Supplementary data for article:

Zianna, A.; Sumar Ristovic, M.; Psomas, G.; Hatzidimitriou, A.; Coutouli-Argyropoulou, E.; Lalia-Kantouri, M. Cadmium(II) Complexes of 5-Nitro-Salicylaldehyde and α -Diimines: Synthesis, Structure and Interaction with Calf-Thymus DNA. *Journal of Coordination Chemistry* **2015**, *68* (24), 4444–4463. https://doi.org/10.1080/00958972.2015.1101075 Cadmium(II) complexes of 5-nitro-salicylaldehyde and α -diimines: Synthesis, structure and interaction with calf-thymus DNA

Ariadni Zianna ^a, Maja Sumar Ristovic ^{a, b}, George Psomas ^a, Antonios G. Hatzidimitriou ^a, Evdoxia Coutouli-Argyropoulou ^c, Maria Lalia-Kantouri ^a *

^a Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

^b Faculty of Chemistry, University of Belgrade, Studenski trg 12-16, Belgrade, Serbia

^c Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

S1. Interaction with CT DNA

The binding constant, K_b , can be obtained by monitoring the changes in the absorbance at the corresponding λ_{max} with increasing concentrations of CT DNA and it is given by the ratio of slope to the y intercept in plots $\frac{[DNA]}{(\epsilon_A - \epsilon_f)}$ versus [DNA], according to the Wolfe–Shimer equation [S1]:

$$\frac{[\text{DNA}]}{(\varepsilon_{\text{A}} - \varepsilon_{\text{f}})} = \frac{[\text{DNA}]}{(\varepsilon_{\text{b}} - \varepsilon_{\text{f}})} + \frac{1}{K_{\text{b}}(\varepsilon_{\text{b}} - \varepsilon_{\text{f}})}$$
(eq. S1)

where [DNA] is the concentration of DNA in base pairs, $\varepsilon_A = A_{obsd}$ /[compound], ε_f = the extinction coefficient for the free compound and ε_b = the extinction coefficient for the compound in the fully bound form.

S2. Competitive studies with EB

The Stern–Volmer constant K_{SV} is used to evaluate the quenching efficiency for each compound according to the Stern–Volmer equation [S2]:

$$\frac{lo}{l} = 1 + K_{sv}[Q] \qquad (eq. S2)$$

^{*} Corresponding author. Tel./fax: +30 2310 997844. E-mail address: lalia@chem.auth.gr (M. Lalia-Kantouri).

where Io and I are the emission intensities in the absence and the presence of the quencher, respectively, [Q] is the concentration of the quencher (i.e. complexes 1–5); K_{SV} is obtained from the Stern–Volmer plots by the slope of the diagram $\frac{Io}{I}$ vs [Q].

References

[S1] A. Wolfe, G. Shimer, T. Meehan, *Biochemistry*, **26**, 6392 (1987).

[S2] J.R. Lakowicz, *Principles of Fluorescence Spectroscopy*, 3rd Edn., Plenum Press, New York (2006).

Fig. S2. (A)–(E) Stern–Volmer quenching plot of EB bound to CT DNA for complexes **1–5**, respectively.