
Acta Cybernetica 24 (2019) 5–16.

Towards a Classification-Based Systematic

Approach to Facilitate the Design of

Domain-Specific Visual Languages∗

Sándor Bácsia and Gergely Mezeib

Abstract

Domain-specific visual languages (DSVLs) are specialized modeling lan-
guages that allow the effective management of the behavior and the structure
of software programs and systems in a specific domain. Each DSVL has its
specific structural and graphical characteristics depending on the problem
domain. In the recent decade, a wide range of tools and methodologies have
been introduced to support the design of DSVLs for various domains, there-
fore it can be a challenging task to choose the most appropriate technique
for the design process. Our research aims to present a classification-based
systematic approach to guide the identification of the most relevant and ap-
propriate methodologies in the given scenario. The approach can be capable
enough to provide a clear and precise understanding of the main aspects that
can facilitate the design of DSVLs.

Keywords: domain-specific visual languages, modeling, classification

1 Introduction

In software development, there has always been a big demand for improving the
productivity and the speed of the development process by increasing abstraction.
This is the main reason why model-driven software development [1] has become a
promising paradigm among software developers and researchers in the past decades.
Software models are mainly used for designing complex structures or systems in
order to be able to specify the requirements on a higher abstraction level. Thus,
the model can give a better overview of the system and help to understand the
concepts of the targeted domain.

∗The research has been supported by the European Union, co-financed by the European Social
Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research Collaborations Grounding
Innovation in Informatics and Infocommunications).

aDepartment of Automation and Applied Informatics, Budapest University of Technology and
Economics E-mail: bacsi.sandor93@gmail.com

bDepartment of Automation and Applied Informatics, Budapest University of Technology and
Economics E-mail: gmezei@aut.bme.hu

DOI: 10.14232/actacyb.24.1.2019.2

6 Sándor Bácsi and Gergely Mezei

Domain-specific languages (DSLs) [10] are specialized modeling languages that
can efficiently raise the level of abstraction by using the concepts and the charac-
teristics of the specific problem domain. DSLs are in a contrast to general-purpose
languages like C, Python or Haskell that are designed to let developers write any
sort of program with any sort of logic broadly applicable across domains. DSLs
allow the effective management of the behavior and the structure of software pro-
grams and systems. Domain-specific visual languages (DSVLs) [15], compared to
textual DSLs, can further improve the expressiveness and the usability of the given
model. As a well-designed DSVL raises the level of abstraction, it also helps in
hiding irrelevant, technical details and in emphasizing the domain-related parts in
the models. In order to achieve this, it is essential to find the best visualization in
design-time in order to satisfy the needs of the targeted domain.

There are several advantages of using a DSVL. The richness of the visual rep-
resentation can simplify the modeling process and increase flexibility, thus DSVLs
can be intuitively usable. As most of the people tend to associate a visualization
for their problems, visual models can facilitate to understand the concepts and
the main relations in the targeted domain. It can be easier to explain the main
characteristics of a domain problem by using visual notations.

Compared to textual languages, DSVLs may have their drawbacks. DSVLs can
be restrictive, since they may limit the freedom of creating complex language con-
structs. The visual entities representing a complex code can be hard or impossible
to grasp in one glance. It can be challenging to find the effective visual way of ex-
pressing some advanced concepts, such as type systems, that can be found in most
of the general-purpose textual programming languages. If DSVL is badly designed
and it is used in a particular situation, the advantages may easily turn into disad-
vantages, thus it is essential to avoid counter-productive decisions by choosing the
most appropriate representational concepts in design-time. A guideline can help in
providing a clear and precise understanding of the main aspects to design the most
suitable DSVL.

The high level of customization possibilities has its price: unlike in UML, each
problem domain requires a custom, different visual representation to meet the re-
quirements of the targeted domain. The exactness of the choice depends on how
expressively the chosen concepts describe the DSVL and on the specific needs of
the targeted domain.

In this paper, we present the main results of our classification methodology
for visual domain-specific languages. We analyzed a wide range of existing DSVL
methodologies and also created several illustrating examples for different domains to
exemplify the most relevant graphical and structural characteristics. We used two
metamodeling frameworks (Eclipse Modelling Framework [6] and Visual Modeling
and Transformation System [18]) and a visual programming editor builder (Google
Blockly [2], [7], [12]) to examine the most applicable methodologies.

The paper is organized as follows: Section 2 presents the background and the
related work. Section 3 introduces our approach in order to give an understanding
of the main concepts. Section 4 presents some of the illustrating examples which
we elaborated, while concluding remarks are outlined in Section 5.

Classification-Based Systematic Approach 7

2 Related work

Various kinds of classifications have been created in the past to support the design
process of DSVLs. However, most of these approaches are quite old, there is no
relevant publication in the field for more than ten years. Due to the increasing use of
DSVLs, a wide range of new tools and methodologies have been introduced recently
based on completely new ideas. Our research aims to analyze and compare the
most relevant methodologies on a larger scope which can support the design of new
domain-specific visual languages with the new technologies. Different classifications
of DSVLs have been presented in the literature. Basically, these classifications serve
a completely different purpose than the one introduced in this research.

The principles in [9] are aimed at creating a hierarchy for visual languages which
is based on the constraint multiset grammar formalism. The approach also takes
into consideration the expressiveness and the cost of parsing for different classes.
This approach is mainly based on formalism, rather than on the pragmatic use of
DSVLs.

Myers [11] discusses programming systems and it is divided into categories us-
ing the orthogonal criteria of being visual programming or not, example-based
programming or not, and interpretive or compiled. Similarly, in another paper [5]
the authors presented a classification system, in which visual languages are catego-
rized based on the visual programming paradigm they express and different visual
representations.

There is another classification approach [3] which presents a suite of metamodels
as a basis for a classification of visual languages. This approach introduces general
metamodel patterns which can serve as a basis for different aspects that can facili-
tate the design of DSVLs. However, the approach does not take into consideration
the possible non-metamodeling concepts and the pragmatic use of DSVLs.

There is a wide range of existing professional general-purpose modeling lan-
guages in the field of software engineering. For example, UML [17] and SysML
[16] are intended to provide a standard way to visualize the design of different sys-
tems. Here, it is important to emphasize that our research focuses on creating new
domain-specific visual languages considering the requirements of a certain domain,
thus universal, standardized visual languages are not taken into account.

Our classification-based approach is not intended to be superior to other classifi-
cation-based methodologies, it serves supplementary purposes. Our approach is
mainly based on the nature of the graphical objects that compose the visual lan-
guage, the connection types among the graphical objects, the composition rules
and the visual representations. We also consider non-metamodeling approaches
and compare them to metamodeling methodologies. In this way, we can provide a
clear and precise understanding of the main aspects that can facilitate the design of
DSVLs. We introduce a step-by-step guide on how to use our systematic approach
in different design scenarios.

8 Sándor Bácsi and Gergely Mezei

3 Classification-Based Systematic Approach

In this section, we present the steps of our classification-based systematic approach.
Each subsection represents a step of our methodology. It is important to emphasize
that not all of the steps can be used directly in all possible design scenarios. Some
of the steps (Section 3.1, Section 3.2 and 3.3) are meant to decide between a couple
of mutually exclusive choices, while others (Section 3.4 and Section 3.5) are used
only as a supporting step helping to fine-tune previous decisions.

3.1 Step 1: Flow type

Based on the flow type, domain-specific visual languages can be grouped into three
subclasses: data flow languages, control flow languages and languages with no flow.

Data flow languages visualize the steps of data processing. Data flow concepts
are based on the idea of disconnecting computational actors into stages that can
execute concurrently. Data flow DSVLs visualize the processes that are undertaken,
the data produced and consumed by each process, and the accumulative graphical
objects needed to hold the data. It is possible to visualize what the system will
accomplish by the flow of data.

Control flow visual languages visualize the logic of computation by describing
its control flow. Control flow DSVLs graphically express the order in which in-
structions or statements are executed or evaluated. The graphical objects mainly
represent the control structures and conditional expressions of the language, thus
it is possible to visualize how the system will operate by the flow of control.

There are DSVLs which are neither data flow nor control flow because they
target a static domain problem. These languages are used mainly to represent the
structure of a system or a program, therefore no flow has to be described. A widely
used example of no-flow graphical modeling languages is the UML class diagram,
in which the structure of the system is described by the classes and the connections
among them.

3.2 Step 2: Relation type

Based on the relation type, domain-specific visual languages can be grouped into
two subclasses: containment-based and connection-based subclasses.

In the case of containment-based languages, entities are limited to embed in
each other to express sentences of the targeted domain, no other types of connec-
tions (e.g. association, or inheritance) are supported. As the customization of
embedding, graphical entities may be attached to other entities (e.g. represent-
ing methods and their parameters) and chained together (as in a call stack). To
support this behavior, a predefined set of containment rules or constraints have
to be specified to restrict the way of embedding, attaching and chaining. Blockly
and Scratch [13] are widely used examples of containment-based languages, both
support building blocks that can be connected like puzzle pieces in order to create
easy-to-understand visual sentences.

Classification-Based Systematic Approach 9

Connection-based languages consist of two different kinds of building elements:
entities and connections, i.e. nodes and edges. While data is usually expressed
by entities, the flow of the model and the relations among entities are defined by
connections. Connections may also have properties to ensure the customization of
the relations among entities. Moreover, connections may also interpret containment
as the container and the contained elements can be connected by a specialized
containment-typed edge. This means that this category is more general, however
its complexity is not needed in many practical cases.

3.3 Step 3: Methods of the abstract syntax definition

There are two key methods for the abstract syntax definition of a DSVL: metamo-
deling-, and non-metamodeling approaches.

Metamodeling methodologies provide methods for defining DSVLs based on the
abstract notion of visual entities and of relations among them. These frameworks
are capable of specifying the abstract syntax of a DSVL and expressing the addi-
tional semantics of existing information. The metamodel can expressively define
the structure, semantics, and constraints for a family of graphical models. On the
other hand, when a metamodel is instantiated, its elements become types, which
can be instantiated in the instance models. Hence, complex structures and relations
can be described in a flexible way by the usage of metamodeling concepts.

While metamodeling methodologies are based on various kinds of instantiation
techniques, non-metamodeling approaches provide a somewhat simpler, template-
based structure for creating visual entities. The main characteristic of non-metamo-
deling approaches is that they have a limited set of features which can be used on the
different abstraction levels, thus complex structures cannot be visualized flexibly
and expressively. One of the newest non-metamodeling approaches is Blockly. It
supports a large set of features for different domains. In Blockly, the graphical
objects are called blocks which can be customized as the basic building elements
of the language. However, due to the template-based and weakly typed structure,
complex type constraints cannot be applied.

3.4 Step 4: The way of the problem description

This is a fine-tuning step, since this step rather depends on the specific nature of
the problem domain and also on the needs and preferences of the users. Based
on the way of the problem description, domain-specific visual languages can be
grouped into two subclasses: imperative and declarative languages.

Declarative visual languages describe the logic of computation. For example,
SparqlBlocks [4] is a declarative DSVL developed in Blockly. Declarative languages
visualize sets of declarations or declarative statements. Each of these visual decla-
rations has a meaning depending on the targeted domain and may be understood
independently. A declarative style of visualization helps to understand the prob-
lems of the targeted domain and the approach that the system takes towards the

10 Sándor Bácsi and Gergely Mezei

solution of the problem, but is less expressive on the matter of mechanics which
describe the flow of the system.

Imperative visual languages consist of visual statements that change the state
of a program or a system. For example, Scratch is an imperative visual program-
ming language. The visualized statements express the way of execution of which
results in a decision being made as to which of two or more visualized paths to
follow. In imperative languages, the visual sentences can be created by sequences
of commands, each of which performs some action. These actions may or may not
have a dedicated meaning in the targeted problem domain.

3.5 Step 5: Visual representation

This is also a fine-tuning step, since it is related the concrete syntax of the lan-
guage and it strongly depends on the needs and preferences of the users. DSVLs
have a visual concrete syntax used for the representation of graphical elements and
connections. Based on the visual representation, there are two key design aspects:
iconic and diagrammatic visual representation.

In the case of iconic languages, entities are visualized by icons. For example,
Lego Wedo 2.0 Software [8] provides an iconic visual language for educational pur-
poses. The iconic language is a structured set of related icons. An icon can be
attached to or composed of other icons, thus expressing a more complex visual
concept.

Diagrammatic languages are mainly composed of elements with a pre-defined
symbolic representation of information. The building blocks of diagrammatic lan-
guages such as geometric shapes are often connected by lines, arrows, or other
visual links. Chart-like, schematic-like and graph-based visual languages are the
most widely used examples.

The most important difference between iconic and diagrammatic languages is
that icons are pre-defined and they have limited flexibility, while graphical building
blocks of diagrammatic languages can be calculated and customized freely.

4 Illustrating examples

We can investigate some advantages and disadvantages of different approaches by
solving various domain problems. In this section, we introduce two illustrating
examples to present different design scenarios built upon the classification-based
approach presented. Through the examples we only investigate the mutually exclu-
sive steps from Step 1 to Step 3 because they specify the structural characteristics
of the DSVL.

4.1 Logic gates

The first illustrating example demonstrates the domain of logic gates. In this
domain, logic gates can perform logical operations on one or more binary inputs

Classification-Based Systematic Approach 11

and produce a single binary output. For the sake of simplicity, we can use AND,
OR and NOT gates. There are visual entities which can only transmit a binary
signal, while other visual entities can only receive the signals, therefore it is possible
to create entities with a single input or output.

Step 1: We have to make our first design decision based upon the first step of
the systematic approach. It is certain that we have to design a control flow language,
because logic gates can be cascaded in the same way that Boolean functions can be
composed, allowing the construction and transmission of all of Boolean logic, and
therefore, all of the mathematics and algorithms that can be described.

Step 2: The next question is whether the DSVL fits the connection-based or
the containment-based approach. The answer is not that simple as it seems at first
glance. If we choose the connection-based option, logic gates can be represented as
nodes that can be connected with edges, creating thus a connection-based language.
Node-like model elements can be connected to each other, where we use ports
instead to define the interface of a node. For example, a logic gate OR can have
two input ports for the operands and a single output port, for its result. If we
choose the containment-based option, it is very difficult to express the connection
among logic gates, since no edges can be used. On the other hand, it can be hard
to customize the interface of logic gates. In conclusion, the DSVL fits better the
connection-based approach.

Step 3: In this step, we have to make our decision regarding the abstract-syntax
definition. It is clear that complex structures and relations can be described in a
flexible way by the usage of metamodeling concepts. Taken the previous structural
decisions into account, it can be more effective to use a metamodeling methodology.
We used VMTS to define the abstract syntax of the language and to set up custom
visualization for the graphical editing. To support this behavior, VMTS allows to
define the so-called meta ports on nodes. Figure 1 shows a half adder model as an
example in VMTS. Here, it is important to emphasize that due to the connection-
based nature the output result of the given node can be used for more inputs,
therefore particular nodes with the same logic do not have to be duplicated.

Alternative solution: For the sake of completeness, we tried a different design
scenario in our classification-based approach to prove the importance of the appro-
priate design decisions. Let us assume the following design scenario: Unlike the
previous design scenario, after Step 1, we can make a different decision. In Step 2
we choose the containment-based approach even if we are aware of the fact that this
is not the better option. In Step 3 we decide to use a non-metamodeling approach.
We used Blockly to create the containment-based variant of this example. While it
is easy to define the blocks themselves, it is very difficult to express the connection
among logic gates, since no edges can be used. Blocks have to be duplicated and
there can only be one output on a block - the left output. Figure 2 shows the
same model as in the connection-based example, but visualized in Blockly. In this
example, the AND logic has to be used twice from input A and B to be able to
implement the half adder logic. Even the input A and B visual entities have to be
duplicated.

As the illustrating example shows, dealing with multiple connections in a control

12 Sándor Bácsi and Gergely Mezei

Figure 1: Half adder example in VMTS

flow domain may have its drawbacks in the containment-based approach. It is more
expressive to use the principles of the connection-based approach to graphically
express the order in which instructions or statements are executed or evaluated.

Figure 2: Half adder example in Blockly

4.2 Departments of a company

In this illustrating example, we present a simple DSVL for modeling the depart-
ments of a company. Let us assume the following specification: A company has
different departments. Employees work in departments. Employees may have a
principal and every department has exactly one director.

Step 1: At first, we have to make our first design decisions to identify the
flow type of the domain. It is certain that we have to design a no-flow language,
because no flow has to be described, only the static relations among entities are to
be modeled.

Classification-Based Systematic Approach 13

Step 2: The next question is whether the DSVL will be connection-based or
containment-based. If we choose the connection-based option we can definitely
visualize the employee - principal relationship with some kind of visual links. On
the other hand, it can be difficult to visualize the employee - department relation,
because after a certain amount of employees the visual entities can be hard or
impossible to grasp in one glance. In conclusion, besides the connection-based
approach it would be advantageous to use additional containment-based nature for
the employee - department relation.

Step 3: It can be easier to express the aforementioned structural characteristics
by using a metamodeling methodology. We used EMF to create the connection-
based variant of the DSVL. EMF provides effective features to express the basic
relations among entities in order to define the abstract syntax of the DSVL. Based
on EMF, Sirius [14] provides useful features for the customization of concrete syn-
tax. Figure 3 shows a visualized model as an example. In this simple demonstration,

Figure 3: Departments example in Sirius

we used a rectangular box notation for the departments. Arrow notations are used
to express the employee-principal relationship and a circle notation is used to visu-
alize the head of the given department. Beside the connection-based patterns, this
example has containment-based nature since employee notations can be embedded
in departments. Here, it is worth to emphasize that due to the connection-based
structure no entity has to be duplicated visually, because they can be connected
with the arrow notations to express the employee-principal relationship.

Alternative solution: As the second solution, we elaborated a different design
scenario. After Step 1, we can make a different decision. In Step 2 we choose the
pure containment-based approach even if we know that it will be hard to express
every relation by using just only the principles of the containment-based approach.
In Step 3 we decide to use a non-metamodeling approach, Blockly to create the
pure containment-based variant of this illustrating example. We used a container
block to express the department relationship. The head of the department can be

14 Sándor Bácsi and Gergely Mezei

connected to the department block. Person-principal blocks can be embedded into
the department block to express which employees work in the given department.
Person-principal blocks can express the hierarchical relationship among employees
and principals, however it is more inconvenient and less expressive than in the
connection-based approach because blocks have to be duplicated. Figure 4 shows
the same model as in the previous example visualized by the principles of the
containment-based approach.

In general, for a no-flow domain it is not recommended to use exclusively the
concepts of the containment-based approach. On the other hand, in some cases it
can be advantageous to let embedding of visual entities even for connection-based
languages.

Figure 4: Departments example in Blockly

5 Conclusions

In this paper, we presented several aspects of the classification-based systematic
approach for domain-specific visual languages. We believe that the approach can
be used as a guide while designing DSVLs. With the help of these guidelines it is
now easier to analyze the characteristics of the language and to associate it to an
appropriate solution.

We also analyzed the features of Eclipse Modeling Framework, VMTS and
Blockly based on different illustrating examples that we created for our classifi-
cation methodology. We realized that due to the limitations of Blockly, many
complex problems cannot be described expressively because aggregations, refer-
ences and composition rules are missing from its developer framework. Despite the
limitations of Blockly, it provides a flexible and easy way to learn to design DSVLs
based on containment-based aspects. Unlike Blockly, both EMF and VMTS provide
a large feature set for the abstract syntax definition, but they are not as effective
and intuitive as Blockly in the definition of containment-based languages.

Classification-Based Systematic Approach 15

Further investigations are necessary to validate the kinds of conclusions that
can be drawn from this paper. In the future, we aim to create a framework to sup-
port the design of visual-domain specific languages based on a questionnaire built
upon the methodology presented. It would be beneficial to capture a description
of a DSVL from an end-user perspective and give recommendation based on the
specification and the specific needs of the targeted domain. The framework should
also support an intuitively usable way of designing DSVLs even for complex lan-
guage constructs and it could assist to align the design of DSVLs to best practices
and also benchmark and analyze different design processes. Further studies should
investigate how to consider the extensions of existing languages (e.g UML profiles)
in the context of our methodology. Therefore, we are also working on new illus-
trative examples and analyzing other existing approaches to create a more detailed
classification-based systematic approach.

References

[1] Beydeda, Sami, Book, Matthias, Gruhn, Volker, et al. Model-driven software
development, volume 15. Springer, 2005.

[2] Blockly website. https://developers.google.com/blockly/. Accessed: 2018-08-
22.

[3] Bottoni, P. and Grau, A. A suite of metamodels as a basis for a classification
of visual languages. In 2004 IEEE Symposium on Visual Languages - Human
Centric Computing, pages 83–90, Sept 2004. DOI: 10.1109/VLHCC.2004.5.

[4] Bottoni, Paolo and Ceriani, Miguel. Sparql playground: A block programming
tool to experiment with sparql. In VOILA@ISWC, 2015.

[5] Burnett, Margaret M. and Baker, Marla J. A classification system for visual
programming languages. J. Vis. Lang. Comput., 5:287–300, 1994.

[6] Emf website. http://www.eclipse.org/modeling/emf/. Accessed: 2018-08-25.

[7] Fraser, Neil. Ten things we’ve learned from blockly. In Blocks and Beyond
Workshop (Blocks and Beyond), 2015 IEEE, pages 49–50. IEEE, 2015.

[8] Lego wedo 2.0. https://education.lego.com/en-us/downloads/wedo-
2/software. Accessed: 2018-08-21.

[9] Marriott, Kim and Meyer, Bernd. On the classification of visual languages by
grammar hierarchies. Journal of Visual Languages and Computing, pages 375
– 402, 1997.

[10] Mernik, Marjan, Heering, Jan, and Sloane, Anthony M. When and how to
develop domain-specific languages. ACM Comput. Surv., 37(4):316–344, De-
cember 2005. DOI: 10.1145/1118890.1118892.

16 Sándor Bácsi and Gergely Mezei

[11] Myers, Brad A. Taxonomies of visual programming and program vi-
sualization. J. Vis. Lang. Comput., 1(1):97–123, March 1990. DOI:
10.1016/S1045-926X(05)80036-9.

[12] Pasternak, Erik, Fenichel, Rachel, and Marshall, Andrew N. Tips for creating
a block language with blockly. In Blocks and Beyond Workshop (B&B), 2017
IEEE, pages 21–24. IEEE, 2017.

[13] Scratch. https://scratch.mit.edu/. Accessed: 2018-08-25.

[14] Sirius website. https://www.eclipse.org/sirius/. Accessed: 2018-08-20.

[15] Sprinkle, Jonathan and Karsai, Gabor. A domain-specific visual language for
domain model evolution. Journal of Visual Languages & Computing, 15(3-
4):291–307, 2004.

[16] Sysml. https://sysml.org/. Accessed: 2018-08-29.

[17] Uml. http://www.uml.org/. Accessed: 2018-08-29.

[18] Vmts website. www.aut.bme.hu/Pages/Research/VMTS/Introduction. Ac-
cessed: 2018-08-21.

