
Acta Cybernetica 24 (2019) 61–81.

Keeping P4 Switches Fast and Fault-free through

Automatic Verification∗

Dániel Lukácsa, Gergely Pongráczb, and Máté Tejfela

Abstract

The networking dataplane is going through a paradigm shift as softwariza-
tion of switches sees an increased pull from the market. Yet, software tooling
to support development with these new technologies is still in its infancy. In
this work, we introduce a framework for verifying performance requirement
conformance of data plane protocols defined in the P4 language . We present
a framework that transforms a P4 program in a versatile symbolic formula
which can be utilized to answer various performance queries. We represented
the system using denotational semantics and it can be easily extended with
low-level target-dependent information. We demonstrate the operation of this
system on a toy specification.

Keywords: P4, network verification, data plane, performance modeling, cost
analysis

1 Introduction

Currently in the networking industry, network devices are being commoditized fast
and software gets more and more market share as consumers want scalable and
easily replaceable devices, while vendors want to keep development costs low. For
example, software-defined networking (SDN) and Network function virtualization
(NFV) technologies address this need by allowing network administrators to dy-
namically control network topology, configurations, and protocols.

New languages are emerging, aiming to assist network engineers to define the
functioning of switches or network functions in the forwarding plane. Among them,
P4 [7, 15] intends to keep the best aspects of both hardware and software by en-
abling network engineers to communicate their intent in a general high-level lan-
guage, while the task of compiling high-level protocol description to low-level target

∗The research has been supported by the European Union, co-financed by the European Social
Fund (EFOP-3.6.2-16-2017-00013).

aEötvös Loránd University, Faculty of Informatics, Dept. of Programming Languages and
Compilers, E-mail: {dlukacs,matej}@caesar.elte.hu

bEricsson Hungary, E-mail: Gergely.Pongracz@ericsson.com

DOI: 10.14232/actacyb.24.1.2019.6

62 Dániel Lukács, Gergely Pongrácz, and Máté Tejfel

architectures is delegated to the backend software. The hybrid approach is highly
effective, but burdens backends, static analyzers, and verification frameworks, as
now these also have to take into account low-level targets. We recommend [13]
and [7] on the transpiring software revolution in networking, the growing empow-
erment of network operators at the expense of switch vendors, and the question
whether P4 will free the network from fixed-function switching interfaces (e. g.
OpenFlow) by making protocol-inpedendent packet processing possible.

In this work, we present the first iteration of a framework for verifying func-
tional requirements and non-functional requirements of network protocols in P4.
Our focus in this paper is checking whether P4 programs satisfy performance re-
quirements using cost analysis methodologies. In Section 1.1, we show that in
networked environments, conformance to performance requirements determines if
the switch can serve its purpose or instead it will get overflowed with packets and
introduce network-wide anomalies.

1.1 Motivation

The goal of cost analysis is to approximate the execution cost of a program using
the program code, without executing the program itself. A cost analysis system
that is capable of giving exact execution costs for any problem is also capable
of solving the halting problem. This implies that we have to stay content with
approximations.

While it is always nice to have an idea about the costs of executing the programs
we develop, this issue is more pressing with packet processing programs (such as
P4) running on networked software switches. In any network – with or without P4
–, the number of packets processed in a unit of time (or energy used) correlates
strongly with the unit of service prodvided (or rate of profit produced) by the
network. Specifically for P4, one of the big promises of the language is that switches
executing P4 protocols can combine the generality of NVFs software switches with
the speed of earlier SDN switches (such as OpenFlow) that were closer to hardware,
but only supported a fixed amount of protocols.

Moreover, beyond ”more is better” being a desirable non-functional require-
ment, an easily overlooked fact is that the performance of a switch program is
actually an important factor in the functional correctness and usability of that
program, similarly to real time systems. In short, unless the switch is performant
enough to serve all incoming requests in time, the packets will start accumulating
in the packet buffers (installed for load balancing the temporary increases in de-
mand), and upon buffer overflow, packets start getting lost, producing unexpected
network behaviors.

To demonstrate a realistic requirement, let us examine switches in a 10 Giga-
bit Ethernet network. In such a network, the maximum incoming throughput is
10Gbps = 1.25GBps = 1250MBps. Assuming somewhat pessimistically that only
minimal Ethernet frames with no payload are transferred, the size of the packets
will be the size of the Ethernet frames, that is 8B + 64B + 12B = 84B . From
this, the incoming packet rate measured in Mpps (Million Packets Per Second) is

Keeping P4 Switches Fast and Fault-free through Automatic Verification 63

1250MBps/84 ≈ 14.88Mpps. This means that a latency of 1/14.88s ≈ 0.067s is
allowed for 1 million packets, which is a latency of 109 ∗ 1/(14.88 ∗ 106)ns ≈ 67ns
for 1 packet. Assuming a modern CPU with 4.3GHz = 4.3 cycles/ns clock speed
(such as the one alluded by Figure 13 in Section 4), we can conclude that at most
4.3 cycles/ns · 67ns ≈ 288 cycles can be spent for processing a packet to stay safe
from buffer overflows.

One observation regarding this calculation can be that performance require-
ments towards switches turn out be quite strict. Another observation is that veri-
fication of such small boundaries will inherently require factoring in machine-level
operations, such as the execution costs of various CPU instructions and accessing
caches and main memory.

Yet another promising feature of P4 over earlier NFV and SDN approaches is
that it is a well-designed high-level programming language with standardised syntax
and semantics, enabling formal, well-generalisable analysis of switch and network
behavior.

In this work, we present a formal system capable of taking into account the
aforementioned low-level operations and statically deriving strict cost estimates
from a represenation of P4 program semantics.

1.2 About P4

P4 programs describe the control flow of packet processing network devices, com-
monly called switches. One peculiarity of P4 is that certain control structures are
intentionally left unspecified by the designers. Implementation questions are left to
the compilers targeting different platforms: this way compiler designers can choose
the most efficient solutions for their target platform. Moreover, the lack of super-
flous restrictions will enable more platforms to adopt the language. The price of
this feature is that P4 programs cannot be generally analyzed without sufficient,
low-level knowledge about the selected platforms. One of our goals in this work was
to design a system that analyzes and verifies P4 independently of any platforms as
deep as possible, and can be easily extended with platform specific information to
achieve completeness.

Figure 1 depicts a P4 program. Here, the call to V1Switch lists the arguments
(similar to function pointers) of a P4 pipeline. The implementation of V1Switch

is unspecified, but from the interface description we can find out that incoming
packets will be first processed by a parser, called ParserImpl. After the parsing
phase, V1Switch will continue with following phases, each operating on the data
structure containing the parsed packet (headers).

The parser is defined in P4, using state transitions. The parser control flow is
illustrated by the state machine diagram in Figure 2 (side effects were abstracted
away). Starting from state start, state parse eth is immediately reached, and
then, if the packet header signifies that the packet is an IPv4 packet (field ethType

equals to 2048 in decimal), the next state is parse ipv4. In both cases, the state
machine goes in the accepting state, accept. Whether a packet is an IPv4 packet
or not only makes a difference in side effects.

64 Dániel Lukács, Gergely Pongrácz, and Máté Tejfel

1 // ”basic routing−bmv2.p4”
2 V1Switch(ParserImpl(),
3 ingress (),
4 verifyChecksum(),
5 egress (),
6 computeChecksum(),
7 DeparserImpl()) main;
8
9 parser ParserImpl(packet in packet,

10 out headers hdr,
11 inout metadata meta,
12 inout standard metadata t stmeta){
13
14 state start {
15 transition parse eth;
16 }
17
18 state parse eth {
19 packet.extract(hdr = hdr.eth);
20
21 transition select(hdr.eth.ethType) {
22 16w0x800: parse ipv4;
23 default: accept;
24 }
25 }
26
27 state parse ipv4 {
28 packet.extract(hdr = hdr.ipv4);
29 transition accept;
30 }
31 }
32

34
35
36 header ethernet t {
37 bit<48> dstAddr;
38 bit<48> srcAddr;
39 bit<16> ethType;
40 }
41
42 header ipv4 t { ... }
43
44 struct headers {
45 ethernet t eth;
46 ipv4 t ipv4;
47 }
48
49
50
51 // ”core.p4”
52 extern packet in {
53
54 void extract<T>(
55 out T hdr);
56
57 void advance(
58 in bit<32> size);
59
60 bit<32> length();
61 }
62
63 // ”v1model.p4”
64 ...
65

Figure 1: Excerpt of a P4 program.

start parse_eth parse_ipv4 ethType == 2048

Figure 2: An automaton illustrating the parser in Figure 1.

In certain states the parser reads parts of the packet into the P4 program mem-
ory space. The memory space storing the packet, and the related method reading
from this storage is declared by the data structure called packet in. Extern data
structures – such as packet in – and methods are also unspecified. On the other
hand, data structures such as headers, and ethernet t are completely defined
by the P4 code, which means we can work with these inside most P4 function
constructs. For brevity, we included only the parts related to the parser that we
analyze in this work. We believe the procedure intrduced in this paper can be
effectively generalized for other control structures in the language – such as match-
action tables – but we deem the validation of this claim as future research topic.

Keeping P4 Switches Fast and Fault-free through Automatic Verification 65

1.3 Contributions

Earlier, we enumerated our current research goals and some of the related analysis
problems posed by P4. In this section, we intend to highlight specifically those prob-
lems we address in the current paper. We also showed earlier that in networked
environments it is critical for switches to conform to specific time requirements,
otherwise they cannot reliably provide the expected functionality. In this work,
we outline a system that, given switch programs in a subset of P4 and adequate
platform specifications, infers performance information that can be utilized to au-
tomatically verify whether given program satisifes given performance requirements
on the given platform (see Section 2). This language subset was selected in hope
that it covers a wide-enough range of challenges (such as target-dependence and
low-level semantics) posed by P4, so that our system can be extended for the whole
language.

For analyzing the cost of P4 programs, we adapted cost analysis approaches in
existing literature [3, 16, 5] to P4. Our approach utilizes program transformations
over formal representations of P4 program semantics (see Section 3). Advantages
of the denotational approach is that it enables formal reasoning about its correct-
ness, and its compositionality makes it easy to plug in target-specific information.
Disadvantages are mostly related to efficiency: to increase precision we need to
lower the level of abstraction we work on, and we can expect the amount of in-
formation on each abstraction level to grow exponentially (e. g. interfacing with
the NIC, memory access, caching, cost of CPU instructions must all be carefully
considered). To keep the rules simple, we utilize A-Normal form [9] that immensely
simplifies function call evaluation semantics. Size and time efficiency of cost for-
mula evaluation is assured by the introduction of let expressions (or alternatively
nested lambda expressions) that can be used to eliminate redundant expressions
and memoize intermediate results.

Various queries answering various performance questions can be created simply
by parameterizing the symbolic formula resulting from the above process. As giving
estimations with industrial-level precision for one or more platforms is out of the
scope of this paper, we demonstrate the operation and application of the presented
system using a toy specification of a fictional target in Section 4.

Our reference implementation is realized as a backend for the P4C compiler [1]
and it heavily utilizes the Pure term rewriting system [6].

2 Cost analysis framework for P4

A challenge specific to P4 (although also occurring in other languages, such as C)
is the handling of terms undefined by the specification, hereinafter referred to as
unspecified terms to avoid confusion with theoretically undefined terms (such as
division by zero, and the value of infinite recursion). It is the job of the compiler,
to link unspecified structures – such as the extern object packet in or the pipeline
V1Switch in Figure 1 – to definitions that can be executed efficiently on the plat-
form. Figure 3 depicts the data flow model we defined to address the challenge of

66 Dániel Lukács, Gergely Pongrácz, and Máté Tejfel

P4 Target

P4 program

P4 state
semantics

P4 time cost
semantics

P4 size cost
semantics

Application
probability
distributions

Target
specification

Target time
cost semantics

Target size
cost semantics

Target
probability
distributions

Initial
configuration Statistic rules

Complete cost
semanticsStart term

Answers

Semantic analysis

State to time
transformation

State to size
transformation

Automatic/manual
inference

Automatic/manual
inference

Automatic/manual
inference

+ ++

+
+

+ +

Context

+

Evaluation

Rules of evaluation

Figure 3: The complete architecture of the cost analysis framework

analyzing and verifying target-dependent P4 code.
The P4 program is first parsed into an intermediate representation (IR) called

state semantics, maybe utilizing IRs in existing P4 compiler solutions, such as
P4C [1] or T4P4S [1]. This represents the program as mapping between explicit
memory states before and after program execution. This representation is then
transformed to two kinds of abstract semantics used specifically to analyze exe-
cution cost. One we will refer to as time semantics, as it maps meaningful size
abstractions of input states to a numeric value characterizing program execution
cost, such as CPU cycles. The other we will refer to as size semantics, as it maps
meaningful size abstractions of input states to meaningful size abstractions of out-
put states. We detail these representations and the transformation between them
in Section 3.

As these transformations depend only on the P4 code, they are insufficient
in themselves for completely deriving the cost of P4 programs, as this requires
target-specific information. Our system expects this in the form of target-specific
time semantics and size semantics rules. These rules either have to be delivered
manually by developers employed by the target vendor, or it may be possible to
automatically infer them, given a sufficiently formal specification describing the
behavior of the target. We should note that such automatic inference from arbitrary
target-dependent state semantics (or some other representation) requires further
research efforts as it may introduce unexpected problems: on the target level we
lose the comfortable guarantees provided by P4, such as upper-bounded loops or no

Keeping P4 Switches Fast and Fault-free through Automatic Verification 67

loops at all, compile-time known memory sizes, structured control flow expressions
and high-level data structures.

As it is common in static analysis, considering all possible program states (or
even program inputs) would be unfeasible, and through abstraction we can acquire
feasibility by trading away precision. In cost analysis, the problem manifests it-
self when we are dealing with conditional control flow. As predicates cannot be
evaluated without the input, we either have to represent the costs of conditional
execution paths as dependent on an unevaluated predicate, or – by further ab-
straction – we can treat the predicate as a random variable and apply statistical
functions to these costs to produce performance information that is imprecise but
useful in practice.

Figure 3 also includes these required statistical functions and informations in the
architecture. As some of the predefined statistics (such as the average cost) require
knowledge about the probability distribution of the predicates, this information is
also required to perform the analysis. The two kinds of probability distributions
in the figure relate to a distinction between predicates appearing in the semantics:
some predicates are introduced in the target semantics (such as checking for cache
hits), while others are dependent on program input and program context (such as
deciding whether a given header can be parsed from a packet in a given parser
state, or whether a packet matches any entry in the match-action table).

Given all these informations and a target-dependent abstract initial program
memory state, we can finally evaluate the abstract call to the program entry point
with any or all of the predefined statistics to acquire performance information about
the P4 program and verify whether or in what circumstances does it conforms to
the performance requirements.

In Section 4, we also go through the most important steps of this process with
illustrations.

3 Transforming programs to program costs

In this section, we present the program transformation system used to derive time
and size semantics from the state semantics of a P4 program. We realized the
transformation as a term rewriting system containing reduction rules, analogous
to function definitions in the lambda calculus. An advantage of functional style
beyond formality is that it automatically guarantees confluence as per the Church-
Rosser theorem.

For the ease of reproducibility, the examples in this paper were formalized in the
executable term rewriting language, Pure [6]. Pure mostly follows the notational
naming conventions of ML-style functional languages. We give basic description
for less familiar syntax elements in Pure, but ultimately we have to refer the reader
to the Pure language manual. To separate the meta-syntax (i. e. the syntax of
Pure) from the concrete syntax of the semantics (defined by EBNF grammars in
this paper), we typeset meta-syntactical symbols in bold, meta-syntactical variables
using normal fonts, and typeset all concrete symbolic values in italic. In Figure 4

68 Dániel Lukács, Gergely Pongrácz, and Máté Tejfel

〈App〉 ::= 〈Name〉 〈State〉 〈Scope〉

〈TimeCost〉 ::= ‘TIME’ 〈Expr〉 〈SizeCost〉 〈Scope〉
| 〈TimeCost〉 ‘+’ 〈TimeCost〉
| 〈ProbDist〉 ‘*’ 〈TimeCost〉
| 〈Number〉 ‘*’ 〈TimeCost〉
| ...

〈SizeCost〉 ::= ‘SIZE’ 〈Expr〉 〈SizeCost〉 〈Scope〉
| ...

〈Reference〉 ::= 〈State〉 [‘�! ’ 〈Scope〉] {‘!’ 〈Name〉}

〈RndReference〉 ::= ‘R’ [‘�! ’ 〈Scope〉] {‘!’ 〈Name〉}

〈ProbDist〉 ::= ‘P’ 〈Predicate〉

Figure 4: EBNF syntax for the most frequent expressions used in this paper.

we find mixed rules from the EBNF noindent grammars describing the languages
we are using for expressing state, time and size semantics of P4 programs.

Function applications in the state semantics apply the definition referred by the
given name, to the argument which is a program state. Note that the grammar
enforces A-normal form (ANF) [9]: applications are only allowed to have variable
symbols and concrete states as arguments. The state semantics syntax exclusively
uses lexical scoping (instead of the mixed lexical-dynamical approach of P4): a
mapping of names are passed to called functions. The names in the scope are used
in function definitions to resolve references pointing to the state. The exclamation
mark (!) is Pure syntax for record field access while �! was defined by us to handle
sequences of field accesses, since ! is left-associative in Pure. We represent concrete
(i. e. transformable) let expressions and case analyses in Pure’s built-in syntax
(with when and case respectively).

Time and size costs of function definitions are denoted with the TIME and SIZE

expressions: these work similarly to applications, but they evaluate to time and
size costs instead of program states. We also include expressions required for prob-
abilistic handling of case analyses, and a few target-defined constants appearing in
Section 4.

Next, we present the rules §3.1–§3.4 forming the transformation system (a meta
term rewriting system) between state semantics and time semantics. We expect
that only only one system is loaded in the rewriting environment at a time, so the
only subexpressions expanded are those appearing on the left sides. We will assume,

that term rewriting rules – represented here with an arrow (
·

=⇒
·

) between the two

sides – are also part of the concrete syntax: they can be created, transformed, and
added to programs during runtime.

Rules §3.1 and §3.2 apply the time cost function to both sides of a state rule
(similarly to how we usually do this to equations). The former one is an excep-
tion for program entry, mapping a concrete input state to its size concrete size
abstraction.

Rule §3.3 formulates the cost of an application of a function f to argument
x given a size cost n, which we expect (and guarantee by the other rules) to be

Keeping P4 Switches Fast and Fault-free through Automatic Verification 69

main x s1
·

=⇒
·

f y s2

TIME main
·

=⇒
·

TIME f (SIZE y {} {}) s2
§3.1

f x s1
·

=⇒
·

rhs
f 6= main

TIME (f x s1) n s
·

=⇒
·

TIME rhs n s
§3.2

TIME (f x s1) n s2

TIME f n s1
§3.3

TIME (when args) n s

(foldl1 (+) times) when sizes

where
sizes = ...;
times = ...;

§3.4

TIME (case (�! fields) cs) n s2

TIME cacheIn n { ref ⇒ fields }
+ case (R �! fields) tcs

where
tcs = ...;

§3.5

Figure 5: Program transformation rules mapping state semantics to time semantics.

the size abstraction of x. Note that while the various call semantics would require
inclusion of different costs in this rule, we solved this problem by enforcing ANF:
as function compositions are disallowed we now know that function arguments are
evaluated (analyzed) at a separate program point. Without ANF this rule would
have to be more complex. The size argument is only used in loop analysis: while
do not perform loops analysis in this paper as it is currently not relevant for P4,
we prepared the notation in preparation for future research.

Rule §3.4 transforms let expressions in the state semantics for let expressions in
the time semantics. Let expressions assure size and time efficiency of cost formula
evaluation as they can be used to eliminate redundant expressions and memoize
intermediate results. While nested lambda expressions can be used for the same
purpose, let expressions proved to be a far more human-readable alternative. ANF
is a must in both cases. To aid readability, we omitted implementation details of
the body of this rule, and instead recommend the reader to look at the input-output
chart in Figure 6. The rule will bind the size abstraction of the program state after
each operation in a sequence to variables in the let expressions. These variables
are then utilized in the summation of the time costs of these operations that is
returned by the expression. Rule §3.4 requires that bodies of let expressions in

70 Dániel Lukács, Gergely Pongrácz, and Máté Tejfel

the state semantics refer to a single bound variable of their parent let expressions
(non-conforming let expressions can be easily translated to conforming ones). On
Figure 6, we can observe the effect of the required changes: instead of featuring a
sum of time costs in the body of the let expression, we only feature the size cost
of the last application, which depends on the size cost of the expression before the
last one, and so on.

Rule §3.5 rewrites a case analysis returning a state, to a case analysis returning
a time expression. To aid readability, we omitted implementation details of the
body of this rule, and instead recommend the reader to look at the input-output
chart in Figure 6: Here, we first add the (target-dependent) potential cost (c) of
caching the head value (i. e. reading from main memory to CPU cache), followed by
conditionally adding the execution of executing the matching case body (bi), plus
the cost of the comparison between the head and the case pattern (ci) (also taking
into account the costs of all preceding matches). As the time semantics abstracted
away program state information, we cannot precisely evaluate the case analysis
anymore. Yet, we can still extract valuable information by applying statistical
transformations, such as taking the maximum or the average of the case costs. We
signified this by transforming the case head into a random variable (R).

For brevity, we do not include the system transforming state semantics to size
semantics, as it is mostly analogous to the system in Figure 5, but without the
requirement to sum up the sizes of the sizes of intermediate operations.

TIME (x3

when
[x1 99K f x0 sf
, x2 99K g x1 sg
, x3 99K h x2 sh
]) n s

(a)

(TIME f nx sf + TIME g ny sg + TIME h nz sh)
when
[nx 99K SIZE x n s
, ny 99K SIZE f nx sf
, nz 99K SIZE g ny sg
]

(b)

SIZE (x3

when
[x1 99K f x0 sf
, x2 99K g x1 sg
, x3 99K h x2 sh
]) n s

(c)

SIZE h nz sh
when
[nx 99K n
, ny 99K SIZE f nx sf
, nz 99K SIZE g ny sg
]

(d)

Figure 6: Example of time and size cost reductions of a let expression.

Finally in Figure 8, we present examples of two families of statistical rules. Such
rules can be used to handle conditional control flows in partially reduced time cost
expressions. For example, when applied to branching expressions §3.6 will return
the cost of the most expensive branch (deriving the worst case execution time),
while §3.7 will weigh the cost of each branch with the probability of the branch
being executed times the probability that non of the preceding branches are being
executed (deriving the mean execution time). All statistical rules behave as identity

Keeping P4 Switches Fast and Fault-free through Automatic Verification 71

TIME (case (x �! fields)
[patt1 99K b1

, patt2 99K b2

, 99K b3

]) n s

(a)

c +
case (R �! fields)
[patt1 99K c1 + TIME b1 n s
, patt2 99K c1 + c2 + TIME b2 n s
, 99K c1 + c2 + TIME b3 n s
]

where
c = TIME cacheIn n { ref ⇒ s ! fields};
c1 = TIME cmp n { ref ⇒fields

, const ⇒ patt1};
c2 = TIME cmp n { ref ⇒fields

, const ⇒ patt2};

(b)

Figure 7: Time cost reduction of a case analysis expression.

for non-branching expressions, as these are corresponding to one-element samples.
Further statistics such as best case execution time and variance can be realized as
similar rules.

MAX (ifelse t1 t2)

max t1 t2
§3.6

AVG (ifelse c t1 t2)

(P c)∗t1 + (1 − (P c))∗t2
§3.7

Figure 8: Statistics rules for handling conditional control flow

4 Case study

In this section, we illustrate the system presented in the previous sections by going
through the intermediate representations and target-dependent components used
in the analysis of the parser in the small P4 program in Figure 1. To assist with this
demonstration and keep this paper concise at the same time, we also provide a toy-
sized target-dependent specification that can be substituted in the partial formula
to obtain the final performance formula. In Figure 15, we illustrate a possible
application of this performance formula to show how the estimated performance
of this program on the specified platform changes w. r. t. the (application-
dependent) probability of the transmitted packet being an IPv4 packet, and the
(target-dependent) probability of cache misses.

4.1 State semantics transformation

In the first step of the analysis the P4 program is transformed to state semantics
representation: a system of reduction rules describing the program as a composition
of functions over the program state. We expect that production of such a repre-
sentation is relatively straightforward after the P4 program was parsed into an IR,
such as the one used by the P4C compiler [1]. Figure 9 depicts the reduction rules

72 Dániel Lukács, Gergely Pongrácz, and Máté Tejfel

start x s

x2

when
[x1 99K

extract
x
{ hdr ⇒ s !hdr!eth
, packet ⇒ s !packet}

, x2 99K
case
(x1 �! (s !hdr)!eth!ethType)
[2048 99K parse ipv4 x1 s
, 99K accept x1 s
]

]

(a)

parse ipv4 x s

x2

when
[x1 99K

extract
x
{ hdr ⇒ s !hdr!ipv4
, packet ⇒ s !packet}

, x2 99K accept x1 s
]

(b)

Figure 9: Formal semantics of start and parse ipv4 generated from P4 program

corresponding to the start and parse ipv4 state transitions. Here, the input
program state x is modified by copying the bits at the current cursor position of
packet to the memory segment specified by the s!hdr!eth field of the scope. Then,
a value by the name in the s!hdr!eth!ethType variable is read from the resulting
program state and is pattern matched to select the transition to the next parser
state (formalized as a function application). The program state after executing the
selected transition will be returned. We should note that the extract method in
the packet in extern is not defined in the P4 program (as it is target-dependent).
If the state semantics is intended for execution, then an evaluation rule must be
defined for this method. For cost analysis this is not required.

We may also note that transition parse eth was eliminated in a compiler op-
timization step. As P4C was designed to separate target-independent P4 code
optimizations from target-dependent ones into parts called frontend and backend
respectively, we are free to rely on optimizations in the frontend, but are required
to steer clear of those in the backends. This way, our cost estimations will always
assume that any P4 compiler it is used with generates at least as efficient interme-
diate code as the P4C frontend. This assumption is automatically satisfied for P4
compilers realized as P4C backends, such as T4P4S [11].

In the next analysis step, the state semantics in Figure 9 is abstracted into time
and size semantics using the program transformation system presented in Section 3.
Figure 10 depicts the time semantics rule corresponding the start transition of the
parser. We first calculate the n1 size abstraction (a structure) of the program state
after extract based on the size abstraction of the input program state n, and
then the n2 one after the case analysis (not depicted) based on n1. Using these
size abstractions, we can return the sum describing the execution costs of each
operations and also the additional costs of the program control flow.

We defined the transformation rules so that the time cost semantics of a func-
tion call such as parameter passing (defined to be copy-in/copy-out by the P416

specification [15]) are included in the rule describing the function definition. This

Keeping P4 Switches Fast and Fault-free through Automatic Verification 73

TIME start n s

TIME extract n0 { ... }

+ TIME cacheIn n1 { ... }
+ case (R �! (s!hdr)!eth!ethType)
[2048 99K TIME cmp n1 { ... } + TIME parse ipv4 n2 s

, 99K TIME cmp n1 { ... } + TIME accept n2 s
]
when
[n0 99K n
, n1 99K SIZE extract n0 { ... }
, n2 99K case

...
]

Figure 10: Time cost semantics of start derived using the system in Figure 5.

is the reason why the costs of the function do not appear in any of the applica-
tions (transitions do not require parameter passing). At this point, to represent the
costs of the program control flow we also include the costs of reading an operand
from memory into the cache, and the costs of performing the comparisons in the
branches (the default case does not require a comparison, so in this case, only the
preceding comparisons are counted).

4.2 Target dependent semantics

We utilize the semantic rules by applying them to concrete terms, i. e. function
calls parameterized by a concrete program state. A model program state is depicted
by Figure 11a, while the transformed size abstraction of this state is depicted by
Figure 11b.

Conceptually, the concrete state is partially defined by the target, as it also de-
scribes the memory allocation scheme as prescribed by the target-specific compiler
backend. For example, a backend implementing copy-in/copy-out semantics will al-
locate data-size memory for every function arguments, while another backend may
choose to depart from the language specification and implement call-by-reference
semantics with stacks to save both time and space. Moreover, parts of the concrete
state may be explicitly target-dependent, such as the memory reserved for externs,
and the formal representations of related storages (such as I/O buffers, L1, L2,
L3 caches, NUMA memories). Figure 11a describes a program state in which the
extern memory (called packet in) reserved for storing a raw incoming packet is
a 1 KB buffer and a pointer points to the position of the last parsed byte. As
extern memory is ultimately target-dependent, we modeled this structure after the
identically named C structure in Figure 12a.

It also includes the header structure declared in the original P4 program code
with fields having the respective sizes. For simplicity, we omitted more intricate
details, such as copy-in/copy-out semantics for this model. The state also includes

74 Dániel Lukács, Gergely Pongrácz, and Máté Tejfel

{ headers ⇒
{ eth ⇒

{ ethType ⇒ mkarray 0 2
, dstAddr ⇒ mkarray 0 6
, srcAddr ⇒ mkarray 0 6
}

, ipv4 ⇒
{

...
}

}
, packet in ⇒

{ cursor ⇒ 0
, buffer ⇒ mkarray 0 1000
}

, cacheLineSize ⇒ 64
, cpuWordLength ⇒ 8
, cache ⇒ mkarray 0 32000
, mem ⇒ ...
, nic ⇒ ...
, ...
}

(a) A simplified model of a concrete P4 pro-
gram memory state. Sizes are given in bytes.

{ headers ⇒
{ eth ⇒

{ ethType ⇒ 2
, dstAddr ⇒ 6
, srcAddr ⇒ 6
, sizeof ⇒ 14
}

, ipv4 ⇒
{ ...

sizeof ⇒ 20
}

, sizeof ⇒ 34
}

, packet in ⇒
{ ...

sizeof ⇒ 1000
}

, cacheLineSize ⇒ 64
, cpuWordLength ⇒ 8
, cache ⇒ 32000

, ...
, sizeof = ...
}

(b) Size abstraction of the P4 program
state in Figure 11a.

Figure 11

explicitly target-dependent segments such as the 32 KB sized L1 cache field. Since
we are working with small packets, we may assume infinite RAM memory without
losing practical soundness.

Unless we want to execute the state semantics, we do not need the concrete
program state. We described it to make it easier to understand its size abstraction.
Figure 11b depicts this size abstraction. Abstracting the concrete state is usually
non-trivial: P4 structures get a special field (denoted here as sizeof) storing its
aggregated sizes, target-dependent constants are kept as is, and – to enable loop
analysis in the packet parser – the size abstraction of packet in is the size of the
yet unprocessed part of the packet. As we do not yet perform loop analysis that
would require intricate size abstractions, we left answering the questions of state
abstraction for future research.

Any cost semantics derived from P4 code only cannot be a complete description
of program behavior: as unspecified P4 constructs are defined by targets, we require
target-specific information about how this target implements the unspecified P4
constructs (such as the pipeline and externs, as seen before). Figure 12b provides
a partial example that formally specifies such target-specific information.

Note that we devised the target model in this section manually: while we sus-
pect it to be reasonable, it is far too simplistic to be used for predicting real targets
with common but advanced low-level features (such as NUMA, DMA, multiple
cores, etc.).

Keeping P4 Switches Fast and Fault-free through Automatic Verification 75

typedef unsigned char byte;

typedef struct packet in {
byte buffer [1024];
byte∗ cursor;
} packet in;

void extract(packet in∗ packet,
void∗ hdr,
unsigned long hdrLen) {

memcpy(hdr, packet−>cursor, hdrLen);

packet−>cursor = packet−>cursor + hdrLen;

}

(a) An implementation of the P4 extern
method extract in C.

TIME extract n s

TIME cacheIn
n
{ ref ⇒ s !packet }

+ TIME memcpy
n
{ src ⇒ s !packet
, dst ⇒ s !hdr }

+ CPU ADD

§4.2.1

TIME memcpy n s

ceil (d/l)
∗

(L1 TO CPU
+ CPU MOV
+ L1 FROM CPU)

where
d = n�! (s!dst);
l = n�! cpuWordLength;

§4.2.2

(b) Cost model based on 12a.

Figure 12

Target-dependent time semantics may be delivered automatically from a sufficiently
formal target specification, but – due to the lack of various invariants guaranteed
by P4, such as compile-time known memory requirements and no loops or upper-
bounded loops only – we deem this problem to be non-trivial and out of the scope
of this paper.

In Rule §4.2.1 of Figure 12b, we model the unspecified extract operation that
attempts to parse a packet header (i. e. copies bits of the incoming packet to a
memory segment representing a header), as a call to a system-level copy opera-
tion such as C’s memcpy, followed by incrementing the counter by the size of the
parsed data (see Figure 12a). As a simplification, we assume that only valid (as in,
parseable) packets arrive: if this were not the case (as usually), the rule would have
to be extended with the cost of checking for input end and also the early return
should be calculated in.

Our cost model of memcpy in Rule §4.2.2 assumes that the part of packet under
operation is already cached (and fits entirely in the cache, which is reasonable for
32k cache size), and then read its 64 bit size chunks (size of the CPU registers) into
the CPU registers with the aim of performing the CPU-level copy instruction. The
size of part is the compile-time known destination size, i. e. the size the header we
want to parse from the raw packet. Note that we may model the cost of comparison
(used in calculating the cost of case analysis) very similarly, with the only difference
that we need to read two words into the CPU registers instead of one, and perform

76 Dániel Lukács, Gergely Pongrácz, and Máté Tejfel

the CPU-level comparison operation instead of copying.

Description LHS RHS (cycles)

Cost of comparing the con-
tents of two CPU registers. CPU CMP 1

Cost of copying data be-
tween CPU registers. CPU MOV 2

Cost of addition with a con-
stant number. CPU ADD 5

Cost of copying a word from
L1 to a CPU register. L1 TO CPU 5

Cost of copying a word from
a CPU register back to L1. L1 FROM CPU 5

Cost of copying a cache line
from memory to L1 cache. MEM TO CACHE 79 + 200

Figure 13: CPU architecture model1 specifying CPU instruction execution costs.

In Figure 13, we defined all cost constants required for completely reducing
the preceding formulae, based on external specifications and benchmarks of the
respective operations of the selected CPU architecture.

As expected, the costs are seemingly dominated by the reads from memory to
caches, but we should note that this operation handles cache lines (64 byte in in
our example), while the others handle register-sized data (64 bit in our example)
and thus will be repeated in succession for larger data (so if copying 8 byte from
cache to CPU registers requires 5 cycles, the same operation for 64 byte will require
40 cycles in this model).

4.3 Symbolic time cost formula and applications

At this point, we introduced most of the basic components required for evaluating
the time cost of start, given the abstracted state in Figure 11b. We merge the cost
semantics generated from P4 with the target-specific cost semantics to derive an
intermediate formula (not depicted here because of its size) from the cost expression
of start, and finally apply our chosen statistics transformation.

Figure 14 depicts the worst case execution time of start we derived using
Rule §3.6. This approximates the execution time of start when every incoming
packet is an IPv4 packet (i. e. ethType is 2048) and the cache misses in each
attempt.

The best case execution time of start is the formula: 8 * (L1 TO CPU +
CPU MOV + L1 FROM CPU) + CPU ADD + 1 * (2* L1 TO CPU + CPU CMP +
L1 FROM CPU). This is the execution time when no incoming packets are IPv4
packets, and the cache hits in each attempt.

We can derive the average case similarly, but instead of taking each member for
granted, we appropriately have to weigh costs corresponding to parts of the code
with with the probabilities of that part being executed. For example, the costs of

1Based on Intel Skylake X (4.3 GHz, 32KB L1) [4, 2]. MEM TO CACHE value was adapted
assuming 0.25ns per cycle.

Keeping P4 Switches Fast and Fault-free through Automatic Verification 77

TIME extract n0 { ... }

• Cost of reading the packet into cache MEM TO CACHE

• Cost of extracting the header
+ 8 ∗ (L1 TO CPU

+ CPU MOV
+ L1 FROM CPU)

• Cost of incrementing the cursor + CPU ADD

Case analysis (WCET)

• Cost of reading the case head into cache + MEM TO CACHE

• Cost of comparing the case head with the pattern of
the most expensive case (i. e. the first one).

+ 1 ∗ (2∗L1 TO CPU
+ CPU CMP
+ L1 FROM CPU)

TIME parse ipv4 n2 s

+ MEM TO CACHE
+ 8 ∗ (L1 TO CPU

+ CPU MOV
+ L1 FROM CPU)

+ CPU ADD

Figure 14: The WCET of state start.

the parse ipv4 state transition is weighed with the probability of the ethType

field of the header being the value 2048. For conciseness, we omit the resulting
expected value formula from this paper, and instead show only the final values in
Figure 15, given various probability distributions.

Using the constants in Figure 13, we can finally evaluate the partially evaluated
formulas to a single numeric value characterizing the performance. In Figure 15, we
depicted three constants and the average cost computed over various probabilities.
The constant values marked with BCET and WCET denote the best and worst case
execution times of start as we discussed earlier. TOL was introduced in Section 1.1
as the maximum number of cycles that can be spent for processing a packet without
causing buffer overflow in the long run by a switch residing in a 10 Gigabit Ethernet
network and implemented on the CPU architecture in Figure 13. Note that TOL

encompasses the entirety of the packet processing process starting with packet
arrival on the NIC, while the rest of the numbers only characterize the costs of
packet parsing starting from start. To derive a more meaningful chart, we would
need to reduce the time cost formula for the program entry point instead of start,
or set TOL lower.

Instead of deriving the average execution time with arbitrary probability distri-
butions, we plotted the average (measured in cycles) over several different distri-
butions. Because of the case analysis and the possible need of caching, the average
depends on the probability of the packet being an IPv4 packet, and the probability
of cache misses. This means that we are working with pairs of probability dis-
tributions, each defined over two values (the predicate in question being true and
false). Two keep the plot in 2 dimensions, we only used two probabilities of packets
having IPv4 types (0 meaning no IPv4 packets arrive at all, and 1 meaning only
IPv4 packets arrive), each represented by two different lines. We keep track of the
cache miss probabilities on the x-axis.

78 Dániel Lukács, Gergely Pongrácz, and Máté Tejfel

BCET 117

TOL 288

WCET 1055

 200

 400

 500

 600

 700

 800

 900

 1000

 1100

0.08 0.31 0 0.2 0.4 0.6 0.8 1

E
xe

cu
ti

o
n
 c

o
st

 (
cy

cl
e
s)

P(cache miss)

P(etherType=2048)=0
P(etherType=2048)=1

Figure 15: Latency characteristics of start over IPv4 and cache miss probabilities.

By looking at the plot, we can conclude that a cache miss ratio of 0.08 and
below will guarantee that the examined P4 function call will not take longer than
the allowable limit even if we have to process all packets as IPv4 packets. On
the other hand, ratios above 0.31 are clearly dangerous: if cache the misses that
frequently, buffer overflows cannot be avoided even if no IPv4 packets arrive at
all. As these extremities rarely occur in practice, cache miss ratios between 0.08
and 0.31 can be candidates for further testing (or cost analyses with more precise
estimations) to find the highest cache miss ratio with which the switch can still
run sustainably (i. e. without causing buffer overflows) in a given application
environment.

5 Related work

In this paper, we presented a system for verifying conformance of P416 programs
to performance requirements. Our long term goal is to innovate a framework that
is capable of verifying both functional and non-functional requirements using the
same base representation. To handle cost analysis methodically, we utilized the
seminal work of Wegbreit [16] and the idea of cost relation systems (CRS) [5].

Verification of functional correctness of P4 programs seems to be hot topic
lately in the switching industry and the field of network languages, although most
works we found were targeting P414 the previous, still maintained version of the
language. P4V [12] verifies various properties – such that no headers are used
unless they were extracted from a packet beforehand – by extending the language
with assertion statements, transforming the program code including assertions to
predicate transformer semantics, and then applying the Z3 SMT solver to prove
theorems. Vera [14] follows a different route, and uses symbolic execution and

Keeping P4 Switches Fast and Fault-free through Automatic Verification 79

computation tree logic over an intermediate representation to find or prove non-
existence of bugs in P4 programs, delivering also an input configuration producing
the fault. P4K [10] is a formal semantics for P4, written in the K framework. Using
reachability logic in K, the authors automatically prove Hoare-style assertions for
P4 involving stateful data plane elements and unbounded streams of packets.

Both in correctness and performance verification a core concern is efficiency:
for deriving the execution cost of a program statically, analysis of all execution
paths is unavoidable. This means that the complexity of the analysis is at best
exponential. To offset the costs of path analysis, we borrowed a simple divide and
conquer idea from [8] to utilize the highly decomposable nature of network pro-
gramming languages in verification: instead of analysing paths in the full program,
we first analyze just the components, and only perform those transformations on
the full program that actually require the full program. Thanks to our symbolic and
compositional denotation, we can choose an arbitrary small segments for analysis
instead of analyzing the full pipeline.

Our work can be considered an automatization of the approach following [3].
Here, the authors manually analyze the Ethernet protocol and a specific hardware
architecture, then synthesize the information into a sequence of primitive packet
processing actions called elementary operations (EOs) in order to quantify perfor-
mance.

6 Conclusion and Future Work

We conclude this paper by first enumerating problems and opportunities to extend
the presented framework in future research, and then summarizing the contributions
of this work.

In the current paper, we only analyzed the parser of a P4 program. One im-
portant step for full language coverage will be the analysis of match-action tables:
match probabilities can be computed from given match-action tables, and low-level
costs of matching and actions can be inferred using the presented procedure. On
the other hand, the number of branches in the control flow will be equal to the
number of distinct actions that can be performed by the table, so to avoid com-
binatorial explosion with nested branches, it is important to analyse match-action
tables separately.

In this paper, we demonstrated the operation of our system on a toy example.
It will be an important and useful research task to apply the procedure to real
and complex targets, such as the P4C reference switch [1] and the DPDK switch
generated by T4P4S [11]. First, to validate the presented system in real environ-
ment, and second to use the retrieved performance information to improve the
aforementioned targets.

By introducing random variables in time cost formulas, we effectively mod-
elled P4 programs as memoryless Markov-chains. Feasibility of providing condi-
tional probability distributions for more precise models involving Markov-chains
with longer memory may also worth further investigation.

80 Dániel Lukács, Gergely Pongrácz, and Máté Tejfel

At the time of writing, state-of-art compilers such as the official P4C compiler [1]
as well as the P4C-based T4P4S reject all P4 programs containing loops in the
parser, and the language specification [15] disallows loops everywhere else. For the
lack of support in the software ecosphere and a seeming lack of use cases for loops in
P4, we decided not to implement cost analysis of loops in the current work, but we
intentionally choose a representation that can be extended for this purpose applying
approaches involving e. g. generating functions [16], or cost relation systems [5],
and also see loop analysis a possible direction towards system completeness.

With this, we conclude our paper. We showed that networked switches have to
comply with strict performance requirements, and also observed that unspecified
constructs in P4 require low-level, target-dependent information. We outlined the
architecture of a cost analysis framework for addressing both problems. We pre-
sented a program transformation system based on term rewriting, that is used to
derive a symbolic formula, in which the symbols can be substituted in with numeric
constants by various queries to deliver the requested performance information. We
went through the main steps of this process using a toy example, and showcased
a possible application of the symbolic formula to find ideal cache miss ratios for
the aforementioned target. We also situated our paper among works related to the
verification of P4, and network function cost analysis. Finally, we marked possible
directions to improve this work in order to provide a practical solution for analysis
and verification of high-efficiency network platfroms.

References

[1] P4C reference compiler for the P416 programming language.
https://github.com/p4lang/p4c, 2017. [Online; accessed 30-September-
2018].

[2] 7-Zip LZMA Benchmarks. https://www.7-cpu.com/cpu/Skylake X.html,
2018. [Online; accessed 30-September-2018].

[3] A. Sapio and M. Baldi and G. Pongrácz. Cross-Platform Estimation of Net-
work Function Performance. In 2015 Fourth European Workshop on Software
Defined Networks, pages 73–78, Sept 2015. DOI: 10.1109/EWSDN.2015.64.

[4] Agner Fog. Lists of instruction latencies, throughputs and
micro-operation breakdowns for Intel, AMD and VIA CPUs.
https://www.agner.org/optimize/instruction tables.pdf, 2018.09.15. [Online;
accessed 30-September-2018].

[5] Albert, Elvira, Arenas, Puri, Genaim, Samir, and Puebla, Germán. Cost
relation systems: A language-independent target language for cost analy-
sis. Electron. Notes Theor. Comput. Sci., 248:31–46, August 2009. DOI:
10.1016/j.entcs.2009.07.057.

Keeping P4 Switches Fast and Fault-free through Automatic Verification 81

[6] Albert Gräf. The Pure Programming Language and Library Documentation.
https://agraef.github.io/pure-docs/, 2018. [Online; accessed 30-September-
2018].

[7] Bosshart, et. al. P4: Programming protocol-independent packet proces-
sors. SIGCOMM Comput. Commun. Rev., 44(3):87–95, July 2014. DOI:
10.1145/2656877.2656890.

[8] Dobrescu, Mihai and Argyraki, Katerina. Software dataplane verification. In
Proceedings of the 11th USENIX Conference on Networked Systems Design and
Implementation, NSDI’14, pages 101–114, Berkeley, CA, USA, 2014. USENIX
Association.

[9] Flanagan, Cormac, Sabry, Amr, Duba, Bruce F., and Felleisen, Matthias. The
essence of compiling with continuations. In Proceedings of the ACM SIG-
PLAN 1993 Conference on Programming Language Design and Implementa-
tion, PLDI ’93, pages 237–247, New York, NY, USA, 1993. ACM. DOI:
10.1145/155090.155113.

[10] Kheradmand, Ali and Rosu, Grigore. P4K: A formal semantics of P4 and
applications. CoRR, abs/1804.01468, 2018.

[11] Laki, Sándor, Horpácsi, Dániel, Vörös, Péter, Kitlei, Róbert, Leskó, Dániel,
and Tejfel, Máté. High speed packet forwarding compiled from protocol inde-
pendent data plane specifications. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, pages 629–630, New York, NY, USA, 2016. ACM.
DOI: 10.1145/2934872.2959080.

[12] Liu, et al. P4V: Practical Verification for Programmable Data Planes. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’18, pages 490–503, New York, NY, USA,
2018. ACM. DOI: 10.1145/3230543.3230582.

[13] Sivaraman, Anirudh, Kim, Changhoon, Krishnamoorthy, Ramkumar, Dixit,
Advait, and Budiu, Mihai. Dc.p4: Programming the forwarding plane of a
data-center switch. In Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research, SOSR ’15, pages 2:1–2:8, New York,
NY, USA, 2015. ACM. DOI: 10.1145/2774993.2775007.

[14] Stoenescu, et. al. Debugging p4 programs with vera. In Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’18, pages 518–532, New York, NY, USA, 2018. ACM. DOI:
10.1145/3230543.3230548.

[15] The P4 Language Consortium. P416 Language Specification.
https://p4.org/specs/, 2017. [Online; accessed 30-September-2018].

[16] Wegbreit, Ben. Mechanical program analysis. Commun. ACM, 18(9):528–539,
September 1975. DOI: 10.1145/361002.361016.

