
INSTITUTE FOR PARALLEL AND DISTRIBUTED SYSTEMS

SIMULATION TECHNOLOGY DEGREE COURSE

Master’s Thesis
Submitted to the University of Stuttgart

Efficient Algorithms for
Geodesic Shooting in Diffeomorphic

Image Registration

Examiner

Prof. Dr. Miriam MEHL

Institute for Parallel and
Distributed Systems

Supervisor

Dr. Ing. Andreas MANG

Department of Mathematics,
University of Houston, USA

Submitted by

Author Felix HUBER

SimTech-Nr. 58
Submission date June 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/225601084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Diffeomorphic image registration is a common problem in medical image analysis. Here,
one searches for a diffeomorphic deformation that maps one image (the moving or
template image) onto another image (the fixed or reference image). We can formulate
the search for such a map as a PDE constrained optimization problem. These types
of problems are computationally expensive. This gives rise to the need for efficient
algorithms.

After introducing the PDE constrained optimization problem, we derive the first and
second order optimality conditions. We discretize the problem using a pseudo-spectral
discretization in space and consider Heun’s method and the semi-Lagrangian method
for the time integration of the PDEs that appear in the optimality system. To solve
this optimization problem, we consider an L-BFGS and an inexact Gauss-Newton-Krylov
method. To reduce the cost of solving the linear system that arises in Newton-type
methods, we investigate different preconditioners. They exploit the structure of the
Hessian, and use algorithms to efficiently compute an approximation to its inverse.
Further, we build the preconditioners on a coarse grid to further reduce computational
costs.

The different methods are evaluated for two-dimensional image data (real and synthetic).
We study the spectrum of the different building blocks that appear in the Hessian.
It is demonstrated that low rank preconditioners are able to significantly reduce the
number of iterations needed to solve the linear system in Newton-type optimizers. We
then compare different optimization methods based on their overall performance. This
includes the accuracy and time-to-solution. L-BFGS turns out to be the best method, in
terms of runtime, if we solve solving for large gradient tolerances. If we are interested
in computing accurate solutions with a small gradient norm, an inexact Gauss-Newton-
Krylov optimizer with the regularization term as preconditioner performs best.

3

Acknowledgments

This work was supported by a fellowship within the FITweltweit program of the German
Academic Exchange Service (DAAD). Without this scholarship this thesis would not have
been possible.

5

Contents

1 Image Registration 11
1.1 Overview . 11
1.2 Own Contribution and Thesis Outline . 12
1.3 Related Work . 13

2 Geodesic Shooting 15

3 Optimization 19
3.1 Iterative Optimization Methods . 19

3.1.1 Gradient Descent . 19
3.1.2 Newton’s Method . 20
3.1.3 Gauss-Newton . 20
3.1.4 BFGS and L-BFGS . 21

3.2 Optimize-then-Discretize . 21
3.3 Gradient of the Optimization Functional 21

3.3.1 Vector Valued Momentum . 22
3.3.2 Scalar Valued Momentum . 23

3.4 Hessian of the Optimization Functional . 24
3.4.1 Vector Valued Momentum . 25
3.4.2 Scalar Valued Momentum . 26

3.5 Summary . 26

4 Discretization 29
4.1 Spatial Discretization . 29

4.1.1 Discretization of the Optimization Functional 29
4.1.2 Grid Transfer Operations – Prolongation and Restriction 30

4.2 Temporal Discretization . 30
4.2.1 Heun’s Method . 31
4.2.2 Semi-Lagrangian Method . 31

4.3 Krylov Subspace Solver . 34
4.4 Summary . 34

5 Preconditioners 35
5.1 Inverse Regularization Term . 35
5.2 Coarse Grid Preconditioner . 36

7

Contents

5.3 Low Rank Approximation . 37
5.4 Low Rank Approximation on Coarse Grid 38
5.5 Randomized Low Rank Approximation . 38
5.6 Summary . 39

6 Numerical Results 41
6.1 Performance Metrics . 41

6.1.1 Optimization Methods . 41
6.1.2 Preconditioners . 43

6.2 General Convergence . 44
6.3 L-BFGS Convergence . 45
6.4 Spectral Properties of the Hessian and Low Rank Approximation 46

6.4.1 Decay of Eigenvalues . 47
Coarse Grid . 48
Convergence at the Solution and Expansion Length 49

6.4.2 Resolution Independence . 52
6.5 Preconditioner for Newton’s Method . 52
6.6 Comparison of L-BFGS and Newton Methods 52
6.7 Using the Semi-Lagrangian-Method . 54
6.8 Summary . 55

7 Outlook 57

Bibliography 59

8

Nomenclature

advm (∇v)m− (∇m)v

ad†v adjoint operator of adv. ad†vm= (∇v)Tm+ (∇m)v+vdiv(m)

L† adjoint of operator L

β regularization parameter

diagi=1,...,n(ai) diagonal matrix A ∈ Rn×n with Ai,i = ai

divf =∇·f divergence of a vector valued function, only in spatial dimensions

E objective functional

Eh discretized objective functional

Ff Fourier transformation of f

gradf =∇f gradient of a function, only in spatial dimensions

H Hessian

Hc Hessian on a coarser discretization

Hmis mismatch term of the Hessian H = βHreg +Hmis

Hreg regularization term of the Hessian H = βHreg +Hmis

ht time step size

hx discretization width in each spatial dimension

I identity map I(x) := x or matrix Ix := x

L−1 inverse of operator L

K inverse of L: v =Km

L regularization operator or matrix in the discrete setting

9

Contents

M−1
lr preconditioner using a low-rank approxiation of the mismatch term

M−1
lr,c Mlr preconditioner build on a coarser discretization

Nx number of nodes in each spacial dimension

AT transpose of matrix A

BFGS Broyden–Fletcher–Goldfarb–Shanno algorithm

CFL Courant-Friedrichs-Lewy condition

CG conjugate gradient method

FFT Fast-Fourier-Transform

FN (full) Newton’s method

GD gradient descent

GMRES generalized minimal residual method

GN Gauss-Newton

L-BFGS Limited memory BFGS algorithm

LDDMM large deformation diffeomorphic metric mapping

PCG preconditioned conjugate gradient method

PDE partial differential equation

10

1 Image Registration

Image registration is an inverse problem. It involves the process of finding a map φ that
describes how a template image I0 can be deformed to resemble a reference image I1
in some sense [42]. This problem often arises in medical image analysis. Common
examples include the registration of magnetic resonance imaging (MRI) scans onto a
standardized template, normalizing time series of images, the reconstruction of a 3D
model from multiple MRI scan slices or combining images from multiple measuring
techniques [41, 42, 20, 49].

1.1 Overview

Given two images I0 : Ω→R and I1 : Ω→R we try to find a function φ : Ω→Ω that maps
the first image onto the second so that I0 ◦φ−1 ≈ I1. The image domain Ω is a compact
subset of Rd for d ∈ {2,3}. Furthermore, we want to restrict admissible functions for φ
to be diffeomorphisms. Using diffeomorphisms ensures that structures do not vanish,
no folding is introduced and that neighborhood structures are preserved. In general,
this problem is ill-posed [20]. The solution is not guaranteed to be unique as different
mappings can yield the same or very similar results. Moreover, small perturbations in the
images may lead to vastly different solutions. A strategy to overcome ill-posedness is to
introduce a regularization model [19]. Consequently, the optimization problem consists
of two term: a mismatch term and a regularizer. The mismatch term measures the fidelity
of the deformed template image I0 ◦φ−1 and the reference image I1. The regularization
term favors diffeomorphisms that are close to the identity in a predefined the metric [39].

It is not immediately clear, how one can minimize over the group of diffeomorphisms.
One option is to introduce an artificial time variable t ∈ [0,1] and use a time dependent
velocity field v and obtain the associated diffeomorphism φ : Ω× [0,1]→Ω as the solution
of the differential equation ∂tφ(x,t) = v(φ(x,t), t) where φ(x,0) = x [52, 53, 17, 39, 56].
Under certain smoothness requirements on v it follows that φ is a diffeomorphism [17, 46]
and therefore admissible for the matching problem (I0 ◦φ−1)(· ,1)≈ I1(·). This leaves us
with a well posed problem [17].

Using v as a control variable, the problem can be reformulated so that we search for a
smooth time dependent velocity field. Furthermore, it can be shown that the minimizing
velocity field satisfies an Euler-Lagrange-Equation, which defines the evolution of v over

11

1 Image Registration

time [39, 40]. This allows us to reduce the optimization space to the initial conditions of
the Euler-Lagrange-Equation. In analogy to shooting a projectile into the air, where the
trajectory is defined by the initial angle, velocity and physical laws, this method leads
to a so called geodesic shooting method: The evolution of the velocity (and with it the
diffeomorphism) is described by an initial velocity and the Euler-Lagrange-Equation.

Given the minimization functional we can now state an optimization problem that
is constrained by the Euler-Lagrange-Equation. This problem can be solved using a
gradient descent method or Newton’s method. While Newton’s methods should give
better convergence rates, it also requires matrix-vector-products with the inverse of the
Hessian of the minimization functional H−1. Direct methods to invert H are in general
not applicable as forming and and storing H is too expensive and not possible. Hence,
we will consider iterative methods instead. To improve the convergence rate of the linear
solver and reduce the computational effort needed in each Newton step, we are interested
in efficient preconditioners.

1.2 Own Contribution and Thesis Outline

This work is based on the OCREG code [32, 33, 34] for diffeomorphic image registration.
In this work the code has been extended by the geodesic shooting formulation for
scalar and vector valued momentums, the corresponding gradients and Hessians for the
optimization, a L-BFGS optimizer and different preconditioners for Newton’s method.

Starting with chapter 2 we show how the PDE constrained minimization problem for
geodesic shooting can be derived from a mismatch term and the requirement that the
final mapping φ is a diffeomorphism.

In chapter 3 we reformulate the constrained minimization problem as an unconstrained
minimization problem. We shortly discuss different optimization methods, which can be
used and derive the necessary gradient and Hessian.

These expressions are then discretized in chapter 4. We discuss the spatial and temporal
discretization. We also show how the PDEs arising in the gradient and Hessian expressions
can be solved using Heun’s method or a semi-Lagrangian scheme.

In chapter 5 we introduce a new preconditioner which can be used in the linear solver
needed in Newton-type optimizers. This preconditioner is based on a low rank approxi-
mation of the Hessian and only requires matrix-vector-products during its setup. Hence, it
is matrix free and does not require knowledge of individual matrix entries. Furthermore,
it can be build on a coarser discretization.

We evaluate the efficiency of the preconditioner in chapter 6. We evaluate the precon-
ditioner on its own based on its ability to reduce the costs of solving the linear Hessian
system and based on its efficiency during the entire registration process. Furthermore,
we compare the results of the Newton optimizers against L-BFGS optimizers.

12

1.3 Related Work

1.3 Related Work

The image registration problem is often solved by minimizing a functional

E = Ereg +Emis

which consists of a mismatch termEmis and a regularization termEreg [42]. The mismatch
term defines how we measure the mismatch between two images. The regularization term
usually enforces some type of smoothness on the solution to ensure well-posedness of
the minimization problem [20]. Because a specific regularization term also implies what
kind of solution is expected, a vast variety of different regularizers have been proposed
for different problems [20, 42, 46].

In this work, we want to focus on registration problems with large deformations. There-
fore, we use large deformation diffeomorphic metric mapping (LDDMM) methods [6].
To allow for large deformations, an artificial time variable t ∈ [0,1] is introduced. The
transformation of the image happens gradually over time. Early work goes back to [12],
which models the transformation as an evolving fluid. Furthermore, we are interested
in diffeomorphic maps, which ensures that the computed map φ is a bijections with
a smooth inverse [3]. Diffeomorphic maps can be obtained by inverting for a time
dependent velocity field subject to certain smoothness requirements [17] which leads to
a PDE constrained optimization problem [6]. The minimization problem can be seen as a
shortest path problem or path of minimal energy problem in the space of diffeomorphisms
and defines a metric in this space [39, 6].

Geodesic shooting methods, such as [40, 54], only invert for an initial value instead
of solving for a time dependent velocity field. The initial value combined with an
additional PDE constraint on the minimization problem fully describe the evolution of
the diffeomorphism over time.

Optimizations methods for the discretized LDDMM problem often involve first order
methods such as the gradient descent method. LDDMM was initially presented in [6] to
invert for a velocity field and is based on the theoretical results described in [52, 53].
Different gradient descent method for a shooting formulation has been presented in
[54, 57]. Second order methods have been explored in [5, 24, 23, 32, 33, 35, 38, 34, 36],
among others. [32] uses a preconditioned Newton-Krylov method to invert for a time
dependent velocity field. [55] uses the Hessian matrix with respect to a vector valued
initial momentum to estimate uncertainties in regularization parameters.

Because second order methods usually involve the solutions of a linear system, pre-
conditioners can greatly improve the efficiency of such methods. Common choices for
preconditioners include the inverse regularization operator [45, 32, 2, 37]. In [32]
and [36] a two level preconditioner is proposed to invert for a velocity field. Further
preconditioners have been discussed in [7, 48].

13

2 Geodesic Shooting

This introduction is mostly based on the work of [39, 40, 59], which provide a good
overview of this topic. Another good introduction can be found in [58]. As mentioned
before the regularization term favors diffeomorphisms close to the identity. This is
done by penalizing the geodesic length of the path between the identity and the final
diffeomorphism. Because the gradual evolution of the diffeomorphism is described by the
velocity field v, the geodesic length is measured by integrating the velocity in a chosen
norm ‖·‖V over the artificial time t ∈ [0,1] :

Ereg(φ) :=
∫ 1

0
‖v(· , t)‖2V dt.

The norm of the velocity field is usually chosen to be a norm of a Sobolev space and
defined as

‖v‖2V := 〈v,Lv〉L2

with linear differential operator L. The differential operator has to be chosen so that
the velocities are sufficiently smooth and thus give rise to a diffeomorphism [17, 46].
The required smoothness depends on the number of dimensions of the image domain.
A common choice is L = (I−∆)γ with γ > 0 [39, 55, 46]. Using the second Sobolev
embedding theorem one can show that for two dimensional images γ > 2 is sufficient [46].

The shortest geodesic path between two diffeomorphisms satisfies the so-called EPDiff
equation

0 = ∂tm+ ad†vm, (2.1)

which is the Euler-Lagrange-equation for the corresponding variational problem for the
momentum m= Lv. Solutions to this PDE are called geodesics.

It can be shown that the minimizer to the registration problem

v∗ = argmin
v

(1
2β
∫ 1

0
‖v(· , t)‖2V dt+Emis(I1, I(1))

)
subject to

0 = ∂tI+v ·∇I

15

2 Geodesic Shooting

I0 I(0.25) I(0.5) I(0.75) I(1.0) I1

v0v0 v(0.25)v(0.25) v(0.5)v(0.5) v(0.75)v(0.75) v(1.0)v(1.0)

Figure 2.1: Evolution of the image (top) and the velocity field (bottom) over time.

is a geodesic and satisfies (2.1). This motivates the use of shooting methods. Because
an initial velocity together with the EPDiff equation fully describes a geodesic, the
minimization can be stated in terms of an initial velocity v0 and the EPdiff (2.1). The
minimization problem then reads

v∗0 = argmin
v0

(1
2β
∫ 1

0
‖v(· , t)‖2V dt+Emis(I1, I(1))

)
subject to

0 = ∂tI+v ·∇I I(0) = I0

0 = ∂tm+ ad†vm m(0) = L−1v0

0 =m−Lv.

The second constraint is the EPDiff equation and the third constraint is the definition
of the momentum. Together with v = Km, where K := L−1, the EPDiff describes the
evolution of the velocity along the geodesic path. Figure 2.1 shows an example for the
evolution of the velocity field along a geodesic.

Because ‖v (· , t)‖V is constant along a geodesic [54], the minimization functional can be
simplified into

v∗0 = argmin
v0

(1
2β ‖v0‖2V +Emis(I1, I(1))

)
.

For the sake of simplicity, we will use a L2-mismatch term 1
2 ‖I(1)− I1‖2L2 throughout this

work. Reformulating the expression in terms of an initial momentum m0 := Lv0 leads to
a constrained minimization problem.

Problem 2.1. Geodesic Shooting for Vector-Valued Momentum

m∗0 = argmin
m0

E(m0) (2.2)

16

with

E(m0) = 1
2β 〈m0,Km0〉L2 + 1

2 ‖I(1)− I1‖2L2 (2.3)

subject to

0 = ∂tI+v ·∇I I(0) = I0 (2.4)

0 = ∂tm+ ad†vm m(0) =m0

0 =m−Lv.

Furthermore, it is shown in [6, Th. 2.1] that a minimizing m(t) is parallel to the image
gradient ∇I(t). Therefore, the minimization problem can also be stated in terms of a
scalar valued momentum p [54].

Problem 2.2. Geodesic Shooting for Scalar-Valued Momentum

p∗0 = argmin
p0

E(p0) (2.5)

with

E(p0) = 1
2β 〈p0∇I0,K(p0∇I0)〉L2 + 1

2 ‖I(1)− I1‖2L2 (2.6)

subject to

0 = ∂tI+v ·∇I I(0) = I0 (2.7)

0 = ∂tp+∇· (pv) p(0) = p0

0 = Lv−p∇I.

17

3 Optimization

In the previous chapter we derived the minimization problem. As a closed form solution
to the problem is hard to find, we use iterative methods for minimization.

These methods depend on the gradient and the Hessian of the minimization problem with
respect to the initial momentum. After giving a brief summary of different optimization
methods, the following sections derive expressions for the gradient and the Hessian for
both, a scalar and a vector valued initial momentum.

3.1 Iterative Optimization Methods

In the following sections we will see that the minimization problems 2.1 and 2.2 can
be rewritten as an unconstrained minimization problem. Therefore, we briefly discuss
different optimization methods for unconstrained optimization and how we use them in
the optimization algorithm. For a more detailed explanation we refer to [44].

In the following we assume a minimization problem for f(x) with a sufficiently smooth
function f : Rn→ R.

3.1.1 Gradient Descent

Gradient descent is a simple first order method, which only depends on the gradient of
the minimization problem. In each iteration the current iterate xi is updated into the
direction of the negative gradient:

xi+1 = xi−αi∇f(xi),

with a step size αi > 0 [44]. Even though the negative gradient is a descend direction,
the step length is generally not known. Therefore, an additional line search is performed,
which searches for a good αi using additional function (and gradient) evaluations. As a
simple line search that ensures that each iteration reduces the minimization functional f ,
we use Armijo backtracking [44, Ch. 3].

19

3 Optimization

3.1.2 Newton’s Method

Newton’s method is a second order method, which also requires the Hessian matrix H.
Based on a second order approximation, the Newton update reads [44]

xi+1 = xi−αiH−1∇f(xi).

In each step a linear system has to be solved. We use a preconditioned conjugate gradient
method method (PCG) as discussed in section 4.3. Care has to be taken, as the direction
−H−1∇f(xi) is not guaranteed to be a descend direction.

When the current xi is still far from the solution, it is often not necessary to solve the linear
system to a high accuracy. This leads to inexact Newton Methods, where the tolerance for
the residual norm decreases during the optimization process [44, Ch. 11].

In our experiments, we use an inexact Newton method with a quadratic forcing se-
quence [18]

toli ≤min
(

1
2 ,
‖∇f(xi)‖2
‖∇f(x0)‖2

)
for the tolerance of the residual norm toli in the linear solver.

To avoid problems with negative definite (negative curvature) or indefinite Hessians, we
use an inexact Gauss-Newton method in most of our experiments.

3.1.3 Gauss-Newton

The Gauss-Newton method is a quasi-Newton method for minimization functionals of the
form f(m0) = 1/2

∑
i r

2
i (m0) [44]. The Hessian of such a functional reads

Hf =
∑
i

(
∇ri · (∇ri)T + riHri

)
,

where Hr1 is the Hessian matrix of ri. The Gauss-Newton approximation drops the
second term containing the second order derivatives. In contrast to Newtons method,
it can be shown that under certain constraints, the Gauss-Newton update is a descend
direction [44].

To drop the second Hessian term in our formulation, we drop all term that multiply with
the residual ri. As ζ (1) = I1− I(1) is the residual, this corresponds to setting ζ = 0 in the
incremental adjoint equations which we derive in section 3.4. This causes the Hessian
approximation to be positive semi-definite.

In our experiments we use an inexact Gauss-Newton method, where the tolerance for the
residual norm toli follows a super-linear forcing sequence

toli ≤min
(

1
2 ,
√
‖∇f(xi)‖2
‖∇f(x0)‖2

)
.

20

3.2 Optimize-then-Discretize

3.1.4 BFGS and L-BFGS

BFGS and the memory limited version L-BFGS [43] quasi-Newton methods and perform
a Newton update using approximations to H or H−1. Therefore, better convergence than
gradient descent can be expected [44]. Compared to Newton’s method, the approximate
Hessian is much cheaper to compute, as it only needs gradient evaluations from previous
iterations.

We use the two-loop algorithm [43, 44, Alg. 7.4] to approximate H−1 together with
Armijo backtracking as a line search method. To ensure the positive definiteness of the
approximation we skip updates that do not satisfy the curvature condition. During our
experiments, no updates had to be skipped.

3.2 Optimize-then-Discretize

To solve the optimization problem we follow a optimize-then-discretize approach. This
means that we use the continuous formulation of the optimization functional and first
derive the corresponding gradient and Hessian in a continuous setting. We then discretize
each term separately. This is in contrast to an discretize-then-optimize approach where
the optimization functional is discretized first, and the gradient and Hessian are derived
from the discretized minimization functional. A more detailed discussion can be found in
[21, 26]. An optimize-then-discretize implementations of LDDMM can be found in [32].
A discretize-then-optimize implementations is described in [38].

3.3 Gradient of the Optimization Functional

The constrained minimization problem for the geodesic shooting formulation (2.2) and
(2.5) represents a optimal control problem [26]. In such a setting one searches for an
optimal control variable that minimizes a functional under the constraints of dynamical
systems – the so called state equations. In the geodesic shooting problem the state
equations define how the diffeomorphism evolves over time (by giving an evolution of m
or p and therefore v) and how the diffeomorphism acts on the initial image (by stating
the evolution of I).

The PDE constraints can be solved forward in time, which allows us to evaluate the
objective functional for different initial momentums. Therefore, the most simple way to
compute a gradient of the optimization problem is to use finite differences by evaluating
the functional for different initial momentums. However, this implies that the constraints
have to be solved very often if the initial momentum contains a large number of unknowns.
This is usually the case for image data. A computationally cheaper approach is the so

21

3 Optimization

called adjoint method [9, 26, Ch. 1.6]. It often allows to compute a gradient at much
lower cost, independent of the number of unknowns.

For the adjoint method we first turn the PDE constrained problem into an unconstrained
problem, using the method of Lagrangian multipliers [26, Ch. 1.6]. Based on the resulting
Lagrangian we can compute the gradient with respect to the initial momentum. For this,
we first have to solve the so-called adjoint equation. This is often of similar cost to solving
the state equations. The adjoint equations usually depend on the solution of the state
equation. Each gradient evaluation includes solving the state and adjoint equations. For
more details we refer to [26].

The resulting gradient can then be used in optimization methods like gradient descent.

3.3.1 Vector Valued Momentum

We now derive the gradient for the vector valued momentum following the previous
outline. Based on the constrained minimization problem (2.2) the Lagrangian L reads

L(m0, I,m,v,ζ,µ,ν) := 1
2β 〈m0,Km0〉L2 + 1

2 ‖I(1)− I1‖2L2 (3.1)

+
∫ 1

0
〈ζ,∂tI+v ·∇I〉L2 dt+ 〈ζ(0), I(0)− I0〉L2

+
∫ 1

0

〈
µ,∂tm+ ad†vm

〉
L2

dt+ 〈µ(0),m(0)−m0〉L2

+
∫ 1

0
〈ν,m−Lv〉L2 dt,

where ζ, µ and ν are the Lagrangian multipliers for the state variables I, m and v,
respectively. In this setting the Lagrangian multipliers are also called dual or adjoint
variables.

The next step is to compute the gradient of the Lagrangian, because a minimizer of
the original problem is also minimizes the Lagrangian. The gradient can be found by
computing directional derivatives for each control, state and adjoint variable. Taking the
derivative of the Lagrangian with respect to m0 in the direction m̃0 gives

∂m0L[m̃0] = 〈βKm0−µ(0), m̃0〉L2 ,

where we can read off the gradient

∇m0L= βKm0−µ(0). (3.2)

For a given m0, Km0 can be easily computed. The expensive part is finding µ at t= 0. To
evaluate µ(0) we have to solve the adjoint equation. The variations with respecto to the

22

3.3 Gradient of the Optimization Functional

state variables are

∂IL[Ĩ] =
∫ 1

0
〈−∂tζ−∇· (ζv) , ṽ〉L2 dt+

〈
ζ(1) + I(1)− I1, Ĩ(1)

〉
L2

∂mL[m̃] =
∫ 1

0
〈−∂tµ+ adv µ+ν, ṽ〉L2 dt+ 〈µ(1), m̃(1)〉L2

∂vL[ṽ] =
∫ 1

0

〈
−Lν−ad†µm+ ζ∇I, ṽ

〉
L2

dt

This leads to the adjoint equations in strong form

0 =−∂tζ−∇· (ζv) (3.3)

0 =−∂tµ+ adv µ+ν

0 =−Lν−ad†µm+ ζ∇I

with final conditions

0 = ζ(1) + I(1)− I1

0 = µ(1).

The adjoint equations depend on I, m and v, which are obtained by solving the state
equations for the current m0.

Evaluating the gradient of the minimization functional consists of three steps:

1. The state equations (2.4) have to be solved forward in time.

2. The adjoint equations (3.3) have to be solved backward in time.

3. Given µ at t= 0, we can evaluate the gradient (3.2).

3.3.2 Scalar Valued Momentum

The gradient for the scalar valued momentum formulation can be derived similar to
the vector valued momentum: Based on the optimization problem (2.5) we define the
Lagrangian as

L(p0, I,p,v,ζ,%,ν) := 1
2β 〈p0∇I0,K(p0∇I0)〉L2 + 1

2 ‖I(1)− I1‖2L2 (3.4)

+
∫ 1

0
〈ζ,∂tI+v ·∇I〉L2 dt+ 〈ζ,I(0)− I0〉L2

+
∫ 1

0
〈%,∂tp+∇· (pv)〉L2 dt+ 〈%,p(0)−p0〉L2

+
∫ 1

0
〈ν,Lv−p∇I〉L2 dt,

23

3 Optimization

where ζ, % and ν are the Lagrangian multipliers for I, p and v. As before, we refer to the
Lagrangian multipliers as adjoint variables in this setting. Computing the first variation
of the Lagrangian gives the adjoint equations

0 =−∂tζ+∇· (pν−vζ)
0 =−∂t%−v ·∇%−ν ·∇I
0 = Lν− (p∇%− ζ∇I)

with the final conditions

0 = ζ(1) + I(1)− I1

0 = %(1).

The equation for the gradient with respect to the initial momentum reads

∇p0L= β∇I0 ·K(p0∇I0)−%(0). (3.5)

3.4 Hessian of the Optimization Functional

For higher order optimization methods such as Newton’s method we need knowledge of
the Hessian of the optimization problem. Building a full Hessian or its inverse is generally
not feasible. If we use an iterative solver for the linear system that appears in Newton’s
method, all we require is an expression for the matrix-vector-products with the Hessian is
sufficient.

In the following we derive this expression for the matrix-vector-products. This expression
can then be used in combination with a Krylov subspace method [47]. We arrive at a
so called Newton-Krylov optimization algorithm [28] for the geodesic shooting problem.
In general, we assume sufficient smoothness of the optimization problem, so that the
Hessian exists and is symmetric.

24

3.4 Hessian of the Optimization Functional

3.4.1 Vector Valued Momentum

Similar to the procedure for the gradient evaluation in section 3.3 we start with the
Lagrangian

L= 〈βKm0−µ(0), µ̃(0)〉L2

+
∫ 1

0

〈
∂tI+v ·∇I, ζ̃

〉
L2

dt+
〈
I (0)− I0, ζ̃ (0)

〉
L2

+
∫ 1

0

〈
∂tm+ ad†vm,µ̃

〉
L2

dt+ 〈m(0)−m0, µ̃(0)〉L2

+
∫ 1

0
〈m−Lv, ν̃〉L2 dt

+
∫ 1

0
〈−∂tµ+ adv µ+ν,m̃〉L2 dt+ 〈µ(1) , m̃(0)〉L2

+
∫ 1

0

〈
−∂tζ−∇· (ζv) , Ĩ

〉
L2

dt+
〈
ζ (1) + I (1)− I1, Ĩ (1)

〉
L2

+
∫ 1

0

〈
−Lν−ad†µm+ ζ∇I, ṽ

〉
L2

dt.

It contains the gradient, the state equations, the adjoint equations and the corresponding
boundary conditions in their weak form. Computing the directional derivatives with
respect to I, m, v, ζ, µ and ν gives a new set of equations. Based on the initial and final
conditions these equations can be split in the incremental state equations

0 = ∂tĨ+v ·∇Ĩ+ ṽ ·∇I 0 = Ĩ(0)
0 = ∂tm̃+ ad†v m̃+ ad†ṽm 0 = m̃(0)− m̃0

0 = m̃−Lṽ

and the incremental adjoint equations

0 =−∂tζ̃−∇·
(
ζ̃v+ ζṽ

)
0 = ζ̃(1) + Ĩ(1)

0 =−∂µ̃+ adv µ̃+ adṽ µ+ ν̃ 0 = µ̃(1)
0 =−Lν̃+ ζ∇Ĩ+ ζ̃∇I−ad†µ m̃−ad†µ̃m.

The matrix-vector-product of m̃0 with the Hessian H then reads

Hm̃0 =Km̃0− µ̃(0).

The Hessian matrix-vector-product consists of a regularization term Km̃0 and a mismatch
term −µ̃(0).
Every matrix-vector-product requires the solution of the incremental state and incremental
adjoint equation to evaluate the mismatch term. This is similar to the evaluation of the
gradient of the minimization functional. The solution of the incremental equations
depends on the solution of the state and adjoint equation.

25

3 Optimization

3.4.2 Scalar Valued Momentum

The derivation of the incremental equations for the scalar valued momentum is analogues
to the vector valued case: The Lagrangian

L= 〈β∇I0 ·K(p0∇I0)−%(0), p̃(0)〉L2

+
∫ 1

0

〈
I∂tI+v ·∇I, ζ̃

〉
L2

dt+
〈
I (0)− I0, ζ̃ (0)

〉
L2

+
∫ 1

0
〈∂tp+∇· (pv), %̃〉L2 dt+ 〈p(0)−p0, %̃(0)〉L2

+
∫ 1

0
〈Lv−p∇I, ν̃〉L2 dt

+
∫ 1

0

〈
−∂tζ+∇· (pν−vζ) , Ĩ

〉
L2

dt+
〈
ζ (1) + I (1)− I1, Ĩ (1)

〉
L2

+
∫ 1

0
〈−∂t%−v ·∇%−ν ·∇I, p̃〉L2 dt+ 〈%(1) , p̃(1)〉L2

+
∫ 1

0
〈Lν− (p∇%− ζ∇I) , ṽ〉L2 dt

leads to the incremental state equation

0 = ∂tĨ+v ·∇Ĩ+ ṽ ·∇I 0 = Ĩ(0)
0 = ∂tp̃+∇· (vp̃+ ṽp) 0 = p̃(0)− p̃0

0 = Lṽ−
(
p∇Ĩ+ p̃∇I

)
and the incremental adjoint equation

0 =−∂tζ̃−∇·
(
vζ̃+ ṽζ−pν̃− p̃ν

)
0 = ζ̃(1) + Ĩ(1)

0 =−∂t%̃−v ·∇%̃− ṽ ·∇%−∇I · ν̃−∇Ĩ ·ν 0 = %̃(1)
0 = Lν̃− (p∇%̃+ p̃∇%− ζ∇Ĩ− ζ̃∇I).

Again, the resulting Hessian matrix-vector-product given by

Hp̃0 = β∇I0 ·K (p̃0∇I0)− %̃(0)

consists of a regularization term β∇I0 ·K (p̃0∇I0) and a mismatch term −%̃(0).

3.5 Summary

Given an initial momentum, the objective functional E(m0) or E(p0) can be evaluated by
solving the forward problem consisting of the state equations. This is done by integrating

26

3.5 Summary

the state equations forward in time. To evaluate the gradient of the objective functional
we use the adjoint method, which requires analytical expressions for the gradient. To
evaluate the gradient we need to solve the adjoint equations which have to be solved
backward in time. If we consider second order (Newton-type) methods for optimization
we have to solve a linear system. For this, we use a reduced space matrix-free method.
Each applications of the Hessian to a vector requires the solution of the incremental state
and incremental adjoint equations. The incremental state equations have to be solved
forward in time and the the incremental adjoint equations have to be solved backward in
time.

With functional evaluations, the gradient and Hessian matrix-vector-products (and al-
gorithms to approximately compute its inverse) we have all the necessary ingredients
in order to run an optimization method to find an approximate solution to the geodesic
shooting problem. By now, all these expressions are still in a continuous setting. Following
the optimize-then-discretize approach, the next chapter will discuss the discretization of
the individual expressions.

27

4 Discretization

Following the optimize-then-discretize approach, we now discuss the discretized expres-
sions for the objective functional, it’s gradient and Hessian. We discuss the spatial and
temporal discretization of the state, adjoint and incremental equations, which have to be
solved in order to obtain the derivatives of the optimization problem. For the evolution
of the PDEs we either use Heun’s method or a semi-Lagrangian method.

4.1 Spatial Discretization

In space the problem is discretized using an equidistant grid defined on Ω = [−π,π]2
with periodic boundary conditions, and the same number of nodes Nx along each spatial
dimension. We denote the resulting mesh width as hx.

All spatial differential operators are discretized using a pseudo-spectral approach [8].
They are computed in the Fourier domain based on the fact that derivatives can there be
computed efficiently and accurately by point-wise multiplications. This allows a straight-
forward application of inverse differential operators. For example, applying the inverse
regularization operator (I−∆)−γ to a function f becomes a pointwise multiplication in
the Fourier domain

(I−∆)−γf = F−1F [(I−∆)−γf(·)] = F−1
[
(1 +‖·‖22)−γF [f](·)

]
,

even for a general γ ∈ R. The mapping to and from the Fourier domain in the discrete
setting is done using the Fast-Fourier-Transform (FFT) [15] and its inverse, respectively.
This scheme has a high accuracy and in general displays little numerical diffusion if
combined with adequate methods for numerical time integration [34].

4.1.1 Discretization of the Optimization Functional

Up to now we avoided discussing the choice of a discrete vector space. For the opti-
mization functional we have to choose a discrete scalar product that corresponds to the
L2-scalar product in the continuous setting. Instead of using the usual Euclidean scalar
product in Rd, we use a scaled Euclidean scalar product

〈 · , · 〉h := h〈 · , · 〉2

29

4 Discretization

with its induced norm

‖x‖h :=
√
〈x,x〉h.

Here, h is the mesh width of the spatial discretization. This norm is an approximation
to the L2-scalar product using a trapezoidal rule. Hence, using this norm makes error
measurements independent of the discretization and makes it easier to compare results
that use different spatial resolutions.

Using the scaled Euclidean norm, the discretized optimization functional Eh : RNd
x → R

reads

Eh (m0) = 1
2β ‖Km0‖h+ 1

2 ‖I(1)− I1‖h
for vector-valued momentum and

Eh (p0) = 1
2β 〈p0∇I0,K(p0∇I0)〉h+ 1

2 ‖I(1)− I1‖h
for the scalar-valued momentum, respectively.

The choice of the discrete vector space also has an effect on the scaling of the gradient of
the objective function. Using a Taylor expansion for a function f

f(x+d) = f(x) +
〈
∇(h)f(x),d

〉
h

+O
(
‖d‖2h

)
= f(x) +

〈
∇(2)f(x),d

〉
2

+O
(
‖d‖2h

)
shows that the gradient with respect to the h-scalar product ∇(h)f(x) only differs by
a factor of h from the gradient with respect to the 2-scalar product ∇(2)f(x). That is
h∇(h)f(x) =∇(2)f(x). An analogous argument holds for the Hessian.

4.1.2 Grid Transfer Operations – Prolongation and Restriction

To use coarse grid techniques we define restriction and prolongation operators in the
Fourier domain by truncating coefficients corresponding to high frequencies or padding
the frequency spectrum with zeros, respectively. Using the FFT followed by the inverse
FFT for a truncated spectrum adds an additional scaling factor. This scaling needs to be
accounted for in a coarse grid approximation. The inverse scaling factor has to be used
for the prolongation.

4.2 Temporal Discretization

The artificial time we introduced is discretized into time steps of size ht. For the time
evolution of the PDEs we either use Heun’s method [11, Ch. 232] or a backward
semi-Lagrangian method [50, 27, Ch. 3.3.3].

30

4.2 Temporal Discretization

4.2.1 Heun’s Method

Heun’s method is an explicit, second order Runge-Kutta method [11] with a single
intermediate step. Given a differential equation ∂ty (x,t) = f(y(x,t), t), Heun’s method
approximates the time integral for each time step by a trapezoidal rule∫ ti+1

ti

f(y(x,t), t)dt≈ ht
2 (f(y(x,ti), ti) +f(y(x,ti+1), ti+1))

≈ ht
2 (f(y(x,ti), ti) +f(y(x,ti) +htf(y(x,ti), ti), ti+1)) ,

where the function evaluations at the new time step are approximated using an explicit
Euler step. Hence, using yi := y (· , ti) and fi := f(· , ti), Heun’s Method for a time step
yields

yi+1 = yi+
ht
2 (fi(yi) +fi+1(yi+htfi(yi))) .

The combination of Heun’s method in time and a spectral discretization in space results
in a small numerical diffusion [32]. Another advantage is the absence of intermediate
function evaluations between the time steps. Therefore, we avoid temporal interpolations
between time steps in the adjoint and incremental equations. These PDEs depend on the
earlier solution of the other equations and only use function evaluations at full time steps,
which are already known.

The size of the time steps is limited by the Courant–Friedrichs–Lewy (CFL) condition [16].

4.2.2 Semi-Lagrangian Method

Heun’s method uses Eulerian coordinates, which means it describes how a value at
a fixed point in space changes over time. In contrast, the semi-Lagrangian method
uses Lagrangian coordinates, which follow the trajectory of particles defined by a given
velocity field [50, 31, 2.13]. This formulation describes how a value associated with such
a particle changes over time. As the semi-Lagrangian method is unconditionally stable for
transport equations [50, 27] and therefore not constrained by the CFL condition, it allows
to use much larger time steps compared to Heun’s method. To simplify the notation we
use subscripts fi(·) = f(· , ti) to specify values at certain time steps.

To measure the change of a value along a trajectory one considers the Lagrangian
derivative

d(v)
t := ∂t+v ·∇

based on a velocity field v.

31

4 Discretization

x
Xi+1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

ti+1

x

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

ti

•
•

•
•

•

•

•

•
•

•

•

•

•
•
•

•

•

•

•
•

•
•

•
•

•

Xi

Figure 4.1: Illustration of the semi-Lagrangian method for a velocity field that transports
towards the lower left corner. Step one: All particles start on a regular grid at ti+1 (on
the right) with X(x,ti+1) = x. They follow the characteristic backwards in time to ti
yielding a deformed grid (dark blue on the left). Step two: By interpolating the values at
the previous time step ti (light blue on the left) in in X(x,ti), we assign a value to each
particle. Integrating the right hand side along the characteristic forward in time accounts
for changes to these values between the time steps. The result are the values on a regular
grid at the new time step.

Given a differential equation in Lagrangian coordinates X

d(v)
t y(X,t) = f(y(X,t), t),

the semi-Lagrangian method works in two stages. These are illustrated in figure 4.1. In a
first step, we follow each particle backward in time to find out where it originates from.
For this, a transport equation has to be solved so that the trajectories of the particles are
known. In the second step, we compute how much the value associated with a particle
changed. Therefore, the right hand side of the equation has to be integrated in time to
compute the change of the transported quantity along the trajectory:

1. First, we have to compute the trajectoryX(x,t) of the particles. We do this backward
in time. We initialize the trajectories at the new time step using the nodes of a
regular grid. Using the velocity field, we solve the transport equation

∂tX(x,t) =−v(X(x,t), t) for t ∈ [ti, ti+1]
X(x,1) = x

for X, which describes the trajectory based on the final position of each particle.
A particle in position x at ti+1 originates from X(x,ti). We use one step of Heun’s
method to compute the trajectory.

2. Once the trajectory is known, we integrate the right hand side of the equation along
the trajectory. Again, we use a single step of Heun’s method . Therefore, f has to

32

4.2 Temporal Discretization

be evaluated at the starting point and endpoint of each trajectory. Evaluating f at
the new time step is straight forward, as we ensured that each trajectory ends on
a grid point. However, the starting points of the trajectory are generally between
grid points and have to interpolated. Because linear interpolation can lead to high
numeric diffusion, we use cubic splines to interpolate the values, which is less
diffusive [50].

The steps above work well when the velocity v is known, which is the case for the
adjoint and both incremental equations. However, while integrating the state equation,
the velocity at the next time step is still unknown. Therefore, we use a second order
extrapolation

vi+1(x) = 2vi(x)−vi−1(x) +O
(
h2
t

)
to approximate vi+1 in the trajectory computation [50].

When the semi-Lagrangian method is applied, we have to keep in mind that the state
equations are solved forward in time, and the adjoint equations are solved backward in
time. This has an effect on the trajectory computation and the integration of the right
hand side along the trajectory:

Heun’s method to compute the trajectory for the state and incremental state equation
backward in time reads

Xi = x− ht2 (−vi+1(x)−vi (x+htvi+1(x))) ,

where all evaluations of vi have to be interpolated. As the adjoint and incremental adjoint
equations are solved backward in time, the trajectory is computed by Heun’s method
forward in time

Xi+1 = x+ ht
2 (−vi+1(x)−vi (x−htvi+1(x))) .

Here, evaluations of vi+1 have to be interpolated, while the evaluations of vi are aligned
to grid nodes.

As the trajectories only depend on the velocity field they only have to be recomputed
once the velocity or the momentum changes.

During the application of Heun’s method to integrate the remaining right hand side of
the equations, values at one time step have to be interpolated using the result from the
trajectory. For the state and incremental state equations, which are solved forward in
time, values at ti have to be interpolated based on the starting point of the trajectory
Xi(x):

yi+1(x) = yi(Xi(x)) + ht
2 (fi(Xi(x)) +fi+1(x))

For the adjoint and incremental adjoint equations, which are solved backward in time,
values at ti+1 have to be interpolated based on Xi+1(x).

33

4 Discretization

4.3 Krylov Subspace Solver

For Newton’s method we have to solve the linear Hessian system

Hx=−∇m0E or Hx=−∇p0E

for an update x. While the incremental equations allow to compute matrix-vector mul-
tiplications with the Hessian, individual entries of the Hessian are not directly known.
Therefore, we use Krylov subspace methods like the (preconditioned) Conjungate Grandi-
ent method (PCG) or the Generalized Minimal Residual method (GMRES) to solve the
system using only Hessian-vector multiplication. This leads to a so-called Newton-Krylov
method for the minimization problem [28]. To reduce the number of iterations in each
Newton step, we will design preconditioners. This improves the convergence of the linear
solver. In chapter 5 we discuss different preconditioners and analyze their effectiveness
in chapter 6.

4.4 Summary

Spatial operators are computed in the Fourier domain which allows to compute inverse
differential operators and has a high accuracy. We prefer explicit over implicit time
integrators as they are cheaper to compute and do not introduce another implicitly given
problem. To reduce the cost of the time integration we use the semi-Lagrangian method
which allows to increase the time step size.

34

5 Preconditioners

The most expensive component in each optimization step is the integration of the PDEs.
Especially the repeated solution of the incremental equations to evaluate Hessian matrix-
vector-products in the Krylov subspace solver for Newton-type optimization can take a
significant amount of time.

The central idea of preconditioning is that the rate of convergence (and thus the required
number of iterations) usually depends on the condition number of the matrix of the linear
system [47]. By preconditioning the linear system we can improve the condition number
of the matrix and in turn reduce the number of iterations. By that we reduce the number
of matrix-vector-products with the Hessian.

The main challenge for the presented geodesic shooting problem is its matrix-free setting.
While matrix-vector-products with the Hessian can be evaluated using the incremental
equations, the individual matrix entries remain unknown. This makes most standard
preconditioners such as Jacobi, Gauss-Seidl and incomplete LU preconditioners [47]
difficult to apply. Even though it is possible to compute individual columns of the Hessian
matrix by evaluating the matrix-vector-product with canonical unit vectors, building the
entire Hessian matrix is generally unfeasible for large image dimensions, due to both,
memory requirements and computational costs.

Instead, we will follow different approaches, which only use Hessian matrix-vector-
products and the structure of the Hessian

H = βHreg +Hmis ∈ RN
d
x×Nd

x ,

which consists of a regularization term βHreg and a mismatch term Hmis. The additive
structure of the Hessian was mentioned earlier in section 3.4.

5.1 Inverse Regularization Term

The regularization term of the Hessian for the vector valued momentum Hreg =K can be
inverted analytically as H−1

reg = L. The inverse can be used as a preconditioner for the CG
method in each Newton step. Instead of solving the linear system

(βK+Hmis)x=−∇m0E

35

5 Preconditioners

for the Newton update x using the CG method, we use the preconditioned CG [25, 47, 44]
method with β−1L as preconditioner. This is equivalent to solving the system

(I+ 1
β
L

1/2HmisL
1/2)y =− 1√

β
L

1/2∇m0E (5.1)

x= 1√
β
L

1/2y

which is left and right preconditioned with (βHreg)−1/2 = β−1/2L1/2. The expression L1/2

exists for our choice of L as it is a symmetric positive definite operator and can be
computed in Fourier space as mentioned in section 4.1.

5.2 Coarse Grid Preconditioner

The motivation for the coarse grid preconditioner from [34] is, that inverting the Hessian
for a coarser discretization is significantly cheaper than inverting the Hessian on a finer
discretization. The idea is to split the momentum into low and high frequency Fourier
modes. We assume that the Hessian in the Fourier basis

Ĥ =
(
Ĥf Ĥx

Ĥx Ĥc

)

mainly consists of two blocks Ĥf and Ĥc, which map high to high and low to low
frequencies and negligible blocks Ĥx, which mix the frequency bands. We can then
represent the low frequent Fourier modes on a coarser grid and solve for them. Hence we
use the preconditioner

M̂−1
c :=

(
I
Ĥ−1
c

)

in the Fourier basis to improve the condition number by inverting the high frequency
components of the Hessian. Using the restriction operator R, the prolongation P and the
low-pass filter F the preconditioner then looks like

M−1
c := (I−F) +FPH−1

c RF.

In our experiments we split the Fourier spectrum in half and use the operators

R=
(
0 I

)
, P =

(
0
I

)
and F =

(
0

I

)
.

As before, in each Newton step, the “outer” linear system with H is solved for a Newton
update with a Krylov subspace method.

36

5.3 Low Rank Approximation

To evaluate matrix-vector-products with the preconditioner H−1
c a second “inner” lin-

ear solver is used as in [34]. For this “inner” solver we use a PCG method with a
stricter tolerance. We apply this preconditioner not to the original Hessian, but to the
L-preconditioned Hessian.

5.3 Low Rank Approximation

This method is based on the preconditioned Hessian from (5.1)

H̃ := I+ 1
β
L

1/2HmisL
1/2︸ ︷︷ ︸

=:H̃mis

,

which results from applying the regularization operator as a preconditioner. A common
observation is that the spectrum of the preconditioned mismatch term decays quickly
[45, 55]. The general idea is to replace the mismatch term with a low rank approximation
and invert the result analytically.

A similar approach has been taken in [55, 10, 45] in the context of statistical inverse
problems and the sampling from probability distributions. As in [45], we use a truncated
eigenvalue decomposition of the mismatch term and the Woodbury matrix identity [44,
A.28] to obtain an approximation to the inverse preconditioned Hessian:

We begin with an eigenvalue decomposition for the preconditioned mismatch term H̃mis :=
L1/2HmisL

1/2 into a diagonal matrix Λ, consisting of the eigenvalues Λii = λi ≥ λi+1, and
the corresponding eigenvector matrix V

H̃mis = V ΛV.

The inverse of the preconditioned Hessian can be written as

H̃−1 = (I+ 1
β
H̃mis)−1 = (I+ 1

β
V ΛV T)−1 = I−V (βΛ−1 +V TV)−1V T

using the Woodbury matrix identity. As the eigenvectors are normalized and pairwise
orthogonal this can be further simplified into

H̃−1 = I−V (βΛ−1 + I︸ ︷︷ ︸
diagi(βλ

−1
i +1)

)−1V T) = I−V diag
i

(
λi

λi+β

)
V T.

In general, computing a complete eigenvalue decomposition of H̃mis is too expensive.
However, if we compute a truncated eigenvalue decomposition of H̃mis using only the p
largest eigenpairs we get an approximation to H̃−1

M−1
lr := I−Vp diag

i=1,...,p

(
λi

λi+β

)
V T
p ,

37

5 Preconditioners

which can be used as preconditioner. The rectangular matrix Vp ∈ RNd
x×p contains

the eigenvectors corresponding to the first p largest eigenvalues. A nice property of
this preconditioner is that the decomposition can be computed independent of the
regularization parameter β. Because all nonzero entries in the diagonal matrix are
positive and smaller then one for β > 0, the final preconditioner is positive definite.

This preconditioner depends on a matrix-free algorithm to compute the truncated eigen-
value decomposition of H̃mis. In section 5.5 we will present randomized algorithms,
which can be used to efficiently estimate the eigenpairs.

5.4 Low Rank Approximation on Coarse Grid

The ideas of building a low rank approximation can be combined with the idea to
build a preconditioner on a coarse grid. For this we assume that the eigenvectors
corresponding to the largest eigenvalues are smooth and can be represented on a coarser
grid. The procedure is the same as in section 5.3. The only difference is that the
truncated eigenvalue decomposition is performed on a coarser grid. Because the resulting
approximation is defined on a coarser grid, it has to be transfered back to the original finer
grid to be used as a preconditioner. Hence, applying the approximation to a vector, first
restricts the vector to the coarse grid, applies the low rank approximation and prolongs
the result back to the fine grid. This is equivalent to prolonging the eigenvectors to the
finer grid and renormalizing them. The resulting preconditioner reads

M−1
lr,c := I−PVp diag

i=1,...,p

(
λi

λi+β

)
V T
p R,

where P is the prolongation and R is the restriction as defined in section 4.1.2.

5.5 Randomized Low Rank Approximation

The previous preconditioners rely on an efficient matrix-free method to compute an
eigenvalue decomposition. For this we use a randomized eigenvalue decomposition,
which provides a stable algorithm that is easy to implement [22]. For a detailed discussion
of randomized decompositions, their properties and a comparison to other approaches
we refer to [22]. In the following we give a short summary.

We start with a singular value estimation for a matrix H ∈ Rn×n, which consists of two
steps:

1. We approximate the range of the matrix H. This is done by applying H to p random
vectors and building a basis Q ∈ Rn×p of the result. The matrix H can then be

38

5.6 Summary

approximated in the smaller basis as H ≈QQTH.
Here, QTH ∈ Rp×n can be understood as the application of H, and the projection
into the smaller basis. Multiplying the result by Q transforms back into the original
basis. The result is therefore the matrix H, restricted to the subspace of a smaller
basis.

2. In the approximate basis we can then use traditional decomposition algorithms
for QTH. This is possible as QTH is a much smaller rectangular matrix where the
number of rows is the same as the dimension p of the smaller basis. With the singular
value decomposition QTH =: UΛV T the original matrix can be approximated as

H ≈QUΛV T,

with U ∈ Rp×p, Λ ∈ Rp×n and V ∈ Rn×n. This is a singular value decomposition for
QQTH [22].

Under the assumption that the matrix H is symmetric and positive definite, the first p
columns of QU are eigenvectors of H with the corresponding eigenvalues on the diagonal
of Λ. Remember that the Gauss-Newton approximation ensures that the Hessian is
positive definite, which makes it possible to use this algorithm.

5.6 Summary

While a good preconditioner can greatly improve the convergence of the iterative solver,
this improvement does not come for free. One has to weight the accuracy of the precon-
ditioner and therefore the reduced number of iterations against the costs of building and
applying the preconditioner.

As the most expensive part during the registration process are the different PDE solves,
using the inverse regularization term L as preconditioner is a very cheap. As we will see
in chapter 6, this allows us to improve the condition number.

The performance of the coarse grid preconditioner mainly depends on the cost of inverting
the coarse Hessian. This has to be done in every iteration of the Krylov subspace method
when the preconditioner is applied.

In contrast, the low-rank preconditioners will be set up once per Newton iteration and
reused for the entire solve. To reduce the cost of the preconditioner, we also have the
option to build it on a coarser grid, where matrix-vector-products with the Hessian are
much cheaper to compute.

Because the preconditioners build on top of the already preconditioned Hessian system
H̃, we have to think about how both preconditioners can be combined. Especially for the
PCG method we have to ensure that the combined preconditioner is still symmetric. For

39

5 Preconditioners

this reason, we consider the double preconditioned Hessian system where we first use L
and then apply a second preconditioner M−1

2 for the preconditioned system. Based on
the Cholesky decomposition of the second preconditioner M−1

2 =NNT we get

NTL
1/2HL

1/2Nx=NTL
1/2b

where we used a split left and right preconditioning [47]. Comparing this with the pre-
conditioner pattern for the CG method [47] we can read off the combined preconditioner

M−1 :=
(
L

1/2N
)(
NTL

1/2
)

= L
1/2M−1

2 L
1/2,

which can be used in a standard PCG algorithm.

40

6 Numerical Results

For our numerical experiments we use two different registration problems. The first
problem registers two x-ray scans of hands. The scans are from [42, 4]. While there
exists no perfect correspondence, the mismatch term of the registration problem can
become very small. The second problem registers two brain scans from [1, 13, 30, 29, 14].
Because the brains differ in image intensity, the mismatch term will never become very
small.

For all experiments, we start with an initial momentum that is zero everywhere and use
the regularization term β1

1
2 ‖m0‖2v = β1

1
2 〈m0,Km0〉L2 with K−1 = L = (I−β2∆)2. We

use the following values for the regularization parameter β unless noted otherwise:

hands: β1 = 2−3 β2 = 0.02
brains: β1 = 2−1 β2 = 0.03

Figures 6.1 and 6.2 shows the result for the hand and brain registration problem, respec-
tively.

6.1 Performance Metrics

We first discuss how the efficiency of different optimization methods and preconditioners
can be compared.

For both, we are interested in methods that are independent of the image resolution. This
means that an optimization method has to decrease the norm of the gradient by a fixed
factor using a similar number of iterations, regardless of the image resolution. The solver
for the preconditioned system has to decrease the norm of the residual by a certain factor
using a similar number of iterations.

6.1.1 Optimization Methods

To compare different optimization methods it is not sufficient to compare the number of
iterations. Each step of Newton’s method is much more expensive than it is for gradient
descent or L-BFGS, as it involves the solution of a linear system. When comparing

41

6 Numerical Results

I0,σ m0m0 v0v0 I(1) I1,σ

I0,σ m0m0 v0v0 I(1) I1,σ

I0,σ m0m0 v0v0 I(1) I1,σ

Figure 6.1: Registered hands for regularization parameters β = 2−1, β = 2−3 and β =
2−5. I0 is on the left and I1 on the right. In between are the initial momentum, the
initial velocity field and the final image I(1). The grid on I(1) illustrates the captured
deformation of a regular grid on I0. The biggest difference can be seen at the thumb
and the ring finger. With decreasing regularization the thumb in I(1) rotates more to the
left to better resemble the pose in I1. The point over the ring finger in I0 does not have
a correspondence in I1. Lower regularization reduces the area covered by the point to
reduce the mismatch term. Note the oscillating Gibbs artifacts in the initial momentum
for β = 2−5. This is caused by the spectral spatial discretization and shows that more
regularization might be needed.

I0,σ m0m0 v0v0 I(1) I1,σ

Figure 6.2: Registered brains.

42

6.1 Performance Metrics

Newton’s methods with different preconditioners, the number of Newton iterations
should be similar, even though they can vary a lot in computational complexity if one
preconditioner is more effective than another.

Because the solution of the state, adjoint and incremental equations are by far the
most expensive components during the registration process, we compare the number
of PDE solves. This not only includes the gradient and Hessian evaluations, but also
functional evaluations during the line search and the costs of setting up or applying
the preconditioner. A drawback of this approach is that the higher complexity of the
incremental equations is not taken into account. Also, solving on a coarser grid is
generally less expensive. Hence, we additionally measure the runtime of the different
methods.

6.1.2 Preconditioners

To compare different preconditioners for the linear Hessian system in Newton’s method
we have to ensure that all tests are performed under the same conditions. An efficient
preconditioner is most important close to the solution, where we have to solve the
linear Hessian system to a high accuracy. Hence, we compare the convergence of the
PCG method with different preconditioners for an initial momentum that is close to
the minimizer of the functional. Because the minimizer is not known we first set up a
synthetic registration problem that is derived from the real registration problem:

Using a real registration problem we first solve for an initial momentum that is close
to the minimizer and compute Ĩ1 := I(1). Then, we consider the registration problem
between I0 and Ĩ1, for which we know the initial momentum that maps the images onto
each other. We refer to this setup as being at the solution (of the synthetic registration
problem) as it perfectly maps the images onto each other. While this initial momentum
is not the minimizer of the new minimization functional, it should be close enough to
the minimizer for a small regularization term. Therefore, we use this new regularization
problem to test the preconditioners. We perform a single Newton step using the computed
initial momentum as starting point and compare the convergence of the PCG method for
different preconditioners.

For the low rank approximation based preconditioners we also want to know how well a
preconditioner built in one iteration generalizes to other iterations. If a preconditioner
can be reused in other Newton iterations, it does not have to be recomputed in every
iteration and the costs of setting it up could be amortized by slacking the preconditioner,
or building it incrementally during consecutive iterations.

To evaluate the efficiency of a preconditioner we also have to take the additional cost of
applying the preconditioner into account.

43

6 Numerical Results

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

E
an

d
E
m
is

E
r
eg

iteration

E
Emis
Ereg

Figure 6.3: Trend of objective functional E, regularization term and mismatch term
during the minimization process. The regularization term uses the right y-axis.

6.2 General Convergence

Before we discuss the efficiency of different preconditioners for Newton’s method, we start
with a general overview of the convergence during the image registration optimization
process. Therefore, we consider the regularization and mismatch term of the minimization
functional along with its gradient and how they change during the minimization.

In general, the value of the minimization functional is expected to decrease, because
each optimization step tries to reduce its value. The image mismatch term should also
decay initially and level out at some value, when the optimization process starts to get
closer to the optimum. In general, we cannot expect the mismatch term to converge to
zero, as there might not exist a mapping that perfectly maps the two images onto each
other: One can think of two versions of otherwise identical images of an object where
noise has been added. In this case, the mismatch term will converge to a nonzero value.
Initially, the regularization term is zero, because we initialize the optimization with an
initial momentum of zero, which will map I0 onto itself. During the optimization, we
expect the regularization term to increase and then level out once the optimization gets
closer to the optimum. Figure 6.3 shows an example of this behavior.

Even though the terms of minimization function level out quickly for all optimization
methods, the norm of the gradient still decreases further to zero. However, it does not
have to decrease monotonically as can be seen for the L-BFGS and gradient descent
method in figure (6.4). While Armijo line search ensures that the minimization functional
is reduced in each step, this does not imply that the norm of the gradient is reduced in
each step.

The Gauss-Newton method converges much faster and needs less iterations compared
to gradient descent and L-BFGS. One can argue, that the Gauss-Newton method uses
a better approximation to the inverse of the Hessian than the L-BFGS approximation.

44

6.3 L-BFGS Convergence

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

E

iteration

GD
20-BFGS

GN
FN

10−10

10−8

10−6

10−4

10−2

100

102

0 20 40 60 80 100 120 140

‖∇
E
‖ r
el

iteration

GD
20-BFGS

GN
FN

Figure 6.4: Value of the minimization functional (left) and norm of the gradient (right)
after each iteration for the hand 64×64 image while solving for a vector valued momen-
tum.

Under the assumption that the local second order approximation to the minimization
functional holds, the higher quality of the Gauss-Newton approximation can be seen in
the fact, that L-BFGS method terminates after about 120 iterations with a line search
failure. In contrast, the Gauss-Newton method reaches a much smaller value for the
gradient norm without performing any line search.

Nonetheless, we have to keep in mind that each Newton step is significantly more
expensive because we have to solve a linear system. This involves many solutions of the
incremental equations in the Hessian matrix-vector-products. In section 6.6 we compare
the different optimization algorithms in more detail, based on the computational costs.

The classical (full) Newton method converges much faster than the Gauss-Newton method.
However, using Newton’s method does not always converge to a minimum, especially
when the Hessian becomes negative definite or indefinite. This problem does not arise
with the Gauss-Newton approximation, as it ensures the positive definiteness of the
Hessian approximation. In the following experiments we therefore focus on the Gauss-
Newton method.

6.3 L-BFGS Convergence

The convergence of L-BFGS tends to improve the more updates are used in the inverse
Hessian approximation. Only storing the last update already significantly reduces the
iteration number compared to the gradient descent method. Figure 6.5 shows the effect
of different memory sizes. The number of iterations is smaller when inverting for a vector-
valued momentum compared to inverting for a scalar-valued momentum. For a larger
memory, this difference becomes smaller. Considering the runtime, the scalar-valued

45

6 Numerical Results

10−4

10−3

10−2

10−1

100

0 50 100 150 200 250

‖∇
E
‖ r

el

iteration

10−4

10−3

10−2

10−1

100

0 50 100 150 200 250

‖∇
E
‖ r

el

runtime in seconds

10−4

10−3

10−2

10−1

100

101

0 50 100 150 200 250

‖∇
E
‖ r

el

iteration

10−4

10−3

10−2

10−1

100

101

0 50 100 150 200 250

‖∇
E
‖ r

el

runtime in seconds

0-BFGS
1-BFGS
5-BFGS

10-BFGS
20-BFGS
50-BFGS

Figure 6.5: Convergence of L-BFGS for vector valued momentum (top) and scalar valued
momentum (bottom).

momentum performs much better.

6.4 Spectral Properties of the Hessian and Low Rank
Approximation

To use the low rank approximation from section 5.3 as an efficient preconditioner, we
have to ensure that the spectrum of the mismatch term of the Hessian decays quickly, so
that there exists a good low rank approximation.

Therefore, we compute an eigenvalue decomposition of the individual components of
the Hessian to see, how fast the eigenvalues decay. As mentioned in section 6.1 we build
the preconditioner at the solution and for an initial momentum of zero, to see how good
the preconditioner works close to the minimizer and how much the spectral properties
change during the optimization. Additionally, we compare the spectrum of the Hessian
on a fine and coarse grid, to see if it is possible to build the low rank approximation on a
coarser grid as suggested in section 5.4.

46

6.4 Spectral Properties of the Hessian and Low Rank Approximation

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 500 1000 1500 2000

Final Eigenvalues

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 500 1000 1500 2000

Eigenvalues at solution

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 500 1000 1500 2000

Final Eigenvalues (preconditioned)

eig(H) hands
eig(Hmis) hands
eig(Hreg) hands

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 500 1000 1500 2000

Eigenvalues (preconditioned) at solution

Figure 6.6: Largest 2000 eigenvalues for the Gauss-Newton Hessian approximation for the
hand registration problem on a 64×64 grid for the vector valued momentum formulation.
Left: Eigenvalues after convergence. Right: Eigenvalues at the solution, where the
mismatch is zero.

6.4.1 Decay of Eigenvalues

To compute the eigenvalues of the Hessian, we first build the full Hessian using matrix-
vector-products and then compute an eigenvalue decomposition of this Hessian matrix.
Figure 6.6 shows the decay of the eigenvalues of the individual term of the Hessian
for the hand registration problem. We see, that the mismatch term decays much faster
than the regularization term and the eigenvalues of the full Hessian. Additionally, the
eigenvalues of the mismatch term decay even faster at the solution. Therefore, we can
expect a good low rank approximation for the mismatch term of the Hessian. This is
important, because a good preconditioner is of special importance close to the minimizer,
where the linear system for the Newton step has to be solved with a high accuracy and a
good preconditioner can reduce the number of iterations significantly.

For the L-preconditioned system (5.1) the decay is very similar. The eigenvalues of the
mismatch term decay a bit slower than in the unconditioned system. However, because
the preconditioned Hessian is the sum of the scaled identity matrix βI and a mismatch

47

6 Numerical Results

ν(1)ν(1) ν(2)ν(2) ν(3)ν(3)

ν(4)ν(4) ν(5)ν(5) ν(6)ν(6)

ν(10)ν(10) ν(20)ν(20) ν(30)ν(30)

ν(50)ν(50) ν(100)ν(100) ν(200)ν(200)

ν(1)ν(1) ν(2)ν(2) ν(3)ν(3)

ν(4)ν(4) ν(5)ν(5) ν(6)ν(6)

ν(10)ν(10) ν(20)ν(20) ν(30)ν(30)

ν(50)ν(50) ν(100)ν(100) ν(200)ν(200)

Figure 6.7: Computed eigenvectors ν(i) of the mismatch term H̃mis at the solution of
the hand registration problem on a coarse 64×64 (left) and fine 128×128 (right) grid.
The eigenvalues corresponding to the largest eigenvalues are similar on both resolutions,
even though the two images cannot represent the same level of detail.

term H̃mis with a fast decaying spectrum, the condition number of the L-preconditioned
system is better than the original system.

Coarse Grid

To justify the eigenvalue decomposition on a coarser grid, we have to ensure that the
largest eigenvalues of H̃mis and the corresponding eigenvectors are similar on both
resolutions.

Figure 6.7 shows the eigenvectors for different resolutions. We see, that the eigenvectors
corresponding to the largest eigenvalues are smoother than the eigenvectors for smaller
eigenvalues and are similar on different resolutions. Also the eigenvalues have very
similar values. The eigenvectors corresponding to smaller eigenvalues contain much
higher frequencies and differ a lot. Using the eigenpairs from the coarse grid for the low
rank approximation should therefore be possible, as long as the number of eigenvalues is
not too large.

48

6.4 Spectral Properties of the Hessian and Low Rank Approximation

10−10

10−8

10−6

10−4

10−2

100

0 10 20 30 40 50 60

‖r
es
id
u
a
l‖

2

PCG iteration

Mlr Using Krylov-Schur

10−10

10−8

10−6

10−4

10−2

100

0 10 20 30 40 50 60

‖r
es
id
u
a
l‖

2

PCG iteration

Mlr Using Randomized SVD

I
L

Nλ = 5 (10)
Nλ = 10 (20)
Nλ = 20 (40)
Nλ = 50 (100)
Nλ = 100 (220)
Nλ = 200 (440)

10−10

10−8

10−6

10−4

10−2

100

0 10 20 30 40 50 60

‖r
es
id
u
a
l‖

2

PCG iteration

Mlr,c Using Krylov-Schur

10−10

10−8

10−6

10−4

10−2

100

0 10 20 30 40 50 60

‖r
es
id
u
a
l‖

2

PCG iteration

Mlr,c Using Randomized SVD

Figure 6.8: Convergence using different numbers of eigenvalues Nλ for Mlr (top) and
Mlr,c (bottom). In each row, the preconditioner built with Krylov-Schur is on the left and
the preconditioner built with the randomized algorithm is on the right. The number of
Hessian vector multiplications needed to build the preconditioners are given in brackets.

Convergence at the Solution and Expansion Length

The quality of the preconditioner strongly depends on the rank of the low rank approx-
imation. A higher rank, and thus a larger number of eigenvalues, should give better
results, given that the eigenvalue composition is performed with a high accuracy. How-
ever, computing more eigenvalues also implies that the preconditioner becomes more
expensive to set up because more matrix-vector-multiplications with the Hessian are
needed. Computing the preconditioner only once with an initial momentum of zero and
using it for the entire registration process did not work and reduced the convergence of
the PCG solver significantly.

Since the inverse regularization operator as preconditioner is cheap to apply and does
not need any setup, we use it as a base line for the effectiveness for the different
preconditioners.

Figure 6.8 shows the convergence of different preconditioners at the solution. We see

49

6 Numerical Results

10−10

10−8

10−6

10−4

10−2

100

0 10 20 30 40 50 60

‖r
es
id
u
a
l‖

2

PCG iteration

Mlr

10−10

10−8

10−6

10−4

10−2

100

0 10 20 30 40 50 60

‖r
es
id
u
a
l‖

2

PCG iteration

Mlr,c

L
Nλ = 5 (10)
Nλ = 10 (20)
Nλ = 20 (40)
Nλ = 50 (100)
Nλ = 100 (220)
Nλ = 200 (440)

Figure 6.9: Convergence of low-rank preconditioners for the hand problem using different
number of eigenvalues Nλ on a 265×265 grid that was prolonged from 128×128. Left:
low-rank preconditioner Mlr. Right: low-rank preconditioner Mlr,c on a coarse grid. The
number of matrix-vector-products with the Hessian needed to build the preconditioners
are given in brackets. All preconditioners use the randomized eigendecomposition
method.

that a low rank preconditioner clearly improves the convergence. Furthermore, the
accuracy of the preconditioner can be improved using a larger number of eigenpairs
which improves the convergence.

The difference between different eigendecomposition algorithms is rather small. The
preconditioner using the randomized decomposition performs slightly worse than the
preconditioner using a Krylov-Schur algorithm [51] with a high accuracy. In particular we
use Matlab’s eigs function with a tolerance of 10−14 and the IsFunctionSymmetric flag.
However, the randomized algorithm uses fewer Hessian matrix-vector-multiplications
for a small number of eigenvalues to set up the preconditioner than the Krylov-Schur
algorithm.

The convergence of the PCG method for the Hessian solver when the preconditioner is
built on a coarse grid is similar but slightly worse. For a small number of eigenpairs
the results do not differ a lot. With a larger number of eigenpairs the convergence is
worse but still clearly improves the performance. However, compared to the convergence
of the preconditioners that are set up on the original grid, the preconditioner is less
effective. A reason for this is that the finer grid contains image details that are not present
on the coarse grid, which causes the eigenvectors to differ. Especially eigenvectors
containing high frequencies are different on different resolutions. However, setting up
the preconditioner on a coarser grid is significantly less expensive, which can make up
for the slower convergence.

If the image on the fine grid is a prolonged version of a coarser image, both images
contain the same level of detail. In this case high frequency eigenvectors are much more

50

6.4 Spectral Properties of the Hessian and Low Rank Approximation

matvecs

precond Nλ Nx method fine coarse iters reduction red. / iter

I - 128 - - - 2510 9.8 ·10−07 9.9 ·10−01

L - 128 - - - 60 5.6 ·10−11 6.7 ·10−01

Mlr 10 128 eigs 66 - 40 9.3 ·10−11 5.6 ·10−01

Mlr 10 128 rsvd 20 - 45 8.5 ·10−11 6.0 ·10−01

Mlr,c 10 128 eigs - 61 42 7.8 ·10−11 5.7 ·10−01

Mlr,c 10 128 rsvd - 20 50 4.0 ·10−11 6.2 ·10−01

Mlr 10 128(p) eigs 63 - 38 5.6 ·10−11 5.4 ·10−01

Mlr 10 128(p) rsvd 20 - 42 8.4 ·10−11 5.8 ·10−01

Mlr,c 10 128(p) eigs - 68 42 6.8 ·10−11 5.7 ·10−01

Mlr,c 10 128(p) rsvd - 20 45 6.7 ·10−11 5.9 ·10−01

Mlr 100 128 eigs 251 - 19 8.7 ·10−11 3.0 ·10−01

Mlr 100 128 rsvd 220 - 23 7.5 ·10−11 3.6 ·10−01

Mlr,c 100 128 eigs - 251 30 8.0 ·10−11 4.6 ·10−01

Mlr,c 100 128 rsvd - 220 31 6.0 ·10−11 4.7 ·10−01

Mlr 100 128(p) eigs 251 - 17 3.2 ·10−11 2.4 ·10−01

Mlr 100 128(p) rsvd 220 - 20 8.1 ·10−11 3.1 ·10−01

Mlr,c 100 128(p) eigs - 251 21 6.0 ·10−11 3.3 ·10−01

Mlr,c 100 128(p) rsvd - 220 23 7.9 ·10−11 3.6 ·10−01

Table 6.1: Convergence of the PCG method at the solution with different preconditioners
for the hand registration problem. The randomized algorithm is marked as “rsvd” and
the Krylov-Schur algorithm is marked as “eigs”. The “matvecs” denote the number of
matrix-vector-products on a coarse and fine grid during the preconditioner setup to
estimate Nλ eigenpairs. “iters” is the number of PCG iterations to reduce the initial
residuum norm by the factor “reduction”. “red. / iter” is the average reduction of the
norm per iteration, computed by iters

√
reduction. Images that are prolonged from coarser

data are marked with (p).

similar on the different resolutions. Figure 6.9 shows the convergence for prolonged data.
The convergence for the preconditioner build on the coarse grid is overall better than for
non-prolonged images and much closer to the convergence with the preconditioner that
is built on the original grid. Compared to the measurements with non-prolonged images,
this also means better convergence for a large number of eigenvalues.

In table 6.1 we give a detailed overview of the different preconditioners with different
eigenvalue estimators, their performance, and the associated costs. Generally, the costs of
setting up a preconditioner should not dominate the savings gained by a reduced number
of PCG iteration. In section 6.5 we take a closer look at the costs of each preconditioner

51

6 Numerical Results

during the registration process.

6.4.2 Resolution Independence

The effectiveness of the preconditioners is independent of the resolution. The convergence
of the inverse regularization preconditioner L and the low rank preconditioner is very
similar on different image resolutions. This means, that the number of PCG iterations is
roughly the same on all resolutions. This can be seen when we compare the convergence
results observed in figure 6.8 with the convergence results reported in figure 6.9. Both
experiments use the same setup, but in the latter experiment, the Hessian system is solved
for a prolonged 256×256 image.

6.5 Preconditioner for Newton’s Method

To evaluate the effectiveness of the preconditioners, we measure the cost of the whole
image registration process. Figure 6.10 shows the convergence of the Gauss-Newton
method with different preconditioners. The convergence measured in iterations remains
almost unchanged for different preconditions and shows a first order convergence. The
only exception is the unpreconditioned Gauss-Newton method, which does not converge
further than 10−2. This can be explained by the bad condition number of the Hessian,
which can cause large errors in the search direction.

The number of PDE solves and the total runtime shows more difference between the
methods. Most low-rank preconditioners perform worse than the L-preconditioner.
Slacking the preconditioner for a certain number of iterations does reduce the costs of the
preconditioners enough to justify the savings in the reduced number of PCG iterations.
Only one preconditioner on the coarse grid is able to reduce the runtime slightly when
the problem is solved for a very small gradient norm.

6.6 Comparison of L-BFGS and Newton Methods

To give a final evaluation of the different methods we now compare the performance of
Newton’s method combined with a preconditioner against the performance of L-BFGS.
Figure 6.11 refines the results from section 6.2. While the Newton methods clearly need
less iterations, the L-BFGS method has a better runtime, and requires less PDE solves.
However, it terminates at a relative gradient norm of about 10−4 due to a line search
failure. The Gauss-Newton method is able to solve to a much higher accuracy.

52

6.6 Comparison of L-BFGS and Newton Methods

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50

‖∇
E‖

r
el

Newton iterations

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50

‖∇
E‖

r
el

Newton iterations

I
L

Mlr,c(4)
Mlr,c(4) mod 4

Mlr,c(8)
Mlr,c(8) mod 4

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 500 1000 1500 2000 2500 3000

‖∇
E‖

r
el

PDE solves

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 500 1000 1500 2000 2500 3000

‖∇
E‖

r
el

PDE solves

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 500 1000 1500 2000 2500 3000

‖∇
E‖

r
el

ttotal

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 500 1000 1500 2000 2500 3000

‖∇
E‖

r
el

ttotal

Figure 6.10: Convergence of Gauss-Newton with different low-rank preconditioners for
the hand registration problem on a 64×64 grid.

53

6 Numerical Results

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 500 1000 1500 2000 2500

‖∇
E
‖ r

el

nPDE

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 500 1000 1500 2000 2500 3000

‖∇
E
‖ r

el

ttotal

50-BFGS
GN L

GN Mlr(4) mod 4
GN Mlr,c(4) mod 4

GN Mlr,c(8)

Figure 6.11: Comparison of L-BFGS and Newton’s method with different preconditioners
for the hand registration problem on a 64×64 grid.

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 500 1000 1500 2000 2500

‖∇
E
‖ r

el

nPDE

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 500 1000 1500 2000 2500 3000

‖∇
E
‖ r

el

ttotal

50-BFGS
GN L

GN Mlr(2)
GN Mlr(4)

GN Mlr,c(2)
GN Mlr,c(4)

Figure 6.12: Comparison of L-BFGS and Newton’s method with different preconditioners
for the brain registration problem on a 64×64 grid.

Similar results are obtained for the brain registration problem in figure 6.12. However, in
this experiment no low-rank preconditioned method was able to reduce the norm of the
gradient by more than a factor of 10−3.

6.7 Using the Semi-Lagrangian-Method

The semi-Lagrangian method allows to use much larger time steps than Heun’s method.
Therefore, the solution of the state, adjoint and incremental equations is much cheaper,
as fewer time steps have to be computed. Compared to the results using Heun’s method,
the overall runtime is greatly reduced. Figure 6.13 shows that while the semi-Lagrangian
scheme improves the runtime, it does not change the qualitative results from the previous
section.

54

6.8 Summary

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50

‖∇
E
‖ r

el

i

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 500 1000 1500 2000 2500

‖∇
E
‖ r

el

nPDE

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 100 200 300 400 500 600 700 800

‖∇
E
‖ r

el

ttotal

50-BFGS
GN L

GN Mlr(2)
GN Mlr(2) mod 2

GN Mlr(4)
GN Mlr(4) mod 1

Figure 6.13: Convergence for different methods using the semi-Lagrangian method using
8 time steps for the time integration of the PDEs. Note that the scaling of the x-axis for
the time measurement is different from figure 6.11.

total PDEs PDE solves

method iters secs fine coarse grad LS CG PC PC c ‖∇E‖rel

GD 687 1327 2210 0 1376 832 0 0 0 1.0 ·10−03

1-BFGS 107 198 331 0 216 114 0 0 0 7.1 ·10−04

50-BFGS 54 104 166 0 110 55 0 0 0 9.2 ·10−04

GN 16 1531 1214 0 34 32 1140 0 0 5.7 ·10−03

GN L 16 375 342 0 34 15 292 0 0 6.5 ·10−04

GN Mlr 16 735 574 0 34 15 268 256 0 6.8 ·10−04

GN Mlr,c 16 501 306 512 34 15 256 0 512 7.1 ·10−04

GN M ′lr,c 19 577 429 160 40 18 370 0 160 8.0 ·10−04

Table 6.2: Convergence of different optimization methods. M ′lr,c is a slacked low rank
preconditioner on a coarse grid. Note that the gradient descent and Gauss-Newton
method without preconditioner did not reach the tolerance of ‖∇E‖rel ≤ 10−3.

6.8 Summary

Table 6.2 shows a breakdown of the costs of different methods.

In our experiments, L-BFGS proved to be the most efficient algorithm for both, the scalar
and vector-valued momentum formulation. With few changes, it is easily implemented
based on a gradient descent method, and provides a significant improvement. However,
the methods showed problems when the gradient norm becomes small.

The Gauss-Newton method uses much less Newton iterations than L-BFGS, however
each step includes many PDE solves in the inner PCG method. Using the Gauss-Newton
method without a preconditioner is very expensive, because many iterations are needed
to solve the linear system.

The different preconditioners are able to reduce the number of inner iterations and

55

6 Numerical Results

greatly improve the performance of the Gauss-Newton method. Among the considered
preconditioners, using the inverse regularization term of the Hessian proved to be the
cheapest and most effective option. While low-rank preconditioners clearly improved
the convergence of the inner PCG solver, the setup costs of the approximation are too
high to justify the reduced PCG iteration number during the registration process. To
reduce the costs of setting up the preconditioner we build it on a coarse grid. This works
well with only a minor reduction of the PCG performance. Slacking the approximation
for some iterations, reduces the costs of the preconditioner but the reduced quality of
the preconditioner often leads to more PCG iterations and does not reduce the costs far
enough to provide an advantage over the L-preconditioner.

Overall, L-BFGS turned out to be the most efficient method regardless of the time
integrator. It only requires gradient information and is algorithmically much less complex
than a preconditioned Gauss-Newton method. Nonetheless, latter are able to solve the
inverse problem with higher accuracy which could not be achieved by L-BFGS.

56

7 Outlook

While the Gauss-Newton method ensures that each update reduces the minimization
functional, its convergence is much slower than Newton’s method. An alternative ap-
proach would be to run the (full) Newton’s method and only fall back to Gauss-Newton if
a negative- or indefinite matrix is detected.

To reduce the setup costs of the preconditioners, other ways have to be found to distribute
the costs over multiple iterations. While slacking the preconditioner did not work well
in our experiments, one can think about how the cost of the randomized singular value
decomposition can be split over different iterations. One way could be to reuse the basis
for multiple Newton iterations, and only recompute the eigenvalues. One could also
examine if it is possible to use the existing matrix-vector-products, which are present in
the PCG algorithm, to build a preconditioner.

Further work is needed to evaluate how the results for the low rank preconditioner differ
in three dimensions. While they might require a larger number of eigenpairs, operations
on a coarse grid are much cheaper relative to the finer resolution due to the increased
dimensionality.

57

Bibliography

[1] BrainWeb: Simulated brain database. http://www.bic.mni.mcgill.ca/
brainweb/.

[2] A. ALEXANDERIAN, N. PETRA, G. STADLER, AND O. GHATTAS, A fast and scalable
method for a-optimal design of experiments for infinite-dimensional bayesian nonlinear
inverse problems, SIAM Journal on Scientific Computing, 38 (2016), pp. A243–A272.

[3] H. W. ALT, Linear functional analysis: an application-oriented introduction, Springer,
2016.

[4] Y. AMIT, A nonlinear variational problem for image matching, SIAM Journal on
Scientific Computing, 15 (1994), pp. 207–224.

[5] J. ASHBURNER AND K. J. FRISTON, Diffeomorphic registration using geodesic shooting
and Gauss–Newton optimisation, NeuroImage, 55 (2011), pp. 954–967.

[6] M. F. BEG, M. I. MILLER, A. TROUVÉ, AND L. YOUNES, Computing large deformation
metric mappings via geodesic flows of diffeomorphisms, International Journal of
Computer Vision, 61 (2005), pp. 139–157.

[7] M. BENZI, E. HABER, AND L. TARALLI, A preconditioning technique for a class of
pde-constrained optimization problems, Advances in Computational Mathematics, 35
(2011), pp. A2494–A2523.

[8] J. P. BOYD, Chebyshev and Fourier spectral methods, Dover, Mineola, New York, US,
2000.

[9] A. M. BRADLEY, PDE-constrained optimization and the adjoint method, (2010).

[10] T. BUI-THANH, O. GHATTAS, J. MARTIN, AND G. STADLER, A computational frame-
work for infinite-dimensional Bayesian inverse problems part I: The linearized case,
with application to global seismic inversion, SIAM Journal on Scientific Computing,
35 (2013), pp. A2494–A2523.

[11] J. C. BUTCHER AND N. GOODWIN, Numerical methods for ordinary differential
equations, Wiley Online Library, 3rd ed., 2016.

[12] G. E. CHRISTENSEN, R. D. RABBITT, AND M. I. MILLER, Deformable templates using
large deformation kinematics, IEEE Transactions on Image Processing, 5 (1996),
pp. 1435–1447.

59

http://www.bic.mni.mcgill.ca/brainweb/
http://www.bic.mni.mcgill.ca/brainweb/

Bibliography

[13] C. A. COCOSCO, V. KOLLOKIAN, R. K.-S. KWAN, G. B. PIKE, AND A. C. EVANS,
BrainWeb: Online interface to a 3D MRI simulated brain database, in NeuroImage,
vol. 5, May 1997, p. S425.

[14] D. L. COLLINS, A. P. ZIJDENBOS, V. KOLLOKIAN, J. G. SLED, N. J. KABANI, C. J.
HOLMES, AND A. C. EVANS, Design and construction of a realistic digital brain
phantom, IEEE Transactions on Medical Imaging, 17 (1998), pp. 463–468.

[15] J. W. COOLEY AND J. W. TUKEY, An algorithm for the machine calculation of complex
fourier series, Mathematics of Computation, 19 (1965), pp. 297–301.

[16] R. COURANT, K. FRIEDRICHS, AND H. LEWY, Über die partiellen Differenzengleichun-
gen der mathematischen Physik, Mathematische Annalen, 100 (1928), pp. 32–74.

[17] P. DUPUIS, U. GRENANDER, AND M. I. MILLER, Variational problems on flows of
diffeomorphisms for image matching, Quarterly of Applied Mathematics, 56 (1998),
pp. 587–600.

[18] S. C. EISENTAT AND H. F. WALKER, Choosing the forcing terms in an inexact Newton
method, SIAM Journal on Scientific Computing, 17 (1996), pp. 16–32.

[19] H. W. ENGL, M. HANKE, AND A. NEUBAUER, Regularization of inverse problems,
Kluwer Academic Publishers, 1996.

[20] B. FISCHER AND J. MODERSITZKI, Ill-posed medicine—an introduction to image
registration, Inverse Problems, 24 (2008), p. 034008.

[21] M. D. GUNZBURGER, Perspectives in flow control and optimization, SIAM, Philadel-
phia, Pennsylvania, US, 2003.

[22] N. HALKO, P.-G. MARTINSSON, AND J. A. TROPP, Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions, SIAM
review, 53 (2011), pp. 217–288.

[23] M. HERNANDEZ, PDE-constrained LDDMM via geodesic shooting and inexact Gauss–
Newton–Krylov optimization using the incremental adjoint Jacobi equations, Physics
in Medicine & Biology, 64 (2019), p. 025002.

[24] M. HERNANDEZ AND S. OLMOS, Gauss-newton optimization in diffeomorphic reg-
istration, in Proc IEEE International Symposium on Biomedical Imaging, 2008,
pp. 1083–1086.

[25] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear
systems, Journal of Research of the National Bureau of Standards, 49 (1952),
pp. 409–436.

[26] M. HINZE, R. PINNAU, M. ULBRICH, AND S. ULBRICH, Optimization with PDE
constraints, vol. 23, Springer Science & Business Media, 2009.

[27] E. KALNAY, Atmospheric modeling, data assimilation and predictability, Cambridge
University Press, 2003.

60

Bibliography

[28] D. A. KNOLL AND D. E. KEYES, Jacobian-free Newton–Krylov methods: a survey
of approaches and applications, Journal of Computational Physics, 193 (2004),
pp. 357–397.

[29] R. K.-S. KWAN, A. C. EVANS, AND G. B. PIKE, An extensible MRI simulator for
post-processing evaluation, in Visualization in Biomedical Computing, vol. 1131 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 1996, pp. 135–140.

[30] R.-S. KWAN, A. C. EVANS, AND G. B. PIKE, MRI simulation-based evaluation of
image-processing and classification methods, IEEE Transactions on Medical Imaging,
18 (1999), pp. 1085–1097.

[31] R. J. LEVEQUE, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in
Applied Mathematics, Cambridge University Press, 2002.

[32] A. MANG AND G. BIROS, An inexact Newton–Krylov algorithm for constrained diffeo-
morphic image registration, SIAM Journal on Imaging Sciences, 8 (2015), pp. 1030–
1069.

[33] , Constrained H1-regularization schemes for diffeomorphic image registration,
SIAM Journal on Imaging Sciences, 9 (2016), pp. 1154–1194.

[34] , A semi-Lagrangian two-level preconditioned Newton–Krylov solver for con-
strained diffeomorphic image registration, SIAM Journal on Scientific Computing, 39
(2017), pp. B1064–B1101.

[35] A. MANG, A. GHOLAMI, AND G. BIROS, Distributed-memory large-deformation diffeo-
morphic 3D image registration, in Proc ACM/IEEE Conference on Supercomputing,
no. 72, 2016.

[36] A. MANG, A. GHOLAMI, C. DAVATZIKOS, AND G. BIROS, CLAIRE: A distributed-
memory solver for constrained large deformation diffeomorphic image registration,
arXiv preprint arXiv:1808.04487, (2018).

[37] A. MANG, A. GHOLAMI, C. DAVATZIKOS, AND G. BIROS, PDE-constrained optimization
in medical image analysis, Optimization and Engineering, 19 (2018), pp. 765–812.

[38] A. MANG AND L. RUTHOTTO, A Lagrangian Gauss–Newton–Krylov solver for mass-
and intensity-preserving diffeomorphic image registration, SIAM Journal on Scientific
Computing, 39 (2017), pp. B860–B885.

[39] M. I. MILLER, A. TROUVÉ, AND L. YOUNES, On the metrics and Euler–Lagrange
equations of computational anatomy, Annual Review of Biomedical Engineering, 4
(2002), pp. 375–405.

[40] M. I. MILLER, A. TROUVÉ, AND L. YOUNES, Geodesic shooting for computational
anatomy, Journal of Mathematical Imaging and Vision, 24 (2006), pp. 209–228.

[41] J. MODERSITZKI, Numerical methods for image registration, Oxford University Press,
2004.

61

Bibliography

[42] , FAIR: Flexible algorithms for image registration, vol. 6, SIAM, 2009.

[43] J. NOCEDAL, Updating quasi-newton matrices with limited storage, Mathematics of
computation, 35 (1980), pp. 773–782.

[44] J. NOCEDAL AND S. J. WRIGHT, Numerical optimization, Springer, 2nd ed., 2006.

[45] N. PETRA, J. MARTIN, G. STADLER, AND O. GHATTAS, A computational framework for
infinite-dimensional Bayesian inverse problems Part II: Stochastic Newton MCMC with
application to ice sheet flow inverse problems, SIAM Journal on Scientific Computing,
36 (2014), pp. A1525–A1555.

[46] T. POLZIN, Large Deformation Diffeomorphic Metric Mappings–Theory, Numerics, and
Applications, PhD thesis, University of Lübeck, 2018.

[47] Y. SAAD, Iterative Methods for Sparse Linear Systems, SIAM, 2nd ed., 2003.

[48] V. SIMONCINI, Reduced order solution of structured linear systems arising in certain
pde-constrained optimization problems, Computational Optimization and Applica-
tions, 53 (2012), pp. 591–617.

[49] A. SOTIRAS, C. DAVATZIKOS, AND N. PARAGIOS, Deformable medical image registra-
tion: A survey, IEEE Transactions on Medical Imaging, 32 (2013), pp. 1153–1190.

[50] A. STANIFORTH AND J. CÔTÉ, Semi-Lagrangian integration schemes for atmospheric
models–a review, Monthly Weather Review, 119 (1991), pp. 2206–2223.

[51] G. W. STEWART, A Krylov–Schur algorithm for large eigenproblems, SIAM Journal on
Matrix Analysis and Applications, 23 (2002), pp. 601–614.

[52] A. TROUVÉ, An infinite dimensional group approach for physics based models in pattern
recognition, tech. rep., Laboratoir d’Analyse Numerique CNRS URA, Universite Paris,
1995.

[53] , Diffeomorphisms groups and pattern matching in image analysis, International
Journal of Computer Vision, 28 (1998), pp. 213–221.

[54] F.-X. VIALARD, L. RISSER, D. RUECKERT, AND C. J. COTTER, Diffeomorphic 3D image
registration via geodesic shooting using an efficient adjoint calculation, International
Journal of Computer Vision, 97 (2012), pp. 229–241.

[55] X. YANG AND M. NIETHAMMER, Uncertainty quantification for LDDMM using low-
rank Hessian approximation, in Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015, Springer, 2015, pp. 289–296.

[56] L. YOUNES, Shapes and diffeomorphisms, Springer Science & Business Media, 2010.

[57] M. ZHANG AND P. T. FLETCHER, Finite-dimensional Lie algebras for fast diffeomorphic
image registration, in Information Processing in Medical Imaging, vol. 25, 2015,
pp. 249–260.

62

[58] , Fast diffeomorphic image registration via fourier-approximated lie algebras,
International Journal of Computer Vision, 127 (2019), pp. 61–73.

[59] M. ZHANG, N. SINGH, AND P. T. FLETCHER, Bayesian estimation of regularization
and atlas building in diffeomorphic image registration, in Proc Information Processing
in Medical Imaging, Springer, 2013, pp. 37–48.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	Image Registration
	Overview
	Own Contribution and Thesis Outline
	Related Work

	Geodesic Shooting
	Optimization
	Iterative Optimization Methods
	Gradient Descent
	Newton's Method
	Gauss-Newton
	BFGS and L-BFGS

	Optimize-then-Discretize
	Gradient of the Optimization Functional
	Vector Valued Momentum
	Scalar Valued Momentum

	Hessian of the Optimization Functional
	Vector Valued Momentum
	Scalar Valued Momentum

	Summary

	Discretization
	Spatial Discretization
	Discretization of the Optimization Functional
	Grid Transfer Operations – Prolongation and Restriction

	Temporal Discretization
	Heun's Method
	Semi-Lagrangian Method

	Krylov Subspace Solver
	Summary

	Preconditioners
	Inverse Regularization Term
	Coarse Grid Preconditioner
	Low Rank Approximation
	Low Rank Approximation on Coarse Grid
	Randomized Low Rank Approximation
	Summary

	Numerical Results
	Performance Metrics
	Optimization Methods
	Preconditioners

	General Convergence
	L-BFGS Convergence
	Spectral Properties of the Hessian and Low Rank Approximation
	Decay of Eigenvalues
	Coarse Grid
	Convergence at the Solution and Expansion Length

	Resolution Independence

	Preconditioner for Newton's Method
	Comparison of L-BFGS and Newton Methods
	Using the Semi-Lagrangian-Method
	Summary

	Outlook
	Bibliography

