
Copyright © I F A C Robot Control
(Syroco ’85), Barcelona, Spain, 1985

A SOFTWARE SYSTEM FOR TEACHING AND
COMMANDING THE INDUSTRIAL ROBOTS

B. Karan

Robotics Department, Mihailo Pupin Institute, Belgrade, Volgina 15, Yugoslavia

Abstract. In this paper the design features of a system for programming the indus­
trial robots with dynamic control are described. During specification of the system
special attention was given to achieving hardware transportability, simplicity of
communication between the user and the system, possibility of active user participa­
tion in generation of control algorithms and possibility of implementing the software
on a computer with relatively modest characteristics. The software is intended for
implementation on a microprocessor-based system and should enable the user to control
a robot via specialized programming language RL which incorporates structures for de­
fining the positions and orientations of working points, motion specification and
synchronization of the robot with its environment. The paper contains descriptions
of the RL language and of the system structure. The main characteristics and advan­
tages of the system as well as questions concerning its realization on existing mi­
croprocessors are also discussed.

Keywords. Robots; controllers; programming languages; control engineering com­
puter applications.

INTRODUCTION

A number of systems for programming the industrial
robots was developed in the last decade. Their
capability of programing the robots in external
coordinates and the incorporated advantages of
general purpose programing languages were impor­
tant factors for the rapid increase of robotized
industry sites.

Most of the existing systems are intended for use
with a particular robot; for example, the most
popular system VAL (Unimation Inc., 1980) can he
used only for control of PUMA family robots, the
AML (Taylor et al., 1982) for IBM System/1 robots
etc. Recently, some systems that can he applied
to various types of robots have been developed and
already announced on the market. However, their
adjustment to a particular type of robot is still
too complex and tedious job to be efficiently ac­
complished by a customer. Besides, they usually
do not perform compensation of dynamic effects, so
that good tracking of fast trajectories cannot be
achieved. For these reasons, the development of a
new general purpose controller UCS-1 was commenced
in the Mihailo Pupin Institute, Belgrade (Vukobra­
tović et al., 1984). This paper describes the
main design features of the software support of
the controll er.

DESIGN OBJECTIVES

The system is designed to meet two main advantages
over the existing controllers: dynamic control
ensuring tracking of fast trajectories and easy
maintenance and adjustment of the system to nonre­
dundant robots of arbitrary type with up to six
degrees of freedom.

The specific goals kept in mind during software
design were:

robot dynamics; in order to meet this goal, which
is of principal importance in system implementa­
tion on the existing microcomputers, the use of
analytical models is adopted;

- hardware transportability, i.e. a possibility
of adapting the system by the customer to a par­
ticular robot and a particular application without
the need for intensive user training; for this
purpose, an interactive procedure for imposing the
parameters necessary for the automatic creation of
an analytical model and the selection of control
algorithm is developed;

- possibility of adapting the robot operation to
the robot environment, especially of synchronizing
the robot with the external hardware; this condi­
tion is essential for the applicability of the
robot in most factory sites; in order to achieve
this goal, a set of routines for processing input
and output signals and for controlling the order
of operation is designed;

- possibility of implementing the system on an
inexpensive computer system and possibility of op­
erating the system without utilizing mass memo­
ries, so that the probability of system faults in
factory conditions is decreased;

- reduction of the human effort necessary for pro­
gramming the robot task; to this end, a special­
ized programming language RL is designed; the
language supports programming the robot in exter­
nal coordinates, enables the use of variables of
various types, control structures and user-written
subroutines;

- robustness of the system, i.e. protection of
the system integrity against unauthorized use and
accidental programming errors.

In the following section, a short description of
the language RL is presented.

- reduction of the run time computation required
for the calculation of quantities related to the

245

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Serbian Academy of Science and Arts Digital Archive (DAIS)

https://core.ac.uk/display/225620735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

246 В. Karan

AN OVERVIEW OF ROBOT PROGRAMMING LANGUAGE

One of the main objectives stated in design of
many robot programming languages was simplicity of
use, even for novice programmers unfamiliar with
computers and basic programming concepts. We
adopted a somewhat different approach: our spec­
ific goal was to enable the field engineer, having
some experience in programming, to exploit as much
as possible the available robot without a necessi­
ty to learn a new programming language. For this
reason we decided to use a Pascal-like syntax,
supposing that the Pascal is well-known to a ma­
jority of system analysts, control and mechanical
engineers who are to be the main designers of au­
tomated manufacture sites and the main class of
users of programming tools in industrial robotics.
Besides, the top-down approach in writing programs
that is encouraged in Pascal and the clear struc­
ture of Pascal programs were also the reasons for
selecting it as a basis for the RL language.

During the specification of the RL language, we
started from a view that the language should fa­
cilitate all main phases of robot programming and
exploitation; among others, they are:

- definition of the robot task;

- writing a robot program which should describe
not only the robot behaviour during performing the
task but also the procedures for robot teaching,
testing, tuning, etc.;

- teaching the robot, i.e. memorizing individual
positions and orientations of the robot effector
during performing the task, as well as computation
of positions, orientations and dimensions of work­
ing objects;

- testing the robot program, including eventual
reteaching of the positions;

- adjusting the controller parameters in order to
meet particular requirements connected to the man­
ipulator mechanical structure and the task to be
performed;

- exploitation, which can also include a necessity
for occasionally reteaching particular positions
and orientations and adjusting the controller par­
ameters.

The definition of the robot task can be done ei­
ther in an ad-hoc manner, or using the robot
language itself; we decided to encourage the sec­
ond one, believing that it can speed up the pro­
cess of writing robot programs and that it can re­
sult in more readable programs and therefore pro­
grams that are easier to debug, test, tune, and ex­
pand.

The program entities corresponding to particular
phases stated, especially to the phases of teach­
ing and performing the task, can be viewed as sep­
arate program tasks surrounding a common data
base. The data base should contain all data that
are to be permanently memorized (end effector tra­
jectory, position and orientation of working ob­
jects etc.) Such data base is implicitly includ­
ed in all systems for programming the robots;
however, we were of the opinion that the program­
ming errors checking and the robot programs ma­
intenance could be done much easier if the base
were declared explicitly by the programmer and if
all the tasks were described in one programming
unit which we call a package. The general struc­
ture of the robot program package is:

PACKAGE name;
BASE declaration_of_the_data_base;

descriptiоn_of_the_initialization_part;
TASK name_1;

description_of_the_task_name_1;
TASK паmе_2;

description_of_the_task_name_2;

TASK name_n;
description_of_the_task_name_n.

As can be seen, the package consists of the data
base declaration, description of the initializa­
tion part and description of zero or more tasks.
Every task can be considered as a user-written ex­
tension of system-supplied routines provided for
assignment of values to program variables, commun­
ication between the user and the system, robot mo­
tion, gripper operation, synchronization with
external equipment and setting the system parame­
ters.

The language supports Boolean, integer, real,
character string, vector and body data types, as
well as arrays. Boolean data types can have va­
lues from the set {TRUE, FALSE}. The range of va­
lues for integer and real data types is implemen­
tation-dependent; for example, on the micropro­
cessor Intel 8086 integers can be in the range
-32768 to +32767, while the real data types can
have absolute values in the range 1.OE-70 to
1.0E+70 including zero, with approximately seven
significant decimal digits. The character string
is a sequence of zero or more (up to 255) print­
able ASCII characters. The vector is defined as
an ordered string of three real components (x,y,z)
representing its coordinates in the referent coor­
dinate frame, while the body is defined as an or­
dered string (x,y,z,ψ,θ,ϕ) of six real compo­
nents representing Euler coordinates of the frame
connected to the body with respect to the referent
frame.

Data supported by RL can be either constants or
variables. Variables are to be referenced via
identifiers which can be constructed from an arbi­
trary string of alphanumeric characters including
the underscore character and starting with a
letter. As in Pascal, all identifiers used as
variables or named constants must be explicitly
declared. For example:

CONST MESSAGE = 'SUCCESS';
APP = (0.0, 0.0, 20.0, 0.0, 0.0, 0.0);

VAR TRANSL: VECTOR;
FAULT: BOOLEAN;
PICK, PLACE, PIN, BLOCK: BODY;
HOLE: ARRAY [l .. 8] OF BODY;

Assignment of a value to a variable is achieved
using the operator of assignment ":=".
Assignments also can he performed by the operater
of the system via command ACCEPT:

ACCEPT variable

A special command is provided for assignment of
values to body-type variables:

LEARN object

Values corresponding to the manipulator tip posi­
tion and orientation after an operater's interven­
tion are to be assigned to components of the
body-type variable object as the effect of the ex­
ecution of the LEARN command.

Individual components of vectors and bodies can be
referenced using keywords X, Y, Z, PHI, THETA, PSI
and POS. POS is defined as an ordered string (x,

Software System for Teaching 247

y,z) representing the position of the origin of
the frame connected to the body with respect to
the referent frame. For example:

(* set x-component of TRANSL to 20 mm *)
TRANSL.X := 20.0;

(* translate BLOCK by TRANSL *)
BLOCK.POS := BLOCK.POS + TRANSL ;

A set of built-in library procedures is provided
for computation of Boolean, integer and real ex­
pressions. The language incorporates Boolean
(NOT, AND, OR), relational (=, <, >, <=, >=, <>)
and arithmetic operators (+, -, *, /) for scalar
operations. Operations with vectors can be achi­
eved using vector addition and subtraction opera­
tors (+, -) and the operator for multiplication of
a vector by a scalar (*).

Relationships between bodies can be expressed
using the operator and the built-in function
INV. The operator "*" moves the referent coordi­
nate frame for the second argument to the position
and orientation represented by the first argument;
the function INV returns the position and orienta­
tion of the referent frame with respect to the ar­
gument of INV. For example, if P represents the
position and orientation of the robot gripper
grasping the pin, and PICK represents the position
and orientation of the pin bottom, the grasping
position and orientation with respect to the pin
bottom can be computed as:

PIN := INV(PICK) * P

As in other programming languages, operator prece­
dence can be overriden using parentheses.

The values of variables, constants and expressions
can be displayed on the user terminal by using the
command:

DISPLAY expr_1, expr_2, ... , expr_n

The most important statement in the language is
the statement for specifying the robot motion.
The motion statement of the form:

MOVE object TO body_expression

causes a coordinated motion of robot joints until
the object connected to the robot effector is al­
igned with the position and the orientation repre­
sented by the body_expression. The object specif­
ication can be omitted, and in that case the exe­
cution of the MOVE statement results in alignment
of the robot effector with the body_expression.
For example, if the EFF is the body-type variable
representing the robot effector position and ori­
entation with respect to the referent frame, the
execution of:

MOVE PIN TO PLACE * BLOCK * HOLE[I]

results in a coordinated motion until the follow­
ing is satisfied:

EFF = PLACE * BLOCK * HOLE [I]* INV(PIN)

Synchronization with the external equipment such
as conveyors, feeders, sensory devices, etc., is
achieved using 32 input and 32 output channels,
via attached variables. A variable is attached to
a channel using the ATTACH statement of the form:

ATTACH identifier: type TO channel number

where the identifier represents the scalar vari­
able to be attached, type can be Boolean or in­
teger, channel represents the channel type (INPUT

or OUTPUT) and the number is a positive integer in
the range 1 to 32. Such explicit attachment is
included in the language in order to give the user
flexibility in using input and output signals with
different meanings. On the other hand, it pro­
vides the language translator with additional in­
formation necessary for error-checking (for exam­
ple, assignment of values to variables attached to
input channels is disabled).

Variables attached to input channels behave as
read-only variables and they can be referenced at
any place of the program where the occurrence of
the value of the same type is allowed. Output
signals can be generated as a result of assigning
values to the variables attached to output chan­
nels. Also, explicit waiting for an external
event is possible using the WAIT command:

WAIT wait_clause

where the wait_clause is any logical expression
involving at least one variable attached to an
input channel. An example of using attached vari­
ables follows:

ATTACH LEVEL: INTEGER TO INPUT 2;
DONE: BOOLEAN TO OUTPUT 10;

WAIT LEVEL < 100;

DONE := TRUE;

The specification of the motion command can in­
clude a number of control parameters and can also
include testing of variables attached to input
channels. The general form of the MOVE command
is:

MOVE object TO body_expression
VIA expr_1, expr_2, ..., expr_n
DEPART depart_expr
APPRO appro_expr
WITH ctrl_1, ctrl_2, ..., ctrl_m
UNTIL until_clause

In this form the expressions expr_1, expr_2, ...,
expr_n return the positions and orientations of
the intermediate points that should be passed by
the object without stopping the robot.
Expressions depart_e xpr and appro_expr define the
object relative positions and orientations during
the motion with respect to its starting and ending
positions and orientations where the velocity of
the robot tip should stop increasing to or start
decreasing from its maximum level. If STARTING is
the body-type variable representing the starting
position and orientation of the robot tip, the
following relations will hold during the execution
of the motion command:

EFF = STARTING
EFF = STARTING*depart_expr*INV(object)
EFF = expr_1*INV(object)
EFF = expr_2*INV(object)

EFF = expr_n*INV(object)
EFF = body_expression*appro_expr*INV(object)
EFF = body_expression*INV(object)

Optional clause WITH enables the user to control
the mode of movement. Controls ctrl_1, ctrl_2,

ctrl_m have the form:

keyword = value

248 В. Karan

where the keyword specifies a control parameter
(SPEED, MAXTIME, PASSMODE, TOLERANCE, EXECMODE
etc.) and the value is a keyword, an integer or a
floating point value of the parameter. For exam­
ple:

MOVE PIN TO PLACE WITH PASSMODE = JOINT,
MAXTIME = 3.0;

specifies that the motion is to be performed with
linear change of robot joint coordinates (default
mode, other alternatives are STRAIGHT, with linear
change of Euler coordinates, and PARABOLIC, with
polynomial interpolation) and in time less than or
equal to 3 seconds..

Optional clause UNTIL specifies a logical expres­
sion until_clause involving variables attached to
the input channels; the expression is evaluated
during the motion and the motion is to be stopped
when the value of the until_clause becomes true.

Another way to specify the movement is by specify­
ing displacements in the robot joint coordinates:

DRIVE number_1 BY displacement_1,
number_2 BY displacement_2,

number_n BY displacement_n,
UNTIL untiL_clause

where the integers number_1, number_2, ...,
number_n are the indices of the robot joints, and
the real expressions displacement_1,
displacement_2, ..., displacement_n the corres­
ponding displacements; Optional UNTIL clause is
the same as in the MOVE command.

Two commands are provided for the gripper opera­
tion:

OPEN UNTIL until_clause
CLOSE UNTIL until_clause

the optional suffix UNTIL until_clause includes
the expression until_clause which has the same me­
aning as in MOVE and DRIVE commands. The opera­
tion of other effectors (as in painting, etc.) can
be requested by assigning values to variables at­
tached to the corresponding output channels.

Control parameters common to a sequence of MOVE
commands can also be set via command:

SET ctrl_1, ctrl_2, ..., ctrl_n

where the list of controls has the same meaning as
in the MOVE command.

The order of execution of commands (i.e.
assignment, wait, input/output, motion specifica­
tion, gripper operation and parameter setting) can
be controlled by usual BEGIN ... END, IF ...
THEN ... ELSE, WHILE ... DO and REPEAT ...
UNTIL constructs.

Commands can be grouped into procedure of function
subroutines which can be freely used as
user-written commands or parts of expressions;
their use is restricted to the packages in which
they are declared and it is disabled to request
execution of subroutines directly from the user
terminal. The scope of variables and named con­
stants are subroutines or tasks in which they are
declared. Variables declared in the initializa­
tion part of the package, base variables and vari­
ables attached to channels are global to the pack­
age. During execution of the package it is dis­
abled to change the values of variables by direct­

ly entering the RL commands from the user termi­
nal. The only exception are the variables expli­
citly declared by the programmer as public; for
example:

BASE PICK: PUBLIC BODY;

enables the operater to freely change the value of
the variable PICK.

CONTROL SYNTHESIS

The execution of motion commands involves computa­
tion of the robot trajectory in the space of joint
coordinates (kinematic model), computation of
quantities necessary fur compensation of the robot
dynamics (dynamic model) and computation of output
signals for the actuators in the robot joints
(control synthesis). In order to reduce the
number of floating point operations in the models,
an expert program is developed (Vukobratović and
Kirćanski, 1985) for the automatic generation of
the models in analytical form. The operation of
the program is controlled by the data on mechanism
parameters, actuators and tolerances imposed by
the user.

The computation of the dynamic model for some
types of manipulator structures may be time con­
suming even with the use of analytical models.
For this reason the effects of selecting particu­
lar control laws were carefully studied and the
following control structure was adopted (Vukobra-
tović et al., 1984):

- the local control is synthesized for each robot
joint, using the models of particular actuators
and neglecting the coupling among the joints;

- the global control necessary for satisfactory
tracking of fast trajectories is synthesized as a
function of driving torque.

The driving torques are nonlinear functions of an­
gles, velocities and accelerations of all joints
of the manipulator and the computation of the tor­
ques using the complete dynamic model is very com­
plex. However, it has been shown that it is not
necessary to use the complete model: as an exam­
ple, according to investigations by Vukobratović
and Stokić (1982), Coriolis and centrifugal forces
can be neglected in most cases without losing the
robot performance. Thus, some dynamic effects can
be neglected and the computation therefore re­
duced.

An example of the computational complexity is
shown in Fig. 1. The figure displays the number
of floating point operations that is to be per­
formed for the dynamic control synthesis with var­
ious approximative dynamic analytical models and
for the following manipulator structures:

CL - cylindrical, 3 d.o.f. (RTT)
AR - arthropoid, 3 d.o.f. (RRR)
AN - anthropomorphic, 3 d.o.f. (RRR)
CL-AN - cylindrical-anthropomorphic, 6 d.o.f.

(RTTRRR)
sAR-AN - semiarthropoid-anthropomorphic, 6 d.o.f.

(RRTRRR)

The selection of a particular model as well as the
selection of the period of sampling input data on
joint angles and velocities is included in the
previously mentioned procedure for the generation
of models for controlling the robot motion. In
this manner, a satisfactory adjustment of the sys­
tem to the particular application can be achieved.

Software System for Teaching 249

SOFTWARE ORGANIZATION

The software is designed as a multiprocessing sys­
tem consisting of a set of interconnected modules
(Fig. 2.). The central part of the system is de­
noted as monitor and its main functions are allo­
cation of processor time to individual processes
such as process for accepting the user commands or
process for interpreting RL packages, and syn­
chronization between active processes.

The user of the system can select one of the sys­
tem programs provided for initial system genera­
tion, creating or editing RL packages, cassette
drive operation and execution of RL commands via
terminal keyboard.

The program for initial generation of the system
produces the analytical models of the robot kine­
matics and dynamics, produces the models of the
robot actuators and calculates the digital servo-
system parameters. The program generates the mo­
dels in machine-readable form and is therefore im­
plementation dependent. It is designed as an in­
teractive program which enables the user to impose
mechanical parameters of the robot and actuator
parameters and to specify tolerances serving as a
basis for producing a code for computation of the
digital servosystem gains. The parameters and the
models can easily be changed and adjusted to par­
ticular applications during the exploitation of
the robot; however, the program for initial sys­
tem generation is not necessary during the normal
operation of the system.

The creation and editing of RL packages are sup­
ported by the specialized line editor which also
performs partial syntax error checking during the
editing. After competition of editing, the con­
trol is automatically transferred to the RL trans­
lator. It translates the source RL program into
the Polish form, produces the symbol table
(comprising identifiers denoting tasks entry po­
ints, procedures, functions, variables and named
constants), and allocates a space for global vari­
ables.

The activation of a previously translated package
can be requested by the user by simply entering
the name of the package; after the initialization
part of the package is executed, particular tasks
can be activated. The execution of any task can
always be stopped by the user and later continued.
Also, the execution of any acceptable RL command
can be requested from the terminal keyboard; only
RL commands not involving identifiers are accept­
able before the initialization of the package is
done. An alternative way for controlling the sys­
tem operation is via a portable manual control
unit: commands from the manual control unit are
to be imposed via its functional keys and are a
subset of RL commands.

There is no need to use a mass memory during the
normal operation of the system. The module denot­
ed as file manager is included in the system in
order to enable the user to save and later reload
previously written RL packages. The file manager
supports formatting cassettes, saving, loading and
deleting packages as well as displaying a list of
packages saved on a cassette.

The operation of the RL interpreter is controlled
by the internal code generated by the translator.
The interpreter performs calculation of RL expres­
sions, allocation of core memory to local RL vari­
ables, assigns values to the variables and pre­
pares data necessary for realization of the robot
motion. The preparation comprises setting the mo­
tion control parameters and (for the MOVE command)
calculation of Euler coordinates for the robot tip
position and orientation with respect to its base
that are to be reached in the next execution step.
This preparation also includes calculation of con­
stant parts of expressions used in the UNTIL
clause of MOVE, DRIVE, OPEN and CLOSE commands
(i.e. computation of values that do not depend on
input signals from external hardware).

The operation of the kinematic module and the mo­
dule for monitoring signals from the input chan­
nels are under control of the interpreter. The
kinematic module realizes on line trajectory syn­

Fig. 1. Number of floating-point operations in decentralized control structures

250 В. Karan

Fig. 2. Organization of the Software

thesis in the space of the robot joint coordinates
until the desired point is reached or until the
end-of-motion condition tested by the module for
monitoring external signals becomes true. The op­
eration of the digital servo system is explained
in the preceding section: this module generates
signals for the robot actuator amplifiers on the
basis of desired joint coordinates computed by the
kinematic module, attained angles/positions of the
robot joints supplied from potentiometers, and
current velocities in the joints supplied from ta­
chogenerators.

CONCLUSION

The main problems in the design of the system
were, on one hand, to ensure on line computation
of trajectories in the robot joint coordinates and
dynamic digital control, and, on the other, to en­
sure efficient programming of robots with no need
for using expensive and complex processors. We
find the presented solution quite acceptable from
the standpoint of equipment complexity and price.
It enables a good performance to be achieved and
makes the system quite independent from the robot
structure.

REFERENCES

Taylor, R.H., P.D. Summers, and J.M. Meyer (1982).
AML: A Manufacturing Language. Robotic Re­
search,3,19-41.

Unimation Inc. (1980). User's Guide to VAL, Ver­
sion 12. Unimation Inc., Danbury, CT.

Vukobratović, M., and D. Stokić (1982). Control of
Manipulation Robots. Springer-Werlag, Berlin.

Vukobratović, M., N. Kirćanski, D. Stokić, M. Kir-
ćanski, and B. Karan (1984). General Purpose
Controller for Industrial Manipulators. Proc.
of the Second Yugoslav-Soviet Symposium on Ap­
plied Robotics, Belgrade.

Vukobratović, M., and N. Kirćanski (1985). Compu­
ter Assisted Generation of Robot Dynamic Mo­
dels in Analytical Form. Acta Applicandae Ma-
thematicae, 2, 49-70.

