
Karan B., Timotijević M.,
Djurović M., Devedžić V., Josifović N. 
"Mihajlo Pupin" Institute, Beograd, Yugoslavia

A SYSTEM FOR PROGRAMMING THE UMS-7 

INDUSTRIAL ROBOT

ABSTRACT - The paper gives an overview of some characteristic features of 
the software support of the controller for the UMS-7 industrial robot. The soft-
ware is intended for textual robot programming and is implemented on a micropro-
cessor based system.

1. INTRODUCTION

The UMS-7 is a general purpose robot system which includes the UMS-7 arthro- 

poid manipulator and the UMS-7 controller. The manipulator [1] is powered by d.c. 

motors and is primarily devoted for relatively noncomplex manipulation tasks, 

such as spot welding and simple materials handling. The manipulator controller [2, 

3] is a microprocessor based system which in its minimal configuration consists

of three processor boards in parallel operation, global memory, an A/D board with 

up to 32 twelve bit analog input lines, a D/A board with up to 8 twelve bit analog 

output lines, peripheral parallel interfaces enabling handling up to 256 single 

bit digital signals connecting the controller to external equipment (other machi-

nes, sensory system etc.) and a commanding panel. The number of analog and digital 

lines is expandable. The processor boards are built around Intel 8086 micropro-
cessors with arithmetic coprocessors and include local memories, serial and pa-

rallel interfaces, real time clocks and watch - dog timers.

The software support of the controller is strictly hierarchically organized 

and conceptually consists of three layers: commanding level, base level and the 
system nucleus.

The commanding level acts as an interface between the base level and a user 

of the system. Its modules enable the user to enter commands for manual guiding 
the manipulator, to request a direct execution of a particular robot command, to 

create, modify, debug and execute robot programs, to adjust controller parameters 
etc. Commands recognized at this level can be divided into two main groups: local

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Serbian Academy of Science and Arts Digital Archive...

https://core.ac.uk/display/225621363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


commands (such as commands for computation of geometrical transforms, commands 

for redirecting the flow of execution etc.) and commands controlling the opera-

tion of modules at the base level (such as manipulator motion commands, commands 

incorporating access to external signals etc). The main modules at the commanding 

level are the dialogue processor (DP) incorporating a specialized line editor and 

supplying the user with a tutorial support during operation of the system, the 

robot language parser (PAR) and the robot language interpreter (INI).

The base level consists of three modules: the commanding panel interface 

(CPI), the external signal processing module (IOP) and the manipulator control 

module (MC). The task of the module CPI is to enable an asynchronous access to 

the commanding panel from the modules at the commanding level. Its procedures per-

form reading and elementary processing of signals sent from the commanding key-

board, displaying messages at the terminal screen and generating diagnostic sig-

nals at the commanding panel. The module IOP performs monitoring input and gene-

rating output digital and analog signals, enabling in this manner synchronization 

of the manipulator operation with external hardware. The module MC is the central 

part of the system; it includes three submodules: manipulator control interface 

(MCI), a kinematic module serving as an arm resolver (KIN) and digital servosystem 

(DSS). All manipulator motion commands are directed from the commanding level to 

the module MCI; its responsibility is to fill uncompleted motion specifications 

with default values, to check feasibility and allowance of requested motion and 

to generate descriptors of manipulator trajectory segments, as well as to synchro-

nize the operation of module MC with the operation of modules at the commanding 

level. The module KIN can essentially operate in one of the two modes: velocity 

controlled motion (implemented in manual guiding) and position controlled motion. 

In both cases, the module KIN accepts trajectory segment descriptors as well as 

other special commands from modules at the commanding level (for example, com-

mands for unconditional stopping the motion in progress) and performs transfor-

mation of external (Cartesian) coordinates into manipulator joint coordinates.

The module DSS accomplishes tracking of calculated joint coordinates taking into 

account feedback information from potentiometers, shaft encoders and tachogene-

rators located in the manipulator joints. This module incorporates feed-forward 

compensation calculated on the basis of manipulator dynamics and digital local 

servoregulators with proportional, integral and derivative control actions. The 

last two modules (i.e., KIN and DSS) are numerically the most complex parts of the 

system and occupy most of its computational resources. In fact, a distribution 

of the computation is performed in the controller so that distinct microproces-

sors are devoted to calculation of kinematics and dynamics, including digital 

servoregulators ("kinematics processor", "dynamics processor"), while the rest



of the software runs on the third processor ("communication processor").

The system nucleus has a responsibility to assure a distribution of proces-

sor time between modules at the commanding and the base level and to provide basic 

synchronization primitives for communication between the modules.

More detailed description of the system organization as well as description 

of algorithms implemented in particular modules is beyond the scope of this paper. 

In following sections we will rather concentrate on description of some characte-

ristic features facilitated by modules at the commanding level.

2. ROBOT PROGRAMMING LANGUAGE OVERVIEW

The system is designed to enable textual robot programming resulting in a 

robot program, which is itself a sequence of individual statements written in a 

specialized language and representing corresponding robot commands.

The robot commands can include operations on logical, byte, integer, real 

and point data types.

Logical data can take values from the set {0, 1}, byte data can take integer 

values in the range 0 to 255 and integer data in the range -32768 to +32767. Real 

data can take absolute values in the range 1.0 E-38 to 1.0 E+38, with 6 signifi-

cant decimal digits.

Point data serve for more convenient handling of manipulator positions. The 

position can be memorized by the system either in external (i.e. world) or joint 

coordinates. The position in external coordinates is defined through Cartesian co-

ordinates and Euler's angles of the manipulator tip. On the other hand, the posi-

tion in joint coordinates is defined through six joint angles of the UMS-7 manipu-

lator. Coordinates are expressed in millimeters or degrees depending on their natu-

re. All linear coordinates are stored with precision of 0.1 mm, while the angle 

coordinates are stored with precision of 0.1 degree.

Mapping from external to joint coordinates is not unique for the UMS-7 ma-

nipulator. For this reason point data representing positions in external coordi-

nates can optionally include three additional indicators enabling a selection of 

proper solution in joint coordinates. The indicators are referred to as joint orien-

tation selectors and can take values from the set {0, 1}. Setting the appropriate 

selector corresponds to the selection of desired orientation of the UMS-7 arm, 

elbow or wrist joint.

Data appear in robot programs as constants or variables. Scalar constants 

can be written as in a majority of other programming languages. Point constants



are formed by following the syntax:

#<type of coordinates>: <values of coordinates>: <optional selectors>#

as in robot language statements:

mov #world: 1600, 1000, 78, 90, 70, 60: 0, 1, 1# 

mov #joint: 30, -60, 180, 0, -10, 0#

Variables can be referred symbolically in a program through associated iden-

tifiers which start with a letter and may be followed by up to eight letters, di-

gits and underscore characters. The use of identifiers is restricted to combina-

tions that do not match reserved words as "mov", "call" etc. Variables with 

associated identifiers must be explicitly declared before their use, as in state-

ments:

real x

point p

For user convenience another form of referring the variables is supported.

It is illustrated in the statements:

point@1 := #world : 0, 0, 0, 0, 0, 0# 

real@20 := x - 2.0

Where the names of variables contain appropriate data types and indices (inte-

ger values in the range 1 to 1023) which uniquely define the variables. The use of 

this form does not require explicit declaration of a variable and decrease neces-

sary storage several times compared with the case of variables with associated 

identifiers, but on the other side makes the robot program less readable.

All variables must be given a value before they are used; otherwise, the 

system reports an error.

The system enables computation of scalar expressions with arithmetic opera-

tors "+", "-", "*", "/" and with optional use of parentheses. Automatic conversi-

on of data types into expressions is performed where possible. Scalar expressions 

can be compared using relational operators ">", "<", ">=", M<=”, “=“ and "<>".

The result of the comparison is a logical datum with value 1 if the relation is 

valid and 0 otherwise.

Expressions with point data are also supported. For these data a binary



operator "+" meaning the composition of space relationships represented by ope-

rands and an unary operator meaning the inversion of the operand are defined.

If <p1> and <p2> are point data, then the construction <p1> - <p2> has the same 

meaning as <p1> + (-<p2>). The use of point expressions is limited to the case

when all operands are defined in external coordinates. Comparison of point data 

is also allowed with relational operators "=" and "<>".

All executive robot commands can be roughly divided into five groups: as-

signment commands, print command, commands for redirecting the flow of execution, 

motion control commands and commands enabling the handling of external conditions.

Besides the usual operator ":=" of assignment, the system supports two special 

commands, namely "here" and "jhere", enabling assignment of values corresponding to 

a current manipulator position and orientation to point variables. The first com-

mand is used when external coordinates are to be memorized, and the second one 

when joint coordinates are preferred.

The system allows conditional execution of commands through the construction:

if <expression> then <command>

<conmand> is executed only if the value of <expression> is different from 0.

Every executive statement can be optionally preceded by a label which is 

formed by a concatenation of an identifier with the colon character. Command 

"goto <identifier>" allows unconditional branching to the statement labelled 

with <identifier>. Commands "call <identifier>" and "ret" allow the use of sub-

routines, making the program more readable and efficient.

Program execution can be broken via commands "break" and "abort". The diffe-

rence between the two is that the first allows to later continue execution from 

the break point, while the second does not. Command "restart <identifier> " breaks 

the execution and reinitiates it from the specified label.

Commands enabling manipulator motion control and handling of external sig-

nals are described in the next two sections.

3. MOTION CONTROL

The language incorporates a set of commands for specifying desired motion 

of the manipulator. All motion commands have the syntax:

<motion type keyword> <point expression>

Where the motion type can be "mov", "jmov", "movi" or "jmovi". The first



one denotes a motion with a linear change of external coordinates. The second cor-

responds to a motion with a linear change of joint coordinates. In both cases mo-

tion is performed to a destination point defined by <point expression>. Types 

"movi" and "jmovi" in contrast to "mov" and "jmov" interpret point expression 

as an incremental movement relative to the manipulator current position.

There is a number of commands that specify more closely the desired parameters 

of the manipulator motion. Their common format is:

<motion parameter keyword> <argument>

Commands "arm", "elbow" and "wrist" have as arguments desired joint orien-

tation selectors after execution of the next motion command. The command "time" 

has as an argument desired time of movement, the command "speed" have as an ar-

gument desired relative speed of movement during the execution of the next mo-

tion command, etc.

4. EXTERNAL SIGNAL PROCESSING

The robot controller is connected to peripheral equipment via digital and 

analog physical lines. Six input digital lines, six analog input lines and six 

output analog lines are connected respectively to shaft encoders, potentiometers 

and actuators in the UMS-7 joints. All other lines are under explicit control of 

the user.

All digital signals enter the system as single bit values (switch signals).

In order to achieve more efficient way to handle digital signals and to enable 

the user to examine more than one digital signal at a time, they are clustered 

in groups of 8 or 16 bits.

The language has no special commands for reading or creating signals. Both 

analog and digital signals as well as groups of digital signals are accessed in 

the UMS-7 robot language in the same manner as variables, via system defined or 

user-defined identifiers. References to analog signals can appear in programs 

wherever integer variables can. The user can access digital signals and groups 

of digital signals in the same manner as logical, byte or integer variables, 

depending on their range of values. Obviously, input signals behave as read-only 

variables.

Values of all signals are periodically refreshed by the system in a dedica-

ted memory called external signal area. Default values of output signals that 

should be sent to all output ports in the case of system failure are saved in 

another memory area denoted as save area. The user can examine and change the 

default values by using prefix with references to hardware output signals.



Besides the already described synchronous access to external signals, the 

user can declare external conditions that are to be permanently monitored during 

execution of a robot program; the declaration should follow the form:

cond <condition identifier>: <condition>

Where <condition> is a simple relational expression relating the value of 

an input signal to the value of some constant, variable or another input signal. 

The actual monitoring of the condition starts with the appearance of the statement:

when condition priority> <frequency> <type> condition identifiers

do <command>

At this moment the robot language interpreter RLI puts the condition as 

well as its associated priority (integer value in the range 1 to 15), selected moni-

toring frequency and selected type of monitoring on the list of monitored condi-

tions. The process of monitoring, i.e. scanning the list of monitored conditions 

is performed by the module IOP asynchronously to the operation of the interpre-

ter. When a condition becomes satisfied, module IOP tries to interrupt the RLI 

operation forcing it to process the interrupt, i.e. to interpret the <command>. 

The interrupt is acknowledged if the interpreter does not process some other in-

terrupt of higher priority. If the interrupt is not acknowledged, the satisfied 

condition is put by the module IOP on the waiting list. At this point it should 

be noted that the <command> may be any executive robot command, including the 

command “restart". Also, if the command is a call to a subroutine, the inter-

preter is in the state of processing the interrupt until the corresponding return 

from the subroutine is executed.

The monitoring frequency can be selected using keywords "fast", "med" and 

"slow", i.e. conditions can be scanned every elementary time interval, every 10th 

interval or every 100th interval respectively. The type of monitoring is selec-

ted with keywords "edge" and "level". If the first one is selected, monitoring 

stops immediately after the condition becomes satisfied. If the user specifies 

the type "level", module IOP does not automatically remove the condition from the 

list of monitored conditions.

The user can temporarily disable and later enable selected interrupts using 

statements:

disable <priority>

enable <priority>



Finally, conditions can be definitely removed from the list of scanned 

conditions using statements;

ignore condition identifier

ignore all

Some characteristic system data are denoted as system signals and are proces-

sed the same way as actual external signals. Examples of such data are the position 

of the manipulator tip (input signal), the default speed of motion (output signal) 

etc. Software timers are handled in the same manner: the system supports eight 

software timers which can be activated by sending signals to appropriate output 

software lines and examined by reading signals from corresponding input software 

1ines.

5. USER INTERFACE

The interface between the user and the system is achieved through the dialo-

gue processor DP which supports multi level menu-driven dialogue. The dialogue is 

performed via video terminal (the current version of the system requires VT100 

Digital or other compatible terminal).

On each level of the dialogue a menu of allowed commands is displayed on the 

last line of the screen. An allowed command can be entered by pressing the corres-

ponding key at the terminal keyboard (usually the key corresponding to the first 

letter of the command). From any level to the next higher level the user can jump 

after pressing the key "escape".

It is worth noting that a lot of additional features are incorporated in the 

dialogue processor in order to facilitate the process of programming as much as 

possible. For example, manual guiding motion can be performed in one of the three 

modes: with a linear change of the UMS-7 joint coordinates, with a linear change 

of external coordinates of the manipulator tip defined with respect to the manipu-

lator base and with a linear change of external coordinates defined with respect 

to the coordinate system connected to the manipulator gripper. The last one is 

especially suitable for fine tuning the gripper position in the vicinity of a 

manipulated object. A special form of motion specification statements without 

arguments can be entered during the process of editing the program: the system 

adds the current manipulator position as the destination point by default. Debug-

ger incorporated in the system enable to set break points in the program, to exe-

cute the program step by step, to display and change values of program variables, 

to change the speed of the robot motion etc.



6. CONCLUDING REMARKS

The described system is a first step toward a more powerful robot programming 

system which is under development in the "Mihajlo Pupin" Institute [3, 4]. It is 

programmed entirely in high level languages (PL/M and FORTRAN 77) and possesses a 

strong modular structure facilitating its further expansion. Its future versions 

should provide better hardware transportability (i.e. a possibility of adapting 

the system to a particular manipulator and a particular application by the cust-

omer) and more efficient robot programming by implementing a more general robot 

program structure as described in [4].

7. REFERENCES

[1] Hristić D., Vukobratović M., "State and Perspectives in the Production and 
Application of Industrial Robots in Yugoslavia", Proc. III Soviet-Yugoslav 
Symposium on Applied Robotics, Moscow, 1986.

[2] Vukobratović M., Karan B., Kirćanski M., Kirćanski N., "Concept of a Multipro-
cessor Robot Controller", (in Serbocroatian), Proc. XXX ETAN, Herceg Novi 1986.

[3] Vukobratović M., Kirćanski N., Stokić D., Kirćanski M., Karan B., "General 
Purpose Controller for Industrial Manipulators", Proc. II Soviet-Yugoslav 
Symposium on Applied Robotics, Arandjelovac 1984.

[4] Karan B., "A Software System for Teaching and Commanding the Industrial 
Robots", Proc. I IFAC Symposium on Robot Control, Barcelona 1985.




