
1089-7798 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2016.2644661, IEEE
Communications Letters

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—In optical networks without optical amplifiers the

number of received photons never exceeds the number of sent
ones. Hence, upon transmission, only asymmetric (1 → 0) errors
can occur. Motivated by this fact, in this letter we present a class
of integer codes capable of correcting high-density asymmetric
errors within a b-bit byte. Unlike classical codes, these codes use
integer and lookup table operations. As a result, they can be
implemented "for free", i.e. without modifying the network
hardware.

Index Terms—Integer codes, error correction, asymmetric

errors, look-up table.

I. INTRODUCTION
RROR control codes are usually designed for use on binary
symmetric channels, where the error probabilities 0 → 1
and 1 → 0 are equal. However, in certain systems, the

errors have a highly asymmetric nature. For the purpose of this
paper, the most interesting example are optical networks
without optical amplifiers (ONWOAs) (e.g. local and access
networks) [1]. In these networks, the number of received
photons never exceeds the number of transmitted ones. Hence,
upon transmission only asymmetric (1 → 0) errors can occur
[2], [3]. Besides this, it is known that these errors affect small
number of bits. More precisely, the experiments showed that
99% to 99.9% of all errors are t-bit errors (1 ≤ t ≤ 4) confined
to one or two adjacent bytes [4]-[6].

Another common feature of ONWOAs is high computing
power of network nodes. This can be seen from the fact that
exterior nodes (e.g. PCs and servers) contain general purpose
processors, whereas interior nodes (e.g. switches and routers)
are always equipped with network processors (NPs) [7], [8].
The only difference between these chips is that NPs integrate
coprocessors for common kernels of computation (e.g. lookup
and cryptographic operations). On the other hand, both these
chips have integer execution units as well as the memory
system including the caches [7], [8]. Hence, it can be said that
they are designed for integer and lookup table operations.

Motivated by these facts, in this letter we present a new
class of integer codes. The proposed codes, like those in [9]-
[11], have several desirable properties including systematic
structure, simple encoding/decoding procedures and fast error
correction algorithm based on table lookups. However, unlike
[9]-[11], the codes presented in this paper can correct two
types of errors within a b-bit byte: single t/d asymmetric errors

The authors are with the Institute of Technical Sciences of the Serbian
Academy of Sciences and Arts, 11000 Belgrade, Serbia (e-mail:
sasa_radonjic@yahoo.com; vujicicv@yahoo.com).

and double adjacent t'/d asymmetric errors, where 1 ≤ t' < t < d
and p = b/d ≥ 2. Thanks to this feature, they are more suitable
for use in ONWOAs than the codes proposed in [9]-[11].

The organization of this paper is as follows: Section 2 deals
with the construction of integer codes capable of correcting
single t/d and double adjacent t'/d asymmetric errors in a b-bit
byte (integer (St/dAEC-DAt'/dAEC)b codes) Section 3 explains
the implementation strategy for these codes, while Section 4
concludes the letter. Table 1 shows the notations used in this
work.

II. CODES CONSTRUCTION

A. Encoding and Decoding Procedures
Let

2 1bZ
−

= {0, 1,…, 2b - 2} be the ring of integers modulo

2b - 1, and let Ci and Ck+1 be integers such that { }0,1C Z∈ 2 -1bi \
and Ck+1 = - 1. Now, suppose that the data are divided into k b-
bit bytes. In that case, the encoder will compute the check-
byte in the same way as in [9]-[11], i.e. by using the following
operations:

B 1 1
1

[] (mod 2 1) (mod 2 1)
=

= ⋅ + + ⋅ − = ⋅ −∑

k
b b

k k i i
i

C C B C B C B (1)

At the receiver, the decoder will perform the same calculation

ˆ 1 1B
1

ˆ ˆ ˆ[] (mod 2 1) (mod 2 1)
=

= ⋅ + + ⋅ − = ⋅ −∑

k
b b

k k i i
i

C C B C B C B (2)

after which the syndrome S will be formed
= − −ˆ BB

ˆ[] (mod 2 1)bS C C (3)
Obviously, when S ≠ 0, the codeword is corrupted by one or
more errors. Whether these errors can be corrected or not
depends on the values of the coefficients Ci. On the other
hand, the coefficient Ck+1 always has the same value, since it
corresponds to the errors within the check-byte.

Aleksandar Radonjic and Vladimir Vujicic

Integer Codes Correcting High-Density Byte
Asymmetric Errors

E

TABLE I
NOTATIONS USED IN THIS LETTER.

Symbol Meaning

iB Integer value of the i-th b-bit data byte at the sender side

BC Integer value of the b-bit check-byte at the sender side

ˆ
iB Integer value of the received i-th b-bit data byte

BĈ Integer value of the received b-bit check-byte

B̂C Integer value of the b-bit check-byte at the receiver side

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Serbian Academy of Science and Arts Digital Archive (DAIS)

https://core.ac.uk/display/225621745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1089-7798 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2016.2644661, IEEE
Communications Letters

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

B. Necessary and Sufficient Conditions
Definition 1. An error is called t/d asymmetric error if t or
fewer bits in a d-bit byte are in a 1 → 0 error, where 1 ≤ t < d.
Definition 2. An error is called low-density byte asymmetric
(LDBA) error if there exists one t/d asymmetric error within a
b-bit byte, where p = b/d ≥ 2.
Definition 3. An error is called high-density byte asymmetric
(HDBA) error if there exists two adjacent t'/d asymmetric
errors within a b-bit byte, where 1 ≤ t' < t < d and p = b/d ≥ 2.
To make these definitions more clear, we give examples of
LDBA and HDBA errors (Fig. 1).

Definition 4. Let 0 ≤ x1 << xl < d, 1 ≤ l ≤ t, 0 ≤ r ≤ p – 1,
and let 1

, ={(2 2) 2 }d r
l re ⋅⋅+ +lx x be the difference between the

integer values of the correct b-bit byte and its received
erroneous counterpart affected by LDBA error. Then, the set
of syndromes corresponding to LDBA errors is defined as

 () ()1
1 0

2
p

,rs e
 = − ⋅ −

1+1

1

mod 1
-k t

b
i l

i= l= r=

C (4)

Definition 5. Let 0 ≤ y1 << ym < d, 0 ≤ z1 << zn < d,
1 ≤ m, n ≤ t', 0 ≤ s ≤ p - 2 and let 1 (+1)

, , ={(2 2) 2m d s
m n se ⋅⋅ ++ +y y

1(2 2) 2 }nz z d s⋅⋅+ + be the difference between the integer
values of the correct b-bit byte and its received erroneous
counterpart affected by HDBA error. Then, the set of
syndromes corresponding to HDBA errors is defined as

() ()
-2

2
1 1 0

2
p

m,n,s
s

s e
 = − ⋅ −

+1

1

mod 1
t' t'k

b
i

i= m= n= =

C (5)

Now, we can prove the following theorem.
Theorem 1. The codes defined by (1)-(5) can correct all

LDBA and HDBA errors iff there exist k mutually different
coefficients { }C ∈

2 -1
0, 1bi Z \ such that

1

2

2
1

1 2

1 1)

2 1) 1)

3

d
s k + p

l

d
s k + p

n

s s

⋅ ⋅

⋅ − ⋅

= ∅

∑

∑

=1

=

. (

. ((

.

t

l

t'

n

=

=

where A denotes the cardinality of A, and A B the
intersection of A and B.

Proof. Condition 1 of this theorem says that LDBA errors

generate 1)
d

k + p
l

⋅ ⋅

∑

=1
(

t

l

syndromes that are nonzero. To

prove this, observe that the set s1 can be expressed as

1s M=
1

1

k +

i
i=

where

() ()

() ()

() ()

1 1 ,
1 0

,
1 0

1 ,
1 0

2

2

2

p

r

p

k k r

p

k+ r

M e

M e

M e

 = − ⋅ −

 = − ⋅ −

 = −

1

1

1

mod 1

mod 1

mod 1

-t
b

l
l= r=

-t
b

l
l= r=

-t
b

l
l= r=

C

C

Now, suppose that the coefficients Ci are chosen in such a way
that each one multiplied (modulo 2b - 1) by each ,l re yields a
different result. In that case, it will hold that

1 +1

1 +1

,

.

k k

k k

M M M

M M M

=∅

= = =

As a consequence, the set s1 will have

1 +11) 1)k

d
s k + M k + p

l

⋅ ⋅ ⋅

∑
=1

= (= (
t

l

nonzero elements. In a similar way Condition 2 says that

HDBA errors generate
2

1
1) 1)

d
k + p -

n

⋅ ⋅

∑
=

((
t'

n

syndromes that

are nonzero. To prove this, note that the set s2 can be
expressed as

2s N=
1

1

k +

i
i=

where

() ()

() ()

() ()

-2

1 1
1 1 0

-2

1 1 0

-2

+1
1 1 0

2

2

2

p

m,n,s
s

p

k m,n,s
s

p

k m,n,s
s

N e

N e

N e

 = − ⋅ −

 = − ⋅ −

 = −

mod 1

mod 1

mod 1

t' t'
b

m= n= =

t' t'
b

k
m= n= =

t' t'
b

m= n= =

C

C

Given this, suppose that the Ci's are chosen such that

1 +1

1 +1 .

k k

k k

N N N

N N N

=∅

= = =

In that case, it is clear that the set s2 will have
2

2 +1
1

1) 1) 1)k

d
s k + N k + p

n

⋅ ⋅ − ⋅

∑
=

= (= ((
t'

n

nonzero elements. Finally, Condition 3 is a necessary condition
for distinguishing LDBA errors from HDBA errors. Therefore,
the codes that satisfy the above conditions are (kb + b, kb)
integer (St/dAEC-DAt'/dAEC)b codes. □

 Fig. 1. Examples of (a) LDBA errors and (b) HDBA errors, where p = 3.

1089-7798 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2016.2644661, IEEE
Communications Letters

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

Theorem 2. Let ξ be the error set for (kb + b, kb) integer
(St/dAEC-DAt'/dAEC)b codes. Then,

()
2

1 2
1

+1 1) .
d d

s s p p
l n

 + ⋅ ⋅ + − ⋅

∑ ∑
=1 =

= = (
t t'

l n
ξ k

Proof. This theorem follows from Theorem 1. □
From Theorems 1 and 2 it is easy to see that the elements

of ξ cannot be generated without using a computer. Thus, it is
clear that for some particular values of t', t, d and b we cannot
know a priori the number and the values of coefficients Ci. In
this letter, we have restricted ourselves to practical codes, i.e.
to codes with parameters t' = 3, t = 4, d = 8, b = 32 and k ≤ 64.
The results of the corresponding computer search are given in
Table 2.

C. Error Correction Procedure
From Theorem 2 we know that LDBA and HDBA errors

generate | ξ | nonzero syndromes. In addition, from the same
theorem, we implicitly know that the relationship between the
nonzero syndrome (element of the set ξ), error location (i) and
error vector (e) can be described using (4)-(5). Both these facts
imply that the syndrome table requires 2ξ × ⋅ 2+ (+ 1)b log k
bits (Fig. 2) to store the error correction data.

Given this, suppose that that the data are received in error
(S ≠ 0). In that case, the decoder will first search the syndrome
table to find the appropriate entry. After that, it will execute
one of the following operations:
• for LDBA errors within the i-th data byte

ˆ[] 2 1

[] 2 1 , 0l,re p

= + − ≤ ≤

= − ≤ ≤ ≤ ≤

(mod 1), ;
(mod 1), – 1;

b
i i

b

B B e i k
e l t r

 (6)

• for LDBA errors within the check-byte

2

2l,re p

= + −

= − ≤ ≤ ≤ ≤
B B

ˆ[] (mod 1);

[] (mod 1), 1 , 0 – 1;

b

b

C C e

e l t r
 (7)

• for HDBA errors within the i-th data byte

ˆ[] 2 1

[] 2 1 , 0 2m,n,se m n s p

= + − ≤ ≤

= − ≤ ≤ ≤ ≤

(mod 1), ;
(mod 1), – ;

b
i i

b

B B e i k
e t',

 (8)

• for HDBA errors within the i-th check-byte

ˆ[] 2

[] 2 1 , 0 2m,n,se m n s p
= + −

= − ≤ ≤ ≤ ≤
B B (mod 1);

(mod 1), – ;

b

b

C C e
e t',

 (9)

From the above it is clear that the efficiency of the error
correction procedure (in terms of processing time) depends on
the number of table lookups. For this reason it is desirable that
the elements of ξ are sorted in increasing order. In that case it
is possible to use binary search algorithm, which requires nTL
table lookups (1≤ nTL ≤ 2 2)log + ξ [12].

Example 1. Let b = 8, d = 4, t = 3, t' = 1, k = 1 and C1 = 2.
According to Theorem 2, the syndrome table will have | ξ | = 88
entries. Given this, let us assume that we want to transmit 8
bits of data, D = 10110011. In that case, after calculating the
value of check-byte CB

2 179 255 = 103= ⋅ − = ⋅B 1 1[] (mod 2 1) [] (mod)bC C B
the codeword CW = 10110011 01100111 will have 16 bits.
Now, let us analyze the following scenarios.

Scenario 1: Suppose that during data transmission an error
on the 1st, 3rd and 4th bit has occurred (ĈW = 0000

= 2 3 255 = 6

6 103 255 158

= ⋅ − ⋅

= − − = − =

ˆ 1 1B

ˆ BB

ˆ[] (mod 2 1) [] (mod)
ˆ[] (mod 2 1) [] (mod)

b

b

C C B

S C C

0011
01100111). In that case, the decoder will calculate

in order to check whether the value S = 158 belongs to the set
ξ (Table 3). After completing this task, it will perform error
correction by using

b
1 1

ˆ[] 2 1 [3 176] 255 179.= + − +(mod) = (mod) =B B e
Scenario 2: Let us assume that during data transmission an

error on the 10th and 16th bit has occurred (ĈW = 10110011
00100110). Similar to the previous case, after calculating

= 2 179 255 = 103

103 38 255 65

= ⋅ − ⋅

= − − = − =

ˆ 1 1B

ˆ BB

ˆ[] (mod 2 1) [] (mod)
ˆ[] (mod 2 1) [] (mod)

b

b

C C B

S C C

the decoder will conclude that the value S = 65 indicates an
error within the check-byte (Table 3). As a consequence, the
following procedure will take place:

B B 38 + 65 255 103.C C= + −ˆ[] (mod 2 1) = [] (mod) =be

III. IMPLEMENTATION STRATEGY
From (1)-(3) and (6)-(9) it is clear that the encoder/decoder

uses integer and lookup table (LUT) operations. Since these
operations are supported by all processors, it is interesting to
discuss how the proposed codes can be implemented on
modern architectures. Without loss of generality, we will
restrict ourselves to eight-core processors (Fig. 3) and integer
(S4/8AEC-DA3/8AEC)32 codes.

 Fig. 2. Bit-width of one syndrome table entry.

TABLE II
FIRST 64 COEFFICIENTS FOR INTEGER (S4/8AEC-DA3/8AEC)32 CODES.
2 127 255 511 767 967 1007 1019

1087 1151 1279 1567 1663 1727 1747 1927
1999 2011 2029 2047 2447 2503 2539 2549
2557 2591 2623 2687 2741 2813 2879 2887
3023 3061 3063 3067 3071 3229 3253 3257
3271 3301 3359 3527 3529 3571 3581 3583
3623 3631 3733 3834 3847 3851 3853 4007
4019 4073 4091 4159 4222 4247 4479 4567

 Fig. 3. Block diagram of eight-core processor.

1089-7798 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2016.2644661, IEEE
Communications Letters

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

1) L1 caches. The L1 cache is the smallest and fastest type
of cache. Its size is limited to 64 KB (per core), whereas the
data can be accessed in 1-5 clock cycles [8]. Both these facts
suggest that the L1 can be used for storing the coefficient table
(LUT1) whose size is ×k b bits (Table 4).

2) L2 caches. The L2 cache is somewhat slower and larger
than the L1. Precisely, its size is limited to 512 KB (per core),
whereas the individual entries can be accessed in 8-15 clock
cycles [8]. Based on these parameters, it is clear that the L2
cannot be used for storing the syndrome table (LUT2).

3) L3 cache. Unlike L1 and L2 caches, the L3 is shared
among all cores. Due to this reason, this cache has the highest
access latency (25-50 clock cycles). On the other hand, its size
is sufficiently large (20-32 MB [8]) to store any LUT2.

4) Processing cores. From [7], [8] it is known that each core
has at least one unit that performs 32/64-bit integer operations.
Thus, it is clear that the encoding/decoding algorithm can be
parallelized using eight threads. The similar applies for the
error correction procedure. For instance, Core 1 can be used
for performing binary search over first /8ξ entries, Core 2 for
performing binary search over next /8ξ entries, and so on.

IV. CONCLUSION
In this letter, we proposed a class of integer codes capable

of correcting high-density asymmetric errors within a b-bit
byte. We have shown that these codes can be implemented
"for free", i.e. without modifying the network hardware.
Thanks to this feature, the proposed codes have high potential
to be used in practice. This primarily refers to optical networks
without optical amplifiers in which all nodes possess powerful
processors.

REFERENCES
[1] R. Ramaswani, K. Sivarajan and G. Sasaki, Optical Networks: A

Practical Perspective, 3rd ed., Elsevier, Inc., 2010.
[2] J. R. Pierce, “Optical Channels: Practical Limits with Photon Counting,”

IEEE Trans. Communications, vol. 26, no. 12, pp. 1819-1821, Dec. 1978.
[3] P. Oprisan and B. Bose, “ARQ in Optical Networks,” Proc. IEEE Int’l

Symp. Pacific Rim Dependable Computing, pp. 251-257, Dec. 2001.
[4] CCITT Study Group XVIII Contribution D21, “Observations of Error

Characteristics of Fiber Optic Transmission Systems,” Jan. 1989.
[5] D. Mello, E. Offer and J. Reichert, “Error Arrival Statistics for FEC

Design in Four-Wave Mixing Limited Systems,”Proc. Optical Fiber
Communication Conference, pp. 529-530, Mar. 2003.

[6] L. James, “Error Behaviour in Optical Networks”, PhD thesis, Dept. of
Engineering, University of Cambridge, 2005.

[7] R. Giladi, Network Processors: Architecture, Programming, and
Implementation, Elsevier, Inc., 2008.

[8] L. Johnsson, “Introduction to HPC architecture,” Dept. Computer
Sciences, Univ. Houston, Houston, TX, USA, Jan. 2014.

[9] A. Radonjic and V. Vujicic, “Integer Codes Correcting Burst Errors
within a Byte,” IEEE Trans. Computers, vol. 62, no. 2, pp. 411-415,
Feb. 2013.

[10] A. Radonjic, K. Bala and V. Vujicic, “Integer Codes Correcting Double
Asymmetric Errors,” IET Communications, vol. 10, no. 14, pp. 1691-
1696, Sep. 2016.

[11] A. Radonjic and V. Vujicic, “Integer Codes Correcting Spotty Byte
Asymmetric Errors,” IEEE Comm. Letters, vol. 20, no. 12, pp. 2338-
2341, Dec. 2016.

[12] K. Mehlhornand and P. Sanders, Algorithms and Data Structures: The
Basic Toolbox, Springer, 2008.

TABLE III
THE SYNDROME TABLE (LUT2) FOR (16, 8) INTEGER (S3/4AEC-DA1/4AEC)8 DECODER.

 Element
of the set ξ i e

 Element
of the set ξ i e

 Element
of the set ξ i e

 Element
of the set ξ i e

1 1 2 1 23 34 2 34 45 128 2 128 67 222 1 144
2 2 2 2 24 36 2 36 46 129 2 129 68 223 1 16
3 3 2 3 25 40 2 40 47 130 2 130 69 224 2 224
4 4 2 4 26 48 2 48 48 132 2 132 70 227 1 14
5 5 2 5 27 62 1 224 49 136 2 136 71 229 1 13
6 6 2 6 28 63 1 96 50 144 2 144 72 231 1 12
7 7 2 7 29 64 2 64 51 158 1 176 73 233 1 11
8 8 2 8 30 65 2 65 52 159 1 48 74 235 1 10
9 9 2 9 31 66 2 66 53 160 2 160 75 237 1 9
10 10 2 10 32 68 2 68 54 175 1 40 76 238 1 136
11 11 2 11 33 72 2 72 55 176 2 176 77 239 1 8
12 12 2 12 34 80 2 80 56 183 1 36 78 241 1 7
13 13 2 13 35 94 1 208 57 187 1 34 79 243 1 6
14 14 2 14 36 95 1 80 58 189 1 33 80 245 1 5
15 16 2 16 37 96 2 96 59 190 1 160 81 246 1 132
16 17 2 17 38 111 1 72 60 191 1 32 82 247 1 4
17 18 2 18 39 112 2 112 61 192 2 192 83 249 1 3
18 20 2 20 40 119 1 68 62 207 1 24 84 250 1 130
19 24 2 24 41 123 1 66 63 208 2 208 85 251 1 2
20 31 1 112 42 125 1 65 64 215 1 20 86 252 1 129
21 32 2 32 43 126 1 192 65 219 1 18 87 253 1 1
22 33 2 33 44 127 1 64 66 221 1 17 88 254 1 128

TABLE IV
LOOK-UP TABLE SIZES FOR SOME INTEGER (S4/8AEC-DA3/8AEC)32 CODES.

Code

Encoder Decoder
LUT1 LUT1 LUT2

Size Size Size # of Table
Lookups

(512, 480) 60 B 60 B 3.54 MB 1 ≤ nTL ≤ 20
(544, 512) 64 B 64 B 3.82 MB 1 ≤ nTL ≤ 20
(1024, 992) 124 B 124 B 7.19 MB 1 ≤ nTL ≤ 21

(1056, 1024) 128 B 128 B 7.52 MB 1 ≤ nTL ≤ 21
(2048, 2016) 252 B 252 B 14.58 MB 1 ≤ nTL ≤ 22
(2080, 2048) 256 B 256 B 15.02 MB 1 ≤ nTL ≤ 22

http://www.amazon.com/Kurt-Mehlhorn/e/B001HPFJXA/ref=ntt_athr_dp_pel_1�
http://www.amazon.com/Peter-Sanders/e/B0045AQ5Q4/ref=ntt_athr_dp_pel_2�

