levels and the obtained sequencing
data for BS and oxBS for the loci L1mdT, mSat, Afp, Zim3, IAP, L1mdA, Ttc25
and Snrpn. Probabilities of the observable states TT (blue), TC (light green), CT
(dark green), CC (red). The solid lines show the experimentally measured frequencies
states and the dashed lines correspond to the values predicted by the two HMMs.



66 4.1. Results

Table 4.3: Computed Kullback-Leibler divergence and Bhattacharya distance values
given by LOOCV data to compare the test error for assuming linear vs constant
e�ciencies.

DNA region KLconst KLlinear KL gain BCconst BClinear BC gain
IAP 0.164 0.131 20.1 % 5.33e-03 4.38e-03 17.8 %

L1mdA 0.026 0.023 11.5 % 8.10e-04 7.18e-04 11.4 %
L1mdT 0.101 0.099 1.9 % 3.18e-03 3.17e-03 0.3 %
mSat 0.163 0.162 0.6 % 5.09e-03 5.00e-03 1.8 %
Afp 0.149 0.114 23.5 % 4.79e-03 3.66e-03 23.6 %
Ttc25 0.209 0.171 18.2 % 7.03e-3 6.07e-3 13.7 %
Zim3 0.342 0.211 38.3 % 1.13e-2 7.00e-3 38.1 %
Snrpn 0.194 0.192 1 % 1.13e-2 7.00e-3 1 %

likelihood estimation. The left bar diagram shows the probabilities of all fully methy-

lated (mm), hemimethylated (um and mu) and unmethylated (uu) sites, as well as

the total amount of the hydroxylated CpG dyads, i.e., those containing at least one

5hmC. The detailed level of all hydroxylated sites is depicted in the right diagram.

From previous experiments it was known that 5hmC levels initially increase during

cultivation in 2i [18, 29]. However, precise levels had not been determined per locus.

Our analysis provides the first accurate locus specific determination of 5hmC changes.

Our estimation of 5hmC confirms an initial increase of hydroxylated cytosines over

time for most loci besides L1mdA and Snrpn. L1mdA shows a low level of 5mC and

5hmC, which only slightly decreases in 2i. Snrpn also shows a relatively low level of

5mC and a non-significant amount of 5hmC, which do not change in 2i over time.

The highest hydroxylation levels are found in the single copy genes Zim3 and Afp

with a maximum level of 0.30 and 0.20. For Afp, mSat, and IAP (see Figure 4.3), the

maximum hydroxylation level is seen at day6, while for L1mdT, Ttc25 and Zim3 at

day3. The latter can be explained by the particularly low 5mC levels between day3

and day6 in these loci which naturally reduces the potential substrates for the Tet

enzymes. However, the level of 5hmC (orange bar in Figure 4.3) relative to the total

modification level (5hmC + 5mC) (red, orange and green bars), becomes maximal on
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Figure 4.3: Probabilities of the hidden states for (a) multi-copy loci IAP, L1mdA,
L1mdT, mSat, and (b) single-copy loci Afp, Snrpn, Ttc25 and Zim3: The left diagram
depicts the amount of fully methylated (mm) sites in red color, hemimethylated (um
and mu) sites in green color, and unmethylated (uu) sites in blue color. The orange
block gives the total amount of CpG sites with at least one 5hmC, while the detailed
distribution of the hydroxylated states is given by the diagram on the right.
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Figure 4.4: Maintenance and de novo methylation are usually cooperating to maintain
a stable methylation pattern (inner circle). The oxidation of 5mC to 5hmC may
interfere with the maintenance machinery causing a (partial) loss of CpG methylation
after DNA replication. DNA strands are indicated by lines whereas the CpG are
shown as colored circles.

the sixth day for all loci that show a loss of 5mC. This points towards an increasingly

important role of 5hmC in the loss of methylation over time.

This is, indeed, further stressed by the fact that the probability p (see HMM sub-

section) that a 5hmC site is not recognized by Dnmt1 (or the Dnmt1/Uhrf1 complex),

which corresponds to states (hu) and (uh) in the model, is estimated to be 1 with

very small standard deviations for all the loci that show significant 5hmC levels (Ta-

ble 4.1). We estimated smaller values for p only for those loci where hydroxylation is

nearly absent (mSat, Snrpn).

4.2 Discussion

The goal of this chapter was the application of our, previously described, model at

both single- multi-copy loci across the genome, in order to investigate the role of
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5hmC in the process of progressive DNA demethylation in these regions. As a model

system we used the DNA of mESCs grown under conditions where the cells experience

a genome wide reduction of DNA methylation [29, 18].

Using time dependent comparative bisulfite and oxidative bisulfite hairpin se-

quencing data we applied two HMMs: one that captures the dynamics of total mod-

ifications 5mC and 5hmC in BS, and another only representing the 5mC levels in

oxBS. The combination allowed us to accurately determine the amount and changes

of 5hmC for each single CpG dyad at certain genomic loci, to estimate the transient

distribution of both 5mC and 5hmC in the DNA and to compute statistically reliable

estimates for the e�ciencies of maintenance and de novo methylation, as well as for

hydroxylation over time.

4.2.1 Biological findings

A careful analysis of the model’s output reveals the following key biological findings.

Time-variant hydroxylation levels

First, we observe that 5hmC levels and distribution change over time and can be

modeled along with the overall changes in symmetric DNA methylation at CpGs.

Our estimates give us an exact knowledge of 5hmC and Tets’ dynamics, which is

congruent with the finding that several Tet enzymes are up-regulated in 2i medium

[18, 29]. The calculation of the hidden state probabilities and the e�ciencies of

the di↵erent enzyme-driven processes show that the 5hmC dependent demethyla-

tion rates di↵er considerably from locus to locus. However, the dynamics of the

(hydroxy-)methylation levels, as well as the e�ciency profiles, show a certain homo-

geneity for the CpGs of the same locus (see Figure A.1).
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Mainly constant maintenance, decreasing de novo

Maintenance methylation shows an impaired behavior in 2i (it is on average 0.82

in non-control regions) in comparison with its Serum perfect function. Within 2i,

though, it is predicted from our model to remain stable within in 6 of 8 examined

loci and this nicely agrees with the previously shown unchanged mRNA expression

of Dnmt1 and Uhrf1 in 2i [18, 29]. Interestingly, for the single copy genes Ttc25 and

Zim3 we predict a clear decrease of maintenance function (see Figure 4.1, red line),

which is independent of the high 5hmC levels at these loci, as the influence of 5hmC

on the maintenance mechanism is captured by the non-recognition probability p. This

might indicate an additional impairment or absence of the maintenance machinery

at these loci, which would hint towards the existence of genomic loci with specific

enzymatic profiles. However, since we cannot capture further oxidized cytosine forms

with the current experimental/ model design, we can also not exclude the possibility

that with the strong decrease in maintenance e�ciency our model, at least to some

extent, compensates for active demethylation.

Being able to estimate the de novo methylation impact of Dnmt3a/b on

hemimethylated sites, a third observation of our model is that all analyzed elements

show a compromised de novo methylation activity as an additional factor contribut-

ing to an enhanced local DNA demethylation. The predicted behavior for the de

novo enzymes’ activities follows their relative expression in 2i medium, in which

both Dnmt3a and Dnmt3b are clearly down regulated [18, 29]. Our observations,

thus, suggest that the down regulation of Dnmt3a and Dnmt3b activities appears

to enhance the 5hmC dependent CpG demethylation. This may be either directly

due to a decreased methylation e�ciency on hemimethylated sites or due to a lower

abundance of the enzymes.
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Passive demethylation mechanism

The most important finding of our modeling is that it strongly supports the hypoth-

esis that 5hmC is less well recognized by the maintenance methylation machinery

(Dnmt1/Uhrf1 complex) as indicated by the estimation of the corresponding non-

recognition probability p. As it is illustrated in Figure 4.4 the model suggests that

the accumulation of 5hmC causes a passive dilution mechanism of CpG methylation

with each DNA replication/cell cycle, despite the fact that the maintenance activity

is predicted to remain stable in most of the analyzed loci. In mESCs maintained

in 2i medium this passive demethylation mechanism appears to be, together with

the initial maintenance impairment, the main driving force for a rapid and linear

DNA demethylation. As a result, loci with an enrichment of 5hmC are more likely

to lose DNA methylation over time. Indeed, data supports that 5hmC containing

DNA strands such as IAP, L1mdT, Afp and TTc25 show higher demethylation rates

compared to low 5hmC regions as mSat or Snrpn.

Summary

In this chapter we presented the results of a novel HMM method that allows to accu-

rately measure and describe e↵ects related to the influence of 5hmC on the persistence

of DNA methylation in the mammalian genome. Taking advantage of BS and oxBS

hairpin data over di↵erent time points our modeling is the first one that allows to

accurate double strand CpG (hydroxy-)methylation levels in a given locus, enables us

to accurately infer enzymatic activities and thus allows us to decipher complex DNA

methylation patterns.

We reveal a strong passive loss of 5mC that happens due to its transformation

to 5hmC and the non-recognition of it by the maintenance machinery. This passive

demethylation mechanism is enhanced by a non-perfect maintenance, an increasing

Tet enzymes activity and in some regions by a decreasing de novo e�ciency as well.
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In its current form the model already captures a fraction of possible demethylation

dynamics and scenarios most likely reflecting many loci in the genome. However,

our approach could also be used to accurately model 5hmC dependent methylation

dynamics in diseases, e.g., certain cancers and in aging processes of long lived cells.

Finally, as it has been shown in detail in Section 3.3, the model can be enhanced

to additionally capture active demethylation by integrating additional sequencing

methods that are able of detecting further oxidized modifications such as 5fC and

5caC. In this case the mechanisms behind DNA demethylation will be described in

an even greater resolution.



Chapter 5

H(O)TA Tool

5.1 H(O)TA Description

Hairpin (Oxidative) bisulfite sequencing Time course Analyzer (H(O)TA) is a tool

that accurately infers (hydroxy-)methylation levels and e�ciencies of the involved

enzymes at a certain DNA locus. The tool gets as input time course measurements

from hairpin BS-seq and oxBS-seq and it is based on the construction of two coupled

hidden Markov models (HMMs) which take into account all relevant conversion errors.

The underlying stochastic model and the core estimation procedure of the unknown

parameters are being described in Chapter 3, Section 3.1, 3.2, respectively.

The interested user can download the tool and run the input data of Section A.2

or upload his own BS-seq oxBS-seq epigenomic data. In this chapter we describe the

functions that one can operate using H(O)TA and provide a short and easy installation

guide.

H(O)TA has been mainly developed in MATLAB with some routines written

in C++. Its execution requires the installation of the free MATLAB runtime

environment (MRE). The tool and the MRE can be downloaded as a single

installation file available for Linux, MacOS, and Windows operating systems.
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Figure 5.1: Conversion scheme for BS-seq and oxBS-seq. The first (last) line deter-
mines the hidden (observable) states. Conversion errors (illustrated by the red dashed
arrows) are taken into account by adjusting the emission probabilities of the HMMs
by the conversion probabilities c, d, e, and f .

Its graphical user interface consists of two windows: a dialogue window for

loading the input files of a DNA locus and running the analysis and the main

window (Figure 5.2) for visualizing the output. The tool can automatically

aggregate data of di↵erent CpGs of a locus and compute average (hydroxy-)

methylation levels as well as average e�ciencies. In addition, the same analysis can

be performed for each CpG individually. The model can be applied to both, clean

cell populations and cell mixtures. However, when dealing with convolutions of cells

individual methylation patterns might be hidden and the results will only reflect the

average behavior of all cell types. Users can provide three input .txt files. The first

file contains BS-seq time course data, the second one oxBS-seq time course data and

the third file should contain the conversion errors of the two experiments (see dashed

arrows in Figure 5.1), as well as a string that describes how many cell divisions take

place between two observation time points. Conversion errors can be obtained either

by including unmodified cytosine, 5mC and 5hmC into the hairpin linker or by the

inclusion of a spike-in sequence into the sample containing the di↵erent cytosine

variants (see A.1.1). If only BS-seq data is given, then the tool will predict only

the methylation levels and e�ciencies (merged with the corresponding unknown

hydroxylation values) of the given region. A detailed documentation of the input

files is given in Section 5.2.2.
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The main window consists of two panels. The left panel of the main window is an

overview in small resolution of the detailed output that is shown on the right. The

(hydroxy-)methylation levels and the e�ciencies of all individual CpGs are plotted

such that they can be compared with each other and with the corresponding plots

of the right panel. Based on the selection made by the user in the upper left corner,

the right panel shows the output of the analysis either for the aggregated data or for

each of the previously chosen CpG sites. The observable states reflect the possible

outcomes of hairpin BS-seq and hairpin oxBS-seq, respectively, that is, {T, C}2 (cf.

last line in Figure 5.1), where T stands for thymine and C for cytosine. The upper

left and middle plots of the right panel (Figure 5.2) show the fit between the data

(dense line) and the model prediction (dashed line) for the observable states TT,

TC, CT, CC in each of the two experiments. As opposed to methods for single time

point data, H(O)TA performs an analysis that considers the transient probability

distribution over the set {u,m, h}2 of nine hidden states of the two cytosines of a

CpG dyad, where u,m and h describe C, 5mC, and 5hmC, respectively. Thus, besides

the states uu and mm, which correspond to the blue and red bars in the bar plots

of the hidden states’ probabilities in Figure 5.2, lower left plot, the model’s output

also includes the time evolution of the levels of hemimethylated sites (states um, mu,

green bars) as well as those of hydroxylated sites (states uh, hu, hm,mh, hh, orange

bars). The lower right plot of the main window shows the detailed distribution of

the di↵erent hydroxylation states. For each observation time point, estimations of

the enzymes’ e�ciencies, i.e., the probabilities of a methylation or a hydroxylation

event between two cell divisions, are made in the upper right plot for the maintenance

methylation (red), de novo methylation (blue) and hydroxylation (orange) as well as

the total methylation (dark red) on hemimethylated CpGs. In addition, an estimation

is provided for the probability that no maintenance is performed when the current

state is mh or hm, which hints on the existence of a passive demethylation mechanism
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Figure 5.2: The main window of the graphical user interface of H(O)TA.

induced by hydroxylation. H(O)TA provides the user with several options (lower right

corner) for exporting the estimation results in a desirable format. For all the estimated

parameters confidence intervals are computed and a statistical test is carried out in

order to verify certain hypotheses about the e�ciencies. For a complete description

of the underlying model and details about the optimization as well as the statistical

validation of the results, the reader can refer to Chapter 3.

5.2 Run H(O)TA

5.2.1 Installation

Downloading the following installation files provides the user with detailed instruc-

tions on how to install H(O)TA and Matlab Runtime which is necessary for the

executable to run.
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• H(O)TA, Linux 64bit

• H(O)TA, MacOS 64bit

• H(O)TA, Windows 64bit

Note: For Linux machines unzip the downloaded file and then execute

$sudo ./ HOTA_Installer_web.install

in the extracted directory. Once H(O)TA and Runtime are both installed go to

H(O)TA’s installation directory and run HOTA script by giving as an argument

the path of the installation directory of the Runtime. E.g. if the version of the

runtime is v901 and the installation path is /usr/local/MATLAB then type

$./ run_HOTA.sh/usr/local/MATLAB/MATLAB_Runtime/v901 ,

while being in the directory of run_HOTA.sh.

5.2.2 Input

The names of the files containing the bisulfite and the oxidative bisulfite data should

strictly be of the form region_BS.txt and region_oxBS.txt, respectively, where

region is the name of the examined locus. The file containing the data of the con-

version errors should have the ending _errors.txt but it does not need to begin

with the name of the specific locus in case. All the entries in the data and error files

should be comma-separated without empty spaces. Clicking on the question marks

of the GUI next to each loading button the user can see sample input files. For the

tool to run only the file with the BS-seq data is mandatory and the other two are

optional. In case oxBS data is not provided the tool only predicts methylation levels

and the corresponding e�ciencies ignoring hydroxylation. Note that in this case the

estimated e�ciencies might wrongly compensate for the lack of hydroxylation infor-

mation. E.g. the maintenance might appear to decrease, even though this does not

http://mosi.uni-saarland.de/?attachment_id=3685
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(a) (b)

Figure 5.3: (a): The input panel of H(O)TA. (b): Example input files of BS and
oxBS data and of the conversion errors’ file.

happen in the real system. In case the error file is not provided, default error values

based on averages of historical values are used.

Input data files

The format of the BS and oxBS data .txt files (Figure 5.3b, upper row) is extremely

simple. Every row of the file corresponds to the measurements that have been taken

for a particular time point and a particular CpG (first and second column, respec-

tively). After the first row with six column headers “day, CpG, TT, TC, CT, CC”,

the data is listed. The first column is the day of the measurement and the number

of the CpG follows. The next four columns contain the absolute number of times the

states TT, TC, CT and CC have been measured.
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Conversion errors file

Each row of the error file (Figure 5.3b, lower row) corresponds to a time point (first

column) of measurements. The second column is the label that appears for the

corresponding time point in the output plots. Columns 3-5 contain the conversion

errors of the bisulfite setup and columns 6-8 the conversion errors of the oxidative

bisulfite setup. Each red dashed arrow of Figure 5.1 corresponds to one error listed in

the error file from left to right. The last column of the error file is the characterization

of the process that happens between two observation time points. This entry can

either be rep or no-rep. In the first case we assume that a number of cell replications

equal to the di↵erence between the two time points has happened, while in the second

case no cell replication has happened.

5.2.3 Output

Once the input files have been loaded a panel with a check-box for each CpG of

the locus appears. The user has to check the CpGs for which he would like to

have estimations of the (hydroxy-)methylation levels and the activity of the enzymes.

Regardless of the choice for the single CpGs the prediction of the behavior of the whole

imported region (aggregated data of all CpGs) will always run and the aggregated

results will appear in the right part of the main output window. In the left part of

the window the prediction for each chosen CpGs is shown. The user can zoom in on

the results of an individual CpG choosing it from the pop-up window in the upper

left part of the screen. The output for a single CpG or the aggregated data can be

extracted in both .pdf (export to .pdf button) and .txt (export to .txt button). In

Figure 5.4 we see the .txt output file containing information about the optimization

run, the estimated parameter values along with test statistics for the null hypothesis

of a constant e�ciency, as well as the predicted distribution for the hidden and the

observable states. At last, the software gives also the user the option to export all
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Figure 5.4: H(O)TA’s output file in .txt format

the results, i.e., all CpGs plus the aggregated data, of a locus in a .zip file (export all

to .zip file).

5.3 H(O)TA v.2 - Hybrid model, further exten-

sions

An upgraded version of the program, H(O)TA v.2 (beta), is built based on the hybrid

extension of our model being described in Section 3.3 and incorporates the following

extended features.
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(a) (b)

Figure 5.5: (a): The input panel of H(O)TA v.2. (b): The main window of H(O)TA
v.2 with two additional outputs. A plot for the fit of the mabBS data (first row, right)
and a plot for the detailed prediction of formyl-cytosine modification levels (second
row, right)

1. In addition to BS and oxBS data, it gets data from mabBS experiment (see

Section 3.3.1 for details). The main window of H(O)TA v.2 is extended to

include a plot for the fit of the mabBS data (Figure 5.5b, right in first row) and

a plot for the detailed predicted distribution of formyl-cytosine modifications

(Figure 5.5b, right in second row).

2. The user has an option to exclusively estimate the hidden states’ levels,

avoid running the optimization for inferring the enzymatic e�ciencies (see

Figure 5.5a). This option might be convenient to users who quickly want to

determine hydroxy-, formal- and methyl-cytosine levels, and are not interested

in the enzymes’ behavior. We do this using MLE similarly to [74] but with the

di↵erence of additionally considering the conversion errors of each experiment.

Hence, we are able to predict corrected and far more accurate 5hmC levels



82 5.3. H(O)TA v.2 - Hybrid model, further extensions

compared with performing a simple subtraction. The advantage of this ap-

proach compared to conventional subtraction of BS and oxBS data is evident in

Figure 5.6. One clearly sees, that the MLE method gives always more accurate

estimations in comparison to subtraction. Simple subtraction method seems

to work quite well when the 5hmC levels are very small1, but it gets really o↵

(almost 10% o↵ from the real value) as the 5hmC levels increase. On the other

hand, the absolute error of the MLE method remains constant for all 5hmC

levels.

3. The last and most important extension of H(O)TA v.2 is that provides the user

the possibility to define himself the underlying stochastic model he wants to

run. In a simple a .txt model file the user can describe the transitions of each of

the involved subprocesses. Then the tool automatically constructs the hidden

state space, produce the stochastic matrix of each of the described subprocesses

and finally estimate the values of the parameters of the given model. This fea-

ture can be extremely useful for testing di↵erent biological assumptions than

the ones that have been made for the development of this thesis core-model on

a single CpG dyad, or for constructing spatial epigenetic models that consider

more than one CpG dyad to study the spatial characteristics (e.g. association

and processivity) of certain enzymes, or/and to test the potential need of more

complex functions than linear for the e�ciencies’ behavior, as it has been de-

scribed in Section 3.3. In Figure 5.7 we see the creation of a single CpG model

of quadratic e�ciency functions that consists of 5 subprocesses: maintenance,

de novo, hydroxylation, formylation and active demethylation.

1This a result of the high depth sequencing. For a small coverage subtraction can even give
negative 5hmC levels.
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Figure 5.6: MLE vs subtraction estimators for predicting various hydroxylation levels
of an artificially generated data set of average available depth sequencing (5 · 103 x).
The plot shows the average absolute errors among 103 repetitions for a certain total
5hmC level.

Figure 5.7: An example of a model input file for H(O)TA v.2. The hybrid model
describes a single CpG dyad which undergoes the subprocesses of maintenance and
de novo methylation, as well as hydroxylation, formylation and active demethylation.
The enzymatic e�ciencies are quadratic functions of time.



Chapter 6

Whole Genome Analysis

Previous genome wide analyses on mESCs have shown a high or moderate decrease

of DNA methylation when the cells during their transition from serum/LIF into 2i

containing medium [18, 29, 94]. Furthermore, in some of these analyses it was shown

that the oxidation of 5mC to 5hmC is likely to contribute to this DNA demethy-

lation [18]. The aim of this chapter is to model the changes of DNA methylation

in mESCs using precise strand specific information, obtained by genome-wide hair-

pin bisulfite sequencing under conventional and oxidative bisulfite (oxBS) conditions.

We present, therefore, a genome-wide analysis based on genome-wide hairpin BS and

oxBS sequencing data sampled from protocol RRHPoxBS, described in Section 2.2.2.

Following our approach we reach in total around 3 million CpGs across the mouse

genome in both WT and Tet TKO cells with a sequencing depth su�cient for com-

parative modeling.

We sequence six hairpin libraries of WT ESCs at three di↵erent time points:

Serum/LIF (day0), 72h 2i (day3) and 144h 2i (day6), and four Tet triple KO cells:

Serum/LIF, 96h 2i (day4), 168h 2i (day7). For WT we sequence one BS and one

oxBS library for each sample, respectively. Using our previously described HMM, we

calculate the (hydroxy-)methylation levels and the detailed distribution of 5hmC, and
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in addition, we estimate the e�ciencies of Dnmt and Tet enzymes for each individual

CpG. Taking advantage of the strand specific information we distinguish in the case of

Dnmts between maintenance and de novo methylation events. At last, the comparison

of WT and TKO cells allows us to determine any changes in maintenance and de novo

methylation e�ciency in the absence of Tet enzymes and oxidized cytosine derivatives.

The core of our computations remains the discrete time stochastic model presented

in Chapter 3. The di↵erence relies on the parameter estimation method we use for

estimating the unknown model parameters. In Section 6.1 we describe in detail the

developed computational methods. The frequentist approach of the maximum like-

lihood method we used before seems now to provide consistently biased results due

to the much smaller available sequencing depth. To overcome the problems of the

ill-suited MLE, we design a Bayesian inference method for estimating the unknown

parameters, i.e., the enzymatic e�ciency functions, of the HMM (Section 6.1.1). Be-

sides, to identify genomic regions of common enzymatic activity, we develop a so-

phisticated clustering approach that takes into account the uncertainty around the

Bayesian inference estimators (Section 6.1.2). At last, in order to investigate possible

interactions among the di↵erent enzymes we compute their spatial cross-correlations

over the entire genome (Section 6.1.3). In Section 6.2 we show the results from the

application of these methods and the comparison with the more straightforward ap-

proaches. We present both the spatial and the temporal analysis results of our model

output for the whole genome in Section 6.3. Finally, in Section 6.4 we discuss the

biological findings of particular importance that arise from the comparative analysis

of the model’s results. For a detailed description of our parallel implementation to

run the genome-wide data sets we refer the reader to Section B.2.
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6.1 Computational Methods

6.1.1 Bayesian inference

Due to the low depth sequencing per time point and experiment (on average 40 for

BS, 29 for oxBS in WT, and 14 for BS in Tet TKO, see Figure B.1b) we expect that

the asymptotic properties of the MLE around the true parameter values do not hold

[12, 57], especially in cases where the true parameter values are close to the problem’s

boundary constraints [80]. For this reason, we use a Bayesian Inference (BI) approach

to get the posterior distribution of the model parameters, i.e, the e�ciencies over time,

for each CpG of the genome-wide dataset.

Metropolis-Hastings

To compute the model’s unknown parameters we use BI by sampling from the multi-

dimensional posterior

P (v | data) = L2(data | v)P (v)R
v P (data,v)

,

where L2(data | v) is the likelihood defined in Section 3.2.2 and P (v) is the prior

distribution of the parameter vector v. To avoid approximating the normalizing factor
R
v P (data,v) we apply a Metropolis-Hastings MCMC approach [33].

In general, Metropolis-Hastings algorithm starts from an initial sample point v0

of the parameter vector, i.e., x = v0, generates for each current state x a new sample

y based on a proposal distribution g(y | x), and it accepts the new state (sample)

with acceptance probability

A(y | x) = min

✓
1,

f(y)

f(x)

g(x | y)
g(y | x)

◆
, (6.1)
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where f is a function proportional to the target distribution1, i.e., here f(v) =

L2(data | v)P (v). Intuitively, the ratio in Eq. (6.1) is defined to balance between

a sampler that on the one hand tends to visit high probability density regions, i.e.,

f(y)/f(x)), while at the same time tries to avoid getting stuck at one region and

explore a broad landscape of the parameter space. The last is expressed by the

likelihood term g(x | y)/g(y | x). Fulfilling the conditions of ergodicity [91] and irre-

ducibility [67] for the above described Markov chain, the algorithm guarantees that

after simulating for a su�ciently large number of steps the stationary distribution of

the chain is the same as the target distribution we want to sample from [20].

Here to apply Metropolis-Hastings we make use of the following prior and proposal

distributions.

Prior Distribution As prior distribution we choose for all CpGs the multivariate

normal distribution N (µ,⌃), where the mean µ is the average of the estimated ef-

ficiencies for the individual loci of Section 4.1.1. Similarly, ⌃ is the average of the

corresponding estimated covariance matrices.

Proposal Distribution To fulfill the constraints of the optimization problem re-

garding the parameter vector v we use an asymmetric, truncated proposal distribu-

tion. The bounds of the truncated proposal are determined s.t. the constraints for the

e�ciencies constantly hold for the time span of the observations, i.e., the e�ciencies

are in [0, 1] for all t 2 [0, tmax] (see Section 3.2.2). More concretely, let v = |v| denote

the number of model parameters. Here it is v = 7 because we make the same linear

assumption about the e�ciency functions as in Section 3.2.2. In every state x 2 Rv

of the MCMC we generate the next sample y 2 Rv from a product of truncated

univariate normals

g(y | x) =
Y

i

Nt(yi | xi, �
2
i /c, ai, bi),

1The target distribution is the posterior of the parameters, P (v | data).
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0 1
(a) (b)

Figure 6.1: Metropolis-Hastings’ update step: We sample a new e�ciency vector
using two truncated normal distributions in two steps: (a) Step 1: We sample the
intercept yi�1 from the truncated normal with mean xi�1 and bounds [0, 1]. (b) Step
2: We sample the gradient yi from the truncated normal distribution with mean xi

and bounds [ai, bi], which depend on the sampled intercept yi�1 of Step 1.

around the current MCMC point x, where xi refers to the i-th entry of the parameter

vector for i = 1, . . . , 7, �2
i /c is the univariate normal variance and ai, bi are the

truncation bounds for parameter xi. Consider position i of the vector y where yi refers

to the gradient of an e�ciency function and yi�1 to the corresponding intercept for

i = 1, . . . , 7. As illustrated in Figure 6.1, we sample the next value for each e�ciency

by sampling first the intercept yi�1 value from the truncated normal distribution

within the interval [ai�1, bi�1] = [0, 1] and based on this realization we sample the

gradient yi value from the truncated normal in [ai, bi], where ai = �yi�1/tmax, bi =

(1�yi�1)/tmax. These bounds guarantee that each e�ciency function is 2 [0, 1] for all

observation time points. The bounds of the non-recognition probability p (see again

Section 3.2.2) are set as those of an intercept, i.e., [ai, bi] = [0, 1]. Hence, the use of

the above proposal distribution satisfies all the constraints for the parameter vector.

Note that the variance of parameter xi we used for the proposal distribution is

the same as the variance of the prior distribution �2
i = ⌃i,i normalized by a scale

factor c. Since it is well known that the e�ciency of Metropolis-Hastings algorithm

crucially depends on the scaling of the proposal density, we empirically choose a
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c = 50 to normalize the standard deviation of the proposal distribution2 s.t. the

average MCMC acceptance ratio is around 25% of the total number of generated

samples [79]. In our runs we see that the above MCMC converges almost surely after

104 simulation steps. As final estimators of the BI method we get the sample mean

of the posterior distribution and we build credible intervals using the corresponding

sample covariance matrix.

Hypervolume of the � confidence hyper-ellipse

To quantify the improvement of BI against the MLE regarding the decrease in the

uncertainty of the parameter estimators we computed the average hypervolume cor-

responding to the covariance matrices of the estimators of each method. The volume

of the hyper-ellipse of a multivariate normal distribution is proportional to the square

root of the generalized variance, i.e., the square root of the determinant of the covari-

ance matrix, and it is given by

V =
2⇡v/2

v�(v/2)
(�2

crit)
v/2|⌃v⇤ |1/2,

where |⌃v⇤ | is the determinant of the estimators’ covariance matrix, �(x) is the gamma

function, and �2
crit is the critical value for chi-squared distribution �2(v) for a given

confidence level �. In Figure 6.2 we illustrate the ellipse of the bivariate normal dis-

tribution and show the relation of it to the covariance matrix of the two-dimensional

normal.

6.1.2 Clustering of enzymatic e�ciencies

To split the genome in regions of similar enzymatic activity we extended and applied

to the output produced by our model a sophisticated clustering approach, named

2A low acceptance ratio indicates a wide proposal, while a high acceptance ratio indicates a
narrow proposal and in both extreme cases the convergence is slow.



90 6.1. Computational Methods

Figure 6.2: The ellipse of the bivariate normal has axes pointing in the directions of
the eigenvectors X1, X2 of the covariance matrix ⌃. The long axis of the ellipse points
in the direction of the first eigenvector X1 and the short axis is perpendicular to the
first, pointing in the direction of the second eigenvector X2. The half length of the
axis corresponding to eigenvector Xi is given by the formula li =

p
�i�2

crit.

k-error, that takes into account not only the estimated parameter vectors but also

their standard deviations [49]. In general, it is well known that in case of measure-

ments with uncertainty or estimation errors, incorporating a quantified notion of this

uncertainty around the data points in the clustering process can produce di↵erent

and closer to the “ground” truth clusters.

k-error clustering

The k-error clustering algorithm is a modification of the k-means algorithm that takes

into account the uncertainties of each data point, i.e, the covariance matrix ⌃v of the

parameter vector of the e�ciencies v [49]. The di↵erence between the two methods

is nicely illustrated in Figure 6.3.

Let v1, . . . ,vN 2 Rv be the estimated parameter column vectors and ⌃1, . . . ,⌃N 2

Rv⇥v the associated covariance matrices for N input CpGs. Let us assume that the

estimated parameter vectors are independent and each arises from a v-variate normal

distribution with one of k possible means ✓1, . . . , ✓k 2 Rv, that is vi ⇠ Nv(µi,⌃i),

where µi 2 {✓1, . . . , ✓k}, k  N, for i = 1, . . . , N. Then, we seek to find the clusters
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C1, . . . , Ck such that each cluster Cj consists of all parameter vectors that have the

same mean ✓j for j = 1 . . . k.

More formally, if Sj = {i | vi 2 Cj} contains all CpGs i whose parameter vectors

belong to cluster Cj, then 8i 2 Sj it holds µi = ✓j, for j = 1 . . . k. Hence, given all

parameter vectors v1, . . . ,vN , and their error matrices ⌃1, . . . ,⌃N , we search for a

partition S = (S1, . . . , Sk) and ✓ = (✓1, . . . , ✓k) that maximizes the likelihood:

Lc(v) =
kY

j=1

Y

i2Sj

1

2⇡

p/2

|⌃i|�1/2e�1/2(vi�✓j)⌃
�1
i (vi�✓j)| , (6.2)

where |⌃i| is the determinant of matrix ⌃i for i = 1, . . . , N.

As it is shown in [49], maximizing the likelihood of Eq. 6.2 is equivalent to mini-

mizing the total squared Mahalanobis distance of the points that belong to a cluster

from the cluster centroid. Hence, it is enough to solve

min
S

kX

j=1

X

i2Sj

(vi � ✓̂j)⌃
�1
i (vi � ✓̂j),

where ✓̂j is the ML estimate of ✓j given by

✓̂j =
⇣X

i2Sj

⌃�1
i

⌘�1⇣X

i2Sj

vi⌃
�1
i

⌘
(6.3)

for j = 1, . . . , k. Notice that the estimated centroid ✓̂j of Eq.(6.3) is a weighted mean

of the points in cluster Cj. We refer to it as the Mahalanobis mean of Cj. By using

simple matrix algebra we can additionally compute the covariance matrix

 j = Cov(✓̂j) = Cov

 ✓X

i2Sj

⌃�1
i

◆�1✓X

i2Sj

vi⌃
�1
i

◆!
=

 
X

i2Sj

⌃�1
i

!�1

associated with the estimated centroid ✓̂j.
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C1 C2

C1

C2

�0

�1 �1

�0

vA vB

vC vD

vA vB

vC vD

confidence region scaled point

Figure 6.3: Illustration of the clustering of the estimated enzymatic e�ciency with
intercept �0 and gradient �1 for CpGs A, B, C, D. Left: k-means clustering consid-
ers only the euclidean distance between two parameter vectors without taking into
account the uncertainty around them. Right: k-error clustering “scales” the distance
between two parameter vectors based on their estimated covariance matrices.

After we randomly choose an initial set of k centroids3, the k-error clustering

algorithm follows from the above as an iteration over the next two steps until the

chosen partitioning does not change.

1. For each CpG i = 1, . . . , N assign its parameter vector vi to the cluster

Cj⇤ whose centroid is the closest using the squared Mahalanobis distance,

i.e,

i 2 Sj⇤ ,vi 2 Cj⇤ () j⇤ = argmin
j

(vi � ✓̂j)⌃
�1
i (vi � ✓j)

|. (6.4)

2. For clusters C1, . . . , Ck compute the new cluster centroids ✓̂1, . . . , ✓̂k as

the Mahalanobis means of the clusters (Eq. 6.3).

Note that the distance function used in Eq. 6.4 is chosen so that it guarantees the

decrease of the objective function in each iteration of k-error [49], and as a consequence

k-error algorithm will always converge after a finite number of steps.

3This initialization method is called Forgy method.
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Metrics for deciding the number of clusters

In order to identify the “optimal” number of clusters we evaluate three di↵erent

metrics for a range of number of clusters k = 1, . . . , K. We use Davies-Bouldin and

Calinski-Harabasz criteria, as well as the widely used elbow method. The first two

metrics evaluate the overall within-to-between cluster variability, each in a slightly

di↵erent fashion. The third metric considers the sum of squared errors (SSE) of a

certain clustering. The goal of it is to identify the number of clusters after which

adding more clusters results only to a minor decrease of the SSE.

Davies-Bouldin Criterion LetRi,j be the within-to-between cluster distance ratio

for clusters i and j defined as

Ri,j =
Si + Sj

Mi,j

For a given distance function d, Si is a measure of within cluster i variance, i.e.,

Si =
1

|Ci|
X

v2Ci

d(v,mi)

and Mi,j = d(mi,mj) is a measure of separation between clusters i and j defined as

the distance between the clusters’ centroids mi,mj. We define Di = maxj 6=i Ri,j, i.e.,

the Ri,j of the most similar cluster to cluster i, and we get Davies-Bouldin index as

the average over all Di indices,

DB =
1

N

NX

i=1

Di.

Since the value of DB represents the (worst-case) average within-to-between clus-

ter distance ratio we decide the optimal number of clusters as the one that provides

the smallest DB.
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Calinski-Harabasz Criterion The Calinski-Harabasz criterion, alternatively

Variance Ratio Criterion (VRC), is defined as

CHk =
SSB

SSW

(N � k)

k � 1
,

where SSB is the overall between-cluster variance, SSW is the overall within-cluster

variance, k is the number of clusters and N is the total number of observations. The

overall between-cluster variance is defined as

SSB =
kX

i=1

|Ci| d(mi,m),

where mi is the centroid of cluster i and m is the overall sample mean. The overall

within-cluster variance is defined as

SSW =
kX

i=1

X

v2Ci

d(v,mi).

Intuitively, clusterings with well defined clusters have a large SSB and a small SSW .

Hence, the larger the CHk for varying k, the better the clustering. Consequently, to

determine the optimal number of clusters we target to maximize CHk w.r.t. k.

Elbow method We compute the sum of squared errors (SSE):
Pk

i=1

P
v2Ci

d(v,mi)

for k = {1 . . . K}. We choose the optimal k to be the point where the graph starts to

flatten significantly. E.g., in the curve of Figure 6.4 the optimal number of clusters

is three.

Choice of distance function of the metrics

For the evaluation of the clusterings we plug in as the distance function of the above

criteria the same distance function that we used for performing the clustering. Hence,
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Figure 6.4: Elbow method: The “optimal” number of clusters is the point where the
graph starts to smooth out, i.e., the “elbow” of the graph.

in case of k-means we use the squared euclidean distance d(x, y) = kx � yk2, while

for k-error we use the squared Mahalanobis distance d(x, y) = (x � y)|⌃�1
x (x � y),

where ⌃x is the covariance matrix of point x.

6.1.3 Spatial and non-spatial cross-correlations

In this Section we formally define the measures we used to quantify the similarities

between two di↵erent enzymatic activities (spatial cross-correlation), or the similarity

of each enzymatic activity with itself (spatial autocorrelation), when these are seen

as functions of space. We, also, shortly recap Pearson correlation.

Spatial cross-correlations

Let Xs be the discrete space random process describing the dispersion of an enzymatic

activity over the whole genome at a certain time point. For a space interval ⌧ its

spatial autocorrelation is defined as

RX(⌧) =
E[(Xs � µXs)(Xs+⌧ � µXs+⌧ )]

�Xs�Xs+⌧

.
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Similarly the spatial cross-correlation between two random processes X, Y that de-

scribe the dispersion of two di↵erent enzymatic activities over the genome is defined

as

⇢X,Y (⌧) =
E[(Xs � µXs)(Ys+⌧ � µYs+⌧ )]

�Xs�Ys+⌧

.

Here, we compute the sample spatial autocorrelation R̂ and the cross-correlations ⇢̂

for all enzymatic processes in both WT and Tet TKO experiments as follows. Let,

for a fixed ⌧, genomic position s 2 S(⌧) when both CpGs of genomic positions s and

s+ ⌧ are included in our data. Then

R̂(⌧) =
1

|S(⌧)� 1|�̂Xs �̂Xs+⌧

X

s2S(⌧)

(Xs � X̄s)(Xs+⌧ � X̄s+⌧ )].

In the above sample estimator X̄s and ˆ�Xs are the sample mean and the sample

standard deviation respectively of all measurements Xs for which s 2 S(⌧). The same

way we compute

⇢̂(⌧) =
1

|S(⌧)� 1|�̂Xs �̂Ys+⌧

X

s2S(⌧)

(Xs � X̄s)(Ys+⌧ � Ȳs+⌧ )].

Pearson correlation

The Pearson correlation coe�cient between two random variables X, Y is defined as

⇢Pearson =
E[(X � µX)(Y � µY )]

�X�Y
.

The corresponding sample Pearson correlation estimate is

r =
1

(| G | �1)�̂X �̂Y

X

s2G

(Xs � X̄)(Ys � Ȳ ),
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where G is the set of all CpG positions available in our data. Note that the Pearson

correlation coe�cient is equivalent to spatial cross-correlation for ⌧ = 0.

6.2 Results

Our input is double strand, single base pair resolution data from bisulfite (BS) and

oxidative bisulfite sequencing (oxBS) for 3,022,903 CpGs in wild type (WT) cells

and for 3,151,985 from BS data in Tet triple knock out (Tet TKO) cells. In case of

each of 1,464,801 CpGs in WT and of 1,352,297 in Tet TKO with only one or two

observation time points available we predict for every measurement time point only

the levels of the hidden states by performing a MLE for the (hydroxy-)methylation

levels as described in Section 3.2.1 for estimating the initial distribution. In case of a

CpG with three observation time points (1,558,102 in WT and 1,799,688 in Tet TKO,

see purple column in Figure B.1a, B.1c) we assume a linear behavior of the e�ciencies

over time and we analyze the HMM as described in Section 6.1.1 for estimating both

the values of (hydroxy-)methylation e�ciencies and levels over time. Note that our

input data is, due to the sequencing, relatively, equally distributed among the di↵erent

chromosomes (Figure B.3, B.4). Using a computer cluster consisting of 32 machines

with 16 physical kernels each, we are able to e�ciently parallelize the computations

for large bunches of all available CpGs.

6.2.1 BI vs MLE

Fit of whole-genome data

Using box plots, we compare the levels of CC, TT and CT-TC CpG dyads for the

whole genome present in the data of BS and oxBS in WT (Figure 6.5a, 6.5b) and

of BS in Tet TKO (Figure 6.5c, 6.5d) and the probabilities of the observable states

predicted by the two HMMs using MLE or BI for estimating the model parameters.
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The circles inside the plots correspond to the mean value of each box plot and the

horizontal lines to the medians. The bottom and the top of the boxes are the first and

the third quartiles. The values for the whiskers correspond to the ±2.7 · sdata interval

from the sample mean, where sdata is the sample standard deviation of the data. To

quantify the goodness of the fit for each estimation method we report in Table 6.1 the

average Kullback-Leibler divergence DKL(P ||Q) =
P

i P (i) ln P (i)
Q(i) between the data

distribution P and the distribution Q predicted by the model. Note that the model

fit to the data reported by the average Kullback-Leibler divergence metric is better

for the MLE than for BI for both WT and Tet TKO data. This is not surprising

since MLE always tries to maximize the likelihood of the data no matter how well

the data samples represent the true underlying distribution.

In Figure 6.6 we plot the average e�ciencies computed by the two estimation

methods (MLE vs BI) at days 0, 3, 6 for WT and days 0, 4, 7 for Tet TKO. We average

over all CpGs along the DNA for which we sampled at all three measurement time

points. We observe that there are some major di↵erences between the MLE and the

BI estimates. First in WT the ML estimates show an evident decrease of maintenance

over time, while BI estimates show maintenance to be almost constant. In addition,

the hydroxylation activity seems to slightly drop using MLE while BI predicts it to

increase. In the Tet TKO experiment, the ML estimates give a completely unexpected

increase of maintenance activity, while de novo seems to be not a↵ected compared

with its WT behavior. On the contrary, BI estimators for maintenance in Tet TKO

remain almost unchanged comparing with their WT - BI behavior, while interestingly

de novo seems to drop in a much slighter rate in the absence of Tet enzymes.

Enzymatic activities’ prediction

By making a comparison between the MLE and the BI methods’ prediction of the

enzymatic activities we have several reasons to trust the output of the BI method
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(a) WT - MLE (b) WT - BI

(c) Tet TKO - MLE (d) Tet TKO - BI

Figure 6.5: Comparison between data and prediction of observable states after fitting
the HMMs based on MLE (a), (c) and BI (b), (d). Dark box plots show the exper-
imentally measured frequencies states and light box plots correspond to the values
predicted by the two HMMs.

more than this of the ML. First in WT data we observe that only the BI estimates are

in line with the genome wide or the vast majority of individual examined loci behavior

being described in Chapter 4 and in the literature [18, 94]. Second, the prediction

of the remaining de novo activity being present mainly in the BI and not in the ML

estimates for the Tet TKO data is in line with the detection of remaining nonCpG

methylation in our RRHPoxBS data set which is not part of the model and therefore

presents an independent readout of Dnmt3a and 3b activity (see Section 6.3.1 and

Figure 6.13 for details).
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Table 6.1: Computed Kullback-Leibler divergence between the data and the model
distribution for MLE and BI, where Pbs and Pox is the data distribution for BS and
oxBS experiment respectively.

experiment - method D̂KL(Pbs||⇡bs) D̂KL(Pox||⇡ox)
WT - MLE 0.1802 0.2369
WT - BI 0.2904 0.3941

Tet TKO - MLE 0.154 -
Tet TKO - BI 0.277 -

Observing the box plots of Figure 6.6 we note that the dispersion of the e�ciencies

values is evidently smaller for the BI estimates, which probably is a consequence of

the higher precision of the BI estimates compared with the MLE. In particular, in

WT the average volume of the 95% hyper-ellipse over all CpGs in case of MLE is

0.0024, while the average 95% hyper-ellipse volume in BI is 3.5162 ·10�5. In Tet TKO

the average volume of the hyper-ellipse for ML estimates is 0.0480 while in case of BI

only 9.6 · 10�4. In Figure B.2 we plot the levels of the hidden states of the HMM for

each combination of statistical estimation method (MLE vs BI) and cell type (WT

vs Tet TKO). The small di↵erences on the prediction of the hidden states despite

the evident di↵erence in the enzymes’ e�ciency estimators in particular for the Tet

TKO case, indicate how critical an ML estimation bias can be for an accurate model

prediction.

Overall, from the above we confirm that, indeed, a BI method that incorporates

an informative prior distribution should be preferable for epigenome-wide analysis

especially for the regions where the coverage is low [5, 64]. Therefore, we use the BI

estimates in all the output analysis we conduct in Section 6.3 and as the input to the

clustering algorithm we describe in the sequel.

6.2.2 k-error vs k-mean

To identify CpGs with similar enzymatic behavior we applied the clustering method

presented in Section 6.1.2 that takes into account the uncertainty around the esti-
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(a) WT - MLE (b) WT - BI

(c) Tet TKO - MLE (d) Tet TKO - BI

Figure 6.6: Bar plots for maintenance (µm), de novo (µd) and hydroxylation (⌘)
e�ciencies over time taken by MLE (a), (c) and BI (b), (d) methods.

mated parameters, i.e., in our case the covariance matrix of the parameters’ posterior

distribution of the estimated e�ciency linear functions.

For each total number of clusters k = {1, . . . , 10} we produce 100 initializations in

order to avoid that the algorithm converges in a local optimum. Given the three dif-

ferent criteria described in Section 6.1.2 we observe that a typical k-means clustering

algorithm would return four as the optimal number of clusters, while our approach

always decides for two clusters (Figure 6.7).

In Figure 6.8 we see the optimal k-means clustering and in Figure 6.9 the optimal

k-error clustering. We observe that in clusters 2, 3, and 4 of k-means algorithm

the average maintenance methylation e�ciency slightly increases over time which

contradicts the decreasing concentrations of the H3K9me2 and Uhrf14 in 2i, especially

assuming it happens on a genome wide level [94]. Based on this, we conclude that

4Uhrf1 is the main cofactor of Dnmt1.



102 6.2. Results

A B

C D

E F

2 3 4 5 6 7 8 9 10
number of clusters

0.8

0.9

1

1.1

1.2

1.3

C
al

in
sk

i-H
ar

ab
as

z

106

2 3 4 5 6 7 8 9 10
number of clusters

0

2

4

6

8

C
al

in
sk

i-H
ar

ab
as

z

107

2 3 4 5 6 7 8 9 10
number of clusters

0

0.2

0.4

0.6

0.8

1

1.2

D
av

ie
s-

Bo
ul

di
n

10-4

2 3 4 5 6 7 8 9 10
number of clusters

0.8

0.9

1

1.1

1.2

1.3

D
av

ie
s-

Bo
ul

di
n

1 2 3 4 5 6 7 8 9 10
number of clusters

0

0.5

1

1.5

2

2.5

3

3.5

W
SS

105

1 2 3 4 5 6 7 8 9 10
number of clusters

0

1

2

3

4
W

SS
1020

Figure 6.7: Optimal number of clusters for k-means and k-error algorithms according
to three clustering validity metrics: Davies-Bouldin criterion for k-means (A) and
k-error (B). Calinski-Harabasz criterion for k-means (C) and k-error (D). Elbow
method for k-means (F) and k-error (E).

the two additional clusters returned from k-mean are probably the result of noise on

the estimation due to the insu�cient depth sequencing.



103 6.2. Results

d0 d3 d6
0

0.2

0.4

0.6

0.8

1

d0 d3 d6
0

0.2

0.4

0.6

0.8

1

d0 d3 d6
0

0.2

0.4

0.6

0.8

1

d0 d3 d6
0

0.2

0.4

0.6

0.8

1

cluster 1 cluster 2

cluster 3 cluster 4

Figure 6.8: The optimal clustering of the enzymatic e�ciencies over time based on
the k-means algorithm and the squared euclidean distance. Red = maintenance
methylation (µm), blue = de novo methylation (µd), yellow = hydroxylation (⌘).

d0 d3 d6
0

0.2

0.4

0.6

0.8

1

d0 d3 d6
0

0.2

0.4

0.6

0.8

1

cluster 1

cluster 2

Figure 6.9: The optimal clustering of the enzymatic e�ciencies over time based on the
k-error algorithm and the squared Mahalanobis distance. Cluster 1 contains 855201
CpGs, while cluster 2 contains 702901 CpGs.



104 6.2. Results

6.2.3 Enzymatic activities’ correlations

Spatial cross-correlations

To investigate the enzymatic antagonism between methylation and hydroxylation

activities we calculated the spatial auto- and cross-correlations of methylation and

hydroxylation e�ciencies (Section 6.1.3). Choosing ⌧ = 0, 5, . . . , 3000 we plot in

Figure 6.10 the sample autocorrelations and sample cross-correlations between all

e�ciencies at all time points in WT (Figure 6.10a, 6.10c, 6.10e) and Tet TKO (Fig-

ure 6.10b, 6.10d, 6.10f) experiments. Together with the sample correlations we report

95% confidence intervals following the approach of [83] and p-values for the null hy-

pothesis that the auto or the cross-correlation is zero.

In line with Figure 6.15, 6.17, we consistently5 see a positive correlation between

maintenance and de novo e�ciency and a negative correlation between hydroxylation

and both methylation e�ciencies. With increasing distance of CpGs, all correlations

get closer to zero. Maintenance autocorrelation drops rather quickly and becomes

almost zero around 1500bp. After this point the autocorrelation is no longer signifi-

cant (p-value > 0.01). In contrast, the autocorrelations of de novo and hydroxylation

e�ciency show initially higher values but also seem to smoothen out after around

2000bp on average.

Interestingly, in Tet TKO cells, the autocorrelation of maintenance is initially

strongly reduced (⇡ 0.25) and seems to flatten out earlier than in WT, around 500bp,

which is in agreement with the observation that maintenance activity appears misreg-

ulated in Tet TKOs, in particular showing an increase at the TSS. On the contrary

de novo autocorrelation seems to remain una↵ected compared to WT cells. Overall

the spatial autocorrelations do not indicate any change of the significant window size

of dependent enzymatic activity over time for either cell type.

5This is true besides the case where ⌧ = 0, because obviously one CpG dyad can not be accessed
by two enzymes at the same time.
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Figure 6.10: Spatial auto- and cross correlation of maintenance, de novo- and hydrox-
ylation e�ciency across the genome. Grey bars indicate correlations with a p-value
< 0.01, green bars correlations with p-values > 0.01, red line shows the confidence
bounds. Y-axis displays correlation, x-axis gives the distance of CpG in base pairs.
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Pearson Correlation

In addition to the spatial correlation, we calculated a Pearson correlation coe�cient

between the enzymes’ e�ciencies and the predicted modification levels. In WT ESCs,

we observe a positive correlation of fully methylated CpGs with maintenance and de

novo e�ciency at day0 which increases for later time points. In addition, after day0

there is a positive correlation between de novo methylation e�ciency and hemimethy-

lated CpGs for day3 and day6.

Verifying the gene plots, we observe no correlation between hydroxylated CpGs

and hydroxylation e�ciency. Instead, hydroxylation activity strongly correlates with

unmethylated CpGs. Consequently, we conclude that high hydroxylation activity is

not su�cient to generate stable 5hmC but will always result in CpGs free of methy-

lation. At last, there is also a strong anti-correlation between fully methylated and

fully unmethylated dyads, probably indicating the tendency of distinct regions either

to fully maintain or to completely lose their methylation pattern.

In Tet TKO, the correlation between maintenance methylation e�ciency and fully

methylated CpG dyads is reduced and in case of day0 is 0.13. We observe, instead,

a stronger correlation of fully methylated CpGs with de novo methylation e�ciency

which points again towards a misregulated methylation activity in the absence of Tet

enzymes.

6.3 Output Analysis

We split the biological analysis of the genome-wide results for both WT and Tet

TKO cells into two sections. In Section 6.3.1 we present a spatial analysis, while in

Section 6.3.2 we focus on a temporal analysis of the results arising from our approach.
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Figure 6.11: Pearson correlation between enzymes’ e�ciencies and modification levels
in WT ES cells (a) for day0, day3 and day6 and in Tet TKO ESCs (b) for day0,
day4 and day7. mm = fully methylated (5mC/5mC), toth = hydroxylated CpG of
all possible states, um = hemimethylated (5mC/C or C/5mC), uu = unmethylated
(C/C), maint = maintenance methylation e�ciency, deNovo = de novo methylation
e�ciency, hydroxy = hydroxylation e�ciency.
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6.3.1 Spatial analysis

CpG methylation in WT and Tet TKO ESCs

We report the approximate level and distribution of 5mC over the two DNA strands

within the obtained RRHPoxBS data. In line with previous reports [18, 29, 94] we

observe an overall level of 65% CpG methylation in primed ES cells (Serum/LIF) and

a consecutive loss of methylation upon cultivation in 2i to 20% (Figure 6.13A). On the

contrary, Tet TKO cells present a higher methylation level under both, primed/Serum

(75%) and naive/2i (40%) conditions. The majority of methylated CpGs is present

in a symmetric methylation state under both cultivation conditions, but we detect as

well a significant amount of hemimethylated CpGs.

Hemimethylation The number of hemimethylated CpGs in Tet TKO cells at day0

is strongly reduced compared to WT cells but it does not di↵er much for the rest days.

In WT, the level of hemimethylated CpGs is always lower in oxBS samples, indicat-

ing that a considerable amount of 5hmC is present in a hemi(hydroxy)methylated

(5hmC/C or C/5hmC) state.

Since hemimethylated CpGs are the result of either de novo methylation events

and/or active and passive demethylation, a potential strand specific gene regulation

mechanism should show a preference to a particular DNA strand. Analyzing, though,

the strand specific methylation of genes transcribed from plus- and minus strand, we

did not observe any methylation di↵erences between genes expressed from upper or

lower DNA strands. Hemimethylated CpGs are always equally distributed among

both DNA strands and this is true for low/not expressed genes as well (Figure 6.12).

NonCpG methylation in WT and Tet TKO ESCs Frequently, DNA methy-

lation occurs outside of a CpG context [77, 100]. It is known that methylation in a

nonCpG context is, due to its asymmetric nature, exclusively the result of de novo
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Figure 6.12: Hemimethylated CpGs detected by RRHPoxBS across expressed and
not/low expressed genes. Dark green = 5mC/C, light green = C/5mC
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Figure 6.13: CpG and nonCpG methylation. Genome-wide CpG methylation levels
of WT ES cells cultivated under Serum/LIF conditions (d0), and their shift to 2i
after 72h (d3), 144h (d6) (A). NonCpG methylation levels of WT cells (B). CpG
methylation levels of Tet TKO ES cells (C). NonCpG methylation levels of Tet TKO
ES cells (D).
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Figure 6.14: Occurrences of nonCpG methylation in Serum and 2i cultivated WT ES
cells. Size of bases indicate the probability at a given position. nonCpG with 4 bases
up- and downstream are shown.

activity [25, 1]. We determine the sequence occurrence of nonCpG methylation in

our WT samples by considering only nonCpG positions which are (i) methylated

above the conversion error, (ii) show at least three methylated reads and (iii) a cov-

erage of � 10x. Considering both strands and in accordance with the literature, we

find that the most common methylated sequence after CpG on both DNA strands is

present in a CpA context, mostly located in regions with high CpG methylation levels

(Figure 6.14). Restricting, however, the analysis only at the plus strand, the most

common nonCpG methylation can be found in a ApCpA sequence context (Figure

6.14).

WT ESCs show approximate 1% nonCpG methylation at day0 which quickly

declines in 2i (Figure 6.13B). In contrast, Tet TKO cells exhibit twice as much non-

CpG methylation under Serum/LIF conditions and furthermore, nonCpG methyla-

tion seems to be more stable during 2i cultivation under naive conditions. Even at

day7, we still detect considerable levels of methylated CpGs in a nonCpG context

Figure 6.13D).
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Enzymatic e�ciency profile across genes

Using Bayesian Inference (BI) to identify the unknown HMM parameters (Sec-

tion 6.1.1), we predicted the e�ciencies of maintenance methylation, de novo

methylation and hydroxylation activity based on BS and oxBS data for WT and

Tet KO ESCs. Based on the model’s output we, first, investigated the e�ciency

profiles of Dnmts and Tets across genes. Both, maintenance and de novo methylation

activity show initially a strong activity at the gene body (� 0.6 for maintenance,

and � 0.1 for de novo), whereas at the transcription start site (TSS), e�ciencies

are strongly reduced (Figure 6.15A). Note, that in case of de novo methylation, the

activity at the TSS drops to zero. Hydroxylation presents, on the other hand, the

inverse behavior; it shows reduced activity at the gene body and high e�ciency at

the TSS. Over time we see an increase of Tet activity at the gene body, whereas de

novo activity shows a strong reduction. The temporal profile of maintenance activity

suggests no further changes at the gene body or the TSS.

5mC and 5hmC follow in their profile the activity of de novo and maintenance.

Both modifications are enriched at the gene body and reduced at the TSS. The

continuously observed simultaneous occurrence of reduced levels of 5hmC along with

strong Tet activity across the TSS (Figure 6.15B) seems maybe puzzling at first sight,

but it is probably the consequence of missing 5mC substrates, due to either passive

(see Section 4.2) or/and active transform of 5hmC to C [94]. Indeed, our model

predicts that 5hmC is very probably not recognized by Dnmt1 after replication (on

average with probability around 75%) and by that enhances passive demethylation.

In the absence of Tet enzymes there are distinct di↵erences in maintenance and

de novo methylation activity compared to WT data. For instance, maintenance

methylation activity in Tet TKO cells is elevated at the TSS compared to WT ESCs

(Figure 6.16). This increase of e�ciency becomes even more pronounced over time.

Initially, de novo methylation shows no visible increase either at the TSS or the gene
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Figure 6.15: Average enzymatic e�ciencies and CpG methylation pattern of WT
ESCs. Average maintenance (red), de novo (blue) and hydroxylation (yellow) activity
across genes during Serum-to-2i transition (A). Average CpG (hydroxy-)methylation
pattern across genes during Serum-to-2i shift (B). Symmetric methylated CpG dyads
(5mC/5mC, red); asymmetric CpG methylation (5mC/C or C/5mC, green), all com-
binations of hydroxylated dyads (5hmC/* or */5hmC, yellow), unmethylated CpG
dyads (C/C, blue).

body. It is particularly compelling, though, that it seems to decrease much slower

(if not remaining stable) over time than it does in WT data. At day6 of the WT de

novo is zero, whereas in the Tet TKO cells there is a very significant amount of de

novo activity at day7.

Note that this striking prediction of our model for remaining de novo activity in

Tet TKO is independently6 verified by the previously reported nonCpG methylation

in the same cells (see Figure 6.13D).

Distinct profiles at highly and low expressed genes

Methylation at promoters and TSS is known to correlate with gene expression [31, 7,

44]. We investigated whether the enzyme e�ciencies show similar relations. For our

analysis, we used a previous published transcriptome of mESCs under Serum/LIF

6NonCpG data is not a part of the data given as input to the model.
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conditions [18]. Calculating the median of transcripts per million (TPM), we consid-

ered genes with a TPM above or equal to 0.065 as highly expressed and genes with a

TPM below 0.065 as not/low expressed.

Profiles of highly expressed genes in Figure 6.17A,B match nicely those of the

combined analysis (Figure 6.15) which is easily explained by the fact that the ma-

jority of the genes are expressed. However, not/low transcribed genes show a diverse

pattern, particularly at the TSS. Low gene expression comes together with a higher

maintenance and de novo activity, and an evidently reduced e�ciency of the Tet en-

zymes. In addition, we capture for these genes a more pronounced de novo e�ciency,

also, across the gene body.

Performing the same split in Tet TKO cells (Figure 6.17C) we observe, similarly

to the gene plots, an increase of maintenance e�ciency at the TSS for expressed, but

only a mild change for not/low expressed genes. However, not expressed genes show

a reduced de novo activity across the gene body, when comparing Tet TKO with WT

cells.

Protein binding sites and histone marks

The opposing behavior of methylation and hydroxylation activity is observed, as

well, at protein binding sites and selected histone marks (Figure 6.18). In case of
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Figure 6.17: Modification levels across expressed and not/low expressed genes un-
der Serum/LIF conditions; red = 5mC/5mC, yellow = 5hmC, green = 5mC/C or
C/5hmC, blue = C/C (A). Average e�ciency profile across expressed and non/low
expressed genes (B). Comparison of WT and TKO cell e�ciency across expressed
and non/low expressed genes (C). Red = maintenance WT, light red = maintenance
TKO, blue = de novo WT, light blue = de novo TKO, yellow = hydroxylation.
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H3K9me2, known to recruit Dnmt1 [94], we see a higher maintenance and de novo

methylation e�ciency together with a strongly reduced Tet activity. Similar profiles

are also observed for H3K9me3 and H3K36me3.

In case of the open chromatin mark H3K4me3 the model reveals a high hydrox-

ylation and reduced methylation activity (Figure 6.18). Likewise, we observe, as

expected, a high hydroxylation accompanied by a reduction of maintenance and de

novo methylation for the binding sites of Tet1, Sox2, Nanog and Oct4. Again, as in

the TSS of expressed genes, de novo methylation is almost zero at the centre of these

binding sites. Taken together, the e�ciency profiles indicate a higher activity for Tet

enzymes at open and accessible chromatin.

Regarding the di↵erences in case that the Tet enzymes are knocked out we note

that across histone modifications and protein binding sites the methylation e�cien-

cies show similar tendencies as across genes at day0. We see again that de novo

activity remains, with the exception of H3K9me3, in most of the cases una↵ected,

while maintenance usually increases at the TSS. The most pronounced increase of

maintenance methylation e�ciency can be observed at the binding sites of Tet1 and

the pluripotency factors Nanog, Sox2 and Oct4, which, among the selected loci, are

the ones with the highest Tet activity in WT. In addition, we also notice a clear but

smaller maintenance increase in regions which display H3K4me1 and H3K4me3 in

WT ESCs (Figure 6.19).

Individual chromosomes and repetitive elements

Plotting the e�ciencies and the modification levels for each of the 21 main chromo-

somes of the mESCs (Figure B.5a, B.6a) indicates only minor di↵erences between

them. The only exception is chromosome Y with a more pronounced maintenance

and de novo activity and also an almost zero hydroxylation activity, which can prob-
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Figure 6.18: Enzymatic activity at TFBS and across histone marks. Average e�-
ciency profiles for Dnmts and Tets at TFBS and across HMods in WT ESCs. red =
maintenance methylation, blue = de novo methylation, yellow = hydroxylation.

ably be attributed to the smaller number of genes, and consequently promoters, that

this chromosome contains. Nevertheless, in general, the average profiles of each chro-

mosome seem to well coincide among the whole genome.

Since the majority of the mammalian genome is composed of repetitive elements

(REs), we also examined whether a subset of REs would reflect the genome’s average

behavior. Figures B.8 to B.10 show, respectively, the e�ciencies and the modification

levels for the 25 most frequent repetitive elements in our data set for WT and Tet

triple TKO ES cells. Indeed we observe that the majority of REs resemble closely the

e�ciency and the level profiles of individual chromosomes, as well as the average gene
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Figure 6.19: Enzymatic activity at TFBS and across histone marks. Comparison of
maintenance and de novo methylation e�ciencies in WT and Tet TKO ESCs. Red
= maintenance WT, light red = maintenance Tet TKO, blue = de novo WT, light
blue = de novo Tet TKO.

profiles (Figure 6.15, 6.16). Exceptions among REs are Intracisternal A particle and

major satellites which exhibit a considerably higher methylation level and methylation

e�ciency compared to the mean genome profile. In addition, GC rich elements show

almost no 5mC/5hmC, low methylation e�ciency but high hydroxylation activity of

Tets. They seem, henceforth, to resemble more the behavior of promoters and TSS.

In case of the Tet TKO cells, we observe, that the maintenance e�ciency in the

distinct repetitive elements coincides. In addition, de novo methylation appears again

reduced for day0, but remains present even after continuous incubation in 2i media

(Figure B.10).
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Figure 6.20: Profile of ENCODE histone modifications across HMRs, PMDs, LMRs
and UMRs. Histone modifications are color coded; red dashed lines indicate start (S)
and end (E) of a given segment.

Enzymatic e�ciencies shape the large-scale methylome

Based on the methylation frequency of CpGs, the genome can be segmented into large

scale methylated domains and small regulatory regions with low methylation levels

[56, 86]. We used MethylSeekR, a computational method published by Burger et al.

2013[13], to subset the genome into four distinct segment classes: Highly methylated

regions (HMRs, alternatively FMRs), partially methylated domains (PMDs), low

methylated regions (LMRs), as well as unmethylated regions (UMRs). For an optimal

segmentation, we used a whole genome bisulfite sequencing data set of primed mESCs,

published by Ficz et al. in 2013 [18] and subsequently compared the segmentation to

RRHPoxBS data set. Plotting the available histone marks from ENCODE across the

individual segment types reveals similar pattern as described before by [13], which

gives us confidence that the segmentation was performed accurately.

Considering the number and the size of the individual segments, we find that

under primed conditions the majority of the genome is assigned to HMRs. This is

expected, since ESC kept under Serum/LIF exhibit a hypermethylated phenotype

(HMRs: 85.5%, PMDs: 12.6%, LMRs: 0.4%, UMRs: 1.5%) (Figure 6.22A, 6.22B).

Assigning, next, the (hydroxy-)methylation level and the enzymatic e�ciencies to

each segment type, we observe the following. Consistently with the genome-wide
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Figure 6.21: Methylation level and distribution of methylated nonCpGs in HMRs,
PMDs LMRs and UMRs. Methylation level (A). Distribution of nonCpG methylation
in HMRs, PMDs, LMRs and UMRs (B)

.

methylation data, we see high levels of 5mC at HMRs and PMDs, whereas LMRs and

UMRs exhibit low methylation levels (Figure 6.22E). Despite their low methylation

levels, LMRs exhibit relatively high levels of 5hmC, which also occurs more frequently

as a fully hydroxylated CpG dyad (5hmC/5hmC state) (Figure 6.22E, 6.22G).

Regarding nonCpG methylation, we observe that the majority of all nonCpG in

our data set corresponds to HMRs and PMDs, whereas only a small fraction can

be found in LMRs and UMRs (Figure 6.21). Again, this observation nicely matches

our model prediction according to which HMRs and PMDs exhibit higher de novo

methylation activity mainly caused by Dnmt3a/b.

Finally, in terms of enzymatic activity, we observe high maintenance and de novo

methylation e�ciencies together with moderate hydroxylation activity in HMRs and

PMDs, while LMRs and UMRs display high hydroxylation activity and strongly re-

duced methylation e�ciencies. Since the truthful inheritance of DNA methylation

pattern can only be ensured by correct maintenance activity, the timing of DNA

replication might influence the e�ciency of maintenance methylation. Therefore, we
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Figure 6.22: Outcome of the segmentation using MethylSeekR on mESCs under
Serum/LIF conditions. Number of HMRs, PMDs, LMRs and UMRs after segmen-
tation. (A). Size distribution of the individual segments (B). Methylation level of
segments according to Ficz et al 2013. (C). Replication timing based on the data
from Hiratani et al. 2008 (D). Methylation distribution based on RRHPoxBS (E).
maintenance (red), de novo (blue) and hydroxylation (yellow) e�ciency (F). 5hmC
distribution in HyperD and HypoDs (G).

compared the replication timing of the distinct segments using the replication informa-

tion of three ESC lines published by Hiratani et al. [36]. In this context we observe,

that HMRs tend to replicate later than PMDs, LMRs and UMRs (Figure 6.22D),

which leads to the conclusion that later replication accompanies higher methylation.
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Figure 6.23: Methylation profile of identified e�ciency clusters (A). E�ciency Profile
of identified clusters (B). Mean 5hmC level and distribution (C). LOLA enrichment
analysis of clustered CpGs (D). Methylation and e�ciency profile of annotated ge-
nomic features (E).
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6.3.2 Temporal analysis

Demethylation kinetics

Previous studies indicate some disagreement about the importance of the role of

Tet enzymes in the rate of the demethylation process, and whether the formation of

hydroxylation is one of the major mechanisms that contribute to demethylation or

not. In [97], for instance, the authors observe up a global to 10% increase of 5mC

under the depletion of only Tet1 enzyme. In contrast, in [94] the authors claim is

that Tet TKO cells exhibit almost the same demethylation kinetics as WT ES cells

during their transition from Serum to 2i. The measurements of 5mC presence in the

second study though have been done with the use of mass spectrometry and they do

not come from sequencing.

In order to determine, here, the di↵erence in the demethylation rate in the absence

of Tets we calculated the increase of unmethylated cytosines for time points t = {3, 6}

in WT and for t = {4, 7} in Tet TKO cells using the equation:

rdem(t) =
TT(t)� TT(0)

t
.

WT ES cells show an increase of unmethylated CpGs of more than 8.3% (day6 of BS

experiment), whereas Tet TKO cells exhibit demethylation rates of 4.2% as shown in

Figure 6.24a. In other words, we observe a vast decrease of the demethylation rate

in the absence of Tet enzymes by around 50% (Fig. 6.24b). In fact, this decrease

is even more pronounced, around 52%, if one considers, additionally, the hydroxy-

lated cytosines as a non-methylated modification (day6 of oxBS experiment). Hence,

the above data clearly demonstrates that there is a considerable contribution of Tet

enzymes to the rate of DNA demethylation kinetics.
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Figure 6.24: (a) Demethylation rate in WT and Tet TKO cells (b) Relative di↵erence
in demethylation rate between WT and Tet TKO cells.

Two main profiles of enzymatic temporal activity

The profiles of expressed and non-expressed genes suggest that CpGs display distinct

patterns of enzymatic e�ciencies depending on their genomic location. To investigate

this further, we clustered all individual CpGs of the genome based on their e�ciencies

and their temporal changes in order to identify distinct enzymatic kinetics during the

Serum/2i transition. As we already saw, our approach always decides for two clusters

(Figure 6.7).

In more detail, cluster 1 contains 855201 CpGs and it is characterized by high

maintenance (⇡ 60%) and de novo activity (⇡ 30%) at day0, whereas the activity of

Tet enzymes (⇡ 10%) is rather low (Figure 6.23B). At the same time we observe high

methylation levels at day0 (Figure 6.23A). Over time, we observe a strong decrease

in de novo methylation together with a nearly stable maintenance and an increasing

hydroxylation e�ciency. In terms of methylation, these changes in e�ciency are

accompanied by transient increase of 5hmC and hemimethylated CpGs and result in

a hypomethylated phenotype at day6 (Figure 6.23A).

Cluster 2 contains 702901 CpGs and it is mainly characterized by a high hy-

droxylation activity, which further increases over time (Figure 6.23B). Maintenance

e�ciency (⇡ 50%) is considerably lower compared to cluster 1 and appears to slightly

decrease during the transition to 2i. Additionally, we observe in this cluster a very low
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de novo activity of Dnmts, which almost vanishes over time. The initial methylation

level of cluster 2 is lower compared to cluster 1, but also displays a transient increase

in hemimethylated CpGs and 5hmC and a general loss of methylation over time.

Interestingly enough, despite the di↵erence in the absolute hydroxylation e�ciency

in two clusters, their demethylation rates appear to be very similar (Figure 6.23A).

In addition to the shared temporal increase of 5hmC from day0 to day3, we observe

comparable average 5hmC levels in both clusters. In both clusters, 5hmC is symmet-

rically distributed between both DNA strands, meaning that the individual 5hmC

states appear with the same frequency at Watson and Crick strand. Nevertheless,

the distribution of 5hmC is distinct for each cluster. Whereas most CpGs in clus-

ter 1 exhibit a 5hmC/5mC or 5mC/5hmC state, the majority of 5hmC in cluster

2 is present paired with unmethylated cytosine on the opposite strand (5hmC/C or

C/5hmC).

Conduct of LOLA enrichment analysis on both clusters reveals an enrichment of

transcription factor binding sites, euchromatic histone modifications and CpG islands

for cluster 2 [82]. The list of transcription factor binding sites includes typical stem

cell markers as Oct4, Nanog and Sox2. Cluster 1, on the other hand, discloses an

enrichment in heterochromatic histone marks and repetitive elements (Figure 6.23D).

In Tet TKO cells both clusters show higher methylation levels than WT, with this

being particularly pronounced in cluster 2, and retain a notably amount of 5mC even

at day7 in 2i containing media (Figure 6.25A). Maintenance methylation e�ciency

seems to be unchanged for cluster 1 Tet TKO cells and it exhibits a noticeable increase

for cluster 2. De novo methylation, on the other hand, stays rather stable over time

and persists even at the latest time point for both clusters.

Separate genomic regions Finally, to map certain genomic regions with either

cluster of enzymatic activity we grouped the CpGs based on their genomic context.
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The revealed conserved methylation and e�ciency patterns show that all examined

genetic features, clearly, belong to cluster 1, apart from promoter regions which belong

to cluster 2. Hence, for all features, but promoters, maintenance methylation appears

to be again stable over time and de novo and hydroxylation e�ciency exhibit the same

tendency, with minor deviations (Figure 6.23E). On the contrary, high hydroxylation

e�ciency, moderate maintenance and only marginal de novo methylation is what we

observe in promoters. Since promoter regions are usually located around the TSS, this

is in agreement with the profile plots across genes, which unveiled similar dynamics

at the TSS (Figure 6.15).

At last, in Tet TKO cells, we make two main observations: First that de novo

activity is more uniformly distributed among all distinct genomic features, exhibiting,

similarly to the gene plots, an almost stable activity over time, and second that a clear

increase of maintenance methylation is present only in the promoters (Figure 6.25D).

6.4 Discussion

In our study, we investigated how Dnmts and Tets contribute to a stable methylome

with unmethylated and methylated domains and furthermore examine how changes

in the activity of individual enzymes shape new methylation patterns.

To address those questions, we get data from RRHPoxBS (see Section 2.2.2), a

unique method that comprises three features: (i) genome wide analysis of a subset of

about 3 million CpGs with an adequate coverage, (ii) simultaneous analysis of 5mC

and 5hmC as well as (iii) the combined detection of both strands of one individual

DNA molecule. Using our developed HMM analysis we are able to estimate the

detailed distribution of (hydroxy-)methylation states and the activities of Dnmts and

Tets for each individual CpG in the genome.
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Figure 6.25: Comparison of clustered CpGs between WT and TKO ESCs. Methyla-
tion profile of clustered CpGs (A), E�ciency profile of clustered CpGs (B). Methyla-
tion profile of annotated genomic features C. E�ciency profile of annotated genomic
features (D).
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The measured CpG methylation levels of RRHPoxBS for Serum/LIF (65%) and

2i (20%) conditions are in line with previous described methylation levels from RRBS

and WGBS [18, 94]. The observed reduction of nonCpG methylation after the incu-

bation in 2i, is in agreement with the previous observed loss of Dnmt3a and 3b under

naive conditions [18]. At last, the readout of the used spike-in oligos shows a good

conversion of C, 5fC in BS and C, 5hmC, 5fC in oxBS libraries, demonstrating that

RRHPoxBS presents a reliable method for the detection of (hydroxy-)methylation

levels.

6.4.1 Biological findings

In the next paragraphs we summarize the most important biological findings of our

analysis.

Uniformly distributed hemi-methylation among the two strands

Potentially, hemimethylated CpGs can present a selective, strand specific epigenetic

information. For example, the orientation of hemimethylated CpGs could mark the

coding strand of RNA and enforce the transcription of either Watson or Crick strand.

However, the evaluation of the double strand information obtained from RRHPoxBS

does not reveal any strand specific distribution of hemimethylated CpGs in relation

to transcription. Instead, we see that hemimethylation is equally distributed between

both strands and follows the behavior of symmetric CpG methylation. This suggests

that hemimethylation is more likely the side-e↵ect of de novo methylation or active

and passive demethylation events, rather than the result of a selective strand specific

mechanism.
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Two profiles of enzymatic temporal activity

The combination of Dnmt and Tet activity defines the methylation status of each

CpG. The clustering of the enzymatic e�ciencies of our model reveals that every

CpG of the genome belongs to one of two main clusters regarding its enzymatic ac-

tivity. In line with the results of individual loci analysis (Chapter 4) and previous

findings of others [94], both clusters predict a genome-wide reduced (w.r.t. serum)

but stable in 2i maintenance (⇡ 0.6), a declining de novo, and a slightly increasing

hydroxylation e�ciency. The reduction of maintenance e�ciency was recently re-

lated to the rearrangement of H3K9me2 under 2i conditions [94] and the later stable

behavior can be explained if the reorganization of H3K9me2 is an early event and

completed within the first 24h upon the transition to 2i. The progressive decrease of

de novo methylation activity fits to a gradual degradation and transcriptional halt

of Dnmt3a/b as described in [18] and finally the predicted increase of hydroxylation

activity is congruent with the observed up-regulation of Tet enzymes in 2i medium

[18, 29].

In cluster 1, containing the majority of the CpGs, we observe a pronounced main-

tenance and de novo activity and a relatively low hydroxylation, while for cluster 2

we see a significantly reduced maintenance, almost zero de novo and particularly high

hydroxylation. As a result, CpGs of cluster 2 belong mainly to strongly unmethylated

regions. An enrichment analysis clearly reveals the functional role of Tet enzymes.

While cluster 1 corresponds to inactive epigenetic marks, cluster 2 is associated with

euchromatic histone marks, transcription factor binding sites and CpG islands.

Opposed Tet and Dnmt activity

Spatial cross-correlation computation shows that a low methylation e�ciency is usu-

ally accompanied by a high hydroxylation e�ciency and vice versa, defining domains

of low and high methylation levels, respectively. From the profiles of enzymatic activ-
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ity across genes, in transcription binding factors, and in the histone modifications, as

well as from our clustering, we verify that our model undoubtedly suggests that for

a given CpG methylation and hydroxylation e�ciencies are not exclusive, but they

show an antagonistic behavior. As already mentioned, we observe high maintenance

and compelling de novo e�ciency at the majority of the genome. The activity of Tet

enzymes, on the other hand, is highest at UMRs and LMRs such as promoters, TFBS

(Sox2, Pou5f1) and especially TSS. Very recent studies based on chromatin immuno

precipitation support our findings revealing binding of Dnmt3a/b at the gene body

and HMRs, whereas Tet1 binding was observed across methylation valleys (LMRs

and UMRs) [4, 27].

Local control of Tets - creation of stable 5hmC

We observe in general that 5hmC represents a fraction of 5mC for all genomic re-

gions. In LMRs, however, it seems that a specific combination of methylation and

hydroxylation e�ciencies is su�cient to maintain a constantly high amount of 5hmC

which exceeds that of 5mC. Since LMRs represent mostly enhancers [86], this find-

ing is in accordance with previous observations which link enhancers’ function to the

presence of 5hmC [96, 87, 42]. Overall, the high hydroxylation e�ciencies observed

in our study, suggest a tight regulation of Tet enzymes. In this context, several

mechanisms such as histone modifications, the expression of Tet isoforms, but also

post-translational modifications, or the interaction with cofactors are possible.

Tets - guardians against methylation spreading

In the absence of Tets we observe a clear misregulation in both maintenance and

de novo methylation e�ciency. In particular, with the exception of day0, we see,

compared to WT, a strong increase of de novo activity for the entire genome and an

increase of maintenance activity, limited to regions exhibiting a high hydroxylation
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e�ciency in WT ESCs. A misregulation of Dnmt1 is further supported by the spatial

autocorrelation of maintenance in Tet TKO cells.

The almost stable estimated de novo e�ciency under 2i conditions in Tet TKO is

surprising, considering the down regulation of Dnmt3a/3b in WT ES cells. However,

the apparent presence of Dnmt3a/3b under 2i conditions in Tet TKO cells is strongly

supported by the persistent nonCpG methylation in these cells.

Taken together, we hypothesize that Tet enzymes work against methylation and

they enhance gene expression in three ways: (i) They guarantee an instant conversion

of 5mC and act against its establishment during a cell replication mainly via passive

but possibly also via active demethylation. (ii) They further inhibit the e↵ectiveness

of the maintenance machinery over regions such as enhancers and promoters that

should remain unmethylated. (iii) They ensure an e�cient down-regulation of the

de novo enzymes, which can not be observed in their absence. As a result of all

the above factors, we observe under the presence of Tet enzymes a vastly increased

by around 50% demethylation rate, which demonstrates their great role in a proper

demethylation process.



Chapter 7

Conclusions & Future Work

7.1 Conclusions

In this thesis we tried to unveil the driving forces behind the DNA demethylation in

ESCs. Based on newly generated hairpin (double strand) BS and oxBS data at single

CpG resolution, we built a novel hidden Markov model that is able to accurately

estimate the 5hmC levels of a CpG dyad as well as the activities of the involved

enzymes over time.

Our model strongly suggests a passive demethylation mechanism as the main driv-

ing force of losing methylation in mESCs. Our results show that the main cause of

demethylation in ESCs is a combination of maintenance methylation impairment and

the presence of 5hmC modification which, as the model reveals, is not recognized

by the maintenance enzymes. This mechanism seems to be, consistently, further en-

hanced by a constantly decreasing de novo methylation and an increasing hydroxyla-

tion activity over time. A formally developed hybrid generalization of the core-model

can, in case of available data from additional sequencing experiments, estimate also

the levels of further oxidative cytosine forms as 5fC and 5CaC and, in this way, is

able to also identify active demethylation.
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To facilitate the usefulness of our method we implemented the above stochastic

models in an easy-to-use software tool named H(O)TA that gives biologists the option

to upload their own data and get estimations for (hydroxy-)methylation levels and

more importantly quantitative information about the enzymatic activity, which oth-

erwise can not be quantified from in vivo experiments. The tool’s extension H(O)TA

v.2, which is currently available as a beta version, provides the user the additional

possibility to run self-defined epigenetic models.

Developing the appropriate computational methods to cope with the small cover-

age, we have been able to apply our model on a genome-wide scale for both WT and

Tet KO ESCs data. Implementing a sophisticated clustering approach, we showed

that the whole genome can be separated into only two large clusters of di↵erent enzy-

matic behavior. Protein enrichment analysis revealed that the two di↵erent clusters

correspond impressively well to distinct genomic regions. The first cluster includes

mainly inactive epigenetic marks as repetitive elements, whereas the second one is

strongly associated with active marks such as transcription factors, enhancers and

promoters connected with the ESCs phenotype. Based on a comparison of the model

genome-wide output in WT and Tet TKO cells and several layers of analysis, we con-

clude that the seemingly critical contribution of Tets in demethylation and accordingly

in gene expression occurs in three distinct ways: First by acting against methylation

retainment via non-recognition by the Dnmts, second, by the further inhibition of the

maintenance machinery activity in regions that should remain unmethylated, and

third, by ensuring an e�cient down-regulation of the de novo enzymes. As a result

of these contributions, the total rate of the demethylation process in mESCs is twice

as fast in case of the presence of Tet enzymes compared to their absence.
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7.2 Future Work

Possible research directions that can be based on the models, the subsequent analysis,

and the corresponding software tools established in this thesis, are the following:

The construction of models that consider more than one CpG dyad will o↵er the

chance to investigate more closely the spatial correlations and the interactions of

certain enzymes. In this direction it would be of interest to extend works as [8, 60] in

order to investigate the neighborhood interdependencies, the in vivo processivity, and

the association-dissociation properties of Dnmts and Tets. This could be easily done

by setting up multi-CpG models in H(O)TA and using also the same locus-specific,

or genome-wide data that has been used here. In addition, the combination of the

above models with data from knockout experiments would further help us towards

unveiling the individual role of each of the Tets, or clarifying the di↵erences between

Dnmt3a and Dnmt3b.

The upgrade of H(O)TA into a complete tool of general use, might be of help

to the epigenetics community also in other directions. For instance, incorporating

into the tool the option to get data from alternative sequencing experiments such

as TAB-seq, fCAB-seq, CAB-seq, or redBS-seq, would o↵er the possibility to dis-

tinguish between all oxidative cytosine modifications. An application of the hybrid

extension of the core-model in cell types of pure active demethylation like monocyte-

macrophages, or brain cells would also be possible, given the availability of such data.

Meaningful research questions in these cell types would be to infer the period of the

active demethylation cycle, and to investigate whether some modifications are more

stable than others. In this fashion it would also be worth exploring whether distinct

loci of the same cell type can have an active demethylation cycle of di↵erent length.

As the holy grail of the epigenetics field is to find the relation between DNA methy-

lation and gene expression, a very relevant research problem is the identification of the

role of 5hmC and the further oxidative forms 5fC, 5CaC in gene expression. In this
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context, similarly to [85], would be essential clarifying how certain regions, seemingly

as LMRs in ESCs, can retain stable low-methylation patterns in spite of repeated cell

replications. At last, it would also be very interesting to extend the methods devel-

oped in [44] to get as input either the genome-wide (hydroxy-)methylation levels, or

the enzymatic activities estimated by our model. Such a method combined ideally

with histone modifications and transcription factor binding sites temporal data could

potentially improve to a very great extent our understanding on the synergy between

the various molecular players and gene expression.



Appendix A

Individual Genomic Loci Analysis

A.1 HPoxBS Protocol Details

500 ng of mESC DNA was cleaved with 10 units of restriction enzymes for 5h in a 30 µl

reaction. For IAP L1mdA the DNA was cut with DdeI (New England Biolabs; NEB),

for mSat and MuERVL with Eco47I (Thermo Fisher Scientific), Afp, Ttc25, Zim3

with TaqI (Thermo Fisher Scientific) and in case of Snrpn with NlaIII (NEB). The

restriction was stopped by a 20 min heat inactivation at 80�C. The restricted DNA

was then subjected to a 16 h or overnight ligation with T4-DNA Ligase (New England

Biolabs). 200 units of T4-DNA Ligase, 4 µl 10mM ATP and 1µl 100 µM hairpin linker

was added directly into the restriction reaction and the volume was adjusted to 40

µl using ddH2O. During ligation the hairpin linker becomes covalent attached to the

restriction site of the DNA. Purification and oxidative BS treatment was carried out

using the chemicals and protocols provided by Cambridge Epigenetix. Amplicons were

generated by PCR using Hotfire Taq polymerase from Solis Biodyne. Sequencing was

carried out using the MiSeq Illumina system (paired end sequencing 2x250bp reads).

After Sequecning in a first informatics step the adapter sequence is removed from the

reads (Trimming). The resulting read information is then analyzed analyzed using
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the BiQAnalyzerHT and a python script. For the repeats the sequences were filtered

by sequence identity score, meaning that only reads which matched the reference

sequence to at least 80% were used for the analysis. For single copy genes this score

was set to 90% and in addition only reads with maximum 10% missing CpG sites

were analyzed.

A.1.1 Primer- and reference sequences

Table A.1 shows the sequence of the nine di↵erent hairpin linkers used to covalent link

both DNA strands. We included unmodified cytosine C, 5mC (M) and 5hmC (H)

into the hairpin linker to follow the conversion of these modifications during BS and

oxBS treatment. By mapping the sequencing information to these reference sequences

we determined the position of each (modified or not) cytosine and by this we were

able to calculate its possible conversion rates (and therefore the conversion errors)

for each time point and each genomic region as follows. 5hmC, for instance, should

be converted after oxBS treatment to 5fU and will be seen as T after sequencing.

Hence, to get the right conversion rate of 5hmC during oxBS treatment, we check for

each sequenced hairpin molecule the state of the 5hmC position (either C or T) and

we divide then the number of T’s we sampled at this position by the total number

of measurements (coverage). The conversion rates for C and 5mC were calculated in

the same fashion. We followed the above procedure for all analyzed loci of Chapter 4

besides Snrpn1. In Table A.2 we give the primer sequences and in Table A.3 the

corresponding reference sequence for each sequenced region.

1 For Snprn we had to use a hairpin linker without 5mC or 5hmC and therefore could not calculate
the sample specific conversion error. Instead we applied the mean errors of all other analyzed loci.
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Table A.1: Sequences of the hairpin linker for the analyzed loci; M indicates the
localization of 5mC, H the position of 5hmC in the sequence. All hairpin linker carry
a 5’-phosphorylation.

Hairpin Linker Sequence
IAP-HP Pho-TNAGGGMCCATDDDDDDDDATGGGHCC
L1mdA-HP Pho-TNAGGGMCCATDDDDDDDDATGGGHCC
L1mdT-HP Pho-CCGGAGGGMCCATDDDDDDDDATGGGHCCT
mSat-HP Pho-GNCGGGMCCATDDDDDDDDATGGGHCC
Afp-HP Pho-CGGGGMCCATDDDDDDDDATGGGHCC
Ttc25-HP Pho-CGGGGMCCATDDDDDDDDATGGGHCC
Zim3-HP Pho-CGGGGMCCATDDDDDDDDATGGGHCC
Snrpn-HP Pho-GGGCCTADDDDDDDDTAGGCCCCATG

Table A.2: Primer for amplification of the analyzed loci after bisulfite and oxidative
bisulfite treatment.

Primer Sequence
IAP-HP-Forward TTTTTTTTTTAGGAGAGTTATATTT
IAP-HP-Revers ATCACTCCCTAATTAACTACAAC
L1mdA-HP-Forward GTGAGTGGATTATAGTGTTTGTTTTAA
L1mdA-HP-Revers AAATAAATCACAATACCTACCCCAAT
L1mdT-HP-Forward TGGTAGTTTTTAGGTGGTATAGAT
L1mdT-HP-Revers TCAAACACTATATTACTTTAACAATTCCCA
mSat-HP-Forward GGAAAATTTAGAAATGTTTAATGTAG
mSat-HP-Revers AACAAAAAAACTAAAAATCATAAAAA
Afp-HP-Forward TTTTGTTATAGGAAAATAGTTTTTAAGTTA
Afp-HP-Revers AAATCACAAAACATCTTACCTATCC
Ttc25-HP-Forward TGAAAGAGAATTGATAGTTTTTAGG
Ttc25-HP-Revers AAAACAAAAATCTATTCCATCACTC
Zim3-HP-Forward TTTATTTATTTGTGTGTGGTTTTTG
Zim3-HP-Revers CACATATCAAAATCCACTCACCTAT
Snrpn-HP-Forward AGAATTTATAAGTTTAGTTGATTTTTT
Snrpn-HP-Revers TAATCAAATAAAATACACTTTCACTACT

A.2 Input Data

In Table A.4, A.5 we show the data for the DNA loci L1mdA, L1mdT, IAP, mSat,

Afp, Ttc25, Zim3 and Snrpn taken from bisulfite and oxidative bisulfite sequencing

together with the measured conversion errors c̄, d̄, ē and f̄ for each locus. The

conversion errors are calculated using the hairpin linker which is ligated onto the

DNA. The measurement times are: 24h after incubation on Serum (day0), and 24h

(day1), 72h (day3) and 144h (day6) on 2i. Each table shows the total number of CpGs



138 A.2. Input Data

Table A.3: Reference Sequences used for 5mC and 5hmC analysis; M = 5mC, H =
5hmC

IAP
TGTCACTCCCTGATTGGCTGCAGCCCATCGGCCGAGTTGACGTCACGGGGAAGGCAGAGCACATGGAGTAGAGAACCACCCTC
GGCATATGCGCAGATTATTTGTTTACCACTNAGGGMCCATDDDDDDDDATGGGHCCTAAGTGGTAAACAAATAATCTGCGCAT
ATGCCGAGGGTGGTTCTCTACTCCATGTGCTCTGCCTTCCCCGTGACGTCAACTCGGCCGATGGGCTGCAGCCAATCAGGGAG
TGACA

L1mdA

TCCAATCGCGCGGAACTTGAGACTGCGGTACATAGGGAAGCAGGCTACCCGGGCCTGATCTGGGGCACAAGTCCCTTCCGCTC
GACTCGAGACTCGAGCCCCGGGCTACCTTGCCAGCAGAGTCTTGCCCAACACCCGCAAGGGCCCACACGGGACTCCCCACGGG
ACCCTNAGGGMCCATDDDDDDDDATGGGHCCTNAGGGTCCCGTGGGGAGTCCCGTGTGGGCCCTTGCGGGTGTTGGGCAAGAC
TCTGCTGGCAAGGTAGCCCGGGGCTCGAGTCTCGAGTCGAGCGGAAGGGACTTGTGCCCCAGATCAGGCCCGGGTAGCCTGCT
TCCCTATGTACCGCAGTCTCAAGTTCCGCGCGATTGGATTGGGGCAGGCACTGTGATCCACTC

L1mdT
CCCGGGACCAAGATGGCGACCGCTGCTGCTGTGGCTTAGGCCGCCTCCCCAGCCGGGTGGGCACCTGT
CCTCCGGAGGGMCCATDDDDDDDDATGGGHCCTCCGGAGGACAGGTGCCCACCCGGCTGGGGAGGCGG
CCTAAGCCACAGCAGCAGCGGTCGCCATCTTGGTCCCGGG

mSat

CGCCCGAGACAAGGTGATTCTAGTTATTATAATGGACAGCGTAGACAAAAGAATGTTTATAATAACAT
ACCCAGTAATGGTCAGCACAGGAGAGGTGAAATTTATAATGGCATGACTCGGTTGGWCGGGMCCATDD
DDDDDDATGGGHCCGWTTCAACCGAGTCATGCCATTATAAATTTCACCTCTCCTGTGCTGACCATTAC
TGGGTATGTTATTATAAACATTCTTTTGTCTACGCTGTCCATTATAATAACTAGAATCACCTTGTCTC
GGGCG 

Afp

TTTTGTTATAGGAAAATAGTTTTTAAGTTACAAAGCATCTTACCTATCCCAAACTCATTTTCGTGCAA
TGCTTTGGACGCAGCGAAATGTAGCAGGAGGATGAGGGAAGCGGGTGTGATCCACTTCATGGCTGCTG
GTTCCTTCACCGCAGGCAGTGCTGGAAGTGGGATGTTTCGGGGMCCATDDDDDDDDATGGGHCCCGAA
ACATCCCACTTCCAGCACTGCCTGCGGTGAAGGAACCAGCAGCCATGAAGTGGATCACACCCGCTTCC
CTCATCCTCCTGCTACATTTCGCTGCGTCCAAAGCATTGCACGAAAATGAGTTTGGGATAGGTAAGAT
GtTTTGTGATTT

Ttc25

CCAGTAGATCCTCAGCTGGGGGCAGGGATCTATTCCATCACTCCCCTTCCGTGTCGGGATTTCGTGCA
GCTCAGACGGGTCCAAGTCTTACACAAGCTGTCCTAACTGCTGTGCGTTTATATAACAACTACCCGGT
TGTGTTTAGAAAACACTGTTTTCGGGGMCCATDDDDDDDDATGGGHCCCGAAAACAGTGTTTTCTAAA
CACAACCGGGTAGTTGTTATATAAACGCACAGCAGTTAGGACAGCTTGTGTAAGACTTGGACCCGTCT
GAGCTGCACGAAATCCCGACACGGAAGGGGAGTGATGGAATAGATCCCTGCCCC 

Zim3

CCCGGCCACCATAGTCGGATTATCCGTGGGCGGGGTGAGATGGACGGAGCGCCTTGCAGACCTCAGGA
AAACCTCCCCACGCCTGTCCGGCCTTGGCTTGGTGACAGGGAAACTGGCTGGACTCGGGGMCCATDDD
DDDDDATGGGHCCCGAGTCCAGCCAGTTTCCCTGTCACCAAGCCAAGGCCGGACAGGCGTGGGGAGGT
TTTCCTGAGGTCTGCAAGGCGCTCCGTCCATCTCACCCCGCCCACGGATAATCCGACTATGGTGGCCG
GGCAAGGACCACAC 

Snrpn

AGAATTTACAAGTTTAGTTGATTTTTTTCGCTCCATTGCGTTGCAAATCACTCCTCAGAACCAAGCGT
CTGGCATCTCCGGCTCCCTCTCCTCTCTGCGCTAGTCTTGCCGCAATGGCTCAGGTTTGTCGCGCGGC
TCCCTACGCATGGGGCCTADDDDDDDDTAGGCCCCATGCGTAGGGAGCCGCGCGACAAACCTGAGCCA
TTGCGGCAAGACTAGCGCAGAGAGGAGAGGGAGCCGGAGATGCCAGACGCTTGGTTCTGAGGAGTGAT
TTGCAACGCAATGGAGCGAGGAAGGTCAGCTGGGCTTGTGGATTCTAGTAGTGAAAGTGTATTTTATT
TGATTA
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Table A.4: Input BS and oxBS data and conversion errors (repetitive elements)

IAP
BS oxBS

day TT TC CT CC c̄ d̄ ē TT TC CT CC c̄ d̄ f̄
0 39 84 116 890 0.003 0.0709 0.0774 35 70 77 605 0.002 0.0935 0.0701
1 17 89 99 831 0.002 0.0685 0.0411 57 131 115 943 0.002 0.0813 0.0939
3 68 87 111 513 0.001 0.0628 0.0721 77 112 112 449 0.001 0.09 0.0905
6 283 152 178 703 0.003 0.0829 0.0455 210 68 81 365 0.002 0.0737 0.0942

L1mdA
BS oxBS

day TT TC CT CC c̄ d̄ ē TT TC CT CC c̄ d̄ f̄
0 41088 3479 4106 8092 0.006 0.0795 0.0734 36286 1968 2203 5094 0.004 0.0853 0.0016
1 30095 2607 2697 5118 0.006 0.078 0.0645 32774 1555 1715 4026 0.004 0.0845 0.0015
3 44382 2819 2953 4769 0.005 0.084 0.0736 35886 1175 1293 2486 0.004 0.0795 0.0913
6 75920 2627 2762 3731 0.005 0.0841 0.0685 54132 965 979 1699 0.004 0.0897 0.083

L1mdT
BS oxBS

day TT TC CT CC c̄ d̄ ē TT TC CT CC c̄ d̄ f̄
0 37715 9668 9192 25857 0.007 0.0802 0.0739 30511 6368 5713 19208 0.005 0.0784 0.0729
1 41882 11690 10300 25648 0.008 0.0887 0.0743 43459 6807 5923 17638 0.004 0.0780 0.0738
3 44766 7868 6875 10804 0.007 0.0880 0.0703 31379 2470 2125 4419 0.006 0.0758 0.0683
6 44687 2154 2023 2758 0.006 0.0807 0.0758 56830 1363 1263 2352 0.005 0.0856 0.0714

mSat
BS oxBS

day TT TC CT CC c̄ d̄ ē TT TC CT CC c̄ d̄ f̄
0 492 1676 1738 14403 0.004 0.0718 0.0567 315 1170 1221 9804 0.004 0.0663 0.0772
1 448 1337 1495 9029 0.005 0.073 0.0666 568 1678 1748 10654 0.004 0.0727 0.0698
3 1288 1926 2043 10540 0.004 0.0685 0.0642 1171 1602 1697 8746 0.003 0.0685 0.0631
6 3625 2248 2570 11757 0.004 0.0738 0.0605 2618 1619 1604 7471 0.003 0.0725 0.0722

of the corresponding locus that have been observed in each of the four observable

states (TT, TC, CT and CC) for every day of measurerement.

A.3 Single CpGs’ Results

In Figure A.1, A.2 we show the (hydroxy-)methylation e�ciencies and the

(hydroxy-)methylation levels for all CpGs of all the examined loci, in case the

data of each locus is not aggregated and separate estimations are taken for each of

the single CpG dyads. Although the absolute (hydroxy-)methylation levels at distinct
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Table A.5: Input BS and oxBS data and conversion errors (single copy genes)

Afp
BS oxBS

day TT TC CT CC c̄ d̄ ē TT TC CT CC c̄ d̄ f̄
0 1401 5233 4235 31088 0.004 0.0854 0.0852 1208 3652 4307 26568 0.005 0.0982 0.0728
1 2022 6718 4946 25945 0.007 0.0636 0.0646 2821 4367 5366 20886 0.004 0.0836 0.0616
3 4917 4884 5453 14311 0.004 0.0674 0.0765 11285 5443 4739 14034 0.004 0.0636 0.0800
6 29537 6220 6222 14733 0.005 0.0888 0.0523 22516 2989 2182 7421 0.004 0.0638 0.0593

Ttc25
BS oxBS

day TT TC CT CC c̄ d̄ ē TT TC CT CC c̄ d̄ f̄
0 16873 5945 6297 22363 0.07 0.0726 0.0751 19490 4338 3926 20641 0.005 0.077 0.1023
1 17013 6342 5340 15431 0.07 0.0625 0.0341 20389 4448 4042 16499 0.006 0.0725 0.0577
3 26107 4950 5705 7472 0.06 0.0813 0.0785 34016 2630 2501 6059 0.004 0.1078 0.058
6 19121 538 627 595 0.06 0.0762 0.059 44122 570 619 1310 0.005 0.0686 0.0933

Zim3
BS oxBS

day TT TC CT CC c̄ d̄ ē TT TC CT CC c̄ d̄ f̄
0 14479 11308 13448 63716 0.005 0.065 0.0755 1777 1695 1285 7754 0.007 0.1388 0.1047
1 14295 11947 11222 43046 0.003 0.0717 0.0575 11829 8157 6249 33002 0.007 0.0958 0.0835
3 31291 10020 10965 13864 0.005 0.0666 0.0647 38515 4875 2983 5202 0.008 0.0807 0.0663
6 112883 4761 4100 2434 0.005 0.076 0.0707 1132054 503 457 345 0.006 0.0616 0.0871

Snrpn
BS oxBS

day TT TC CT CC c̄ d̄ ē TT TC CT CC c̄ d̄ f̄
0 3092 83 109 742 0.0133 0.0757 0.0733 2620 86 125 599 0.0044 0.0785 0.0690
1 3183 100 67 709 0.0135 0.0725 0.0582 3497 48 49 250 0.0038 0.0742 0.0601
3 2571 92 91 557 0.0116 0.0789 0.0717 3357 136 84 503 0.0038 0.0855 0.0731
6 3098 82 98 768 0.0121 0.0779 0.06131 2377 77 127 943 0.0039 0.0759 0.0799

CpGs can be slightly di↵erent, one observes that the tendency of the demethylation

process has clearly homogeneous characteristics between CpGs of the same locus.

Particularly, the increase of the hydroxylation level in relation to the methylated

substrates is always present. Also, the day with the highest absolute 5hmC level is, in

the majority of the cases, the same for the CpGs of a locus. Similarly, the predicted

behavior of the enzymes’ e�ciencies within a locus is in principle homogeneous with

some di↵erences in the absolute estimated values that come with larger confidence

intervals due to the smaller number of samples.

Overall, the estimation of the e�ciency functions reveals some common and some

locus specific features that accompany the DNA demethylation dynamics over time
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in 2i. As a common feature we observe that the total methylation on hemimethylated

sites, �(t), decreases over time in all examined loci but at di↵erent rates. Along with

this decrease we observe also a drop of de novo methylation activity at all loci be-

sides Ttc25 and Zim3. In contrast, hydroxylation activity increases for most loci over

time (except for Snrpn). Interestingly, the largest increase of ⌘(t) occurs in L1mdT

and the two DMRs in the genes Ttc25 and Zim3, where we also observe low or even

total absence of de novo activity. On the other hand, a weaker hydroxylation activity

in mSat and in IAP is accompanied by a strong decrease of µd(t) in the same loci,

while in Afp both de novo methylation and hydroxylation show a moderate decrease

and increase, respectively. At last, maintenance methylation seems to di↵er among

loci. For all repetitive multicopy loci and Afp maintenance activity remains nearly

constant while for Ttc25 and Zim3 it shows a significant decrease. For the imprinted

Snrpn locus, where the methylation level remains constant, our model accurately pre-

dicts the apparently constantly high maintenance e�ciency of 1.0. Altogether, these

findings point towards a major impairment of maintenance methylation by 5hmC.

Additionally, for each locus this impairment is modulated by a distinct combination

of decreasing (e.g. Dnmt3a,b) or increasing (e.g. Tet) activities in a locus specific

manner. Some of the locus specific di↵erences may also have their origin in the par-

ticular methylation and (hydroxy-)methylation status present in serum/LIF before

the shift into 2i.
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Figure A.1: Estimated e�ciencies and standard deviations for each single CpG dyad
of loci IAP, L1mdA, L1mdT, mSat and the single copy genes Afp, Ttc25, Zim3 and
Snrpn over time. Maintenance (red), de novo (blue), hydroxylation (yellow) and
total e�ciency on a hemimethylated CpG (dark red). In the case of IAP we cover six
CpG positions. However, during evolution CpG one and five underwent a transition
resulting in a loss of the CpG positions in this particular IAP class. Furthermore,
due to the lack of space we only show the first 6 CpGs out of 13, (8) CpGs, analyzed
in L1mdA, (Zim3).
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Figure A.2: Prediction of the (hydroxy-)methylation levels for each single CpG dyad
of loci IAP, L1mdA, L1mdT, mSat and the single copy genes Afp, Ttc25, Zim3 and
Snrpn over time. The left diagram depicts the amount of fully methylated (mm) sites
in red color, hemimethylated (um and mu) sites in green color, and unmethylated
(uu) sites in blue color. The orange block gives the total amount of CpG sites with
at least one 5hmC, while the detailed distribution of the hydroxylated states is given
by the diagram on the right.



Appendix B

Whole Genome Analysis

B.1 RRHPoxBS Protocol Details

1.2µg DNA is divided equally into three 0.5ml reaction tubes and digested in a 20µl

reaction using 20U of HaeIII (NEB), AluI (NEB) and HpyCH4V (NEB), respectively.

The reactions are incubated overnight for a minimum of 12h at 37�. Restriction

enzymes are inactivated at 80� for 30min. The reactions are pooled and subjected

to a ligation step. During this process, hairpin linker and sequencing adapter are

introduced to the opposed ends of each restriction fragment. For this, 200mM biotin

labeled hairpin linker and 100mM sequencing adapter are added to the digested

DNA, incubated with 1mM ATP and 4000U T4 DNA Ligase (NEB) for 16h at 16�.

The reaction is purified using AMPureXP beads followed by enrichment for hairpin

containing fragments with streptavidin beads. The library is then subjected to

BS/oxBS work-flow of the TrueMethyl kit from CEGX according to manufacturer’s

instructions. Amplification of the library was done with HotStarTaq® polymerase

(Qiagen) and sequencing was performed on an Illumina HiSeq2500® platform in a

150bp paired-end sequencing mode.
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Table B.1: Conversion rates of cytosine variants included in the TrueMethyl Spike in
BS treatment

C 5mC 5hmC 5fC

Serum 0.996332 0.0699681 0.0673588 0.75626

72h 0.996165 0.0725858 0.0715434 0.762992

144h 0.995809 0.0696952 0.0682802 0.739254

B.1.1 Read mapping and methylation calling

The sequences were aligned as suggested by Porter et al. [72]. In detail; reads

were trimmed for adapter, hairpin-linker and 3 quality (Q�20) with TrimGalore!

[2] and cutadapt [63]. Trimmed read pairs were aligned with the Smith-Waterman

algorithm allowing for bisulfite induced mismatches. The two bisulfite converted

strands were used to deduce the original genomic sequence. Mismatches other than

G-to-A and T-to-C were replaced with N. The resulting sequences were aligned to

the mouse genome (mm10) with GEM-mapper (beta build 1.376) [62], after which

the methylation information was reintroduced with a custom pileup function based

on HTSJDK [54] and ratios for the four methylation states were calculated for each

cytosine. The pipeline was implemented with the Ru↵us pipeline framework [24].

B.1.2 Spike-in analysis

To determine the conversion rate of BS and oxBS we included short oligonucleotides

into our RRHPoxBS libraries. The oligo mix is part of the TrueMethyl kit from

Cambridge Epigenetix and includes C, 5mC, 5hmC and 5fC at known positions.

After sequencing, we calculated the conversion rates for each cytosine variant, which

were than included into our model to compensate for conversion errors.
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Table B.2: Conversion rates of cytosine variants included in the TrueMethyl Spike in
oxBS treatment

C 5mC 5hmC 5fC

Serum 0.99687 0.0662679 0.964215 0.968836

72h 0.99656 0.0670022 0.967298 0.9663

144h 0.996901 0.0534113 0.949588 0.932044
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Figure B.1: Number of CpGs with observations at one, two, or three days in WT (a)
and Tet TKO (c). Average number of independent single CpG samples (sequencing
depth) per day for BS and oxBS of WT (b) and for BS of Tet TKO (d) data.
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B.2 Implementation Details

The code of our implementation is available in https://github.com/kyriakopou/

hydroxyGit.

All functions that form the computational core for both the individual loci (packed

into H(O)TA) and the genome-wide implementation are located in the hydroxyGit

directory, while the functions related to processing of the input genomic data, the

Bayesian inference method, and the computational approaches used to analyze the

model’s output such as the clustering and the spatial correlations are located in the

subdirectory hydroxyGit/genomeWide.

To run the whole genome data we installed MATLAB Parallel Computing Toolbox

in the DEEP cluster located in Max Planck Institute for Informatics (MPII) consisting

of 32 machines each having 16 double threaded CPUs. In order to avoid memory

leakage we handled the 3,022,903 CpGs of the WT cells and the 3,151,985 of the

Tet TKO cells (Figure B.1) as follows. We assigned each of the chromosomes to a

certain machine, by splitting its total CpGs in jobs of 500 consecutive CpGs. We

run in parallel the 500 CpGs of a job in the 32 (16 x 2) threads of the machine and

sequentially one job after the other.

An interested user that has access to the DEEP cluster can submit to the cluster

queue the list of chromosomes he would like to run by typing in the command line

$./ submitChromosomes.sh .

Listing B.1: submitChromosomes.sh

#!/bin/bash

#give the list of chromosomes to run

chrList =( $(seq 1 10))

for i in in ${chrList [*]}

do

https://github.com/kyriakopou/hydroxyGit
https://github.com/kyriakopou/hydroxyGit
https://www.mpi-inf.mpg.de/home/
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qsub -v chr=$i -N chr_$i runChromosome.csh

done

exit 0

Listing B.2: runChromosome.csh

#!/bin/csh

#$ -cwd -V

#$ -l mem_free =50G,h_vmem =80G

#$ -m e -M <Email Address >

matlab -nodesktop -nosplash < initOther.m > matOutFiles/

matChr_$chr.log

Listing B.3: initChr.m

chrToRun=getenv(’chr’);

chrToRun=str2num(chrToRun)

cd /code/MATLAB/HydroxyMethylation /;

addpath(genpath(pwd));

dataPath=’/code/MATLAB/HydroxyMethylation/genomeWide/RRHPBS.data’;

cd genomeWide;

runDataGW(dataPath , chrToRun);

exit;

Then each of the chromosomes, e.g., here 1 . . . 10, included in the array ‘chrList’ of

the bash script submitChromosomes.sh (Listing B.1) is sent to a di↵erent machine

of the cluster. Optionally, the user can choose to receive a notification mail once the

analysis of a chromosome is done by inserting his email address in the corresponding

field of runChromosome.csh (Listing B.2). The analysis is started by the call to the

Matlab script initChr.m (Listing B.3), where the chosen chromosome is given as input

to Matlab function runDataGW().
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(a) WT - MLE (b) WT - BI

(c) Tet TKO - MLE (d) Tet TKO - BI

Figure B.2: Bar plots for the hidden states levels for all CpGs in the genome estimat-
ing the parameters with MLE (a), (c) and BI (b), (d). Red = symmetric methylated
CpG (mm - 5mC/5mC), yellow = 5hmC in all possible combinations (toth - 5hmC/C,
C/5hmC, 5hmC/5mC, 5mC/5hmC, 5hmC/5hmC), green = hemi methylated CpGs
(hemi - 5mC/C or C/5mC), blue = unmethylated CpGs (C/C).

B.3 BI vs MLE

In Figure B.2 we plot the di↵erent prediction of hidden states’ probabilities between

the ML and BI methods for both WT and TET TKO cells.

B.4 ESCs Chromosomes’ Results

In this Section we provide the input data information plots as well as the output of

our model for each of the 21 main chromosomes of the ESCs. In Figure B.3a, B.3b

we plot the number of CpGs for each chromosome with one, two or three observation

days in WT and Tet TKO cells, respectively. We plot the average number of samples

(depth sequencing) for each chromosome in WT (Figure B.4a) and Tet TKO (Fig-
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ure B.4b). In Figure B.5a, B.5b we show the e�ciencies over time computed by BI

and in Figure B.6a, B.6b we report the prediction of the model for the hidden states

probabilities in each chromosome in WT and Tet TKO cells.



151 B.4. ESCs Chromosomes’ Results

1

1 2 3
0

1

2 105
2

1 2 3
0

1

2 105
3

1 2 3
0

5

10 104
4

1 2 3
0

1

2 105
5

1 2 3
0

1

2 105
6

1 2 3
0

5

10 104
7

1 2 3
0

5

10 104

8

1 2 3
0

5

10 104
9

1 2 3
0

5

10 104
10

1 2 3
0

5

10 104
11

1 2 3
0

1

2 105
12

1 2 3
0

5

10 104
13

1 2 3
0

5

10 104
14

1 2 3
0

5

10 104

15

1 2 3
0

5

10 104
16

1 2 3
0

5

10 104
17

1 2 3
0

5

10 104
18

1 2 3
0

5 104
19

1 2 3
0

5 104
X

1 2 3
0

2

4 104
Y

1 2 3
0

5000

(a)

1

1 2 3
0

1

2 105
2

1 2 3
0

1

2 105
3

1 2 3
0

5

10 104
4

1 2 3
0

1

2 105
5

1 2 3
0

1

2 105
6

1 2 3
0

5

10 104
7

1 2 3
0

1

2 105

8

1 2 3
0

1

2 105
9

1 2 3
0

5

10 104
10

1 2 3
0

5

10 104
11

1 2 3
0

1

2 105
12

1 2 3
0

5

10 104
13

1 2 3
0

5

10 104
14

1 2 3
0

5

10 104

15

1 2 3
0

5

10 104
16

1 2 3
0

5

10 104
17

1 2 3
0

5

10 104
18

1 2 3
0

5

10 104
19

1 2 3
0

5

10 104
X

1 2 3
0

2

4 104
Y

1 2 3
0

5000

(b)

Figure B.3: Number of CpGs (y-axis) with one, two or three observation days (x-axis)
for each chromosome in (a) WT and (b) Tet TKO data.
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(a)

(b)

Figure B.4: Average number of single CpG independent samples, i.e, depth sequenc-
ing, (y-axis) per day (x-axis) for each chromosome in WT and Tet TKO data.
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(a)

(b)

Figure B.5: Bar plots for the maintenance (red), de novo (blue) and hydroxylation
(yellow) e�ciencies over time taken by BI method for each individual chromosome in
(a) WT and (b) Tet KO data.
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(a)

(b)

Figure B.6: Bar plots for the hidden states’ levels over time of each individual chro-
mosome in (a) WT and (b) Tet TKO data. Red = symmetric methylated CpG (mm
- 5mC/5mC), yellow = 5hmC in all possible combinations (toth - 5hmC/C, C/5hmC,
5hmC/5mC, 5mC/5hmC, 5hmC/5hmC), green = hemi methylated CpGs (hemi -
5mC/C or C/5mC), blue = unmethylated CpGs (C/C)



155 B.4. ESCs Chromosomes’ Results

Figure B.7: E�ciency profiles of the 25 most frequent repetitive elements in WT
ES cells. Elements are presented in decreasing order, most frequent left top, least
frequent right bottom. Annotation according to UCSC. Red = maintenance, blue =
de novo, yellow = hydroxylation.
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Figure B.8: Methylation level at the 25 most frequent repetitive elements in our
analysis for WT cells. Elements are presented in decreasing order, most frequent
left top, least frequent right bottom. Annotation according to UCSC. Red = fully
methylated CpGs (5mC/5mC), green = hemimethylated CpGs (5mC/C or C/5mC),
yellow = 5hmC, blue = unmethylated CpGs (C/C).
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Figure B.9: Level and distribution of 5hmC across the 25 across frequent repetitive
elements in WT cells. Elements are presented in decreasing order, most frequent left
top, least frequent right bottom. Annotation according to UCSC.
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Figure B.10: E�ciency profiles of the 25 most frequent repetitive elements in our
analysis for Tet TKO cells. Elements are presented in decreasing order, most fre-
quent left top, least frequent right bottom. Annotation according to UCSC. Red =
maintenance, blue = de novo.
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Figure B.11: Modification levels of the 25 most frequent repetitive elements in our
analysis for Tet TKO cells. Elements are presented in decreasing order, most frequent
left top, least frequent right bottom. Annotation according to UCSC. Red = fully
methylated CpGs (5mC/5mC), green = hemimethylated CpGs (5mC/C or C/5mC),
blue = unmethylated CpGs (C/C).
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Schwarz, David Ibberson, Richard Paul Carmouche, Vladimir Benes, Frank
Gannon, and George Reid. Transient cyclical methylation of promoter dna.
Nature, 452(7183):112, 2008.

[44] Chantriolnt-Andreas Kapourani and Guido Sanguinetti. Higher order methyla-
tion features for clustering and prediction in epigenomic studies. Bioinformatics,
32(17):i405–i412, 2016.

[45] Matthew W Kellinger, Chun-Xiao Song, Jenny Chong, Xing-Yu Lu, Chuan He,
and Dong Wang. 5-formylcytosine and 5-carboxylcytosine reduce the rate and
substrate specificity of rna polymerase ii transcription. Nature Structural and
Molecular Biology, 19(8):831, 2012.

[46] Gun-Do Kim, Jingwei Ni, Nicole Kelesoglu, Richard J Roberts, and Sri-
harsa Pradhan. Co-operation and communication between the human main-
tenance and de novo dna (cytosine-5) methyltransferases. The EMBO journal,
21(15):4183–4195, 2002.
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The gem mapper: fast, accurate and versatile alignment by filtration. Nature
methods, 9(12):1185, 2012.

[63] Marcel Martin. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet. journal, 17(1):pp–10, 2011.

[64] Daniel McNeish. On using bayesian methods to address small sample prob-
lems. Structural Equation Modeling: A Multidisciplinary Journal, 23(5):750–
773, 2016.

[65] Daniela Meilinger, Karin Fellinger, Sebastian Bultmann, Ulrich Rothbauer,
Ian Marc Bonapace, Wolfgang EF Klinkert, Fabio Spada, and Heinrich Leon-
hardt. Np95 interacts with de novo dna methyltransferases, dnmt3a and
dnmt3b, and mediates epigenetic silencing of the viral cmv promoter in em-
bryonic stem cells. EMBO reports, 10(11):1259–1264, 2009.



166 Bibliography
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