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Abstract - This paper presents two types of integer codes capable of correcting burst 

asymmetric errors within a byte. The presented codes are constructed with the help of a 

computer and are very efficient in terms of redundancy. The results of a computer search 

have shown that, for practical data lengths up to 4096 bits, the presented codes use up to 

two check-bits less than the best burst asymmetric error correcting codes. Besides this, it is 

shown that the presented codes are suitable for implementation on modern processors. 
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1. Introduction 
 Most classes of channel codes have been developed for use on binary symmetric channel, 

where the error probabilities 1 → 0 and 0 → 1 are equal. However, in certain systems the error 
statistics are different. For instance, in optical networks without optical amplifiers (e.g. access 
networks) photons may fade or fail to be detected, but new photons cannot be generated. Hence, 
if the receiver operates correctly, only asymmetric (1 → 0)  errors can occur [1], [2]. On the 
other hand, in WOM memories, such as digital optical disks, 1 → 0 errors are not possible. The 
reason is that in these systems the l's correspond to the holes burned into the coating [3]. So, 
once a 1 is written in a bit position, it cannot be changed back into a 0. 

With this in mind, in this paper, we present two types of integer codes capable of correcting 
l-bit burst asymmetric errors within a b-bit byte (Bl/bA errors). The first type of codes (type-I 
integer Bl/bAEC codes) is designed to correct "negative" (1 → 0) Bl/bA errors, while the second 
type of codes (type-II integer Bl/bAEC codes) can correct "positive" (0 → 1) Bl/bA errors. Like all 
other integer codes [4]-[11], the presented ones can be interleaved without delay and without 
using dedicated hardware. Owing to this, they can be transformed into simple codes capable of 
correcting (multiple) burst asymmetric (BA) errors. 

2. Codes Construction 
At the beginning, let us remind the general definition of integer error control codes (IECCs). 

Definition 1.  [9] Let 2 1−bZ = {0, 1,…, 2b - 2} be the ring of integers modulo 2b - 1 and let 
1

0
2b n

nn
a−

=
= ⋅∑iB be the integer representation of a b-bit byte, where na ∈{0, 1} and 1 ≤ i ≤ k.  
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Then, the code C  (b, k, c), defined as 

1
1 2 +1 +12 1

1
( ) = ( , , ..., , ) : (mod 2 1)i i

+
−

=

  ∈ ⋅ ≡ − 
  

∑b

k
k b

k k k
i

C b, k, c B B B B Z C B B                                                           (1) 

is an (kb + b, kb) IECC, where c = (C1, C2, ..., Ck, 1) +1
2 1b
kZ
−

∈ is the coefficient vector and 
Bk+1 2 1−

∈ bZ is an integer. 

To construct type-I and type-II integer Bl/bAEC codes, it is necessary to know the integer 
values of both types of Bl/bA errors. For that purpose, we will rely on the analysis from [4]. In 
that paper, it was shown that the integer value of a l-bit burst error within a b-bit byte is equal to 
e = ±  2r·(2 m ‒ 1), where 0 ≤ r ≤ b ‒ l, 1 ≤ m ≤ 2x-1 and 1 ≤ x ≤ l. Based on this it is easy to 
conclude that the integer values of "negative" and "positive" Bl/bA errors are respectively equal 
to e- = ‒ 2s · (2n ‒ 1) and e+ = 2s · (2n ‒ 1), where 0 ≤ s ≤ b ‒ l, 1 ≤ n ≤ 2u-1 and 1 ≤ u ≤ l. Knowing 
this, we are able to construct both types of integer Bl/bAEC codes. 

2.1. Type-I integer Bl/bAEC codes 
Definition 2. Let x = (B1, B2,…, Bk, Bk+1)

+1
2 1b
kZ
−

∈ , y = (B1, B2,…, Bk, Bk+1)
+1

2 1b
kZ
−

∈ and e =    

y – x = (B1 –   B1, B2 –  B2,…,   Bk –   Bk, Bk+1 –   Bk+1) = (e1,   e2,...,   ek, ek+1)
+1

2 1b
kZ
−

∈ be respectively, the sent  
codeword, the received codeword and the error vector. Then, an (kb + b, kb) IECC is said to be 

type-I integer Bl/bAEC code if it can correct error vectors from the set E = {(e-, 0,..., 0, 0),..., (0, 

0, ..., e-, 0), (0, 0, ..., 0, – e-)} where e-∈{‒ 2s · (2n ‒ 1): 0 ≤ s ≤ b ‒ l, 1 ≤ n ≤ 2u-1, 1 ≤ u ≤ l}. 

Definition 3.   The error set for (kb + b, kb) type-I integer Bl/bAEC codes is defined by 

, , 1 2=b l kξ s s−

where 

( ){ }1
1 = – 2 (2 1) 2 1 : 0 – ,1 2 ,1 ,1s b u

is n C s b l n u l i k− ⋅ − ⋅ − ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤  mod                                                                                     (3) 

( ){ }1
2 = 2 (2 1) 2 1 : 0 – ,1 2 ,1s b us n s b l n u l− ⋅ − − ≤ ≤ ≤ ≤ ≤ ≤  mod                                                                                                                                                                                                                                                                                                                                              (4) 

From the above it is clear that type-I integer Bl/bAEC codes cannot be constructed without 
knowing the values of the Ci's. This fact, however, does not prevent us to state the following 
theorem. 

Theorem 1. The codes defined by (1) can correct all "negative" Bl/bA errors iff there exist k 
mutually different coefficients { }0,1∈ 2 -1biC Z \ such that 

, , 2 2 1b l kξ −  ⋅ − − ⋅ 
-1 ( + ) 1 ( + )l= b l k  

where A denotes the cardinality of A. 

Proof. Observe that the set , ,b l kξ − can be expressed as 
2

, ,
1

b l k i
i

ξ Z− = 
l

=
 

where 
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 = − ⋅ ⋅ − ≤ ≤ ≤ ≤ 

 = ⋅ − ≤ ≤ 

 = − ⋅ + + − ⋅ − ≤ ≤ 
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s b
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≤ ≤
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Now, suppose that the coefficients { }0,1C Z∈ 2 -1bi \ have values such that 
2

1

1

2

2 -1

2

,

,

,
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2 ( ), 2 .

l

i
i

h
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Z
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= ∅
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=

= ⋅ ⋅ − + ≤ ≤

= ⋅ − + ≤ ≤
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1

1

h

h

b h

b h

                                          

In that case, it is easy to show that 
2

, ,
1

2 2 1
l

b l k i
i

ξ Z−

=

 = ⋅ − − ⋅ ∑ -1 ( + ) 1 ( + ).l= b l k  

Conversely, if the codes satisfy the above condition, then we correct all "negative" Bl/bA errors. 

Therefore, these codes are (kb + b, kb) type-I integer Bl/bAEC codes. □ 

2.2. Type-II integer Bl/bAEC codes 

Using the same method as above, we can construct type-II integer Bl/bAEC codes. 

Definition 4. Let x = (B1, B2,…, Bk, Bk+1)
+1

2 1b
kZ
−

∈ , y = (B1, B2,…, Bk, Bk+1)
+1

2 1b
kZ
−

∈ and e =    

y – x = (B1 –   B1, B2 –  B2,…,   Bk –   Bk, Bk+1 –   Bk+1) = (e1,   e2,...,   ek, ek+1)
+1

2 1b
kZ
−

∈ be respectively, the sent  
codeword, the received codeword and the error vector. Then, an (kb + b, kb) IECC is said to be 

type-II integer Bl/bAEC code if it can correct error vectors from the set E = {(e+, 0,..., 0, 0),..., 

(0, 0, ..., e+, 0), (0, 0, ..., 0, – e+)} where e+∈{2s · (2n ‒ 1): 0 ≤ s ≤ b ‒ l, 1 ≤ n ≤ 2u-1, 1 ≤ u ≤ l}. 

Definition 5.   The error set for (kb + b, kb) type-II integer Bl/bAEC codes is defined by 

, , 3 4=b l kξ s s

where 

( ){ }1
3 = 2 (2 1) 2 1 : 0 – ,1 2 ,1 ,1s b u

is n C s b l n u l i k− ⋅ − ⋅ − ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤  mod                                                                                                                        (6) 

( ){ }1
4 = 2 (2 1) 2 1 : 0 – ,1 2 ,1s b us n s b l n u l− − ⋅ − − ≤ ≤ ≤ ≤ ≤ ≤  mod                                                                                                                                                                                                                                                                                                                     (7) 
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As in the previous section, we can state the following. 

Theorem 2. The codes defined by (1) can correct all "positive" Bl/bA errors iff there exist k 

mutually different coefficients { }0,1∈ 2 -1biC Z \ such that 

, , 2 2 1b l kξ +  ⋅ − − ⋅ 
-1 ( + ) 1 ( + )l= b l k . 

Proof. The proof is basically the same as in Theorem 1. Hence, it is omitted. □ 

Since the sets , ,b l kξ − and , ,b l kξ + have the same cardinality, we can state the theorem that relates 

to both types of codes. 

Theorem 3. For any (kb + b, kb) integer Bl/bAEC code it holds that 

2 2 1 .
2 2 1

b

k
 −

≤ − ⋅ − − 
-1 ( + )l b l  

Proof. From Definition 1 we know that the total number of nonzero syndromes is equal to 

2b – 2. On the other hand, from Theorems 1 and 2 we know that the sets , ,b l kξ − and , ,b l kξ + have 

2 2 1 ⋅ − − ⋅ 
-1 ( + ) 1 ( + )l b l k nonzero elements. Hence, we obtain the inequality 

2 2 1 2 2b ⋅ − − ⋅ ≤ − 
-1 ( + ) 1 ( + )l b l k  

wherefrom it follows that 

2 2 1 .
2 2 1

b

k
 −

≤ − ⋅ − − 
-1 ( + )l b l □ 

The last step in constructing both types of codes is to find the Ci's that satisfy the conditions 

of Theorems 1 and 2. For that purpose it is necessary to perform an exhaustive search on all 

possible candidates from the set { }0,1 .2 -1b \Z In this paper, we have restricted ourselves to the 

codes with parameters 3 ≤ l ≤ 5 and 6 ≤ b ≤ 16. The obtained results are shown in Tables 1-3. 

Table 1. Number of coefficients for some integer Bl/bAEC codes obtained via computer search. 
 b = 6 b = 7 b = 8 b = 9 b = 10 b = 11 b = 12 b = 13 b = 14 b = 15 b = 16 

l = 3 
Theoretical bound 2 4 8 15 28 51 94 173 320 594 1109 

Type-I codes 0 1 4 7 12 25 36 98 172 297 601 
Type-II codes 0 1 4 7 12 25 37 98 174 297 601 

l = 4 
Theoretical bound 0 1 2 8 15 27 50 93 171 317 589 

Type-I codes 0 0 0 1 3 10 12 38 68 129 226 
Type-II codes 0 0 0 2 4 9 12 36 67 126 225 

l = 5 
Theoretical bound 0 1 2 2 4 11 27 50 92 170 315 

Type-I codes 0 0 0 0 1 1 4 10 20 41 76 
Type-II codes 0 0 0 0 1 3 5 11 19 41 77 
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Table 2. Coefficients for type-I integer Bl/bAEC codes with parameters 3 ≤ l ≤ 5, b = 16 and k ≤ 128. 
l = 3 

2 9 11 13 17 19 23 25 29 31 37 41 43 47 49 53 
59 61 67 71 73 79 81 83 89 97 99 101 103 105 107 109 

113 117 121 127 131 137 139 143 149 151 153 157 163 167 169 173 
179 181 187 191 193 197 199 207 209 211 221 223 225 227 229 233 
239 241 247 251 253 261 263 271 275 277 279 281 283 285 289 307 
311 313 317 319 323 325 331 337 341 347 349 353 359 361 367 369 
373 377 379 383 387 389 391 401 403 407 409 419 421 423 425 431 
433 437 441 443 449 451 457 463 467 473 477 479 481 499 503 509 

l = 4 
2 17 19 21 23 25 29 31 37 41 43 47 53 59 61 67 
71 73 79 81 83 89 97 101 103 107 109 113 121 127 131 149 

151 157 163 167 169 173 179 181 191 199 211 223 227 229 233 239 
241 245 251 269 271 277 283 289 307 311 317 323 331 337 349 353 
357 359 361 383 391 409 419 429 431 433 437 449 467 483 493 499 
509 521 551 557 563 575 577 579 593 601 609 629 647 653 661 673 
683 697 701 713 727 733 743 761 773 787 809 817 883 887 893 899 
901 907 929 983 989 999 1009 1013 1019 1049 1051 1061 1069 1073 1087 1091 

l = 5 
2 33 35 37 41 43 47 53 59 61 67 71 73 79 83 97 

101 107 113 117 127 137 149 157 163 179 227 233 251 271 283 289 
311 313 347 349 383 449 453 545 557 563 593 631 651 859 877 905 
911 941 969 1009 1011 1061 1235 1249 1259 1613 1787 1889 2019 2187 2317 2489 

3071 3571 4651 4903 7577 8051 10751 10867 11677 15103 24431 24567     
                
                
                

     

Table 3. Coefficients for type-II integer Bl/bAEC codes with parameters 3 ≤ l ≤ 5, b = 16 and k ≤ 128. 
l = 3 

9 11 13 17 19 23 25 29 31 37 41 43 47 49 53 59 
61 67 71 73 79 81 83 89 97 99 101 103 105 107 109 11 

117 121 127 131 137 139 143 149 151 153 157 163 167 169 173 179 
181 187 191 193 197 199 207 209 211 221 223 225 227 229 233 239 
241 247 251 253 261 263 271 275 277 279 281 283 285 289 307 311 
313 317 319 323 325 331 337 341 347 349 353 359 361 367 369 373 
377 379 383 387 389 391 401 403 407 409 419 421 423 425 431 433 
437 441 443 449 451 457 463 467 473 477 479 481 499 503 509 517 

l = 4 
17 19 21 23 25 29 31 37 41 43 47 53 59 61 67 71 
73 79 81 83 89 97 101 103 107 109 113 121 127 131 149 151 

157 163 167 169 173 179 181 191 199 211 223 227 229 233 239 241 
245 251 269 271 277 283 289 307 311 317 323 331 337 349 353 357 
359 361 383 391 409 419 429 431 433 437 449 467 483 493 499 509 
521 551 557 563 575 577 579 593 601 609 629 647 653 661 673 683 
697 701 713 727 733 743 761 773 787 809 817 819 883 887 893 899 
901 907 929 983 989 999 1009 1013 1019 1049 1051 1061 1069 1073 1087 1091 

l = 5 
33 35 37 41 43 47 53 59 61 67 71 73 79 83 89 97 

101 107 113 117 127 137 149 157 163 179 227 233 251 271 283 311 
347 349 357 383 449 453 521 545 557 563 593 723 739 743 837 859 
877 905 911 967 1009 1045 1061 1289 1559 1613 1787 1889 2021 2027 2321 2387 

2489 3677 3821 4093 4693 5299 6143 6653 6971 10069 11677 23551 24503    
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3. Error Correction Procedure 

From Definition 1 it is easy to conclude that there exists only one syndrome. It is generated 

using the expression 

+1 +1 2k kS = − −(mod 1)bB B                                                                                                                                                     (8) 

after which the decoder will either accept the recieved codeword (S = 0) or try to recover the 
original one (S ≠ 0). In the latter case, the decoder will lookup the syndrome table to get the 

error correction data. From Theorems 1-2, we see that the syndrome table has , , , ,b l k b l kξ ξ+ += =  

, , 2 2 1b l kξ  = ⋅ − − ⋅ 
-1 ( + ) 1 ( + )l b l k entries, where each entry describes a unique relationship 

between the syndrome (element of the set ξb,l,k), error location (i) and error vector (e) (Fig. 1). 

So, if the elements of ξb,l,k are sorted in increasing order, the decoder will find the appropriate 

entry after nTL table lookups and nTL comparisons TL 2 , ,(1 2)b l kn log ξ ≤ ≤ +   [12]. In the next 

step, using the error correction data, the decoder will execute the operation 

mod 2 1 +1e= − − ≤ ≤( 1), ;b
i iB B i k

where e = e- or e = e+. 

4. Evaluation and Implementation Strategy 
By analyzing the data from Table 1 we note that both types of codes protect approximately 

the same number of data bits. More precisely, for values b = 6, 7, 8, 11 and 15 type-I codes are 
slightly more rate-efficient than type-II codes, while for values b = 9, 10 and 12 the situation is 
reversed. In all other cases (b = 13, 14 and 16), the mentioned codes are equally effecient in 
terms of code rate. 

In addition to the above, Table 1 shows the theoretical bounds on the number of the Ci's. 
Although these bounds may indicate that the proposed codes are rate-inefficient, the truth is 
quite the opposite. This confirms the results of the comparison of the proposed codes with the 
best burst asymmetric error correcting codes [11]. Unlike the proposed codes, these codes use     
l + log2 K + (1/2) ·  log2 log2 K check bits, where K is the number of data bits. From this it is easy 
to show that, for practical data lengths up to 4096 bits, the proposed codes require one or two 
check-bits less than the codes from [11] (Table 4). The similar applies when comparing the 
proposed codes with integer codes capable of correcting l-bit burst errors within a b-bit byte [4]. 

 

Fig. 1. Bit-width of one syndrome table entry. 
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In this case, for all values of l and K, except l  = 3 and K = 512, the proposed codes require one 
or two check-bits less than the codes from [4].  

Besides being rate-efficient, the proposed codes are extremely suitable for implementation 

on modern processors. To illustrate this, suppose that the decoder implemented on a ten-core 

processor (Fig. 2) with the following specifications [13], [14]: 

1) clock rate: CR = 3.1·109 Hz, 

2) integer addition/subtraction operation: 1 cycle latency, 

3) integer multiplication operation: 3 cycles latency, 

4) 128-bit shift operation: 1 cycle latency, 

5) modulo reduction operation: 1 cycle latency, 

6) comparison operation: 1 cycle latency, 

7) access to the L1 cache (64 KB per core): 4 cycles latency, 

8) access to the L2 cache (256 KB per core): 12 cycles latency, 

9) access to the L3 cache (25 MB shared): 34 cycles latency. 

In addition, let us suppose that the data word has K = 10·b·k = 160·k bits, that the coefficients Ci 

(Tables 2 and 3) are stored in each of the ten L1 caches and that the syndrome table is placed in 

each of the ten L2 caches. In that case, the decoder will perform the following operations: 

 

Fig. 2. Block diagram of ten-core processor. 
. 
  

Table 4. Check-bit lengths of the proposed codes and the codes from [4] and [11]. 
Data word 

length 
(in bits) 

Type-I Integer 
Bl/bAEC Codes 

Type-II Integer 
Bl/bAEC Codes Codes from [4] Codes from [11] 

l = 3 l = 4 l = 5 l = 3 l = 4 l = 5 l = 3 l = 4 l = 5 l = 3 l = 4 l = 5 
K = 128 11 12 13 11 12 13 12 13 14 12 13 14 
K = 256 11 13 14 11 13 14 13 14 15 13 14 15 
K = 512 13 14 15 13 14 15 13 15 16 14 15 16 

K = 1024 13 15 16 13 15 16 14 16 17 15 16 17 
K = 2048 14 16 17 14 16 17 15 17 18 16 17 18 
K = 4096 15 17 18 15 17 18 16 18 19 17 18 19 
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• Core 1 

+1 ⋅=
= ⋅ −∑(1) 16

10 ( -1)+11
(mod 2 1)

k
k i ii

B C B
                                                                                                                                                                                                                                                                                                                                                                                                       (10) 

• Core 2 

+1 ⋅=
= ⋅ −∑(2) 16

10 ( -1)+21
(mod 2 1)

k
k i ii

B C B
                                                                                                                                                   (11) 

          
• Core 10 

+1 ⋅=
= ⋅ −∑(10) 16

10 ( -1)+101
(mod 2 1)

k
k i ii

B C B
                                                  (12) 

If we add to this K/128 shift operations, we conclude that the decoder requires T1 = 8·k + K/128 

clock cycles (k accesses to the L1 cache, k integer multiplications, k ‒ 1 integer additions, K/128 

shift operations and 1 modulo reduction) to compute all check-bytes. After finishing this task, 

the decoder will take T2 = 2 clock cycles (1 integer subtraction and 1 modulo reduction) to 

calculate the values: 

• Core 1 
1 1 16
+ 1 + 1 2k kS = − −(1) ( ) ( )[ ] (mod 1)B B

                                                                                                                      (13) 

• Core 2 
2 2 16
+ 1 + 1 2k kS = − −(2) ( ) ( )[ ] (mod 1)B B

                                                                                                      (14) 

        

• Core 10 
10 10 16
+ 1 + 1 2k kS = − −(10) ( ) ( )[ ] (mod 1)B B

                                                                                                 (15) 

As explained in the previsous section, if the data are received in error, the decoder will perform 

nTL table lookups, nTL comparisons, 2 integer additions and 1 modulo reduction. In our case, ten 

such operations will be executed in parallel in T3 = 13·nTL + 3 clock cycles. So, if we sum up all 

the processing times, we come to the conclusion that the decoder requires 

total 1 2 3 TLT = T + T + T = 8· + /128 + 13· + 5k K n

clock cycles to process K data bits, i.e. one second to decode 
9

R

total TL

3.1 10 160
=  =

T / 8· +160 /128 + 13· + 5
C k

G
K k k n

⋅ ⋅ ⋅
⋅

( )


data bits. By substituting the values of k and nTLmax (Table 5) in (17) we obtain that Gmin = 40.08 

Gbps and Gmax = 49.70 Gbps. This means that all considered codes have the potential to be used 

in various real-time systems (e.g. 10G and 40G networks). In addition, from (10)-(15) we 

observe that all analyzed codes are interleaved at the byte level. Thanks to this, they are able to 

correct (mulitple) BA errors up to l bits. 
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5. Conclusion 
This paper proposed two types of integer codes capable of correcting burst asymmetric 

errors within a byte. The proposed codes are constructed with the help of a computer and are 

very efficient in terms of redundancy. The results of an exhaustive search have shown that, for 

practical data lengths up to 4096 bits, the proposed codes use up to two check-bit less than the 

corresponding codes of similar properties. Besides this, the proposed codes have the ability to be 

interleaved without delay and without using additional hardware. In this way, it is possible to 

construct simple codes capable of correcting (multiple) burst asymmetric errors. Such codes 

could be applied to various practical channels, especially to those that display asymmetric errors. 
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