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1  |   INTRODUCTION

When I was recently asked to review my scientific career, I 
thought of adapting the device used in the radio programme 
Desert Island Discs when “castaways” are invited to discuss 
their life and suggest eight record tracks they would like if 
stranded on a desert island. I thought of replacing eight discs 
by eight papers but quickly realized eight papers were not self‐
contained and so I consider eight areas and I arbitrarily increase 
the number of papers to 16 to make a more coherent story.

The first two areas are associated with my early life.

•	 Childhood (2)
•	 University education (3)

And the other six are associated with statistical and genetic top-
ics (the numbers in brackets refer to the article sections).

•	 Residual maximum likelihood (REML)(4)
•	 Canonical transformation(5)
•	 Inbreeding in selected populations(6)
•	 Average information residual maximum likelihood 

(AIREML)(7)
•	 The computer program ASReml(8)
•	 Sampling‐based estimation(9)

2  |   CHILDHOOD (1945–1963)

I was reared on two small dairy farms (circa 12 hectares) in 
Lancashire, UK. This gave me a lifelong interest in agricul-
ture, but I had no practical skills and quickly realized a farm-
ing career was not sensible. The only academic subject I was 
good at was mathematics, and in my early teens, I used to 
say I wanted to be an aeronautical engineer to stop the con-
versation. Then, at the age of 13 I read an article in a farming 
periodical, the Farmer and Stockbreeder, about a geneticist 
from Edinburgh Alan Robertson. The periodical explained 
the work he had done on developing a method of evaluating 
bulls called the contemporary comparison (CC). I had seen 
some of these values in descriptions of A.I. bulls my father 
was using. Alan Robertson was described as an agricultural 
statistician and from that day forward I wanted to be an ag-
ricultural statistician to combine my interests in agriculture 
and mathematics.

To acknowledge Alan Robertson's contribution to my ca-
reer, my first desert island paper is Robertson and Rendel 
(1954) [D] (I denote desert island papers by [D]), one of a se-
ries of papers on CC, a method devised by Alan that allowed 
A.I. to be used to increase rates of improvement in dairy 
cattle. An ingenious method illustrated Alan's mathematical 
skill and intuition that had worldwide effect. Something that 
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inspired me to try do something as useful in my career. This 
work on CC also helped in understanding and clarifying other 
methods of sire evaluation (Thompson 1976b and Thompson, 
1979).

3  |   UNIVERSITY (1963–1967)

I studied at Newcastle University, obtaining a B.Sc. in math-
ematics in 1996 and a M.Sc. in statistics in 1967. Two rea-
sons for going to Newcastle were their low requirements for 
English and French and that they had a very good agricul-
tural department. I took advantage of this to do a M.Sc. thesis 
on variance component estimation in poultry populations. I 
was supervised by Maurice Bichard and he introduced me 
to my second desert island paper Pig Industry Development 
Authority (PIDA) (1966) [D], which was a mimeograph pub-
lication (DA188) on combined testing in pig populations. 
The scientific ideas became more accessible in the paper 
by Fowler, Bichard, and Pease (1976), but the idea I have 
used throughout my scientific life was a financial analogy 
that you in contrast to biological data where one has variation 
one should not make mistakes with financial data as income 
minus expenses equals what is left in the bank. I adopted that 
so when I was not sure about something I would do calcula-
tions two ways to identify the flaw.

4  |   RESIDUAL MAXIMUM 
LIKELIHOOD

After completing my M.Sc., my first job was with the 
Agricultural Research Council Unit of Statistics (ARCUS), 
Edinburgh, and I was employed there from 1967 to 1983. 
ARCUS had the dual role of trying to meet the statistical 
needs of agricultural research workers in institutes and col-
leges in Scotland and developing statistical theory with ref-
erence to agriculture. Early in my career, I read a paper by 
Cunningham and Henderson (1968) on iterative estimation 
of variance components and noticed a flaw in the argument 
so, with diffidence, as Henderson's methods were ubiqui-
tous for estimation of variance components. I constructed a 
correction note and sent it to my director David Finney on a 
Friday afternoon. It came back on Monday as a draft paper, 
parts in blue ink that David was certain about and parts in 
red ink he wanted a colleague of ours, Desmond Patterson, 
to check, and finally in black ink ‘ROBIN CANNOT 
WRITE’. In my defence, I was just trying to write a cor-
rection note and did not have the vision to turn the material 
into a paper. David's comments had a tremendous effect on 
me. I realized I would need to work as a team member and 
co‐opt good writers if I was going to get work published 
(approximately only 10% of my publications are singly 

authored and approximately half of those are conference 
papers). I was also impressed with his generosity in help-
ing a younger colleague. This is something I have tried to 
do, and found extremely rewarding, in my career. To ac-
knowledge David's influence, I include the resulting paper 
Thompson (1969) [D] in my desert island papers.

This work led to a discussion with Desmond Patterson 
on whether we could develop better methods. Both of us 
were interested in mixed models but, coming from different 
areas of agriculture our terminology was somewhat differ-
ent. I thought of animal genetic data having contemporary 
groups as fixed effects, sire effects as random effects and the 
sire variance as a variance component to be estimated, while 
Desmond, with an experimental design background, thought 
of treatment effects as fixed effects, block effects as random 
effects and the block variance as a variance component to be 
estimated. In the animal context, the sire variance enabled the 
heritability to be estimated and was used to downweight the 
sire effects to give predictions. By contrast, in the experimen-
tal design context the treatment effects were the main em-
phasis. There were two possible estimates: (a) an intrablock 
estimate essentially adjusting for blocks and (b) an interblock 
estimate based on block totals. These estimates can be com-
bined to give an efficient estimate, and this is called the re-
covery of interblock information, but (b) needs estimation of 
the block variance. With blocks of equal size, methods were 
available to estimate efficiently the block variance. However, 
no such method was available for unequal block sizes.

We were interested in whether we could do better than 
the corrected Cunningham and Henderson method. Desmond 
suggested that maximum likelihood (ML) was (a) difficult to 
calculate and (b) “too clever.” I thought I could suggest feasi-
ble computational schemes for some of the terms in a ML esti-
mation scheme based on sums of squares of terms in the mixed 
model equations and some were difficult and based on differ-
entials of determinants of variance matrices or traces of terms 
in the mixed model equations. So, I thought why not equate 
sums of squares to expectation as was done in Henderson's 
methods? I also noted that Patterson (1964) had given asymp-
totic variance estimates for ML estimates. I did not understand 
the formulae as they were based on eigenvalues, so I decided 
to check numerically for the design where Desmond used his 
asymptotic variances with mine. They agreed to four figures. 
I showed my results to Desmond and he said he had used not 
the likelihood of all the data but that of error contrasts, that is 
comparisons that did not provide information on treatments. 
He explained this is what his previous head of department 
while at Rothamsted, Frank Yates, would do.

The results were published in Patterson and Thompson 
(1971). The rest is history. Why was it a success? I sup-
pose the ubiquity of correlated data, the flexibility of mixed 
models and the reduction to analysis of variance methods 
in balanced cases help. The method uses the three parts of 
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the mixed model: fixed effects, random effects and variance 
components in an integrated way. Fixed effects are adjusted 
for random effects, random effects are adjusted for fixed ef-
fects and variance components can be thought of as equating 
sums of squares to their expectation.

There were alternative ways of justifying the estimators. 
Rao (1972) and LaMotte (1973) introduced minimum norm 
quadratic unbiased and minimum variance unbiased estima-
tors, respectively, that when iterated lead to our estimators. 
Harville (1974) introduced a Bayesian argument for justify-
ing the use of error contrasts. Verbyla (1990) used a condi-
tional likelihood argument to provide the same estimators. 
Later Lee and Nelder (1996) suggested a penalty function 
argument to allow for the uncertainty in the effects. Further, 
Robertson (1962) suggested a weighting for random effects in 
single classification that essentially was equivalent to equat-
ing sums of squares of predicted values to their expectation.

The method had several important champions. There was 
an influential review by Harville (1977). Dorothy Robinson 
wrote a computer program for British variety trials. Sue 
Welham extended this program into Genstat. Karin Meyer 
wrote several programs (Meyer, 1988) [D], suitable for ani-
mal breeding problems. Terry Speed suggested the name re-
sidual maximum likelihood (REML) as residuals were used 
in the analysis (a name much more appropriate than the lim-
ited and little understood description recovery of interblock 
information !!).

One useful development in Patterson and Thompson's 
(1971) paper to justify using the error contrast analysis was 
to transform the data into independent linear combinations 
with zero expectation.

If we have a mixed model

with y, a vector of length n, representing data, X representing 
a full rank fixed effect design matrix of size (n ×t) Z a random 
effect design matrix of size (n×q), respectively, and with a and 
u representing fixed and random effects.

so var (y)=V=R+ZGZT

Patterson and Thompson (1971) considered the case 
with uncorrelated random and residual effects with 
G= I�2

u
,R= I�2

e
and �=�2

u
∕�2

e
.

Using S = I‐X(XTX)‐1XT, QQT=I and ZTSZ=QΛQT we 
can form ys a scaled version of ZTSy, with var (ys)= I�2

e
+��2

u
 

and sum of squares R = yTSy‐yTSZ(ZTSZ)−ZTSy = yTPy 
with expectation (n −t−q + 1) �2

e
.

Soon afterwards, Nelder and Wedderburn (1972) [D] 
published a paper that I would also like on my desert island. 
They introduced generalized linear models allowing vari-
ables distributed in the exponential family (normal, gamma, 
Poisson, binomial) and allow a non‐linear link between the 
observation and the linear predictor. All fit into a weighted 
least squares algorithm, very useful generalization in many 
areas. The REML likelihood, based on ys and R, is a special 
case of a generalized linear model with gamma‐distributed 
“data” (ysi)

2 with expectation �2
e
+�i�

2
u
 and mean square R/

(n ‐t‐q + 1) with expectation �2
e
+�0�

2
u
 with �0 =0. This sug-

gests an obvious diagnostic plot for the goodness of fit of 
the model by plotting the “data” against �i(i = 0, 1, … q‐1) 
with a slope �2

u
 and intercept �2

e
. Thompson (1976a,1977b) 

discussed extension to the multivariate case of sums of 
squares and cross‐products distributed as Wishart distri-
butions used to model data on parents and offspring and 
estimate maternal genetic variances in Tribolium. In prac-
tice, this was not very useful apart from discussion of it-
erative schemes and designs, because data usually needed 
correction in a non‐orthogonal way for fixed effects. Cullis, 
Smith, and Thompson (2004) [D] extended this idea to 
make more explicit the relationship between REML and 
analysis of variance, especially for generally balanced de-
signs, and discussed a Cholesky transformation to give a 
simple quantitative interpretation of the information on the 
variance parameters.

5  |   CANONICAL VARIATES

Thompson (1977a) gave a brief introduction to the idea of 
using canonical transformation to simplify BLUP calcula-
tions. The data were assumed to represent t variates and 
similar models held for all t variates, the so‐called equal 
design matrices model with Equations (1), (2) and (3) re-
placed by

The random effect vector, u, is of size t × q representing 
effects on t variates on q animals with relationship matrix Aq

. The symmetric variance matrices Ro and Go can be factor-
ized using a canonical transformation as Ro = PPT and Go = 
PΛPT. This allows the data to be transformed into t indepen-
dent parts using y* = (P⊗In)y.

(1)y=Xa+Zu+e

(2)u∼ (0,G)

(3)e∼ (0,R)

y=
(

It⊗X
)

a+ (It⊗Zu) u+e

u∼
(

0,Go⊗Aq

)

e∼ (0,Ro⊗In)
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The motivation was to simplify BLUP calculations, but the 
idea was used by Hill and Thompson (1978) to consider the 
probability of non‐positive definite estimates of G. Canonical 
variates were also used by Hayes and Hill (1980, 1981) to 
simplify calculation of sampling properties of selection indi-
ces and suggest improved selection indices. The transforma-
tion was also used by Meyer (1985) and Furlotte and Eskiny 
(2015) to suggest simplified estimation of R and G. More re-
cently, De Faveri, Verbyla, Cullis, Pitchford, and Thompson 
(2017) [D] considered a two‐dimensional invariant multivar-
iate autoregressive model sometimes used in plant breeding 
trials when there is need to take account of spatial variation 
in two dimensions. The residuals can be defined recursively

ei1=�re(i−1)1+�i1 for i = 2, … , r
e1c=�ce1(j−1) +�1j for j = 2,… , c
eij=�re(i−1)j+�cei(j−1) −�r�ce(i−1)(j−1) +�ij for i = 2,..., r 

and j = 2,..., c

In one‐dimensional cases, we would sometimes assume 
invariance in the model with prediction errors not depend-
ing on which direction the model is fitted. This imposes con-
straints on the parameters. For row invariance, �r�=��

T
r
, 

and similarly, for column invariance �c�=��
T
c
. De Faveri 

(2013) showed that for row–column invariance, ΩrΩc = ΩcΩr. 
Because these three matrices Σ, Ωr and Ωc commute, there is 
a transformation so that

Thus, there are underlying t independent two‐dimensional 
separable autoregressive processes, (AR1⊗AR1), with au-
toregressive parameters Dri and Dci(i = 1, t). This model is rel-
atively easy to fit in well‐constructed mixed model software.

6  |   INBREEDING IN SELECTED 
POPULATIONS

I was transferred to the Animal Breeding Research 
Organization in Edinburgh in 1983. One of my initial in-
terests there was the analysis of selection experiments. An 
almost classic example was an 18‐year experiment on di-
vergent selection for an index based on cannon bone length 
and body weight in Scottish Blackface sheep that had a 
linear response to index selection in two divergent lines 

(Atkins & Thompson, 1986a, 1986b). Selection experi-
ments have a sophisticated autoregressive error structure 
comprehensively developed by Bill Hill in a series of pa-
pers, and I would like a sample paper of these, Hill (1972) 
[D], on my desert island. I had great difficulty in under-
standing these papers, so in frustration and tongue in cheek 
I used to ask why there were so many effective numbers—
so many they all could not be effective. The sheep selection 
experiment gave an opportunity to investigate what was 
contributing to the heritability estimate from different parts 
of data, for example within lines and between lines, and 
Thompson and Atkins (1993) [D] decomposed the like-
lihood to show these contributions. As a by‐product, we 
calculated a variance–covariance matrix of year estimates. 
This showed an autoregressive structure agreeing well with 
the Hill predictions.

This work eventually led to work with Naomi Wray 
on prediction of inbreeding in selected populations, for 
example by Wray and Thompson (1989) [D]. Only after 
discussions with Bill during the start of Naomi's thesis 
did I begin to understand (belatedly after 15 years) the un-
derlying genetic arguments that are crucial to this work. 
Woolliams and Thompson (1994) have recently given a re-
view of my contribution to this area. A related topic that 
intrigues me, but I do not have space for in this paper, is 
the use of relationships in statistical models to share infor-
mation between relatives (Thompson, 1977a, 1977b and 
Thompson, 1979).

7  |   AVERAGE INFORMATION 
RESIDUAL MAXIMUM LIKELIHOOD 
(AIREML)

This work started in 1992 with discussion with Arthur 
Gilmour and Brian Cullis on the analysis of plant breed-
ing trials and with David Johnson on the analysis of animal 
breeding data. At that time, derivative‐free methods had 
become popular because of their computational feasibility 
because they only required the computation of a determi-
nant each iteration and used numerical search techniques 
to find a maximum. Methods that use first and second dif-
ferentials were thought to have better numerical properties 
especially as the number of parameters increases. However, 
the first and second differentials of the likelihood have 
terms that depend on the inverse of the coefficient matrix 
and the inversion is computationally expensive especially 
for large matrices. Two ideas, firstly only calculating terms 
in the inverse needed for the first differentials and secondly 
using a simple approximate second differential or informa-
tion matrix that avoids calculating the whole inverse will be 
briefly discussed.

e11 =�11

var
(

�ij

)

=�

�=PPT
�r =PDrPT

�c =PDcPT
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7.1  |  First differentials
Using model Equations (1)–(3), if the random and residual 
matrices R and G are functions of vg and vr, with variance 
parameters θg and θr, and the variance matrix V of y is a func-
tion of the combined set of v = vg+vr variance parameters, �
, then the residual log likelihood function, Log (�), has a gra-
dient vector J (�)=−[δLog (�) ∕δ�i]i=1,…,v. Using the matrix 
P=V‐1‐V‐1X(XTV‐1X)‐1X′V‐1, the component [J (�) ]i of J (�) 
is given by

One natural interpretation of (5) is that maximum‐likeli-
hood estimates that make the gradients zero equate a set of 
quadratic forms to their expectation since

Johnson and Thompson (1995) note that

with W= (XZ) and C the coefficient matrix on the left‐
hand side of the mixed model equations

Alternatively, with bT = [aTuT]T and c=WTR−1y (8) can 
be written concisely as

And the matrix transform Py can be written as 
R−1ẽ =

(

y−X�a−Zũ
)

 where â and ũ are solutions to the 
mixed model Equation (8). Using (7) and (8) and letting 
Cuu =ZTR−1Z+G−1 and Cuu the submatrix of C−1 pertaining to 
the random effects giving the prediction error variance matrix, then 
the gradient vectors for the �r and �g parameters can be written as

or alternatively as

showing that to calculate the gradients one only needs to calcu-
late the elements in the inverse C−1 corresponding to non‐zero 
elements in C, often called the sparsity pattern of C.

A result of Takahashi, Fagan, and Chin (1973) showed 
that calculation of the elements of the sparse inverse subset, 
that is elements that correspond to elements in the sparsity 
pattern of the original matrix, only needs twice as many nu-
merical operations as forming the determinant. Takahashi 
et al. (1973) used results on triangular matrices to show 
the result, but I prefer an alternative formulation used by 
Thompson, Wray, and Crump (1994) [D] when considering 
the calculation of prediction error variances for beef cattle 
populations. This is based on using partitioned matrices to 
absorb variables sequentially in a set of equations and then 
use a similar technique to calculate the sparse inverse.

The system of equations Ax=b, with A a symmetric ma-
trix, can be transformed to Lx=k with L a lower triangular 
matrix by absorbing each variable in x in turn. Subscripts are 
used to indicate a matrix constructed from a subset of row 
and columns of a matrix, and superscripts are used to indi-
cate the stage of the recursive procedure. So, if A and b are, 
respectively, an (n×n) matrix and a vector of length n, then 
starting at stage n A(n)

1:n,1:n
 and b(n)

1:n
 are equivalent to A and b, 

respectively, and for the stages i =(n‐1), …,1

can be constructed, and then, L and k can be found using 
Li,1:i =A

(i)

i,1:i
ki =b

(i)

i

The sparse inverse subset can be found in a similar re-
cursive way: the first diagonal element can be found using 
A−1

1,1
= [L1,1]−1. Then for i‐1, …, (n‐1), a scaled version of 

Li+1,1:i can be constructed using

and then terms in the sparse inverse subset can be calcu-
lated using

A−1
i+1,1:i

=Li+1,1:iA
−1

1:i,1,i
 and 

A−1
i+1,i+1

=A−1
i+1,i+1

+A−1
i+1,1:i

LT
i+1,1:i

We note that we only use non‐zero elements of 
Li+1,1:i,A

(i+1)

i+1.1:i
 and A−1

i+1,1:i
. The computational effort depends 

on the order of fitting. If we fit a model with mean and q 
groups, absorbing groups first, the numerical operations are 
proportional to q. However, if we fit q groups and mean, ab-
sorbing the mean first, the matrices become denser and oper-
ations are proportional to q3.

(5)2J[ (�) ]i = tr[(δV∕δ�i)P]−yTP(δV∕δ�i)Py

(6)E(yTP(δV∕δ�i)Py)= tr
[

(δV∕δ�i)P
]

(7)P=R−1−R−1WC−1WTR−1

(8)

[

XTR−1X XTR−1Z

ZTR−1X ZTR−1Z+G−1

][

a

u

]

=

[

XTR−1y

ZTR−1y

]

(9)Cb= c

(10)
2J[

(

�r

)

]i = tr[R - 1
(

𝛿R∕δ�ri

)

R - 1
(

R−WC - 1WT
)

]− ẽTR - 1
(

δR∕δ�ri

)

R - 1ẽ

(11)
2J[(�g)]i = tr[G−1(δG∕δ�gi)G

−1(G−C
uu) ]− ũ

T
G

−1(δG∕δ�gi)G
−1

ũ

(12)

2J[(�r)]i = tr[
(

δR∕δ�ri

)

R - 1]− tr[
(

δC∕δ�ri

)

C - 1]− ẽTR - 1
(

δR∕δ�ri

)

R - 1ẽ)

(13)
2J[(�g)]i = tr[(δG∕δ�gi)G

- 1]− tr[(δCuu∕δ�gi)C
uu]− ũTG - 1(δG∕δ�gi)G

- 1ũ

A
(i)

1:i,1:i
=A

(i+1)

1:i,1:i
−A

(i+1)

1:i,i+1
[A

(i+1)

1+i,i+1
]−1A

(i+1)

i+1,1:i
and b

(i)

1:i
=b

(i+1)

1:i
−b

(i+1)

i+1
[A

(i+1)

1+i,i+1
]−1b

(i+1)

1:i

A−1
i+1,i+1

= [Li+1,i+1]−1Li+1,1:i =A−1

i+1,i+1
Li+1,1:i+1
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7.2  |  Information matrices
A paper that leads to my interest in this area was by 
Henderson, Kempthorne, Searle, and Von Krosigk 
(1959) [D] on the estimation of genetic and environ-
mental trends from records subject to culling. They 
were interested in the situation of dairy cattle records 
on cows in a closed herd with culling on milk yield with 
fixed effects for year. An analysis with fixed effects for 
cows was known to lead to biased environmental trend. 
This paper integrated distinct contributions from three 
eminent statisticians. Henderson suggested using mixed 
models including random effects for cows, Kempthorne 
suggested a sequential approach: likelihood of first 
lactation record, likelihood of second lactation record 
given first lactation record, etc., while Searle showed 
that these methods were equivalent. Thompson (1973) 
considered the estimation of multivariate parent–off-
spring regression using Kempthorne's suggestion of 
considering parent records and offspring records given 
parents. In a p variate case, there were two symmetric 
p × p matrices G and R with parameters �g and �r to be 
estimated and two alternative information matrices were 
available. One (observed information, OInf) based on 
second differentials of the likelihood and another (ex-
pected information, EInf)) based on the expected value 
of the second differentials. The information matrices 
could be partitioned as

and the partitions Infgg, Infrg, Infgr and Infrr were all symmetric, 
but in the inverse matrix, the asymptotic variance inverse, Var

, the off‐diagonal Varrg and Vargr term were not. This worried 
me in case I had done the calculations incorrectly. Some more 
investigation showed that there was another information matrix, 
an average information matrix (AInf), based on the average of 
the other information matrices so AInf=(OInf + EInf)/2 that 
had the advantage of being based purely on data terms and in 
this example so much easier to calculate than OInf and EInf. I 
did nothing with this result for 20 years!!

When Arthur Gilmour, Brian Cullis, David Johnson and 
I discussed estimation in mixed models, I suggested that 
using sparse matrix methods to calculate the first differ-
entials and that an approximate average information might 
be more feasible and efficient than the derivative‐free 
methods.

If V is linear in the variance parameters, �, then the 
component [OInf (�) ]i,j of the observed information matrix 
[OInf (�) ] is given by

and since

the component [EInf (�) ]i,j of the expected information matrix 
[EInf (�)] is given by

Hence, component [AInf (�) ]i,j of the average information 
matrix [AInf (�)] is given by

If fi = (�V∕��i)Py is the component [F]i of F then 
2[AInf (�) ]i,j = fi

TPfj and

Just as the term Py can be calculated from fitting a lin-
ear mixed model to y from fitting a mixed model to y so can 
Pfi can be calculated from fitting a mixed model to fi. By 
analogy with the working variate in generalized linear mod-
els, we call fi a working covariate. The term [AInf (�) ]i,j in 
the average information matrix can be calculated from the 
product of Pfi with fi

T.
Alternatively, if we form a matrix with the sum of squares 

yTR−1y, the right‐hand side of the mixed model equations 

WTR−1y and C of the form A=

[

yTR−1y yTR−1W

WTR−1y C

]

 

then using the absorption scheme of section 5 leads to a trian-
gular matrix with L1,1 =yTPy. Gilmour, Thompson, and 
Cullis (1995) noted that if we replace y by F, a matrix with v 
columns, and perform a partial absorption terminating at 
stage v, then

Hence, using a quasi‐Newton scheme an increment Δ to 
the variance parameters can be found from

This iterative scheme can be put in a quasi‐linear form by 
letting J1 (�) be a scaled component of J (�) with

Inf=

[

Infgg Infgr

Infrg Infrr

]

2[OInf (�) ]i,j =−tr[(δV∕δ�i)P(δV∕δ�j)P]+2yTP(δV∕δ�i)P(δV∕δ�j)Py

E(yTP(δV∕δ�i)P(δV∕δ�j)Py)= tr[(δV∕δ�i)P(δV∕δ�j)P]

2[EInf (�) ]i,j = tr[(δV∕δ�i)P(δV∕δ�j)P]

2[AInf (�) ]i,j =yTP(δV∕δ�i)P(δV∕δ�i)Py

(14)2AInf (�)=FTPF

A
(v)

1:v.,1:v
=FTPF.

AInf (�)�=−J (�)

[J1 (�) ]i =−tr[(δV∕δ�i)P]
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we find

This suggests � satisfies a mixed model equation of the 
form

with y
�
=J1 (�) ,bT = [aTuT]T,C

�
=R−1

�
+G−1

�
 with 

R−1
�

= I=−G−1
�

 corresponding an incremental model with ran-
dom working covariate effects

and 

 Our development was motivated by models that generated 
sparse mixed model equations and taking advantage of this 
sparsity. In other cases other computing strategies might be 
appropriate. For example, for data that has dense genomic ma-
trices, Lee and Van der Werf (2006) and Yang, Lee, Goddard, 
& Visscher (2011) [D] discuss methods and software that use 
weighted least squares equations rather than the mixed model 
equations in conjunction with the use of average information 
and has computational advantages in their situations.

8  |   THE COMPUTER PROGRAM 
ASREML

The success of our early experience with the average informa-
tion algorithm led to an agreement between Arthur Gilmour, 
Brian Cullis, Sue Welham and me to agree to pool our re-
courses to produce software based on the average informa-
tion algorithm. We brought different expertise to the project: 
Arthur Gilmour had written programs for regression analysis, 
breeding value prediction and spatial analysis; Brian Cullis 
had experience of spatial analysis of field experiments which 
utilized the concept of separability which we found useful 
more generally, for example, for specifying multivariate and 
spatial model; and Sue Welham had introduced a REML pro-
gram into GENSTAT and had experience of repeated meas-
ure and spline analysis. Later, we co‐opted Beverley Gogel 
and Dave Butler to the team to improve the draft documenta-
tion and provide computing skills, respectively.

I had experience of fitting a variety of models in Karin 
Meyer's programs (DFREML and REMLPK) with a 

succession of Ph.D. students. Mrode, Smith, and Thompson 
(1990) had fitted, for the first time, an animal model in a se-
lection experiment and we tested Karin's program to its lim-
its, for example Crump, Thompson, Haley, and Mercer (1997) 
fitted genetic covariances between traits measured on males 
and females, Heath, Bulfield, Thompson, and Keightley 
(1995) tested for change in variance components over time in 
a selection experiment, Koerhuis and Thompson (1997) fitted 
maternal models based on ideas of Falconer while Visscher 
and Thompson (1992) compared genetic variances from the 
male and female sides. In all these cases, we were investi-
gating what seemed reasonable genetic hypotheses. I doubt 
these hypotheses would be seen as important in the new ani-
mal and plant genomic era, but it has been suggested that this 
paradigm is relevant for analysis of human genomic data. This 
experience emphasized to me John Nelder's assertion that, be-
cause of scarce resources, statistical software should be care-
fully designed to be as useful as possible. This we attempted 
to do by surveying and reviewing the possible models we 
would wish to fit. These include various correlated variance 
structures including autoregressive, moving average, ante de-
pendence, repeated measure and separable models (Gilmour 
& Thompson, 1998; Welham, Thompson, & Gilmour, 1998), 
genetic, spatial and temporal relationships and plant breeding 
models (Gilmour, Cullis, Frensham, & Thompson, 1998). Not 
everything was anticipated; so facilities were introduced to 
allow users to generate their own variance structures and basis 
functions. Later, facilities were added to deal with singular 
matrices (Thompson, 2009; Kelly, 2013).

Throughout, Arthur Gilmour has taken responsibility 
for programming. The initial agreement was not to write 
a self‐contained program but provide a kernel for Genstat. 
However, Genstat could not keep up with Arthur Gilmour's 
speed of programming so a self‐contained program was de-
veloped and released. ASReml has dominated Arthur's life 
driven by a desire to give colleagues more appropriate anal-
yses. For instance, his Association for the Advancement of 
Animal Breeding and Genetics citation for fellowship states: 
“A discussion group has also been set up that is better de-
scribed as ask Arthur a question. His generosity in time to 
individually answer and his resistance to describing perhaps 
50% of the questions as stupid are exemplary.”

Development of the program highlighted areas where im-
proved computing algorithms and improved statistical estima-
tion were needed. For instance, in the computing area, a sparse 
algorithm was developed for forming linear combinations of 
estimates (Gilmour, Cullis, Welham, Gogel, & Thompson, 
2004) and concepts of linear model specification were ex-
tended to develop a succinct user‐friendly syntax for specifying 
the required combinations (Welham, Cullis, Gogel, Gilmour, 
& Thompson, 2004). Also, a popular equation ordering al-
gorithm was improved to deal with animal and plant breed-
ing data (Gilmour & Thompson, 2006). In the statistical area, 

FTPF�=FTPy+J1 (�)

(15)

[

FTR−1F+C
�

FTR−1W

WTR−1F C

][

Δ

b

]

=

[

FTR−1y+ITR−1
�

y
�

WTR−1y

]

(16)y=F�+Xa+Zu+e

(17)y
�
= I�+e

�

(18)�∼ (0,G
�

) and e
�
∼ (0,R

�
)
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estimation for multivariate data was developed in detail (Jensen, 
Mantysaari, Madsen, & Thompson, 1997 [D]) leading to a con-
venient PX(EM) algorithm that was introduced into ASReml. 
Factor analysis and reduced rank variance models methods that 
took advantage of sparsity were developed (Thompson, Cullis, 
Smith, & Gilmour, 2003, and Kelly, Cullis, Gilmour, Eccleston, 
& Thompson, 2009). A recent application of these methods is 
in Tolhurst, Matthews, Smith and Cullis (2019). Methods were 
also developed for spline models (Welham, Cullis, Kenward, 
& Thompson, 2006, 2007). In the genetic area, methods were 
introduced for QTL analysis (Gilmour, 2007 and Verbyla, 
Cullis, & Thompson, 2007) and a multi‐environmental reduced 
tree model with useful computational savings was introduced 
(Cullis, Jefferson, Thompson, & Smith, 2014). Interaction 
with Brian Cullis and a series of students also led to a better 
ASReml program. This interaction included work on spatial 
modelling (Gogel, 1997, Haskard, 2006, Stringer, 2006 and 
De Faveri, 2013), multiplicative mixed models (Smith, 1999 
and Ganesalingam, 2013), iterative schemes (Knight, 2008 and 
Diffey, 2012), singular variance matrices (Kelly, 2013) and 
generalized linear mixed models (Collins, 2008).

The focus in developing ASReml was initially on its ker-
nel, and it was freely acknowledged that its user interface was 
not to the level of other packages. Other packages such as R 
and Genstat allow the data preparation, analysis, postprocess-
ing to be carried out within a single framework. To take ac-
count of this need, Sue Welham ported the kernel of ASReml 
into Genstat (Payne et al., 1997) and Dave Butler and Brian 
Cullis built on the kernel to write ASReml‐R (Butler, Cullis, 
Gilmour, Gogel, & Thompson, 2018) [D]. Castaways on the 
desert island are asked if they could only take one record which 
would it be, in my case I would take this paper, a product of 
synergistic team work, as it includes derivation of REML, 
the AI algorithm, REML made accessible for a wide range of 
models, a user friendly syntax, a skilfully constructed kernel 
and is a well-documented user guide. Simon Harding wrote 
ASReml‐W, a graphical tool allowing the user to edit programs, 
run ASReml and then view the output, before saving results.

One important development has been the simplification in 
the way models are specified. Gilmour (2019) discusses this 
in this issue.

9  |   SAMPLING‐BASED 
ESTIMATION

Estimation based on using sparse matrix methods to calcu-
late the terms involved in REML estimation has found wide 
application, but in some cases, for example large data sets, 
complex models including multivariate data and genomic 
relationship matrices, it is often impossible to calculate the 
terms required from the exact inverse of the coefficient ma-
trix using direct methods. A natural suggestion, for example 

Garcıa‐Cortes, Moreno, Varona, and Altarriba (1992), is to 
use sampling schemes to estimate the required terms. Two 
sampling methods, data augmentation, based on Gibbs sam-
pling, and Monte Carlo AIREML based on a simple sample 
generation scheme will now be discussed.

9.1  |  Data augmentation
This data augmentation method is based on work by Thompson 
(1994) and Clayton and Rasbash (1999) using ideas based on 
Gibbs sampling. To motivate the method, we note that if we 
were just interested in estimates of the linear effects from 
(9) we might avoid inversion of C by solving (9) iteratively 
using block Gauss–Seidel methods with the blocks associ-
ated with sub‐models. For instance, writing the model (1) 
y=Xa+Zu+e in the more homogeneous form y=Wb+e 
then partitioning the model into terms associated with m sub‐
models y=

∑m

j=1
Wjbj+e using W= [W1W2 …Wm] and 

bT =
[

bT
1
bT

1
…bT

m

]

 with effects in one sub‐model independ-
ent of effects in the other sub‐models. In a similar manner, 
we can partition C into component matrices Cij associated 
with sub‐models i and j and define ci =WT

i
R−1y. Then, block 

Gauss–Seidel iteration involves successively solving

for bi for i = 1, …, m and iterating the process until the esti-
mates converge. A simplified form of Gibbs block sampling 
follows a similar paradigm, first obtaining the expected value 
of bi, bei, given sample values of the other estimates, (bsj, 
j = 1, …, m, j ≠ i) from

Then, a sample of the estimate of bi, bsi can be found using 
bsi =bei+ei, where ei is sampled from a normal distribution 
with inverse variance Cii.

An alternative interpretation of (19) is that for the i‐th sub‐
model, data are augmented by adjustments for fitted values in 
the other sub‐models (wj =Wjbsj) of the form yi =y−

∑m

j=1,j≠i
wj 

and a model to the augmented data of the form yi =Wibei+e 
is fitted, to find expected values bei, updating the variance 
parameters in the i‐th sub‐model and forming sample values 
bi from bei and ei. The procedure is carried out for each sub‐
model in turn and repeated for several iterations. Estimates of 
the variance parameters are based on the average over all iter-
ations excluding burn‐in iterations.

We can contrast the three methods. AIREML solves the 
full set of equations to get ũ and the sparse inverse subset 

Ciibi = ci−

m
∑

j=1,j≠i

Cijb

j

(19)Ciibei = ci−

m
∑

j=1,j≠i

Cijb

sj
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of C, data augmentation uses the expected value of terms in 
the sub‐models, bei given samples from the other sub‐mod-
els and the sparse inverse subset of the Cii from the sub‐
models and Gibb's sampling just uses samples bsi. In cases 
where the sparse inverse subset is difficult to calculate 
methods using sampling have advantages. Data augmen-
tation, because it uses the expected values bei rather than 
the sampled values bsi used in Gibb's sampling, has less 
sampling variation than Gibb's sampling. This procedure 
is often called Rao–Blackwellization (Gelfand & Smith, 
1990). There are several ways of constructing the variance 
parameter updates in data augmentation. For instance,

•	 an EM update could be used, based on the Gibbs sampling 
analogy,

•	 as Clayton and Rasbash (1999) suggest, iteration could 
continue until the estimates converge, 

•	 as Stewart et al. (2012) do, use AIREML updates based on 
the sub‐model, 

•	 if several sub‐models are used, fit the sub‐models then use 
updates to variance parameters based on solving an anal-
ogy of (15).

9.2  |  Monte Carlo AIREML (MCAIREML)
An alternative approach making use of the AI algorithm 
based on the simple sampling paradigm of Garcıa‐Cortes et 
al. (1992) was suggested by Matilainen, Mäntysaari, Lidauer, 
Strandén, and Thompson (2013) and Loh et al. (2015). They 
suggest calculating the solutions to the MME model equa-
tions needed in the calculation of the gradients (8)–(12) using 
an iterative scheme based on preconditioned conjugate gradi-
ent schemes. They also suggest that the trace terms in (9) and 
(10) can be estimated using s samples of yj (j = 1..., s) gener-
ated as yj =Zuj+ej with 

Then, the trace terms in (8) and (9) can be estimated as

and

where ĵ  and êj are formed from the mixed model equations with 
data yj. There are alternative terms to estimate the trace terms in 
(11) and (12) in terms of prediction errors (uj− ûj) and (ej− êj)

and

Matilainen et al. (2013) note that the optimal convergence 
criterion is more difficult to ascertain because of the sam-
pling at each iteration. Loh et al. (2015) suggest that these 
problems are reduced if instead of generating new samples in 
each iteration base samples with

are first generated and then in each iteration scaled values of ui 
and ei are constructed pausing

ui =G1∕2ubi and ei =R1∕2ebi with G=G1∕2(G1∕2)T and 
R=R1∕2(R1∕2)T.

Matilainen, Mantysarri and Stranden (2019) in this issue 
take a similar approach by reusing the same random numbers 
within each sampling to remove the fluctuations of convergence 
criteria. Both Matilainen et al. (2013) and Loh et al. (2015) ad-
vocate that the average information matrix be calculated from 
(13) with Pfj being calculated from fitting a mixed model to fj 
again using preconditioned conjugate gradient methods.

These require solving v sets of equations, one for each 
variance parameter. In some cases, this is computationally 
expensive, for example Stewart et al. (2012) considered mod-
els with over 200 parameters. Using the incremental model 
(14)‐(16) allows the increments to be calculated with only 
solving one set of equations.

9.3  |  Open questions
These methods raise several open questions. These include 
the following:

•	 Can the data augmentation method be easily adapted to 
give REML estimates?

•	 In the data augmentation method, when most of the com-
putations are concerned with absorbing and forming the 
sparse inverse subset of the sub‐model coefficient matri-
ces, would fitting s samples based on independent noise (as 
is used in the MCAIREML method) and update estimates 
based on the s samples be computationally and statistically 
useful?

•	 For both methods, could the latter be improved by gener-
ating dependent noise based on the s quantiles of the noise 
distribution?

•	 Can the data augmentation method be adapted for cases 
when using different elements in a set of correlated ran-
dom effects in different sub‐models would reduce the com-
putation, for example separating male and female genetic 

(20)uj ∼ (0,G) and ej ∼ (0,R)

(21)
tr[R−1(δR∕δ�ri)R

−1(R−WC−1WT)]=1∕s(
∑s

j=1
(êj

T
R−1(δR∕δ�ri)R

−1êj))

(22)

tr[G−1(δG∕δ�gi)G
−1(G−Cuu)]=1∕s(

∑s

j=1
(ûj

T
G−1(δG∕δ�gi)G

−1ûj)

(23)

tr[(δC∕δ�ei)C
−1]=1∕s (

∑s

j=1
(ej− êj)

T
R−1(δR∕δ�ri)R

−1(ej− êj)

(24)

tr[(δCuu∕δ�gi)C
uu]=1∕s (

∑s

j=1
(uj− ûj)

TG−1(δG∕δ�gi)G
−1(uj− ûj)

(25)u
bi
∼ (0, I) and e

bi
∼ (0, I)
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effects based on a pedigree relationship matrix ? If the G 
matrix can be written as G=A�2

u
, one suggestion would 

be to augment the data with extra data ,ya, with values zero 
and model ya =Lu+ea,ea ∼

(

0,D�2
u

)

 with A−1 =LDLT 
and L, a lower triangular matrix with diagonal elements 1. 
The extra data could be thought of as Mendelian sampling 
terms. With this parameterization, u and its associated de-
sign matrices can easily be apportioned into simpler sub‐
models based on say male, female and perhaps ancestor 
effects.

•	 Can the terms in (21)–(24) be combined to give estimates 
of the trace terms with less sampling variation, just as 
Hickey, Veerkamp, Calus, Mulder, and Thompson (2009)
[D] showed when estimating prediction error variances?

•	 Which method, data augmentation or MCAIREML, is the 
computationally more efficient? Is there a hybrid scheme 
that takes advantage of the strengths of the data augmen-
tation method in reducing sampling variation and giving a 
relatively easy paradigm for estimating the likelihood of 
a model, and the strengths of the MCAIREML scheme in 
reducing the effort in calculating solutions?
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