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ABSTRACT 1 

Intransitive competition occurs when competing strategies cannot be listed in a hierarchy, but rather 2 
form loops – as in the game Rock-Paper-Scissors. Due to its cyclic competitive replacement, competitive 3 
intransitivity promotes strategy coexistence, both in Rock-Paper-Scissors and in higher-richness 4 
communities. Previous work has shown that this intransitivity-mediated coexistence is strongly 5 
influenced by spatially explicit interactions, compared to when populations are well mixed. Here, we 6 
extend and broaden this line of research and examine the impact on coexistence of intransitive 7 
competition taking place on a continuum of small-world networks linking spatial lattices and regular 8 
random graphs. We use simulations to show that the positive effect of competitive intransitivity on 9 
strategy coexistence holds when competition occurs on networks toward the spatial end of the 10 
continuum. However, in networks that are sufficiently disordered, increasingly violent fluctuations in 11 
strategy frequencies can lead to extinctions and the prevalence of monocultures. We further show that 12 
the degree of disorder that leads to the transition between these two regimes is positively dependent 13 
on population size; indeed for very large populations, intransitivity-mediated strategy coexistence may 14 
even be possible in regular graphs with completely random connections. Our results emphasize the 15 
importance of interaction structure in determining strategy dynamics and diversity.  16 

HIGHLIGHTS 17 

• Intransitive competition (as in the game rock-paper-scissors) promotes coexistence 18 
• Spatial structure can enhance intransitivity-mediated coexistence 19 
• We model intransitivity  on spatial, small-world, and regular random graphs 20 
• Coexistence that occurs in spatial lattices is inhibited as network disorder grows 21 
• Threshold disorder for monoculture is positively related to population size  22 

KEYWORDS 23 

• Cyclical population dynamics  24 
• Evolutionary graph theory  25 
• Quenched randomness  26 
• Rock-paper-scissors  27 
• Small-world networks     28 
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1. Introduction 30 

A main question in community ecology is how species can coexist despite differences in competitive 31 
ability (Chesson, 2000; Huston, 1994; Hutchinson, 1959; Tokeshi, 1999; Wilson, 1990, 2011). Many 32 
mechanisms have been proposed, most of which invoke exogenous factors that lessen the impact of 33 
competition. Here, we deal with a mechanism that is endogenous to the competitive system itself: 34 
competitive intransitivity (Gilpin, 1975; May and Leonard, 1975). Using simulation models, we consider 35 
intransitive competition and coexistence among ‘strategies’, a general term referring to any entities 36 
(most commonly species, but also including physiological, behavioural, life-historical, and even 37 
ideological variants or strains) that compete, and in doing so, have the potential to exclude one another 38 
from their environment.  39 

Transitive competition occurs when strategies can be listed in a strict hierarchy in which strategies 40 
higher on the list outcompete those lower on the list, but not vice versa. Transitive competition appeals 41 
to the intuition: If strategy A outcompetes strategy B, and B outcompetes C, it makes intuitive sense that 42 
A outcompetes C. However, this is not necessarily the case. The simplest counterexample, and, thus, the 43 
simplest example of intransitive competition, is the game of Rock-Paper-Scissors, in which Paper beats 44 
Rock, Rock beats Scissors, and Scissors beats Paper. In populations composed of these three strategies, 45 
cyclic dynamics occur, leading to the potential for the coexistence of all three, provided the fluxes in the 46 
cycles are not too strong (e.g., Gilpin, 1975; May and Leonard, 1975; Vandermeer, 2011). Rock-Paper-47 
Scissors and its descendants are fundamentally frequency-dependent phenomena, and the study of 48 
intransitive competition and its effects on coexistence are important facets of evolutionary game theory 49 
(Hofbauer and Sigmund, 1998; Maynard Smith, 1982; Nowak, 2006; Sigmund, 2010). Extending beyond 50 
theoretical considerations, real-world empirical examples of intransitivity-mediated coexistence now 51 
span many branches of the tree of life, including within or among bacteria (Kerr et al., 2002; Kirkup and 52 
Riley, 2004; Nahum et al., 2011), vertebrate (Bleay et al., 2007; Sinervo and Lively, 1996; Sinervo et al., 53 
2007) and invertebrate animals (Buss, 1976, 1980; Buss and Jackson, 1979; Dunstan and Johnson, 2005; 54 
Jackson and Buss, 1975; Rubin, 1982), coralline algae (Buss, 1976, 1980; Buss and Jackson, 1979), plants 55 
(Lankau and Strauss, 2007; Taylor and Aarssen, 1990), and possibly phytoplankton (Huisman and 56 
Weissing, 2001b) and yeasts (Paquin and Adams, 1983). Intransitivity also bears upon important issues 57 
in human decision-making procedures (Kendall and Babington Smith, 1940; May, 1954; Tversky, 2004), 58 
including voting systems (Arrow, 1950; Hughes, 1980; Riker, 1961). 59 

Although classic theory and simulation papers typically deal with three-strategy intransitivity (e.g., 60 
Czárán et al., 2002; Durrett and Levin, 1998; Frean and Abraham, 2001; May and Leonard, 1975; 61 
Neumann and Schuster, 2007; Schreiber and Killingback, 2013; Szabó et al., 2004; Tainaka, 1988), and 62 
many of the empirical examples above involve variants of Rock-Paper-Scissors (e.g., toxic, resistant, and 63 
susceptible strains of E. coli (Kerr et al., 2002); orange, yellow, and blue chromo-behavioural morphs of 64 
side-blotched lizards (Sinervo and Lively, 1996)), the study of the relationship between competitive 65 
intransitivity and coexistence can be generalized to more strategy-rich communities (Gilpin, 1975; 66 
Huisman and Weissing, 1999, 2001a, b; Huisman et al., 2001; Karlson and Jackson, 1981; Laird and 67 
Schamp, 2006, 2008, 2009). This reflects the facts that (a) in many systems, multi-strategy communities 68 



4 
 

are common (e.g., multi-species communities in biological systems or multiple ideologies in the socio-69 
political sphere), and (b) intransitivity readily results from typical traits of these multi-strategy 70 
communities, such as trade-offs during exploitation competition (Huisman and Weissing, 1999, 2001a, 71 
b; Huisman et al., 2001) and allelopathy (Kerr et al., 2002; Lankau and Strauss, 2007). When this 72 
generalization is made, the transitive-intransitive dichotomy gives way to a series of intermediately 73 
intransitive competition scenarios that becomes increasingly continuous as the number of strategies 74 
grows. The level of intransitivity across this continuum can be quantified using an index (Bezembinder, 75 
1981; Kendall and Babington Smith, 1940; Laird and Schamp, 2006, 2008; Petraitis, 1979; Slater, 1961), 76 
making it straightforward to examine quantitatively the relationship between strategy coexistence and 77 
intransitivity. As would be expected by extrapolating the lesson of three-strategy coexistence, 78 
competitive intransitivity also promotes strategy coexistence when more than three strategies are 79 
involved (e.g., Allesina and Levine, 2011; Karlson and Jackson, 1981; Laird and Schamp, 2006, 2008, 80 
2009; Rojas-Echenique and Allesina, 2011; but see Vandermeer and Yitbarek, 2012 for a 81 
counterexample). Thus, intransitivity may play an important role in maintaining diversity in communities 82 
of varying types.  83 

The simplest intransitivity models within evolutionary game theory have no interaction structure; 84 
rather, they behave according to mean-field assumptions, whereby strategies embedded in large, well-85 
mixed communities interact according to their relative abundances and the principle of mass action 86 
(e.g., Allesina and Levine, 2011; Frean and Abraham, 2001; Gilpin, 1975; May and Leonard, 1975). 87 
Allesina and Levine (2011) provide an effective means to deal with these models and predict the 88 
outcome of competition. However, paralleling the rising interest in the effect of interaction structure in 89 
evolutionary game theory in general (particularly in models designed to understand the evolution of 90 
cooperation, and, specifically, how cooperators and defectors can coexist: Hauert, 2001, 2002, 2006; 91 
Hauert and Doebeli, 2004; Laird, 2011, 2012, 2013; Laird et al., 2013; Lieberman et al., 2005; Nowak and 92 
May, 1992, 1993; Nowak et al., 1994a, b; Szabó and Tőke, 1998; Szolnoki et al., 2008), there is a 93 
proliferation of studies of intransitive competition in which mean-field assumptions are relaxed (e.g., 94 
Durrett and Levin, 1998; Frean and Abraham, 2001; Károlyi et al., 2005; Laird, 2014; Reichenbach et al., 95 
2007; Schreiber and Killingback, 2013; Szabó et al., 2004; Szolnoki and Szabó, 2004; Tainaka, 2001; 96 
Zhang et al., 2009). The general lesson is that variation in interaction structure can modify greatly the 97 
outcome of competition in intransitive systems.   98 

Spatial structure, whereby individuals interact preferentially (or solely) with their nearest neighbors, is 99 
one of the main types of interaction structure that has been modeled in the context of intransitivity-100 
mediated strategy coexistence (Durrett and Levin, 1998; Frean and Abraham, 2001; Kerr et al., 2002; 101 
Laird and Schamp, 2006, 2008, 2009). This type of structure is particularly relevant in biological systems 102 
whose members are largely sessile and confined to a two-dimensional substrate (e.g., biofilms (Kerr et 103 
al., 2002); encrusting benthic invertebrates (Dunstan and Johnson, 2005; Wootton, 2001)). Generally 104 
speaking, simulations predict that spatially explicit interactions enhance intransitivity-mediated 105 
coexistence (e.g., Durrett and Levin, 1998; Frean and Abraham, 2001; Kerr et al., 2002; but see Laird and 106 
Schamp, 2008; Rojas-Echenique and Allesina, 2011). This prediction is supported by key experimental 107 
data (e.g., Kerr et al., 2002). 108 
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The advent of evolutionary graph theory (Lieberman et al., 2005; Nowak, 2006; Perc et al., 2013; Szabó 109 
and Fáth, 2007) provides a framework whereby individuals interacting in arbitrarily structured 110 
populations can be studied. In this manner, spatial structure becomes a special case of interaction 111 
topology. As with spatial extensions of evolutionary game theory, more general graph-theoretical 112 
extensions are strongly influenced, in terms of approach, by recent models of the evolution of 113 
cooperation (Du et al., 2009; Hadzibeganovic et al., 2012; Lieberman et al., 2005; Lima et al., 2009; 114 
Nowak, 2006; Pacheco et al., 2006; Szolnoki and Perc, 2009; Szolnoki et al., 2008; Wang et al., 2006). In 115 
evolutionary graph theory, individuals interact with a subset of the population/community to which they 116 
belong, though not necessarily with those that are spatially close. In terms of intransitivity-mediated 117 
strategy coexistence, evolutionary graph theory is most relevant in humans and other species in which 118 
the existence of social networks can lead to complex population-level interaction structures. 119 
Additionally, there are other systems (biological, social, and technological) where interactions on graphs 120 
or networks are the norm (Watts and Strogatz, 1998). Finally, even in systems where aspatial interaction 121 
graphs are unlikely, modeling the outcome of interactions on such graphs may provide a point of 122 
contrast—a tool with which salient aspects of more realistic interaction structures can be examined in 123 
detail (e.g., Laird, 2014).       124 

Szabó et al. (2004) and Szolnoki and Szabó (2004) consider the Rock-Paper-Scissors game along a 125 
continuum of regular, small-world networks (Watts and Strogatz, 1998) ranging from spatial lattices to 126 
regular random graphs (also see Kuperman and Abramson, 2001; Laird, 2014; Ying et al., 2007). They 127 
show that by increasing quenched randomness (profitably thought of as an inverse measure of inherent 128 
spatial structure), disparate parts of the network become synchronized, leading to a Hopf bifurcation at 129 
which the strategy frequency dynamics transition from a stationary state to a limit cycle. Further 130 
increases in quenched randomness lead to an increasing (but decelerating) amplitude of oscillations in 131 
this limit cycle, resulting in the potential for strategy extinctions, and inevitable monoculture, unless the 132 
population is sufficiently large. (Szabó et al. (2004) also show a rather similar pattern with increased 133 
annealed randomness, which connects spatial lattices with well-mixed, mean-field dynamics. In an 134 
interesting convergence from a meta-community as opposed to graph-theoretical model, Schreiber and 135 
Killingback (2013) discovered a critical dispersal rate beyond which strategy coexistence was no longer 136 
possible.)   137 

Here, we extend the work of our predecessors (Kuperman and Abramson, 2001; Szabó et al., 2004; 138 
Szolnoki and Szabó, 2004; Ying et al., 2007) to communities with as many as 101 strategies, reflecting 139 
the fact that many systems, especially biological communities, often exhibit extraordinary degrees of 140 
coexistence. Our motivation is to determine how the degree of intransitivity and population structure 141 
interact to determine strategy coexistence in finite competitive communities. We show that when 142 
quenched randomness is below a critical value, as in spatially structured systems, long-term strategy 143 
richness is positively related to intransitivity, as predicted by previous research (Laird and Schamp, 2006, 144 
2008). Above the critical value, however, the increasing violence of strategy oscillations leads to random 145 
extinctions and the prevalence of monocultures. Further, building on the notion that the amplitude in 146 
strategy oscillations rises more slowly with quenched randomness in large compared to small 147 
populations (Szabó et al., 2004), we show that the critical value increases with population size and may 148 
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even disappear altogether in very large populations. Our results emphasize the importance of 149 
interaction structure and population size in determining strategy dynamics and diversity.      150 

2. Methods 151 

2.1. Graph structure 152 

In our model, competition is characterized by two graphs, the interaction graph and the tournament 153 
graph. Examining the outcome of competition when these two types of graphs are varied is one of the 154 
main goals of this paper.  155 

2.2. Interaction graph and quenched randomness (Q) 156 

The interaction graph describes the population interaction structure; i.e., it determines who interacts 157 
with whom. Individuals are placed at nodes, and edges connect individuals that interact. It is possible to 158 
have complete interaction graphs, where every node is connected to every other node; in large 159 
populations, interactions on such graphs approximate mean-field dynamics. However, here we consider 160 
incomplete (albeit connected) graphs in which each node is connected only to a subset of the other 161 
nodes. Specifically, we consider k-regular connected graphs, where k is the number of other nodes to 162 
which every node is connected (i.e., the degree or neighborhood size). Incomplete graphs are 163 
appropriate in many real situations: both biological and human systems are rarely so well mixed that all 164 
pairs of individuals are equally likely to interact; rather, individuals are more likely to interact with those 165 
who are spatially close, with those to whom they are socially connected, or both, to varying degrees.     166 

We investigate a continuum of interaction graphs along a gradient of quenched randomness (Szabó et 167 
al., 2004; Szolnoki and Szabó, 2004), ranging from graphs representing spatial lattices to regular random 168 
graphs. Quenched randomness is applied by breaking a proportion Q of the edges in a two-dimensional 169 
lattice and then randomly joining pairs of the resulting half-edges so that every node continues to have 170 
exactly k edges emanating from it. When Q = 0, the original lattice is preserved. When Q = 1, the 171 
resulting interaction graph is a regular random graph. When 0 < Q < 1, the resulting interaction graph is 172 
a small-world network (e.g., Fig. A1) (Szabó and Fáth, 2007; Szabó et al., 2004; Szolnoki and Szabó, 2004; 173 
Watts and Strogatz, 1998). Thus, as Q increases from 0, the resulting graphs become progressively 174 
detached from the inherent spatial properties of the original lattices used to create them; they also have 175 
lower characteristic path lengths (‘degrees of separation’) and clustering coefficients (‘cliquishness’)—176 
traits Watts and Strogatz (1998) argue are common over a diverse suite of large networks in nature. 177 
Following intransitive competition on this continuum of graphs allows us to predict the characteristics of 178 
the sorts of systems where intransitivity-mediated coexistence is more likely to occur.      179 

We consider interaction graphs with k = 3, 4, 6, or 8, as the number of neighbors is known to be 180 
important in the Rock-Paper-Scissors game (Szolnoki and Szabó, 2004). Interactions on k = 3, 4, or 6 181 
lattices are equivalent to interactions taking place between bordering cells arrayed as tessellated 182 
equilateral triangles, squares, or regular hexagons (i.e., the three types of regular tessellations on the 183 
plane) in cellular automaton models. Interactions on k = 8 lattices are equivalent to interactions taking 184 
place between bordering cells, and between cells sharing a common corner, in cellular automaton 185 
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models composed of tessellated squares. The neighborhoods that arise in the k = 4 and k = 8 cases have 186 
special names in the context of cellular automata: the von Neumann neighborhood and the Moore 187 
neighborhood, respectively (Durrett and Levin, 1994).  188 

2.3. Tournament graph and relative intransitivity (RI) 189 

The tournament graph describes how individuals bearing different strategies fare against one another 190 
when they interact. It is a complete, oriented graph in which edges connecting pairs of nodes 191 
(strategies) point from competitive subordinates to competitive dominants. This allows us to generalize 192 
the Rock-Paper-Scissors game into more strategy-rich scenarios (e.g., Rock-Paper-Scissors-Lizard-Spock1 193 
(Vukov et al., 2013) and beyond). While the most celebrated examples of intransitivity-mediated 194 
coexistence involve three strategies (e.g., Kerr et al., 2002; Sinervo and Lively, 1996), many of the 195 
systems in which it is hypothesized be important (corals, phytoplankton) are considerably more rich. 196 

The topology of the tournament graph determines the level of competitive intransitivity (Laird and 197 
Schamp, 2009). We measure intransitivity using the relative intransitivity index (RI) (Laird and Schamp, 198 
2008). To do so, the tournament graph is first converted to a tournament matrix M = [mij], in which mij = 199 
1 if strategy i is dominant to strategy j, and mij = 0 otherwise (i.e., highly asymmetrical or unbalanced 200 
competition; for an approach that considers a gradient in competitive balance, see Vandermeer and 201 
Yitbarek, 2012). For each strategy i, wi = Σjmij determines the total number of wins that strategy has 202 
against all the other strategies. The sequence of all wi is the ‘score sequence’ of M. Score sequences are 203 
presented in non-descending order. Competitive hierarchies include both highly dominant and highly 204 
subordinate strategies and therefore have score sequences with relatively high sums of squared 205 
deviations (or, equivalently, variance; Laird and Schamp, 2006, 2008). For example, a hierarchy of seven 206 
strategies has the score sequence {0, 1, 2, 3, 4, 5, 6} and a sum of squared deviations (hereafter SS) of 207 
Σi(wi – wavg)2 = 28. Highly intransitive tournaments, on the other hand, are composed of more-or-less 208 
evenly matched strategies, leading to score sequences with relatively low sums of squared deviations; a 209 
perfectly intransitive seven-strategy tournament has the score sequence {3, 3, 3, 3, 3, 3, 3}, resulting in 210 
SS = 0 (e.g., Fig A2). Relative intransitivity is calculated as RI = 1 – (SSobs – SSmin)/(SSmax – SSmin), where 211 
SSobs is the SS of the observed score sequence, and SSmax and SSmin are, respectively, the greatest- and 212 
least-possible SS values of score sequences derived from tournaments composed of the same number of 213 
strategies as the observed tournament. Thus, RI is a rational number between 0 and 1 with large values 214 
corresponding to more intransitive tournaments. Following Kendall and Babington Smith (1940), SSmin = 215 
0 when the number of strategies, s, is odd and s/4 when s is even. Similarly, SSmax = (s3 – s)/12 (also see 216 
Appendix A of Rojas-Echenique and Allesina, 2011).  217 

Interestingly, RI is exactly equivalent to 1 – ζ, where ζ is Kendall and Babington Smith’s (1940) coefficient 218 
of consistence, a metric originally designed to test for the consistency of experimental subjects when 219 
presented with a series of paired comparisons. Kendall and Babington Smith (1940) demonstrate that 220 
during competitive reversals, where the entries of mij and mji are swapped (i ≠ j), the smallest possible 221 
non-zero change to SSobs is 2. This implies that the smallest possible increment of RI is ϕ = 24/(s3 – s) 222 

                                                            
1 Often attributed to S. Kass and K. Bryla (http://www.samkass.com/theories/RPSSL.html). 
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when s is odd and ϕ = 24/(s3 – 4s) when s is even. Kendall and Babington Smith (1940) make the further 223 
claim that all the increments are possible, constrained only by SSmax and SSmin, implying that for any 224 
given s ≥ 3, there exist tournaments whose RI’s encompass all the values dϕ, where d is an integer 225 
between 0 and ϕ−1, inclusive. This claim is consistent with our preliminary investigations that show that 226 
for s ϵ {3, 4, …, 101}, it is possible to generate tournaments with all candidate RI = dϕ values (not 227 
shown). Furthermore, d is equal to the number of intransitive triads in sub-graphs of M, and ϕ−1 the 228 
maximum number of such triads (Kendall and Babington Smith, 1940), demonstrating that RI has an 229 
intuitive link with M’s intransitivity, and not merely a convenient statistical one (Fig. A2).    230 

Finally, we note that it is also possible to study graphs that feature non-tournament strategy-231 
competition outcomes (e.g., those with ties or with probabilistic outcomes; Vandermeer and Yitbarek, 232 
2012); however, these “introduce complications of a most intractable kind” (Kendall and Babington 233 
Smith, 1940, p. 325), and we do not consider them at this juncture.  234 

2.4. Simulations 235 

We consider square lattices with periodic boundaries (and the small-world and regular random graphs 236 
that emerge from them when Q > 0) with N = 2502 = 62500 nodes and 31250k edges (i.e., Nk/2 edges). 237 
At the start of each model run, all the nodes of a new, randomly generated interaction graph of 238 
quenched randomness Q are populated randomly and independently with s strategies which interact 239 
according to a new, randomly generated tournament graph of relative intransitivity RI. We investigate 240 
initial strategy richness values of s = 6, 7, 20, 21, 100, and 101 (i.e., even-odd pairs of low, medium, and 241 
high initial strategy richness). The most initially strategy-rich scenario (s = 101) is detailed in the main 242 
text2; all are considered in Fig. A3. Our motivation for using even-odd pairs is that only odd tournament 243 
sizes can have totally uniform score sequences (i.e., SSobs = 0), leading to greater potential for 244 
intransitivity-mediated coexistence. 245 

In every time-step, individuals located at two nodes sharing an edge, X and Y, are chosen at random. If, 246 
according to the tournament graph, X’s strategy defeats Y’s strategy, a clone of X deterministically 247 
replaces Y. On the other hand, if Y’s strategy defeats X’s strategy, a clone of Y deterministically replaces 248 
X. (Stochastic or irrational replacement rules are also possible (Vandermeer and Yitbarek, 2012), as are 249 
scenarios in which a focal individual simultaneously interacts with all its neighbors during a time-step 250 
(Laird and Schamp, 2006, 2008; Rojas-Echenique and Allesina, 2011).) N time-steps are defined as one 251 
model generation. The models are run until strategy monoculture occurs, up to a maximum of 105 252 
generations. There is no mutation, so once a monoculture is reached, no further changes to the node 253 
identities of the interaction graph are possible.   254 

We consider values of Q between 0 and 1, inclusive, in increments of 1/100, crossed with values of RI 255 
between 0 and 1, inclusive, in increments of 1/8, 1/14, 1/330, 1/385, 1/400, and (again) 1/400, for s = 6, 256 
7, 20, 21, 100, and 101, respectively. (Where 1/8, 1/14, 1/330, and 1/385 are the smallest increments in 257 
RI for s = 6, 7, 20, and 21, respectively. The smallest increments for s = 100 and s = 101 are 1/41650 and 258 

                                                            
2 Coincidentally, this is also the number of strategies in D. Lovelace’s RPS-101, “the most terrifyingly complex game 
ever” (http://www.umop.com/rps101.htm). 
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1/42950, respectively; however, in these cases, considering all possible values of RI would take an 259 
unfeasibly long simulation time.) For every value of RI considered, we start with a temporary s-strategy 260 
hierarchical tournament matrix and apply successive competitive reversals between randomly chosen 261 
pairs of strategies. If the matrix’s RI value after the reversal is closer to the target value than it was 262 
before the reversal, the reversal is accepted. If the RI value becomes farther from the target value, the 263 
reversal is discarded. If the RI value remains equally close to the target value, the reversal is accepted 264 
with probability 1/2 and discarded otherwise. The number of proposed reversals is 104 and 105 for 265 
smaller (s ≤ 21) and larger (s ≥ 100) numbers of strategies, respectively. This approach ensures that the 266 
target RI value is met (or approximated as closely as possible in cases where the target RI is not a 267 
multiple of ϕ) while still allowing the generation of random tournaments (whose unique manifestations 268 
outnumber the number of possible values of RI; e.g., Laird and Schamp, 2009).                269 

For every generation in every model run, we measure (i) current strategy richness, (ii) current strategy 270 
evenness, and (iii) current relative intransitivity. Current strategy richness, r, is simply the number of 271 
extant strategies. Current strategy evenness, Evar ϵ [0, 1], is an index with high values (near 1) when 272 
strategies are approximately equally abundant and low values (near 0) when strategies have very 273 
different abundances. Evar is calculated as 1 – (2/π)arctan{Σi[ln(xi) – Σjln(xj)/r]2/r}, where xi is the relative 274 
abundance of extant strategy i (Smith and Wilson, 1996). In community ecology, richness and evenness 275 
together traditionally represent the two components of diversity. Current relative intransitivity RI is 276 
calculated for modified tournament matrices that only include extant strategies. Additionally, for every 277 
model run we measure the number of generations until the first extinction.        278 

3. Results and discussion 279 

3.1. k = 4, 6, or 8 neighbors per individual 280 

For k = 4, 6, and 8, and s = 101, the results were qualitatively similar. At low levels of quenched 281 
randomness, Q < Qc (where Qc is approximately 0.41, 0.28, and 0.27 for k = 4, 6, and 8, respectively; 282 
Table 1, Fig. A4), the number of strategies coexisting after 105 generations, r, was positively related to 283 
initial RI (Fig. 1, A3). This result is explicable in terms of the final RI on which assemblages settled, 284 
following earlier strategy extinctions. Regardless of the initial RI, the final RI of assemblages in which 285 
coexistence occurred was generally close to 1, although perfect intransitivity was by no means a 286 
prerequisite for strategy coexistence (Fig. 1, A3). High RI corresponds to situations where there is low 287 
variation in strategies’ competitive abilities at the level of the assemblage, promoting strategy 288 
coexistence (Laird and Schamp, 2006). Further, sub-graphs of highly intransitive tournament graphs are 289 
themselves likely to be highly intransitive (e.g., Fig. A2; also see section 2.3). Thus, it typically takes 290 
fewer strategy extinctions for an initially relatively intransitive assemblage to reach a state of 291 
intransitivity-mediated coexistence, compared to an initially relatively transitive assemblage. For a given 292 
initial strategy richness, assemblages with greater initial intransitivity therefore tend have a greater final 293 
strategy richness.             294 

This raises the question, then, of why the final strategy richness in even initially highly intransitive 295 
assemblages was less than 20 in all the model runs that started with s = 101 strategies (Fig. 1, Table 2). 296 
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That is, why do so many strategies go extinct so early in the simulations (Fig. A3)? This appears to be due 297 
to finite size effects associated with small average strategy population sizes in initially strategy-rich 298 
assemblages. Indeed, in model runs with s = 6, 7, 20, and 21, the final strategy richness was often much 299 
closer to the maximum than in model runs with s = 100 and 101 (Table 2, Fig. A3). Of course, the long-300 
term number of strategies is capped at a maximum of s, so only limited inference can be drawn from 301 
this trend. To get at the issue more directly, we re-ran the s = 101 model runs with a smaller interaction 302 
graph size of N = 10000, such that average strategy population sizes would be less than one sixth as 303 
large as in the original runs for a given number of extant strategies (Fig. A5). As expected, smaller 304 
interaction graphs typically supported fewer strategies in the long term compared to larger interaction 305 
graphs (Table 2, Fig. 2). 306 

Due to the initial strategy extinctions, runs that started with odd numbers of strategies typically passed 307 
through their even counterparts quite rapidly, leading to the observation that there were only minor, 308 
inconsistent differences in the results within even-odd pairs of initial strategy richness (e.g., Table 1, 2; 309 
Fig. A3). An exception to this finding is in the low initial richness pair (s = 6 versus 7) with maximum RI; 310 
here, in the odd member of the pair, initial strategy extinctions often did not occur, leading to greater 311 
long-term coexistence than in the even member of the pair (Table 2; Fig. A3).   312 

A more interesting result is that regardless of the parity of the starting strategy richness, after 105 model 313 
generations the richness of the remaining strategies was almost always odd (>99.99% across over all 314 
combinations of s, k, RI, and Q for N = 62500). Allesina and Levine (2011) demonstrated that in the 315 
absence of niche differences, tournaments conducted in a mean-field setting must collapse to an odd 316 
number of strategies, because “for any tournament composed of an even number of species, we can 317 
find a subtournament composed of an odd number of species that collectively wins against each of the 318 
remaining species more often that in loses, eventually driving the other species extinct” (p. 5640). This 319 
finding clearly generalizes to the network-structured populations examined here. On the other hand, 320 
real communities are rather less likely to be biased toward an odd number of strategies due to other, 321 
concurrent coexistence mechanisms such as niche differentiation, disturbance, trophic interactions, and 322 
source-sink dynamics.   323 

When Q > Qc, there was no longer a positive relationship between r and RI because long-term strategy 324 
coexistence was typically not possible (Fig. 1, A3). Rather, strategy monoculture generally occurred 325 
within 105 generations and typically much earlier (see time series in Fig. A3). Interestingly, Qc appears to 326 
be largely independent of initial RI; beyond Qc, strategy monoculture was typical in both initially 327 
transitive and initially intransitive assemblages, although strategy coexistence was occasionally observed 328 
at values of Q slightly above Qc in the latter case, especially on k = 6 and k = 8 interaction graphs (Fig. 1, 329 
A3). (Strategy monocultures also occurred when Q < Qc, but only in very highly transitive assemblages.)  330 

Why is there a cutoff of Q (Qc), beyond which strategy coexistence is unlikely? Szabó et al. (2004) 331 
showed that for three-strategy tournaments, quenched randomness in the interaction graph is strongly 332 
positively related to the magnitude of strategy frequency oscillations, as evidenced by an increased area 333 
of the limit cycle relative to the total area of the phase space. If the amplitude of the oscillations 334 
becomes sufficiently large (i.e., when Q is greater than Qc), monocultures are likely in finite populations 335 
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(Fig. A6; bottom row). For instance, Fig. 3 shows three example time series for highly intransitive 336 
assemblages which initially had s = 101 strategies, but which supported r = 3 strategies in the long run (k 337 
= 4, initial RI = 16/17). As Q increases from 0.10 to 0.25 to 0.40, the magnitude of the oscillations of the 338 
three extant strategies increases and closely approaches the edges of the phase space. Indeed, in the 339 
full time-series for Q = 0.40 (i.e., a value of Q very close to the estimated Qc of 0.41; table 1), one 340 
strategy came within a single individual of going extinct, a situation that, had it occurred, would have 341 
rapidly led to monoculture.  342 

Unlike the effect of initial RI, within the region of strategy coexistence (i.e., Q < Qc), Q had very little 343 
effect on final richness, except for values of Q very close to Qc (Fig. 1, A3). On the other hand, Q had a 344 
sensitive influence, and initial RI only a weak one, on the other component of strategy diversity, 345 
evenness (Fig. 1, A3). Specifically, final evenness was strongly negatively related to Q (except beyond Qc, 346 
where monocultures prevail, and evenness was 1 by definition); however, initial RI was of little 347 
consequence to final evenness. As with richness, these evenness results can be interpreted in terms of 348 
the greater magnitude of strategy frequency oscillations as Q increases (Fig. 3). Larger oscillations mean 349 
that a small number of strategies typically dominate at any given time, while the rest have very low 350 
frequency; such disparity leads to reduced evenness (Smith and Wilson, 1996). 351 

The number of generations until the first strategy extinction followed a somewhat different pattern 352 
from final richness, final evenness, and final RI, in that there was no evidence of an effect of a critical 353 
value of Q (Fig. 1, A3). Rather, there was a strong effect of initial RI, with more initially intransitive 354 
assemblages taking a longer time to lose their first strategy compared to initially transitive ones. When 355 
even the most weakly competing strategies can outcompete at least one of their competitors, and when 356 
even the most strongly competing strategies are outcompeted by at least one of their competitors, both 357 
of which frequently occur when RI approaches 1, it takes longer for the stronger competitors to purge 358 
the weak ones.             359 

3.2. k = 3 neighbors per individual 360 

For s = 101 and k = 3, the results were qualitatively different from when individuals had k = 4, 6, or 8 361 
neighbors (Fig. 1, A3). Unlike those cases, when k = 3 there was no apparent critical value of Q beyond 362 
which strategy coexistence was not possible (Table 1, Fig. A4). Although strategy frequency oscillations 363 
do increase with Q for k = 3 (as with the other k-values), they fail to reach a magnitude that leads to 364 
strategy monoculture (e.g., Fig. A6; bottom row).  365 

However, it is evident that these results are strongly dependent on population size. Our main results 366 
employed a population size of N = 62500. When contrasting three-strategy competition in perfectly 367 
intransitive tournaments with populations of N = 62500 and N = 10000, we see that the latter do have a 368 
value of Q beyond which monocultures sometimes occur (Fig. A6). Further, by observing the relationship 369 
between the magnitude of strategy frequency oscillations and population size in perfectly intransitive 370 
three-strategy tournaments played on regular random graphs (Q = 1), we see that coexistence is less 371 
likely than monoculture when N is less than approximately 8876 (Fig. A7). Thus, it is clear that a 372 
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consistently measurable Qc for k = 3 interaction graphs only comes into play at smaller population sizes 373 
than those examined in detail here.  374 

Moreover, it is interesting to note that for all values of k, the magnitude of strategy frequency 375 
oscillations rose more rapidly with Q in N = 10000 populations than in N = 62500 populations (Fig. A6), 376 
leading to lower estimates of Qc in the former (i.e., for k = 4, 6, and 8; Table 1). Based on this trend, the k 377 
= 3 results, and similar findings reported by Szabó and colleagues (Szabó and Fáth, 2007; Szabó et al., 378 
2004; Szolnoki and Szabó, 2004), we surmise that Qc may disappear altogether even for k = 4, 6, or 8 in 379 
populations that are substantially greater than N = 62500. This is supported by further results given in 380 
Fig. A7, which show that when individuals have k = 4 neighbors, three-strategy intransitive assemblages 381 
(RI = 1) can be supported even in regular random graphs (Q = 1), provided the population size is 382 
sufficiently high (N greater than approximately 206297 for a predicted probability of strategy 383 
coexistence of > 0.5). The minimum population size, if there is one, that can sustain intransitive 384 
coexistence across all values of Q when k = 6 or 8 is even larger (unknown, but greater than one million; 385 
Fig. A7).   386 

3.3. Conclusions 387 

Despite earlier misgivings surrounding its importance (Wilson, 1990), intransitive competition is now 388 
known to occur in many human endeavours (Arrow, 1950; Hughes, 1980; Kendall and Babington Smith, 389 
1940; May, 1954; Riker, 1961; Tversky, 2004) and biological systems (Buss, 1980; Buss and Jackson, 390 
1979; Dunstan and Johnson, 2005; Huisman and Weissing, 2001b; Kerr et al., 2002; Kirkup and Riley, 391 
2004; Lankau and Strauss, 2007; Rubin, 1982; Sinervo and Lively, 1996; Sinervo et al., 2007; Taylor and 392 
Aarssen, 1990). In addition, attempts to understand population interaction structure and its effects on 393 
strategy dynamics and coexistence, particularly in cases where interaction connections are disordered 394 
and aspatial, have come to the fore (Du et al., 2009; Hadzibeganovic et al., 2012; Kuperman and 395 
Abramson, 2001; Lieberman et al., 2005; Lima et al., 2009; Nowak, 2006; Pacheco et al., 2006; Perc et 396 
al., 2013; Szabó et al., 2004; Szolnoki and Szabó, 2004; Szolnoki and Perc, 2009; Szolnoki et al., 2008; 397 
Wang et al., 2006; Ying et al., 2007).  398 

Here, we link these two aspects of evolutionary game theory and evolutionary graph theory to show 399 
how relative intransitivity and quenched randomness in small-world networks interact to determine 400 
strategy coexistence in finite populations. In most cases in our models, when quenched randomness is 401 
relatively low, greater initial intransitivity leads to greater long-term coexistence because it takes fewer 402 
extinctions to attain a highly intransitive state in which the competitive abilities of strategies are 403 
balanced at the community level. However, when quenched randomness exceeds a critical value, Qc, 404 
population fluctuations increase to such a degree that coexistence is no longer possible, and a single 405 
strategy typically takes over the entire network. This emphasizes the importance of space per se in 406 
determining intransitivity-mediated strategy coexistence (e.g., Durrett and Levin, 1998; Frean and 407 
Abraham, 2001; Kerr et al., 2002; Laird, 2014) and reaffirms the notion that dispersal and long-range 408 
connections can potentially destroy coexistence by synchronizing regions of networks that would 409 
otherwise evolve independently (Szabó et al., 2004).      410 
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We further show that Qc depends positively on the number of interacting individuals in the system, and 411 
that this critical value can even disappear in populations that are sufficiently large (where “sufficiently 412 
large” itself depends on neighborhood size, k). We nevertheless argue that quenched randomness and 413 
long-range connections are still likely to be relevant to the maintenance of diversity in many intransitive 414 
systems, particularly those of a social or biological nature. Our argument stems from the characteristic 415 
size of typical socio-biological systems, as compared to physical ones: In statistical physics, a critical 416 
aspect of simulation-model building is ensuring that the system is large enough to avoid accidental 417 
extinctions associated with finite-size effects (e.g., Szabó et al., 2004). This makes good sense when 418 
dealing with multitudinous interacting particles, for example. However, in community ecology, the main 419 
focus of our work here, populations are finite in practice, and, indeed, often small. Thus, we contend 420 
that it is important to understand the nature of Qc on the coexistence of strategies in intransitively 421 
competing systems, even if this critical value vanishes as population size approaches infinity. Just as 422 
finite populations are important to our understanding of the evolutionary game dynamics of 423 
cooperation (Nowak et al., 2004; Taylor et al., 2007; Traulsen et al., 2005), so too are finite populations 424 
important to our understanding of the coexistence criteria for intransitively competing strategies.    425 

Our results lend support to the hypothesis that intransitivity-mediated coexistence may be most 426 
prevalent in spatial systems whose high natural clustering (‘cliquishness’) and characteristic path-lengths 427 
(‘degrees of separation’; Watts and Strogatz, 1998) hinder the spontaneous emergence of global 428 
oscillations and guard against the collapse of diversity. It is therefore intriguing, and worthy of additional 429 
study, that several of the best examples of this potential mechanism of coexistence come from systems 430 
where competition and dispersal/colony growth are predominantly local in their extent (e.g., Jackson 431 
and Buss, 1975; Kerr et al., 2002). On the other side of this argument, it is tempting to speculate that 432 
ongoing transitions toward socially structured networks with very long distance connections may lead to 433 
the erosion of intransitive preferences (at the network level) in humans, and possibly the loss of 434 
ideological or cultural diversity—a process that may be mitigated or enhanced, respectively, as the size 435 
of the networks (N) or the size of neighborhoods (k) expands.           436 

Our results also suggest several other outstanding questions. For example, how do intransitivity and 437 
quenched randomness affect strategy coexistence when competition is more symmetrical, such that the 438 
outcome of an individual competitive interaction is uncertain (Vandermeer and Yitbarek, 2012)? What is 439 
the effect when the interaction graph is not static, but free to evolve as connections are severed, 440 
shuffled, and re-established (Pacheco et al., 2006; Santos et al., 2006; Szolnoki and Perc, 2009)? Does 441 
annealed randomness produce similar results to quenched randomness, as it does in three-strategy 442 
intransitive assemblages (Szabó et al., 2004)? While these questions are as yet unanswered, it is 443 
certainly clear that variation in interaction graph topology is a crucial aspect of whether intransitivity-444 
mediated coexistence can be realized in systems playing rock-paper-scissors and its more strategy-rich 445 
counterparts.        446 
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Tables 629 

Table 1. Critical quenched randomness, Qc, for four numbers of neighbors per individual, k, and six initial 630 
numbers of strategies, s, as determined by the model output shown in Figs A3 and A5 (population size: 631 
above dashed line: N = 62500; below dashed line: N = 10000). Qc was estimated as the lowest value of Q 632 
for (and above) which more than 70% of the initial RI values examined resulted in monoculture within 633 
105 generations. Note that for k = 3, no critical quenched randomness is apparent, at least for this 634 
population size. See Fig. A4 for details.   635 

 Critical quenched randomness, Qc 
Initial number of 

strategies, s k = 3 k = 4 k = 6 k = 8 

6 NA 0.39 0.27 0.26 
7 NA 0.41 0.27 0.26 

20 NA 0.40 0.27 0.26 
21 NA 0.41 0.27 0.26 

100 NA 0.41 0.28 0.27 
101 NA 0.41 0.28 0.27 
101 NA 0.22 0.19 0.20 

 636 

Table 2. Greatest observed strategy richness, r, after 105 generations, for four numbers of neighbors per 637 
individual, k, and six initial numbers of strategies, s. Population size: above dashed line: N = 62500; 638 
below dashed line: N = 10000. 639 

 Greatest observed strategy richness, r 
Initial number of 

strategies, s k = 3 k = 4 k = 6 k = 8 

6 5 5 5 5 
7 7 7 7 7 

20 15 15 15 15 
21 17 15 15 17 

100 19 21 17 17 
101 17 19 17 19 
101 9 9 9 11 

640 
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Figure captions 641 

Fig. 1. Generations until first extinction (top row), final strategy richness (r; second row), final strategy 642 
evenness (Evar; third row), and final relative intransitivity (RI; bottom row) as a function of the number of 643 
neighbors per individual (k; columns), initial relative intransitivity (RI), and quenched randomness (Q). 644 
Population size: N = 62500; initial number of strategies: s = 101. Each pixel represents a single model 645 
run. Interpretation of colors is given in the legends. (In the bottom row, white regions correspond to 646 
situations where r < 3, meaning that RI is undefined because SSmax = SSmin.)  647 

Fig. 2. Differences in final strategy richness between populations of N = 62500 and N = 10000 as a 648 
function of the number of neighbors per individual (k; panels), initial relative intransitivity (RI), and 649 
quenched randomness (Q). Red regions indicate that the model run for N = 62500 had greater strategy 650 
richness after 105 model generations than the corresponding model run for N = 10000; blue regions 651 
indicate the model run for N = 10000 had the greater strategy richness; white regions indicate that the 652 
strategy richness was the same.  653 

Fig. 3. Corresponding time series (generations 99900 to 100000; right column) and phase diagrams 654 
(generations 90001 to 100000; left column) for three example model runs for N = 62500, k = 4, s = 101, 655 
initial RI = 16/17, and Q = 0.1 (top row), 0.25 (middle row), or 0.4 (bottom row). Examples were chosen 656 
based on those that had the same final strategy richness (i.e., three strategies, arbitrarily labeled X (red), 657 
Y (blue), and Z (green) such that X → Y → Z → X). Note that the model runs shown here are 658 
independent of those from the same parameter values in Fig. 1. In the phase diagrams, the point (1/3, 659 
1/3, 1/3) is shown for visual reference (open symbol).  660 
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Fig. A1. [Subsequent page]. An example of a regular 25-individual interaction graph. Nodes (circles, 
labeled A-Y) represent individuals, and edges (black, solid lines) connect individuals that interact. N = 25 
nodes; k = 4 edges per node. Q = 0.1 meaning that QNk/2 = 5 random connections in the original lattice 
are severed (i.e., AU, DE, JO, MN, and QR; dashed grey lines), and the resulting half-edges are randomly 
joined (i.e., AQ, DJ, EM, NR, OU). While this example has N = 25 nodes, most of our actual simulations 
have N = 62500 nodes. 
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Fig. A2. [Subsequent four pages]. Matrices: An example s = 7-strategy tournament matrix (M = [mij]) of 
maximum intransitivity (RI = 1). Strategies are labeled 1-7. When mij = 1, the strategy of row i 
outcompetes the strategy of column j. When mij = 0, the strategy of row i is outcompeted by the 
strategy of column j (or nothing happens in the case of i = j). The column marked w gives the row sums, 
the number of wins each strategy has against the other strategies; taken together, the w column 
represents the score sequence of the tournament. Graphs: The graphs all correspond to M. The graph in 
the blue box is uncolored; the other graphs are colored to highlight each sub-graph triad in turn (of 
which there is a total of C(s, 3) = 35). In each case, nodes represent strategies and directed edges 
represent the competitive relationships within a pair of strategies, with X → Y indicating that strategy Y 
outcompetes strategy X. Note that this is the opposite direction of directed edges in some previous 
studies; however, this formulation is intuitive because it means that arrows flow in the direction of 
competitive replacement. In the graphs that highlight the triads, intransitive triads are given in green 
and transitive triads are given in red. Note that there are exactly ϕ−1 = (s3 – s)/24 = 14 intransitive triads 
in this maximally intransitive tournament, as demonstrated by Kendall and Babington Smith (1940).   
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Fig. A3. [Subsequent 24 pages]. Each sub-figure, (a) through (x), shows the full model results (when N = 
62500) for a particular combination of the number of neighbours per individual (i.e., the number of 
edges per node; k) and the initial number of strategies (s), as given in the following hyperlinked table 
(click on red letters):  

 Neighbours per individual (k) 
Initial number of  

strategies (s) 3 4 6 8 

6 (a) (g) (m) (s) 
7 (b) (h) (n) (t) 

20 (c) (i) (o) (u) 
21 (d) (j) (p) (v) 

100 (e) (k) (q) (w) 
101 (f) (l) (r) (x) 

 
In each sub-figure, the top row (composed of a single panel) gives the number of generations until the 
first strategy extinction, and the second, third, and fourth rows (each composed of seven panels) give, 
respectively, the current strategy richness (r), the current strategy evenness (Evar), and the current 
relative intransitivity (RI) for the initial conditions (‘start’) and in generations 1, 10, 100, 1000, 10000, 
and 100000, for various combinations of the initial relative intransitivity of the tournament graph (RI) 
and quenched randomness of the interaction graph (Q). Colors represent the model outcome (see 
legends to right of rows); in the case of the RI row, white and grey regions represent, respectively, cases 
where strategy richness is 1 or 2 (i.e., for which RI is undefined).   

For s = 6, 7, 20, and 21, all possible values of initial intransitivity are considered (respectively numbering 
9, 15, 331, and 386 evenly spaced values between 0 and 1, inclusive). For s = 100 and 101, there are too 
many possible values of initial intransitivity to consider (41651 and 42926, respectively); hence, 401 
evenly spaced values between 0 and 1, inclusive, are considered instead. In every case, 101 evenly 
spaced values of Q between 0 and 1, inclusive, are considered. Within each sub-figure the corresponding 
RI and Q coordinates from every panel represent the outcome of a single model run. 

Note that in the case of k = 4, 6, and 8 ((g) – (x)), there is a threshold value of Q, beyond which strategy 
coexistence does not occur. However, in the case of k = 3 ((a) – (f)), there is no such threshold, at least 
for this population size (N). 
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Fig. A4. [Subsequent page]. Each panel gives, for particular combinations of the number of neighbours 
per individual (k; columns) and initial strategy richness (s; rows), the proportion of simulation runs that 
became monocultures within 105 generations (across all tested values of initial RI) for values of Q 
between 0 and 1 in increments of 0.01. Qc was estimated as the lowest value of Q for (and above) which 
more than 70% of the initial RI values examined resulted in monoculture (70% lines shown for visual 
reference).  
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Fig. A5. [Subsequent page]. Generations until first extinction (top row), final strategy richness (r; second 
row), final strategy evenness (Evar, third row), and final relative intransitivity (RI, bottom row) as a 
function of the number of neighbours per individual (k; columns), initial relative intransitivity (RI), and 
quenched randomness (Q). Population size: N = 10000; initial number of strategies: s = 101. Each pixel 
represents a single model run. Interpretation of colours is given in the legends. (In the bottom row, 
white regions correspond to situations where r < 3, meaning that RI is undefined.) 
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Fig. A6. [Subsequent page]. Relative area (A; red) and strategy evenness (Evar; blue) as a function of 
quenched randomness (Q; horizontal axis), number of neighbours per individual (k; columns), and 
population size (N; rows). In every case, s = 3 and RI = 1 (i.e., intransitive three-strategy assemblages). A 
is estimated as the proportion of the area of the equilateral-triangular phase space that is filled with a 
convex hull surrounding the population trajectory between model generations 90001 and 100000 (e.g., 
the outermost outlines of the trajectories in the phase diagrams in Fig. 3). Evar is estimated as the 
average Evar over the same range of model generations. Symbols give the results of individual runs; there 
are 10 replicates for each value of Q between 0 and 1, inclusive, in increments of 0.01. Lines join the 
average values for each unique value of Q examined.   

For k = 4, 6, and 8, A increases with Q, indicating that the amplitude of population oscillations becomes 
progressively greater. At Qc, A abruptly decreases to 0; in the region beyond Qc, the amplitude of 
population oscillations is so great that two of the three strategies go extinct before generation 90001, 
and the population trajectory subsequently remains static at one of the three corners of the phase 
space (A = 0). Concomitantly, Evar decreases with Q, indicating increasing disparity in the relative 
abundance of the three strategies. At Qc, Evar abruptly increases to 1; monocultures have an evenness of 
1 by definition. Note that in the smaller populations (N = 10000; top row) the increase in A and the 
decrease in Evar with Q are both rapider than in the larger populations (N = 62500, the same size as those 
highlighted in the main text; bottom row). Thus, the onset of violent population fluctuations sufficient to 
cause extinction depends on population size; i.e., Qc is positively related to N, at least within the region 
of N values examined here.   

For k = 3, the situation is slightly different, in that N = 62500 is a sufficiently large population to ensure 
that fluctuations never become sufficiently large to result in strategy extinctions within 100000 
generations. This explains why there was no observed Qc value for k = 3 interaction graphs in the main 
results. With smaller populations (N = 10000), the increase in amplitude of population oscillations is 
great enough to allow for occasional strategy extinctions starting at Q = 0.38. However, even beyond 
this value of Q, most model runs result in three-strategy coexistence. Presumably, a consistently 
measurable Qc for k = 3 interaction graphs only comes into play at even smaller population sizes. 
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Fig. A7. [Subsequent page]. Top row: Relative area (A) as a function of population size (square root-
transformed, L = N0.5; horizontal axis) and number of neighbours per individual (k; panels). In every case, 
s = 3, RI = 1, and Q = 1 (i.e., intransitive three-strategy assemblages interacting on regular random 
graphs). A is estimated as the proportion of the area of the equilateral-triangular phase space that is 
filled with a convex hull surrounding the population trajectory between model generations 90001 and 
100000 (e.g., the outermost outlines of the trajectories in the phase diagrams in Fig. 3). Symbols give the 
results of individual runs; there are 10 replicates for each of L = 10, 50, 100, 150, 200, 250, 300, 350, 
400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, and 1000 (i.e., population sizes spanning N = 
100 to 106). There are a further 10 replicates each for L = 50 to 150 for k = 3 and between L = 400 to 600 
for k = 4, in increments of 2, to characterize the transitions from monoculture to coexistence with 
greater resolution. Lines join the average values for each unique value of N examined. 

When N is relatively small, the large fluctuations that accompany rock-paper-scissors competition on 
regular random graphs (i.e., Q = 1) result in the extinction of two of the three strategies (A = 0). 
However, when N is sufficiently large, even these large fluctuations do not preclude strategy 
coexistence. Just what constitutes ‘sufficiently large’ is highly dependent on k, the number of 
neighbours per individual. When k = 3 rock-paper-scissors coexistence is predicted to be more likely 
than monoculture when the population size is greater than approximately N = 8876 (i.e., according to 
logistic regression; bottom row). For k = 4, the switch occurs at approximately N = 206297 (bottom row). 
Evidently, for k = 6 and 8, the population sizes needed to allow coexistence in this scenario are rather 
greater: N > 106. Together, these findings help explain why in the main results, in which N = 62500, 
critical values of Q were evident for k = 4, 6, and 8, but not k = 3 (Fig. 1, Table 1). More broadly, it is 
evident that the existence of a critical quenched randomness is a phenomenon of finite population sizes. 
This makes Qc particularly relevant to biological systems which are themselves finite and often small 
(compared to physical systems with extremely large N). 
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