

This is the peer reviewed version of the following article:

Radonjic, A., Vujicic, V., 2019. Integer Codes Correcting Burst Asymmetric Errors

Within a Byte. IETE Journal of Research.

https://doi.org/10.1080/03772063.2019.1593056

This work is licensed under a Creative Commons Attribution Non Commercial No

Derivatives 4.0 license

.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Serbian Academy of Science and Arts Digital Archive (DAIS)

https://core.ac.uk/display/225624107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1080/03772063.2019.1593056
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

 1

 Integer Codes Correcting Burst Asymmetric
Errors within a Byte

Aleksandar Radonjic* and Vladimir Vujicic

Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
E-mails: sasa_radonjic@yahoo.com, vujicicv@yahoo.com

Abstract - This paper presents two types of integer codes capable of correcting burst

asymmetric errors within a byte. The presented codes are constructed with the help of a

computer and are very efficient in terms of redundancy. The results of a computer search

have shown that, for practical data lengths up to 4096 bits, the presented codes use up to

two check-bits less than the best burst asymmetric error correcting codes. Besides this, it is

shown that the presented codes are suitable for implementation on modern processors.

Keywords - Integer codes, error correction, burst asymmetric errors, multicore processors.

1. Introduction
 Most classes of channel codes have been developed for use on binary symmetric channel,

where the error probabilities 1 → 0 and 0 → 1 are equal. However, in certain systems the error
statistics are different. For instance, in optical networks without optical amplifiers (e.g. access
networks) photons may fade or fail to be detected, but new photons cannot be generated. Hence,
if the receiver operates correctly, only asymmetric (1 → 0) errors can occur [1], [2]. On the
other hand, in WOM memories, such as digital optical disks, 1 → 0 errors are not possible. The
reason is that in these systems the l's correspond to the holes burned into the coating [3]. So,
once a 1 is written in a bit position, it cannot be changed back into a 0.

With this in mind, in this paper, we present two types of integer codes capable of correcting
l-bit burst asymmetric errors within a b-bit byte (Bl/bA errors). The first type of codes (type-I
integer Bl/bAEC codes) is designed to correct "negative" (1 → 0) Bl/bA errors, while the second
type of codes (type-II integer Bl/bAEC codes) can correct "positive" (0 → 1) Bl/bA errors. Like all
other integer codes [4]-[11], the presented ones can be interleaved without delay and without
using dedicated hardware. Owing to this, they can be transformed into simple codes capable of
correcting (multiple) burst asymmetric (BA) errors.

2. Codes Construction
At the beginning, let us remind the general definition of integer error control codes (IECCs).

Definition 1. [9] Let 2 1−bZ = {0, 1,…, 2b - 2} be the ring of integers modulo 2b - 1 and let
1

0
2b n

nn
a−

=
= ⋅∑iB be the integer representation of a b-bit byte, where na ∈{0, 1} and 1 ≤ i ≤ k.

 2

Then, the code C (b, k, c), defined as

1
1 2 +1 +12 1

1
() = (, , ..., ,) : (mod 2 1)i i

+
−

=

 ∈ ⋅ ≡ −

∑b

k
k b

k k k
i

C b, k, c B B B B Z C B B (1)

is an (kb + b, kb) IECC, where c = (C1, C2, ..., Ck, 1) +1
2 1b
kZ
−

∈ is the coefficient vector and
Bk+1 2 1−

∈ bZ is an integer.

To construct type-I and type-II integer Bl/bAEC codes, it is necessary to know the integer
values of both types of Bl/bA errors. For that purpose, we will rely on the analysis from [4]. In
that paper, it was shown that the integer value of a l-bit burst error within a b-bit byte is equal to
e = ± 2r·(2 m ‒ 1), where 0 ≤ r ≤ b ‒ l, 1 ≤ m ≤ 2x-1 and 1 ≤ x ≤ l. Based on this it is easy to
conclude that the integer values of "negative" and "positive" Bl/bA errors are respectively equal
to e- = ‒ 2s · (2n ‒ 1) and e+ = 2s · (2n ‒ 1), where 0 ≤ s ≤ b ‒ l, 1 ≤ n ≤ 2u-1 and 1 ≤ u ≤ l. Knowing
this, we are able to construct both types of integer Bl/bAEC codes.

2.1. Type-I integer Bl/bAEC codes
Definition 2. Let x = (B1, B2,…, Bk, Bk+1)

+1
2 1b
kZ
−

∈ , y = (B1, B2,…, Bk, Bk+1)
+1

2 1b
kZ
−

∈ and e =

y – x = (B1 – B1, B2 – B2,…, Bk – Bk, Bk+1 – Bk+1) = (e1, e2,..., ek, ek+1)
+1

2 1b
kZ
−

∈ be respectively, the sent
codeword, the received codeword and the error vector. Then, an (kb + b, kb) IECC is said to be

type-I integer Bl/bAEC code if it can correct error vectors from the set E = {(e-, 0,..., 0, 0),..., (0,

0, ..., e-, 0), (0, 0, ..., 0, – e-)} where e-∈{‒ 2s · (2n ‒ 1): 0 ≤ s ≤ b ‒ l, 1 ≤ n ≤ 2u-1, 1 ≤ u ≤ l}.

Definition 3. The error set for (kb + b, kb) type-I integer Bl/bAEC codes is defined by

, , 1 2=b l kξ s s− (2)

where

(){ }1
1 = – 2 (2 1) 2 1 : 0 – ,1 2 ,1 ,1s b u

is n C s b l n u l i k− ⋅ − ⋅ − ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ mod (3)

(){ }1
2 = 2 (2 1) 2 1 : 0 – ,1 2 ,1s b us n s b l n u l− ⋅ − − ≤ ≤ ≤ ≤ ≤ ≤ mod (4)

From the above it is clear that type-I integer Bl/bAEC codes cannot be constructed without
knowing the values of the Ci's. This fact, however, does not prevent us to state the following
theorem.

Theorem 1. The codes defined by (1) can correct all "negative" Bl/bA errors iff there exist k
mutually different coefficients { }0,1∈ 2 -1biC Z \ such that

, , 2 2 1b l kξ − ⋅ − − ⋅
-1 (+) 1 (+)l= b l k

where A denotes the cardinality of A.

Proof. Observe that the set , ,b l kξ − can be expressed as
2

, ,
1

b l k i
i

ξ Z− =
l

=

where

 3

{ }
{ }
{ }
{ }

1

2

3

4

2 -1

2 1 (2 1) 0 –1, 1 ,

2 1 (2 1) 0 –1 ,

2 3 (2 1) 0 – 2, 1 ,

2 3 (2 1) 0 – 2 ,

2 2 1, 2 3, , 2 1 (2 1) 0

i

i

i

Z C s b i k

Z s b

Z C s b i k

Z s b

Z C s

 = − ⋅ ⋅ − ≤ ≤ ≤ ≤

 = ⋅ − ≤ ≤

 = − ⋅ ⋅ − ≤ ≤ ≤ ≤

 = ⋅ − ≤ ≤

 = − ⋅ + + − ⋅ − ≤ ≤

1 1

() mod :

() mod :

() mod :

() mod :

(...) mod :

s b

s b

s b

s b

s l- l- l b
l { }
{ }2

– , 1 ,

2 2 1, 2 3, , 2 1 (2 1) 0 – .

b l i k

Z s b l

≤ ≤

 = ⋅ + + − − ≤ ≤
1 1(...) mod :s l- l- l b

l

Now, suppose that the coefficients { }0,1C Z∈ 2 -1bi \ have values such that
2

1

1

2

2 -1

2

,

,

,

2 (), 2 ,

2 (), 2 .

l

i
i

h

h

Z

Z k b

Z b

Z k h l

Z h l

=

= ∅

= ⋅

=

= ⋅ ⋅ − + ≤ ≤

= ⋅ − + ≤ ≤

-2

-2

1

1

h

h

b h

b h

In that case, it is easy to show that
2

, ,
1

2 2 1
l

b l k i
i

ξ Z−

=

 = ⋅ − − ⋅ ∑ -1 (+) 1 (+).l= b l k

Conversely, if the codes satisfy the above condition, then we correct all "negative" Bl/bA errors.

Therefore, these codes are (kb + b, kb) type-I integer Bl/bAEC codes. □

2.2. Type-II integer Bl/bAEC codes

Using the same method as above, we can construct type-II integer Bl/bAEC codes.

Definition 4. Let x = (B1, B2,…, Bk, Bk+1)
+1

2 1b
kZ
−

∈ , y = (B1, B2,…, Bk, Bk+1)
+1

2 1b
kZ
−

∈ and e =

y – x = (B1 – B1, B2 – B2,…, Bk – Bk, Bk+1 – Bk+1) = (e1, e2,..., ek, ek+1)
+1

2 1b
kZ
−

∈ be respectively, the sent
codeword, the received codeword and the error vector. Then, an (kb + b, kb) IECC is said to be

type-II integer Bl/bAEC code if it can correct error vectors from the set E = {(e+, 0,..., 0, 0),...,

(0, 0, ..., e+, 0), (0, 0, ..., 0, – e+)} where e+∈{2s · (2n ‒ 1): 0 ≤ s ≤ b ‒ l, 1 ≤ n ≤ 2u-1, 1 ≤ u ≤ l}.

Definition 5. The error set for (kb + b, kb) type-II integer Bl/bAEC codes is defined by

, , 3 4=b l kξ s s+ (5)

where

(){ }1
3 = 2 (2 1) 2 1 : 0 – ,1 2 ,1 ,1s b u

is n C s b l n u l i k− ⋅ − ⋅ − ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ mod (6)

(){ }1
4 = 2 (2 1) 2 1 : 0 – ,1 2 ,1s b us n s b l n u l− − ⋅ − − ≤ ≤ ≤ ≤ ≤ ≤ mod (7)

 4

As in the previous section, we can state the following.

Theorem 2. The codes defined by (1) can correct all "positive" Bl/bA errors iff there exist k

mutually different coefficients { }0,1∈ 2 -1biC Z \ such that

, , 2 2 1b l kξ + ⋅ − − ⋅
-1 (+) 1 (+)l= b l k .

Proof. The proof is basically the same as in Theorem 1. Hence, it is omitted. □

Since the sets , ,b l kξ − and , ,b l kξ + have the same cardinality, we can state the theorem that relates

to both types of codes.

Theorem 3. For any (kb + b, kb) integer Bl/bAEC code it holds that

2 2 1 .
2 2 1

b

k
 −

≤ − ⋅ − −
-1 (+)l b l

Proof. From Definition 1 we know that the total number of nonzero syndromes is equal to

2b – 2. On the other hand, from Theorems 1 and 2 we know that the sets , ,b l kξ − and , ,b l kξ + have

2 2 1 ⋅ − − ⋅
-1 (+) 1 (+)l b l k nonzero elements. Hence, we obtain the inequality

2 2 1 2 2b ⋅ − − ⋅ ≤ −
-1 (+) 1 (+)l b l k

wherefrom it follows that

2 2 1 .
2 2 1

b

k
 −

≤ − ⋅ − −
-1 (+)l b l □

The last step in constructing both types of codes is to find the Ci's that satisfy the conditions

of Theorems 1 and 2. For that purpose it is necessary to perform an exhaustive search on all

possible candidates from the set { }0,1 .2 -1b \Z In this paper, we have restricted ourselves to the

codes with parameters 3 ≤ l ≤ 5 and 6 ≤ b ≤ 16. The obtained results are shown in Tables 1-3.

Table 1. Number of coefficients for some integer Bl/bAEC codes obtained via computer search.
 b = 6 b = 7 b = 8 b = 9 b = 10 b = 11 b = 12 b = 13 b = 14 b = 15 b = 16

l = 3
Theoretical bound 2 4 8 15 28 51 94 173 320 594 1109

Type-I codes 0 1 4 7 12 25 36 98 172 297 601
Type-II codes 0 1 4 7 12 25 37 98 174 297 601

l = 4
Theoretical bound 0 1 2 8 15 27 50 93 171 317 589

Type-I codes 0 0 0 1 3 10 12 38 68 129 226
Type-II codes 0 0 0 2 4 9 12 36 67 126 225

l = 5
Theoretical bound 0 1 2 2 4 11 27 50 92 170 315

Type-I codes 0 0 0 0 1 1 4 10 20 41 76
Type-II codes 0 0 0 0 1 3 5 11 19 41 77

 5

Table 2. Coefficients for type-I integer Bl/bAEC codes with parameters 3 ≤ l ≤ 5, b = 16 and k ≤ 128.
l = 3

2 9 11 13 17 19 23 25 29 31 37 41 43 47 49 53
59 61 67 71 73 79 81 83 89 97 99 101 103 105 107 109

113 117 121 127 131 137 139 143 149 151 153 157 163 167 169 173
179 181 187 191 193 197 199 207 209 211 221 223 225 227 229 233
239 241 247 251 253 261 263 271 275 277 279 281 283 285 289 307
311 313 317 319 323 325 331 337 341 347 349 353 359 361 367 369
373 377 379 383 387 389 391 401 403 407 409 419 421 423 425 431
433 437 441 443 449 451 457 463 467 473 477 479 481 499 503 509

l = 4
2 17 19 21 23 25 29 31 37 41 43 47 53 59 61 67
71 73 79 81 83 89 97 101 103 107 109 113 121 127 131 149

151 157 163 167 169 173 179 181 191 199 211 223 227 229 233 239
241 245 251 269 271 277 283 289 307 311 317 323 331 337 349 353
357 359 361 383 391 409 419 429 431 433 437 449 467 483 493 499
509 521 551 557 563 575 577 579 593 601 609 629 647 653 661 673
683 697 701 713 727 733 743 761 773 787 809 817 883 887 893 899
901 907 929 983 989 999 1009 1013 1019 1049 1051 1061 1069 1073 1087 1091

l = 5
2 33 35 37 41 43 47 53 59 61 67 71 73 79 83 97

101 107 113 117 127 137 149 157 163 179 227 233 251 271 283 289
311 313 347 349 383 449 453 545 557 563 593 631 651 859 877 905
911 941 969 1009 1011 1061 1235 1249 1259 1613 1787 1889 2019 2187 2317 2489

3071 3571 4651 4903 7577 8051 10751 10867 11677 15103 24431 24567

Table 3. Coefficients for type-II integer Bl/bAEC codes with parameters 3 ≤ l ≤ 5, b = 16 and k ≤ 128.
l = 3

9 11 13 17 19 23 25 29 31 37 41 43 47 49 53 59
61 67 71 73 79 81 83 89 97 99 101 103 105 107 109 11

117 121 127 131 137 139 143 149 151 153 157 163 167 169 173 179
181 187 191 193 197 199 207 209 211 221 223 225 227 229 233 239
241 247 251 253 261 263 271 275 277 279 281 283 285 289 307 311
313 317 319 323 325 331 337 341 347 349 353 359 361 367 369 373
377 379 383 387 389 391 401 403 407 409 419 421 423 425 431 433
437 441 443 449 451 457 463 467 473 477 479 481 499 503 509 517

l = 4
17 19 21 23 25 29 31 37 41 43 47 53 59 61 67 71
73 79 81 83 89 97 101 103 107 109 113 121 127 131 149 151

157 163 167 169 173 179 181 191 199 211 223 227 229 233 239 241
245 251 269 271 277 283 289 307 311 317 323 331 337 349 353 357
359 361 383 391 409 419 429 431 433 437 449 467 483 493 499 509
521 551 557 563 575 577 579 593 601 609 629 647 653 661 673 683
697 701 713 727 733 743 761 773 787 809 817 819 883 887 893 899
901 907 929 983 989 999 1009 1013 1019 1049 1051 1061 1069 1073 1087 1091

l = 5
33 35 37 41 43 47 53 59 61 67 71 73 79 83 89 97

101 107 113 117 127 137 149 157 163 179 227 233 251 271 283 311
347 349 357 383 449 453 521 545 557 563 593 723 739 743 837 859
877 905 911 967 1009 1045 1061 1289 1559 1613 1787 1889 2021 2027 2321 2387

2489 3677 3821 4093 4693 5299 6143 6653 6971 10069 11677 23551 24503

 6

3. Error Correction Procedure

From Definition 1 it is easy to conclude that there exists only one syndrome. It is generated

using the expression

+1 +1 2k kS = − −(mod 1)bB B (8)

after which the decoder will either accept the recieved codeword (S = 0) or try to recover the
original one (S ≠ 0). In the latter case, the decoder will lookup the syndrome table to get the

error correction data. From Theorems 1-2, we see that the syndrome table has , , , ,b l k b l kξ ξ+ += =

, , 2 2 1b l kξ = ⋅ − − ⋅
-1 (+) 1 (+)l b l k entries, where each entry describes a unique relationship

between the syndrome (element of the set ξb,l,k), error location (i) and error vector (e) (Fig. 1).

So, if the elements of ξb,l,k are sorted in increasing order, the decoder will find the appropriate

entry after nTL table lookups and nTL comparisons TL 2 , ,(1 2)b l kn log ξ ≤ ≤ + [12]. In the next

step, using the error correction data, the decoder will execute the operation

mod 2 1 +1e= − − ≤ ≤(1), ;b
i iB B i k (9)

where e = e- or e = e+.

4. Evaluation and Implementation Strategy
By analyzing the data from Table 1 we note that both types of codes protect approximately

the same number of data bits. More precisely, for values b = 6, 7, 8, 11 and 15 type-I codes are
slightly more rate-efficient than type-II codes, while for values b = 9, 10 and 12 the situation is
reversed. In all other cases (b = 13, 14 and 16), the mentioned codes are equally effecient in
terms of code rate.

In addition to the above, Table 1 shows the theoretical bounds on the number of the Ci's.
Although these bounds may indicate that the proposed codes are rate-inefficient, the truth is
quite the opposite. This confirms the results of the comparison of the proposed codes with the
best burst asymmetric error correcting codes [11]. Unlike the proposed codes, these codes use
l + log2 K + (1/2) · log2 log2 K check bits, where K is the number of data bits. From this it is easy
to show that, for practical data lengths up to 4096 bits, the proposed codes require one or two
check-bits less than the codes from [11] (Table 4). The similar applies when comparing the
proposed codes with integer codes capable of correcting l-bit burst errors within a b-bit byte [4].

Fig. 1. Bit-width of one syndrome table entry.

 7

In this case, for all values of l and K, except l = 3 and K = 512, the proposed codes require one
or two check-bits less than the codes from [4].

Besides being rate-efficient, the proposed codes are extremely suitable for implementation

on modern processors. To illustrate this, suppose that the decoder implemented on a ten-core

processor (Fig. 2) with the following specifications [13], [14]:

1) clock rate: CR = 3.1·109 Hz,

2) integer addition/subtraction operation: 1 cycle latency,

3) integer multiplication operation: 3 cycles latency,

4) 128-bit shift operation: 1 cycle latency,

5) modulo reduction operation: 1 cycle latency,

6) comparison operation: 1 cycle latency,

7) access to the L1 cache (64 KB per core): 4 cycles latency,

8) access to the L2 cache (256 KB per core): 12 cycles latency,

9) access to the L3 cache (25 MB shared): 34 cycles latency.

In addition, let us suppose that the data word has K = 10·b·k = 160·k bits, that the coefficients Ci

(Tables 2 and 3) are stored in each of the ten L1 caches and that the syndrome table is placed in

each of the ten L2 caches. In that case, the decoder will perform the following operations:

Fig. 2. Block diagram of ten-core processor.
.

Table 4. Check-bit lengths of the proposed codes and the codes from [4] and [11].
Data word

length
(in bits)

Type-I Integer
Bl/bAEC Codes

Type-II Integer
Bl/bAEC Codes Codes from [4] Codes from [11]

l = 3 l = 4 l = 5 l = 3 l = 4 l = 5 l = 3 l = 4 l = 5 l = 3 l = 4 l = 5
K = 128 11 12 13 11 12 13 12 13 14 12 13 14
K = 256 11 13 14 11 13 14 13 14 15 13 14 15
K = 512 13 14 15 13 14 15 13 15 16 14 15 16

K = 1024 13 15 16 13 15 16 14 16 17 15 16 17
K = 2048 14 16 17 14 16 17 15 17 18 16 17 18
K = 4096 15 17 18 15 17 18 16 18 19 17 18 19

 8

• Core 1

+1 ⋅=
= ⋅ −∑(1) 16

10 (-1)+11
(mod 2 1)

k
k i ii

B C B
 (10)

• Core 2

+1 ⋅=
= ⋅ −∑(2) 16

10 (-1)+21
(mod 2 1)

k
k i ii

B C B
 (11)

• Core 10

+1 ⋅=
= ⋅ −∑(10) 16

10 (-1)+101
(mod 2 1)

k
k i ii

B C B
 (12)

If we add to this K/128 shift operations, we conclude that the decoder requires T1 = 8·k + K/128

clock cycles (k accesses to the L1 cache, k integer multiplications, k ‒ 1 integer additions, K/128

shift operations and 1 modulo reduction) to compute all check-bytes. After finishing this task,

the decoder will take T2 = 2 clock cycles (1 integer subtraction and 1 modulo reduction) to

calculate the values:

• Core 1
1 1 16
+ 1 + 1 2k kS = − −(1) () ()[] (mod 1)B B

 (13)

• Core 2
2 2 16
+ 1 + 1 2k kS = − −(2) () ()[] (mod 1)B B

 (14)

• Core 10
10 10 16
+ 1 + 1 2k kS = − −(10) () ()[] (mod 1)B B

 (15)

As explained in the previsous section, if the data are received in error, the decoder will perform

nTL table lookups, nTL comparisons, 2 integer additions and 1 modulo reduction. In our case, ten

such operations will be executed in parallel in T3 = 13·nTL + 3 clock cycles. So, if we sum up all

the processing times, we come to the conclusion that the decoder requires

total 1 2 3 TLT = T + T + T = 8· + /128 + 13· + 5k K n (16)

clock cycles to process K data bits, i.e. one second to decode
9

R

total TL

3.1 10 160
= =

T / 8· +160 /128 + 13· + 5
C k

G
K k k n

⋅ ⋅ ⋅
⋅

()
 (17)

data bits. By substituting the values of k and nTLmax (Table 5) in (17) we obtain that Gmin = 40.08

Gbps and Gmax = 49.70 Gbps. This means that all considered codes have the potential to be used

in various real-time systems (e.g. 10G and 40G networks). In addition, from (10)-(15) we

observe that all analyzed codes are interleaved at the byte level. Thanks to this, they are able to

correct (mulitple) BA errors up to l bits.

 9

5. Conclusion
This paper proposed two types of integer codes capable of correcting burst asymmetric

errors within a byte. The proposed codes are constructed with the help of a computer and are

very efficient in terms of redundancy. The results of an exhaustive search have shown that, for

practical data lengths up to 4096 bits, the proposed codes use up to two check-bit less than the

corresponding codes of similar properties. Besides this, the proposed codes have the ability to be

interleaved without delay and without using additional hardware. In this way, it is possible to

construct simple codes capable of correcting (multiple) burst asymmetric errors. Such codes

could be applied to various practical channels, especially to those that display asymmetric errors.

References
[1] J. R. Pierce, “Optical Channels: Practical Limits with Photon Counting,” IEEE Trans.

Communications, vol. 26, pp. 1819-1821, Dec. 1978.
[1] P. Oprisan and B. Bose, “ARQ in Optical Networks,” Proc. IEEE Int’l Symp. Pacific Rim

Dependable Computing, pp. 251-257, Dec. 2001
[2] E. L. Leiss, “Data integrity in digital optical disks,” IEEE Trans. Comput., vol. 33, no. 9,

pp. 818-827, Sept. 1984.
[3] A. Radonjic and V. Vujicic, “Integer codes correcting burst errors within a byte,” IEEE

Trans. Comput., vol. 62, no. 2, pp. 411-415, Feb. 2013.
[4] A. Radonjic et al.,“Integer codes correcting double asymmetric errors,” IET Commun., vol.

10, no. 14, pp. 1691-1696, Sep. 2016.
[5] A. Radonjic and V. Vujicic, “Integer codes correcting spotty byte asymmetric errors,”

IEEE Commun. Lett., vol. 20, no. 12, pp. 2338-2341, Dec. 2016.
[6] A. Radonjic and V. Vujicic, “Integer codes correcting high-density byte asymmetric

errors,” IEEE Commun. Lett., vol. 21, no. 4, pp. 694-697, Apr. 2017.
[7] A. Radonjic and V. Vujicic, “Integer codes correcting single errors and burst asymmetric

errors within a byte,” Inform. Process. Lett., vol. 121, pp. 45-50, May 2017.
[8] A. Radonjic, “(Perfect) integer codes correcting single errors,” IEEE Commun. Lett., vol.

22, no. 1, pp. 17-20, Jan. 2018.
[9] A. Radonjic and V. Vujicic, “Integer codes correcting burst and random asymmetric errors

within a byte,” J. Franklin Inst., vol. 355, no. 2, pp. 981-996, Jan. 2018.

Table 5. Memory Requirements and Theoretical Decoding Throughputs
for Some Ten-Byte Interleaved Integer Bl/16AEC Codes.

Code k l

Memory
Requirements
for Storing the
Coefficients Ci

Memory
Requirements
for Storing the

Syndrome Table

Number
of Table
Lookups

Minimum
Theoretical
Decoding

Throughput
(1040, 1024) 64 3 10 x 128 B 18.70 KB 1 ≤ nTL ≤ 13 41.43 Gbps
(1040, 1024) 64 4 10 x 128 B 35.17 KB 1 ≤ nTL ≤ 14 40.75 Gbps
(1040, 1024) 64 5 10 x 128 B 65.59 KB 1 ≤ nTL ≤ 15 40.08 Gbps
(2064, 2048) 128 3 10 x 256 B 38.06 KB 1 ≤ nTL ≤ 14 49.70 Gbps
(2064, 2048) 128 4 10 x 256 B 71.60 KB 1 ≤ nTL ≤ 15 49.46 Gbps
(2064, 2048) 128 5 10 x 256 B 133.52 KB 1 ≤ nTL ≤ 16 49.20 Gbps

 10

[10] Y. Saitoh and H. Imai, “Some classes of burst asymmetric or unidirectional error correcting
codes,” Elect. Lett., vo1. 26, no. 5, pp. 286-287, Mar. 1990.

[11] K. Mehlhorn and P. Sanders, Algorithms and Data Structures: The Basic Toolbox,
Springer, 2008.

[12] https://ark.intel.com/products/81909/Intel-Xeon-Processor-E5-2687W-v3-25M-Cache-
3_10-GHz.

[13] A. Fog, “The Microarchitecture of Intel, AMD and VIA CPUs,” Technical University of
Denmark, May 2017. Available from: http://www.agner.org/optimize/microarchitecture.pdf

http://www.amazon.com/Kurt-Mehlhorn/e/B001HPFJXA/ref=ntt_athr_dp_pel_1�
http://www.amazon.com/Peter-Sanders/e/B0045AQ5Q4/ref=ntt_athr_dp_pel_2�

	2.1. Type-I integer Bl/bAEC codes
	2.2. Type-II integer Bl/bAEC codes

