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Abstract

In many real-world scenarios, multiple different kinds of physics appear together in the same system.
In order to predict the behavior of such a system, they need to be combined into one multi-physics
simulation. Simulations using partitioned coupling approaches have proved to be especially efficient
concerning resource usage and development costs. They divide the simulation domain into distinct
subdomains based on the occurring physics, and then solve them separately using single-physics
solvers. This makes them suited for execution on modern supercomputers since they are able to
profit off the massively available parallelism. Albeit only when the available cores are distributed
in accordance with the load of the single-physics solvers. Otherwise, we face resource wastage
and unnecessary increases in run-time. The most commonly used approach to this problem is to
estimate the load of the single-physics solvers by comparing their degrees of freedom and then
scaling the number of cores accordingly.

This thesis proposes a new approach based on empirical performance analysis. By employing
machine learning techniques, predictive models for the run-time of the single-physics solvers
are created. Based on these models ideal core assignments are derived through solving of an
integer optimization problem. To generate the models two approaches are considered: The first
one creates several different regression models and then picks the best fitting one, whereas the
second one uses neural networks to approximate the solver run-time. Both of them allow us to
incorporate new parameters into the models in addition to the number of cores and degrees of
freedom. This enables generalization to previously unseen parameter combinations, for example,
new discretization levels.

For a simple test case, the regression approach successfully predicts the solver run-time with
high accuracy, leading to performance improvements of over 40% compared to the old load-
balancing approach. When considering multiple parameters, the neural network approach generally
outperforms the regression approach.
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1 Introduction

Single core capabilities of CPUs have stagnated in recent years instead, the number of cores per
system is increasing. Especially supercomputers may have up to several millions of cores. For
example, the currently 1 fastest computer “IBM Summit” has a peak performance of 200,794.9
TFlop/s and a total of 2,397,824 cores [SDSM18]. Furthermore, Intel and the US Department of
Energy recently announced the building of the first exascale supercomputer capable of more than
1,000,000 TFlop/s [Cha19]. Of course, this ever-increasing parallelism requires applications that are
able to exploit the power of these machines and creates a demand for software capable of leveraging
their full potential.

Large-scale simulations proved to be one of such applications. They are utilized when practical
experiments are not feasible or too expensive and theoretical reflections do not suffice. They find
use in vehicle and aircraft design, medicine, environment, and many more fields. As diverse as their
applications are the goals of their usage: they can be used to find flaws in constructions, predict
outcomes, or gaining a better understanding of the simulated system in general. Multi-physics
simulations are a special kind of simulation, in which several kinds of different physics occur in the
same system. There are two possible strategies for realizing this type of simulation. We can either
formulate one equation system capturing the entirety of the physical framework and solve it at once
using a single solver, or we divide the system based on the occurring physics into different domains.
Then, we can simulate each of the domains separately by a single-physics solver and exchange the
necessary information. The former one is called the monolithic coupling approach, whereas the
latter is referred to as partitioned coupling.

Both approaches have advantages and disadvantages. For some instances, monolithic approaches are
more efficient and robust since they can be developed specifically for the given problem. Partitioned
coupling, on the other hand, simplifies the development process because it allows reuse of matured
solvers. Additionally, it provides more flexibility, e.g., by allowing different mesh resolutions in
different sub-domains. Lastly, it enables a new layer of parallelism by allowing the domains to
be solved at the same time (depending on the coupling scheme) which increases efficiency and
resource usage. Therefore, this thesis focuses on partitioned coupling.

1as of November 2018

15



1 Introduction

1.1 Partitioned Multi-Physics Simulations

A partitioned multi-physics simulation is composed of N different domains. Together, they describe
one physical system which is simulated by one single-physics solver per domain. For the remainder
of this thesis the words “domain”, “solver” and “participant” are used interchangeably to refer to
a partition of the simulation. Common application scenarios are, for example, Fluid-Structure-
Interaction, Fluid-Acoustic-Interaction, and Conjugate-Heat-Transfer.

The procedure for performing a partitioned multi-physics simulation can be summarized as follows:
We begin by defining the participants and simulation parameters, such as timestep length, the
maximum number of timesteps tmax, data mappings and coupling scheme. The data mapping
determines how boundary values of one domain are mapped to its neighbors and coupling schemes
describe the procedure for finding an agreement on these values. Both of these are outlined in more
detail in the two following sections. After that, we need to generate the meshes for each solver and
prepare the simulation. The actual simulation consists of an initialization step followed by tmax

timesteps where each timestep can be divided into:

1. Solve equations in each domain, using a single-physics solver and input values for the boundary
conditions.

2. Each solver computes a mapping of its data points to neighboring domains.

3. Execute coupling using the defined coupling scheme, i.e. exchange boundary information
and possibly rerun the solvers multiple times.

The individual solvers may perform smaller timesteps without exchanging boundary information
during the first step. This is called subcycling and must not be confused with the timesteps of a
simulation. After the simulation has finished, the results can be visualized and evaluated.

1.1.1 Coupling Schemes

The different domains in a multi-physics simulation are separated by a boundary. Since the values
on this boundary are shared, the participants need to agree on them, otherwise this may cause
numerical instabilities or improper modeling of the real world. Consider the flow over a heated plate
in Figure 1.1. It consists of two domains: the fluid domain (i.e. the channel) and the solid domain

Figure 1.1: Flow of a liquid through a channel over a (solid) heated plate.[Cho19]

(i.e. the heated plate). A fluid enters the channel from the left side with a temperature of 300K,

16



1.1 Partitioned Multi-Physics Simulations

Algorithm 1.1 Pseudo-code for a simulation using an explicit-serial coupling scheme.
initialize x(0)1
for t = 1, . . . , tmax do

x(t)2 ← S1(x
(t−1)
1 )

x(t)1 ← S2(x
(t)
2 )

end for

underneath it is a solid plate with a temperature of 310K [Cho19]. Both domains interact with each
other: the fluid is heated by the plate and in return changes the plate’s heat-flux by drawing thermal
energy. To model this, the boundary values of the solid plate serve as input to the fluid flow and vice
versa. There are several schemes to implement this so-called coupling, depending on properties
of the problem and choice of simulation parameters. This section gives a short introduction to the
different types of schemes, but only as far as relevant for the sake of this thesis. For further reading
and more detailed explanations see [Gat14].

Assume we have two solvers coupled in a partitioned simulation, then they can be modeled as two
operators S1 : X1 7→ X2 and S2 : X2 7→ X1, each of them taking the output of the other one as input.
In the heated plate flow example, S1 may refer to the fluid solver which takes a heat flux x1 ∈ X1 as
input and calculates the corresponding temperature on the boundary x2 ∈ X2. In return, the solid
solver S2 would take x2 as an input to calculate the heat flux [Cho17].

In general, coupling schemes can be distinguished into explicit and implicit schemes. The former
calls both solvers a fixed number of times during each timestep, without regard to the convergence of
the coupling values. This may lead to numerical instabilities due to an inaccurate representation of
the underlying physics. Implicit schemes iterate the solver-coupling until the values on the boundary
converge, which is computationally more intensive but prevents the occurrence of instabilities.
Additionally, the solvers can either be run in parallel or serial, leading to four distinctions: explicit-
serial, explicit-parallel, implicit-serial and implicit-parallel.

In an explicit-serial scheme, the first solver S1 uses the boundary values of the previous timestep
x(t−1)1 to solve the domain equations and output new coupling values x(t)2 . After the first solver has
finished, the second solver S2 does the same but uses the new coupling values x(t)2 instead. This
process is repeated until the end of the simulation tmax is reached. Algorithm 1.1 expresses this
scheme as pseudo-code.

Later in this thesis, we look at minimizing the total solve time per timestep (denoted by F). Therefore,
we want to express F depending on the run-times of the single-physics solvers f1 and f2. To derive
such an expression consider Figure 1.2a. It shows the execution of two timesteps of an explicit-serial
scheme. The solvers S1 and S2 do not run in parallel, hence F is given by the sum over the individual
solve times

FES :=
∑
i

fi . (1.1)

Explicit-parallel schemes use the values of the previous timestep (x(t−1)1 , x(t−1)2 ) to perform both
solving operations in parallel, i.e. lines 3 and 4 in Algorithm 1.2 are executed at the same time.
Considering Figure 1.2b we find that the time needed for each timestep is now given by the maximum

17



1 Introduction
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(b) Explicit-parallel scheme.

Figure 1.2: Execution diagrams for explicit-serial and explicit-parallel coupling schemes. Dashed
lines indicate that the solver is not performing any calculations and the associated cores
are idling. Conv is the convergence check of the found solution.

Algorithm 1.2 Pseudo-code for a simulation using an explicit-parallel coupling scheme.
1: initialize x(0)1 , x

(0)
2

2: for t = 1, . . . , tmax do
3: x(t)2 ← S1(x

(t−1)
1 )

4: x(t)1 ← S2(x
(t−1)
2 )

5: end for

of the individual solve times
FEP := max

i
fi . (1.2)

Implicit schemes eliminate numerical instabilities, by enforcing the convergence of the coupling
values, i.e. at the end of each timestep t it must hold that

x(t)1 = S2(x
(t)
2 ) = S2(S1(x

(t)
1 )). (1.3)

Implicit-serial schemes achieve this by performing the corresponding fixed-point iterations as
described by Algorithm 1.3. Additionally, the solution is usually accelerated and stabilized in a
post-processing step, for example, under-relaxation [Cho17]. The execution diagram depicted in
Figure 1.3a shows that run-time per timestep is now given by the sum over the run-times for each
iteration. Under the assumption that the solve time for the single-physics solvers does not change,
we can simply multiply the run-time per iteration (as given by Equation (1.1)) by the number of
iterations jmax

F IS := jmax ·
∑
i

fi . (1.4)

Implicit-parallel coupling schemes basically perform the same fixed-point iterations. The difference
is the parallel execution of the solvers (lines 5 and 6 in Algorithm 1.4).

F IP := jmax ·max
i

fi . (1.5)
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1.1 Partitioned Multi-Physics Simulations

Algorithm 1.3 Pseudo-code for a simulation using an implicit-serial coupling scheme.
initialize x(0),01
for t = 1, . . . , tmax do

j ← 0
while not converged do

x(t), j+12 ← S1(x
(t), j
1 )

x(t), j+11 ← S2(x
(t), j+1
2 )

j ← j + 1
end while
x(t+1),01 ← x(t), j1 // assign starting value for next iteration

end for

Algorithm 1.4 Pseudo-code for a simulation using an implicit-parallel coupling scheme.
1: initialize x(0),01 , x(0),02
2: for t = 1, . . . , tmax do
3: j ← 0
4: while not converged do
5: x(t), j+12 ← S1(x

(t), j
1 )

6: x(t), j+11 ← S2(x
(t), j
2 )

7: j ← j + 1
8: end while
9: x(t+1),01 ← x(t), j1 // assign starting values for next iteration

10: x(t+1),02 ← x(t), j2
11: end for

1.1.2 Data Mapping

In the previous section, we assumed that both solvers provide values for each point on the boundary,
but this might not be the case. When we have non-matching meshes, i.e. one solver uses a higher
resolution on the boundary than the other, we require rules defining how the missing values are
calculated. The different rule sets can be divided into conservative and consistent mappings.
Conservative mappings preserve the integral values of the data points. This is necessary, for
example, for forces because physics dictates that they need to be in equilibrium. In comparison,
consistent mappings produce the same values for corresponding nodes on both sides of the boundary
and are used, for example, for temperatures [Cho17].

There are three commonly used types of mappings:

• Nearest Neighbor mapping simply uses the value of the closest point on the source mesh.
We therefore only need the position of the vertices.

• Nearest Projection mapping linearly interpolates between the values on the source mesh.
The receiving mesh then projects its mesh point on the interpolation and uses the values on
the projected points.
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Figure 1.3: Execution diagrams for implicit-serial and implicit-parallel coupling schemes. Dashed
lines indicate that the solver is not performing any calculations and the associated cores
are idling.

• Radial Basis Function mapping creates interpolations using radial basis functions centered
around the data points of the source mesh. The interpolation is then evaluated on the vertices
of the receiving mesh and the corresponding values are assigned.

1.2 Load-Imbalance

Once more, consider the heated plate flow example in Figure 1.1. Assume that we employ an
explicit-parallel coupling scheme, i.e. each timestep involves the following three steps:

1. Solve the fluid domain.

2. Solve the solid domain.

3. Exchange the boundary information.

Where steps 1 and 2 are performed at the same time. Exchanging the boundary information is only
possible after both solvers have finished and is necessary before the next timestep can begin. This
gives rise to one very important question: What share of the total available cores should be assigned
to each solver to achieve maximum performance? Maximum performance, in this case, means
minimizing the overall run-time per timestep, thus minimizing the time spent waiting for the other
solver to finish.

The most common approach to deal with this problem of load-imbalance is by scaling the number of
ranks with the size of the respective domain. If the fluid domain (in the heated plate flow example)
had three times the number of elements of the solid domain, then we would assign 75% of the cores
to the fluid domain and 25% to the solid domain. While this approach is very simple to realize,
it usually does not create optimal results since it disregards many factors which may affect the
run-time of the simulation. These factors can be categorized into three classes:
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1.3 Optimization Problem

• System and Architecture properties:
Number of cores, clock rate of processors, number of nodes and cores per node 2, communi-
cation bandwidth, pipelines, branch prediction mechanisms, caches, etc.

• Properties of libraries and operating system:
The solvers make use of math and communication libraries. The choice of library and its
version affect the run-time.

• Code and problem properties: Solver and solver settings (e.g. number of iterations),
accuracy when solving, length of timesteps, problem size, number of communications, data
size for each communication, etc.

This thesis explores two ways of achieving better core assignments than the old approach. Both of
them are built around the same principle: by creating prediction models for each solver, the optimal
core assignment can be derived, by solving an optimization problem.

1.3 Optimization Problem

Let N denote the number of participants (solvers), P ≥ N the total number of available cores and pi
the number of cores assigned to solver i. Furthermore, assume that we know a function F : NN

+ → R,
which takes the ®p = (p1, . . . , pN )

T as an input and computes the run-time for one timestep. Of
course, our goal is to minimize this run-time, as expressed by the following optimization problem:

minimize
®p

F( ®p)

subject to
N∑
i=1

pi ≤ P, pi ∈ N+.
(1.6)

The constraint
∑N

i=1 pi ≤ P captures that the number of assigned cores must be less or equal to the
number of available cores.

To complete the definition we need to define the function F. Assume that we have N functions
f1, . . . , fN ∀ fi : N+ → R that predict the run-times of the solvers for a given number of cores pi,
then we can use them to compose the function F depending on the coupling scheme.

For serial schemes, the solvers are not executed in parallel, therefore one might assume that assigning
all available cores to all solvers is the best strategy [CHV13]. While this is theoretically possible,
the technical realization is difficult [Uek16]: Exchanging the boundary information is often realized
by direct point-to-point communication between ranks (see Section 4.1.1), this entails that ranks of
both domains need to be active at the same time. Using the considerations of the previous chapter,
in particular Equations (1.1) and (1.2), we can derive F for the explicit-serial and explicit-parallel
scheme as given in Table 1.1. Their implicit counterparts additionally have a factor of jmax (see
Equations (1.4) and (1.5)), but since this factor is unaffected by the number of cores (i.e. the number
of iterations until convergence does not change but the speed of each iteration), we can omit it and
end up with the same formulas as for the explicit case.

2In a supercomputer the cores are usually split up into several nodes, with higher communication bandwidth inside than
across nodes.
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serial parallel
explicit F( ®p) :=

∑N
i fi(pi) F(p) := max

i
fi(pi)

implicit F( ®p) :=
∑N

i fi(pi) F(p) := max
i

fi(pi)

Table 1.1: Minimization function depending on the coupling scheme.

(• • • •) ⇒ (•, •, • •), (•, • •, •), ( • •, •, •)

4⇒ (1+ 1+ 2), (1+ 2+ 1), (2+ 1+ 1)

Figure 1.4: Compositions of 4 into 3 parts.

1.3.1 Solving the Optimization Problem

If we do not make any assumptions about F, the problem in Equation (1.6) is a non-linear, possibly
non-convex integer optimization problem. These kinds of problems are generally very hard to solve.
Fortunately, there is a simple remedy in our case, which works independently of F: We can simply
brute-force all the possible choices for the pi. This is feasible due to 2 observations:

• The value N is typically small (usually N ∈ {2,3}).

• Evaluations of F are cheap since it is only a composition of the models fi.

To find the exact number of possible pi assignments, let us make a simplifying assumption first.
Assume that the value of F(p1, . . . , pN ) never increases when we increase only one pi and leave the
other ones fixed. This is equivalent to assuming that the total run-time never increases when only
increasing the number of cores for one solver.

Theorem 1
Under the assumption that F(p1, . . . , pN ) is monotonically decreasing in all pi, there are

(P−1
N−1

)
possible pi assignments.

Proof 1
Due to the assumption, the constraint in Equation (1.6) can be simplified to

∑N
i=1 pi = P since cases

where we do not assign all cores are now irrelevant. Therefore, the number of solutions is equivalent
to the number of compositions of P into N parts, where a composition is a concrete assignment
(p1, . . . , pN ). The number of assignments can be counted as illustrated by the example for P = 4
and N = 3 in Figure 1.4: Imagine P balls, and between each of them one can either insert a comma
or not, with N − 1 commas available in total. This will create a unique decomposition of P into N
parts with each pi given by the number of balls between commas. There are P − 1 possible places
for inserting a comma, hence the number of compositions is

(P−1
N−1

)
[Tri13]. �

For example, if N = 2 and P = 1000 we only have to check
(999
1

)
= 999 different assignments, i.e.

(999,1), (998,2), . . . , (1,999).

While the assumption made in Theorem 1 is generally reasonable, there may be instances where it
does not hold, for example, when the time spent for communication between the ranks of a solver
outweighs the time spent solving.
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1.4 Performance Analysis

Theorem 2
There are

(P
N

)
possible pi assignments such that

∑N
i=1 pi ≤ P.

Proof 2
Using Theorem 1 the number of possible assignments can be expressed as

∑P
i=N

( i−1
N−1

)
. By index

shifting we get
∑P−N

i=0

(N+i−1
N−1

)
=

(P
N

)
. �

From Theorems 1 and 2 we can conclude that the brute-force approach of solving the optimization
problem is feasible for common values of P and N , especially when we apply the assumption of
Theorem 1. Although there are extreme cases where it may not be viable. But if we have an idea
about the range of possible pi values, we can use this knowledge and incorporate it into our search
to further reduce the size of the search space.

1.4 Performance Analysis

The only piece missing to be able to use the outlined optimization method for deriving optimal core
assignments are the solve-time models f1, . . . , fN . Investigating and modeling the performance of
programs is called performance analysis or performance modeling. Previous work by Kerbyson
et al. [KAH+01] created performance models for a specific application, by examining its code in
order to find dependencies between parameters (problem size, communication bandwidth, …) and
the run-time (or other performance metrics). While this is always possible, it requires a lot of work,
expert knowledge about the application and is not feasible for very complex applications.

Instead of using analytical models, Calotoiu et al. [CHPW13] automatically create performance
models with a regression-based approach. They generate a set of candidates of optimal regressions
for varying basis functions and then pick the best model among the candidates. But in order to
define suitable basis functions, the nature of the dependence between the parameter and the run-
time must be known. Additionally, the time needed to find a model increases exponentially in the
number of input dimensions. As a result, the generation process becomes very time consuming for
an increasing number of dimensions.

Neural networks do not require predetermined basis functions and have proved to be useful for
dealing with higher dimensional problems. By cascading several layers of linear models and
applying a non-linear transformation, neural networks can express highly non-linear functions.
Oyamada et al. [OZW08] applied them to performance prediction on embedded systems, achieving
better results than linear models. Since the release of that paper in 2008, the neural network field
experienced a revolution driven by hardware and algorithmic innovations, with plenty of success in
many fields. This motivates their usage for our cause.

1.5 Summary

Our goal is to find an optimal distribution of cores to the different solvers involved in a given
simulation. Figure 1.5 outlines the steps necessary to achieve this goal.
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Figure 1.5: Workflow for finding optimal core assignments.

As a preliminary step, we need to collect data, which serves as input for the model generation. In
practice, this means that we execute a few timesteps of the simulation and measure the time each
solver takes to finish its calculations. It is important to exclude the time needed for communication
from the measurements and only consider the time spent solving the equations and calculating
mappings. Thus, it is mandatory that the solvers or coupling library provide this information via
some kind of log file. Additionally, a set of parameters must be attached to each of the measurements,
containing information about the settings of that run. In the simplest case, this is only the number
of cores assigned to each solver, but the problem size or any other of the factors mentioned in the
previous chapter may also be added.

The resulting data set then has to be parsed and preprocessed. This includes reading the necessary
values from the log files, as well as arranging them in a format that is workable by the learners. The
learner can be either one of the approaches covered in Chapter 2 or 3. They take the input data
and apply machine learning techniques in order to generate one model for each solver involved in
the simulation. These models are predictive, in other words, capable of forecasting the run-time
of their respective solver for any given combination of input parameters. But they may have flaws,
including over-fitting, under-fitting or poor accuracy outside the measured range. There are two
possible reasons this may happen: a lack of input data or wrong hyper-parameters for the learner.
The user must, therefore, evaluate the created models against his expectations, by looking at plots
and different error metrics. In case of problems, he needs to adjust the hyper-parameters or add new
simulation runs to the data set to alleviate the models’ deficits. As soon as the user is satisfied, the
models serve as input to an optimizer which calculates the optimal core assignment.

The goal of this thesis is to provide a framework, which can be used to derive optimal core assign-
ments for arbitrary, coupled multi-physics simulations. We already reduced this problem to finding
performance models for the involved single-physics solvers. In order to create these models, we
consider two machine learning approaches: Chapter 2 examines the regression-based approach
presented by Calotoiu et al. [CHPW13]. The second modeling approach employs neural networks,
hence their fundamentals are introduced in Chapter 3. Combining them with the other parts of the
pipeline yields an implementation, which is capable of computing optimal core assignments based
on input data. Chapter 4 explains the implementation alongside the process and software necessary
for generating the needed data. In Chapter 5 the implementation is evaluated for a few example
simulations. The final chapter summarizes and concludes the thesis.
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2 Regression

Assume that we are given a set of m data points, consisting of pairs (pk, yk). Each pair maps a
number of ranks pk to the run-time yk of a certain algorithm, e.g., one timestep of a simulation.
Our goal is to find a function f : N+ → R which best-possibly predicts the run-time depending
on p. This is a core problem in machine learning, and multiple approaches have been proposed to
solve it.

Linear regression is one of the best-known methods and has been successfully employed for various
problems. It works by building an approximation of the function f (pk) ≈ yk as a sum of n
coefficients c = (c1, . . . , cn)T , multiplied with some basis functions φl(p) (also called features).

f (p) :=
n∑
l=1

φl(p)cl = φT (p) · c, (2.1)

where φ(p) = (φ1(p), . . . , φn(p))T . In the following, the “·” for the scalar product is omitted.

Let Φ be the m × n matrix containing one line per data point, where the entry Φk ,l is the evaluation
of φl(pk). To determine the coefficients we define a loss function and choose the coefficients such
that the loss is minimized. A common choice is the squared error which is given by

LSE (c) :=
m∑
k=1

(yk − φ
T (pk)c)2 = | |y − Φc | |2, (2.2)

with y = (y1, . . . ym)
T . By setting the gradient to zero, we can minimize the loss and find optimal

parameters
ĉ = (ΦTΦ)−1ΦT y. (2.3)

After finding these coefficients, f (p) can be evaluated for arbitrary p.

In some instances, it is possible that the cross-product matrix ΦTΦ is (almost) singular and hence
problematic to invert. Another problem is possible over-fitting, i.e. the model has small errors on
the given input data, but does not generalize well to new data [TN17]. We can address both of these
problems by adding a small regularization parameter α to the diagonal entries

ĉ = (ΦTΦ + αI)−1ΦT y. (2.4)

This is commonly called Ridge Regression.
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2 Regression

2.1 Performance Model Normal Form

The basis functions φ define the space of functions which can be expressed by the regression. Thus,
their choice is crucial for the correct representation of the underlying patterns. In our case, we aim
to accurately reflect the behavior of computer algorithms. We, therefore, use powers and logarithms
of p:

φ(p) = pi · log j2(p) (2.5)

for some i and j. Additionally, we need to choose a value for n in Equation (2.1). This yields the
Performance Model Normal Form (PMNF) [CHPW13; Shu18]

f (p) :=
n∑

k=1

ck · pik · log
jk
2 (p). (2.6)

Since this is biased towards 0, we add another term consisting of a single constant cn+1 which is then
learned during the training process alongside the other constants. This is the same as increasing
n by one and setting in+1, jn+1 = 0, but for the remainder of this thesis, this additional term is not
explicitly stated.

Supposing ik and jk are given for k = 1, . . . ,n, we can find the coefficients c by arranging the m × n
feature matrix Φ and solving Equation (2.4). To find suitable ik and jk , we confine the search to a
finite set of values and compare all models in this search space against each other. We denote the
range of possible values for ik and jk by I and J respectively. Calotoiu et al. [CBE+16] found a
choice of

n = 2, I = {
0

4
,
1

4
, . . . ,

12

4
}, J = {0,1,2} (2.7)

to be suitable for many applications.

A concrete assignment for n and all ik and jk is called a hypothesis or model candidate. Figure 2.1
shows an example data set alongside all the candidates in the search space n = 2, I = {1,2}, J =
{1,2}. In order to pick the hypothesis which best fits the data, we need to compare the models using
some loss function. A naive approach would be to calculate the squared error from Equation (2.2)
on the same data points used for the regression, but this is very prone to over-fitting.

To combat this problem, cross-validation is applied [HBM03]: The input data set is split into training
and test data, where the training data is used to create the regression model, and the test data is
used for the loss calculation. More concretely, in k-fold cross-validation the set is split into k parts,
of which k − 1 are used as training data and the remaining one serves as test data. We can repeat
this process k times by always choosing a different test set and sum up all the losses. Choosing k
equal to the number of data points m is called leave-one-out cross-validation. While this is the most
computationally intensive kind of k-fold cross-validation (because a total of m models have to be
trained for each hypothesis), it promises the best results for small numbers of data points. This is
important because, according to past studies [CHPW13; SCH+15], as few as five data points may
suffice for finding accurate performance models. After finding the optimal set of ik and jk , we can
train on the whole data set to achieve even better results.
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2.1 Performance Model Normal Form
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(a) Example data values
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input data
i0 = 1, i1 = 1, j0 = 1, j1 = 2
i0 = 1, i1 = 2, j0 = 1, j1 = 1
i0 = 1, i1 = 2, j0 = 1, j1 = 2
i0 = 1, i1 = 2, j0 = 2, j1 = 1
i0 = 1, i1 = 2, j0 = 2, j1 = 2
i0 = 2, i1 = 2, j0 = 1, j1 = 2

(b) Candidate regression functions

Figure 2.1: An example of a set of data points and the set of hypotheses for n = 2, I = {1,2} and
J = {1,2}.

2.1.1 Loss Functions

To compare the hypotheses against each other, we should also consider different kinds of loss
functions, instead of focusing solely on the squared error. Reisert et al. [RCSW17] suggest using
the symmetric mean absolute percentage error (SMAPE).

Examining the squared error in Equation (2.2) we observe two things:

• The error depends on the range of the input data. If we assume that the prediction is wrong by
some constant factor, the error increases for large y values and decreases as they get smaller.

• Errors for different data sets are not comparable which makes interpretation hard for users.

Flores [Flo86] initially proposed SMAPE for its application in time series forecasting and defined it
as:

LSMAPE :=
100%

m

m∑
k=1

2 · |yk − f (pk)|
|yk | + | f (pk)|

. (2.8)

The value LSMAPE ∈ [0%, 200%] expresses the error of the predictor f (p) as a percentage, i.e. an
error of 0% would be perfect. This makes it easily interpretable and comparable across different
data sets and models [RCSW17].

The mean absolute percentage error (MAPE) is similar to SMAPE but without the symmetry, i.e.
the error is expressed as a percentage only of the actual value yk (instead of both the forecast and
the actual value)

LMAPE :=
100%

m

m∑
k=1

���� yk − f (pk)
yk

���� . (2.9)
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2 Regression

This means the error can be arbitrarily bad and is not upper-bounded by 200%.

For completeness sake, we also define the mean squared error, i.e. the squared error divided by
the number of test data points m

LMSE :=
1

m

m∑
k=1

(yk − f (pk))2. (2.10)

2.2 Extended Performance Model Normal Form

A major disadvantage of the PMNF is that it is only capable of modeling dependencies between
a single input parameter (i.e. the number of ranks assigned to the solver) and the output. But the
run-time of simulation code may depend on a lot more variables (see Section 1.2), for example, the
size of the input problem. Including them in our model allows us to answer questions such as:

• What is the optimal core assignment for a given problem size? Even if the simulation has
never been run for this specific problem size.

• How will the optimal run-time change for a constant core count and doubled problem size?

Assuming we have d parameters p1, . . . , pd
1, we can extend the PMNF basis functions (Equa-

tion (2.5)) to include them.

φ(p1, . . . , pd) =

d∏
l=1

pil
l
· log

jl
2 (pl). (2.11)

The result is the Extended Performance Model Normal Form (EPMNF) as proposed by Calotoiu
et al. [CBE+16]:

f (p1, . . . , pd) =

n∑
k=1

ck ·
d∏
l=1

pik ,l
l
· log

jk ,l
2 (pl). (2.12)

Instead of searching 2n parameters ik and jk , we now have to find one for each dimension, hence
2nd in total. Analogous to the one-dimensional case, we define two sets of possible values for them
ik ,l ∈ I and jk ,l ∈ J.

Unfortunately, the resulting explosion of the search space quickly becomes a problem. In the single
parameter case we have to check |I | · |J | possible combinations for each of the n terms. We do not
need to consider models with repeated terms and their order does not matter, resulting in a total of(
|I | · |J |

n

)
hypotheses. For example, the search space defined in Equation (2.7) contains

(13·3
2

)
= 741

different models.

In the d-dimensional case, the number of parameters per term increases by a factor of d. Therefore,
there are a (|I | · |J |)d possible combinations per term and

(
( |I | · |J |)d

n

)
total models [CBE+16].

Expanding the example search space to d = 2 dimensions leads to
(
(13·3)2

2

)
= 1,155,960 candidates,

or
(
(13·3)3

2

)
= 1,759,342,221 for d = 3. The number of hypotheses grows exponentially in d and

1In Section 1.3 we used the same notation, but referred to different solvers, instead of different parameters of the same
solver. For the remainder of this thesis, it is always explicitly stated which one is meant.
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2.2 Extended Performance Model Normal Form

n. Additionally, the evaluation of each hypothesis is not trivial since we need to perform all of the
cross-validation steps. In conclusion, generating and comparing all of them is generally not feasible,
except for very small search spaces.

2.2.1 Heuristics

Calotoiu et al. [CBE+16] propose two heuristics that drastically accelerate the generation process
for multi-dimensional models. The first of them prunes the search space to only include hypotheses
which are combinations of the best single parameter models. The second one is designed to speed
up the search for the best single parameter models.

Hierarchical Search

Hierarchical search aims to reduce the number of evaluated candidates, by selecting only those
model-hypotheses which are likely to be the best one. In particular, Calotoiu et al. [CBE+16]
operate under the assumption that the best d-dimensional model can be expressed as a combination
of the best single parameter models. One important thing to note is, there is no guarantee that the
best model of the full search space, is, in fact, part of the restricted one. For example, if the best
single parameter models for n = 1 and d = 2 are c1 · p21 and c2 · p2 · log2(p2), we only check the
candidates c3 · p21 · p2 · log2(p2) and c4 · p21 + c5 · p2 · log2(p2). As before, we then determine the
cross-validation based loss for both of these and choose the one with the smaller loss.

If n > 1, we need to explore all possible options that can be obtained by combining all subsets of
terms. There are 2n such subsets for each of the d single parameter models, resulting in a total of 2nd
combinations. To better understand the impact this has on the number of evaluated hypotheses, let
us look at our running example from Equation (2.7) and d = 3: In order to find the three best single
parameter models, we need to check 3 · 741 = 2223 hypotheses and then compare the 22·3 = 64
possible combinations, which makes for an overall of 2287. Reducing the full search space of
1,759,342,221 models to less than 0.02% of its original size.

Modified Golden Section Search

Hierarchical search is based on the best single parameter models, therefore we can accelerate the
multi-parameter model construction by speeding up the search for single parameter models. The idea
is to reduce the number of evaluated single parameter models by choosing the evaluated hypotheses
more intelligently, instead of trying out all of them. The approach is based on finding an ordering
of the hypotheses such that the error function is convex and hence has a unique minimum.

Calotoiu et al. [CBE+16] suggest that ranking the models by the magnitude of the first derivative at
the data point with the largest parameter value satisfies this condition. We can find the derivative by
applying the product rule to each term of Equation (2.6)

df
dp
=

n∑
k=0

ck ·
pik−1 · lnjk−1(p)

lnjk (2)
· (ik ln(p) + jk), (2.13)

where ln is the natural logarithm.
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Figure 2.2: Possible error for the example hypotheses and the points chosen by the golden section
search.

After ordering the models, golden section search is performed to find the best one. Let us consider
an example with n = 1, I = {0,1, . . . ,12} and J = {0}. Obviously, the search space then only
contains the models 1, p, . . . , p12. Assume all p ≥ 1 (for example p being the processor count), then
they are already ordered by the magnitude of their first derivatives (for the largest p).

Golden section search recursively divides the search space and identifies in which interval the
minimum is until only one model remains [Kie53]. It begins by evaluating the boundaries of
the ordered search space (i.e. h0 and h1 in Figure 2.2). Where evaluating means calculating
the cross-validation based loss L(h) as described in Section 2.1. Additionally, a third point h2
is chosen such that h1−h2

h2−h0
approximately equals the golden ratio ϕ = 1.618 (i.e. by solving the

equation for h2 and rounding to the nearest integer). The fourth point h3 is chosen in the same
fashion, but for the sub-interval [h2, h1] instead of [h0, h1]. Since the function is unimodal, we can
now pinpoint in which of the intervals our search needs to be continued. In our case, it holds that
L(h0) > L(h1) > L(h2) > L(h3), thus we can restrict the new search interval to [h2, h1]. The next
point h4 is chosen so that it divides [h3, h1] into two subintervals, with lengths according to the
golden ratio. Because L(h4) > L(h3) we can exclude the interval [h4, h1] and continue with the
interval [h2, h4]. In general, we always exclude the interval which is not adjacent to the current
minimum. This process is repeated until the optimal solution h6 is found. In this example, the
application of modified golden section search reduced the number of model evaluations from 13 to
7, when compared to traversing the whole search space. For larger search spaces the advantages
become even more apparent: Calotoiu et al. [CBE+16] mention instances where 24,804 possible
candidates can be reduced to as few as 25.
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3 Neural Networks

The deployment of deep learning methods has experienced a surge in the past 10 years for various
applications. Notably due to their success in pattern recognition and image classification, they
have been tried out as a remedy to many challenges. Although neural networks have existed since
1943 [MP43], they have barely been used in practice before the 1980s for two reasons: First, the
computers were not sophisticated enough to handle large neural networks. And second, there was
no efficient way to train them. These things changed due to technical progress and the introduction
of the backpropagation algorithm in 1974 [Wer74]. Over the following years, neural networks
were applied to different problems but fell out of favor for more specialized methods. Until new
algorithms and improved hardware made them the best choice for certain problems (e.g. image
classification [KSH12] and speech recognition [GMH13]) in the early 2010s.

They beat other methods due to the fact, that they are able to learn complex (non-linear) functions,
without requiring additional knowledge by domain experts. Additionally, they are able to incorporate
large numbers of input parameters into the model, without being limited by dimensionality explosion
and the associated increase in training time. Although they have one major drawback: they need a
lot of data to find good models.

Our goal is to use them to predict the run-time of the solvers that are involved in the simulation.
As discussed in Section 1.2, there are many variables that might affect the solve-time and creating
enough data is feasible if we only run a few timesteps for each data point. This makes neural
networks a potentially good choice to approach this problem. Therefore, this chapter introduces
their key concepts based on Bishop [Bis06].

3.1 Structure and Training

Neural networks exist in many different variants, but we focus on densely connected feedforward
networks, as they seem the most appropriate for our use-case. They consist of one input layer, an
arbitrary number of hidden layers and an output layer. Figure 3.1 shows a (not densely connected)
feedforward neural network with three hidden layers and one output neuron. Each hidden layer
is comprised of one or more neurons, whose output is determined by some activation function
σ : R→ R. The resulting values are then mapped to the next layer via multiplication with some
weight-matrix W . Similarly to regression each layer has a bias term. This is can be interpreted as a
neuron without any inputs and constant output of 1. The biases b are the values in the corresponding
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Figure 3.1: A schematic depiction of a neural network with 3 hidden layers.

column of the weight matrix. Neural networks can be used to represent a function with arbitrary
output-dimension f : Rd → Rn. But since we are interested in using them for predicting run-times,
considering NNs with one-dimensional output (i.e. n = 1) is enough 1.

Regression is only capable of representing functions that are linear in the input features. To be
able to model non-linear functions, the PMNF and EPMNF make use of a “trick”: By applying
a non-linear transformation to the inputs p = (p1, . . . pd) before the regression, they are able to
include functions which are combinations of powers and logarithms of p in the function space. The
problem is we need to know beforehand what kind of dependencies we are looking for. For the case
where we only considered the number of ranks as input to the problem, this worked well, but for
other parameters, we might not know a suitable relationship. In comparison, neural networks can
represent non-linear functions because the σ are non-linear.

We still need to address how the entries for the weight-matrices W are determined, i.e. how to train
the network. Algorithm 3.1 gives an overview of this process. At the beginning, the weights have
to be initialized. For example, using Glorot initialization [GB10], whereby the weights are picked
from a uniform distribution U(−a,a) with a =

√
6

nl+nl+1
, with nl and nl+1 denoting the number of

neurons on layers l and l + 1. The weight initialization strategy should be chosen in accordance with
the employed activation function. Subsequently, a loop is initiated: For each data point (p, y) we
first calculate the output of the network by forward propagation. The inputs of layer l are denoted
by zl and the corresponding activations are xl, with x0 = p the activations of the input layer. We
use the values of the output layer to calculate the loss L( f , y) and the corresponding gradient ∂L

∂ f for
the data point. Possible loss functions are, for example, the mean squared error and mean absolute
percentage error. The gradient is then propagated back through the network and used to calculate

1Although having n > 1 allows for the inclusion of other performance metrics in the model, which may be interesting in
case we want to minimize additional metrics, e.g., memory usage.
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3.2 Activation Functions

Algorithm 3.1 Training of a neural network (� is the element-wise product).
1. Weight initialization
repeat

2. Forward propagation:
∀l ∈ {1, . . . , lmax} : zl ← Wl−1xl−1 , xl ← σ(zl)

3. Calculate loss gradient:
f ← Wlmax xlmax

δlmax+1 ←
∂L( f ,y)

∂ f

4. Backpropagation:
∀l ∈ {lmax, . . . ,1} : δl ← [δl+1Wl] � [xl � (1 − xl)]T // assumes sigmoid activation
dL
dWl
← δT

l+1xT
l

5. Weight update:
Wnew

l
← Wold

l
− η dL

dWl
// Gradient descent

until stopping criterion

the loss-gradient δl for each layer l with respect to its inputs zl . The calculation of the loss gradient
δl depends on the activation function of the neurons. Using the loss-gradient δl with respect to
the inputs, we then compute the loss with respect to the weights of the layer dL

dWl
. The last step

is to actually update the weights of each layer. How exactly the weights are updated, depends on
the choice of the optimizer (see Section 3.3). With some modifications the loop may also process
several data points (also called a batch) at a time. It is executed until some stopping criterion (e.g.
the loss becomes small or the maximum number of iterations has been reached) is fulfilled. This
might include feeding the same data to the network multiple times because the network might not
converge after the first pass over the data set. Each pass over the data set is called an epoch.

3.2 Activation Functions

To define a neural network we need to pick a non-linear activation function σ which transforms the
input to a neuron to its output. There have been plenty of suggestions for possible functions, all
with different properties and use cases. Since it is difficult to predict which choice is the best-suited
for our application, this section intends to give an overview of the most common ones.

Sigmoid

The sigmoid activation function is commonly used to introduce NNs and is one of the best-known
ones. It is given by

σ(x) =
ex

ex + 1
. (3.1)

This function approaches 1 as x →∞ and 0 for x → −∞ as Figure 3.2a shows. From the figure, it
is also apparent that for large |x | the gradient becomes very small. This is problematic because the
update steps become very small as well, and the network is barely learning.
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(b) Hyperbolic tangent activation function.

Figure 3.2: Sigmoid and tanh activation functions.

Hyperbolic tangent

The hyperbolic tangent function is similar to the sigmoid activation function, but its output covers
the interval (−1,1) instead of (0,1). It is shown in Figure 3.2b and defined as:

σ(x) = tanh(x) =
sinh(x)
cosh(x)

. (3.2)

Just like the sigmoid function, the hyperbolic tangent suffers from the problem of vanishing gradi-
ents.

Rectifier

Glorot et al. [GBB11] showed that rectified linear units (ReLUs) perform better for training NNs
than sigmoid and hyperbolic tangent functions. As of 2017, they are therefore the most common
activation function among the deep learning community [RZL17]. In the simplest case, it is given
by

σ(x) = max(0, x). (3.3)

Although the gradient is still 0 for all negative inputs, it does not vanish for large x (see Figure 3.3a).
If x = 0, the gradient is undefined, but in practice, this is very rarely the case. Nonetheless, a value
for the unlikely case it happens should be selected, e.g. 0.

The problem for negative inputs can be fixed with leaky ReLUs:

σ(x) =

{
x for x ≥ 0,

εx for x < 0,
(3.4)

where ε is some small value e.g. ε = 0.01. Figure 3.3b shows this function for ε = 0.04.
Alternatively, finding ε can also be integrated into the learning process and alongside the weights.
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(b) Leaky ReLU activation function for ε = 0.04.

Figure 3.3: Rectifier activation functions.

3.3 Optimizers

The most important factor for creating well-performing neural networks are the parameters W .
During training, we essentially solve an optimization problem to find them. The set of optimal
parameters is characterized by minimizing the loss for the given training data. Unsurprisingly, the
choice of the optimizer is heavily contributing to the result, and the invention of new optimization
strategies plays a big role in the recent successes of neural networks. Based on previous work by
Ruder [Rud16], this section introduces the most common types of optimizers and assesses their
strengths and weaknesses.

All of the presented methods work in the same fashion: They begin with some initial parameter
estimate W (0) and update this estimate according to some rule W (t+1) ← W (t) + η(t)®s. Their main
difference is the choice of the search direction ®s and learning-rate (or step-size) η(t) for step (t).
The parameters are updated until either a maximum number of iterations is reached, or some
convergence criterion is fulfilled. We consider only first-order optimization schemes, meaning that
we do not utilize higher-order derivative information of our objective function and instead only use
the Jacobian.

3.3.1 Gradient Descent

Gradient descent (or steepest descent) is probably the simplest and most well-known optimization
method. The search direction ®s is just the negative gradient of the loss function w.r.t. the parameters,
resulting in the following update rule

W (t+1) ← W (t) − η
dL

dW (t)
. (3.5)

Note that the learning-rate is independent of the step (t) since gradient descent usually uses a
constant step-size. There are however implementations that use a decaying learning-rate.

For neural networks, one has to differentiate between three variants of gradient descent. They differ
in the number of data points they use per update step: Batch gradient descent accumulates the
losses for the entire data set and then performs one (large) step of gradient descent. Depending on
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the input size, this might become a problem when the data set can no longer fit into memory. For the
problems considered in this thesis, the data sets typically have between 500 and 1500 samples, hence
this is not an issue. Batch gradient descent converges to a local minimum, which might be the global
minimum of the objective function. In comparison, stochastic gradient descent only uses the
gradient of one data point at a time. This is a lot faster to calculate but may lead to high fluctuations
in the objective function. While these fluctuations are usually undesirable, this also allows the
optimizer to jump out of the current valley to other, possibly better local minima [Rud16]. Mini-
batch gradient descent2 is a middle ground between the other two. By allowing the user to define
the batch size, he can ensure the batches still fit into memory while maintaining the convergence
stability of batch gradient descent. This is the most general formulation, i.e. the other two types
of gradient descent can be considered special cases with a mini-batch size equal to the number of
samples and mini-batch size 1. Additionally, a lot of parallel and highly efficient implementations
(e.g. Hogwild [RRWN11] and Downpour SGD [DCM+12]) of mini-batch gradient descent exist,
making it the usually favored method. In the following we therefore always consider mini-batch
gradients, unless specified otherwise.

No matter which version of gradient descent is chosen, they all have two issues in common:

1. Finding a good learning-rate η is not trivial. Bad choices can either lead to slow convergence
or even cause the optimizer to diverge. Additionally, a suitable learning-rate may not even
exist, unless it can be chosen separately for all parameters.

2. If the objective function is non-convex and has multiple local minima or saddle points, gradient
descent likely converges to one of those instead of the global optimum. According to Dauphin
et al. [DPG+14], especially saddle points are a big problem and notoriously hard to escape.

Resolving these issues is one of the key challenges when developing new optimization algorithms
for neural networks.

3.3.2 Adagrad

The idea of Adagrad [DHS11] is to address the first problem by employing adaptive and parameter-
dependent learning-rates. If a parameter experienced large updates in the past optimization steps, it
should receive smaller updates than a parameter which was not updated as much. To implement
this, we sum up the squares of the gradients for each individual parameter. Let t + 1 be the current
optimization step, then the sum of all squared gradients g(t)i for parameter i is given by

g
(t+1)
i := g

(t)
i +

(
dL

dW (t)i

) 2
, with g

(0)
i = 0. (3.6)

The new learning-rate is anti-proportional to the square root of this value, meaning for individual
parameters the new update rule is given by

W (t+1)i ← W (t)i −
η√

g
(t)
i + ε

dL

dW (t)i
, (3.7)

2In literature mini-batch descent is also commonly referred to as stochastic gradient descent.
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where ε is a small smoothing term (e.g. ε = 10−8) [Rud16]. In order to formulate an
update rule for all parameters, we arrange the individual learning-rates in a diagonal matrix

G(t) := diag

(
η√

g
(t )
0 +ε
, . . . ,

η√
g
(t )
n +ε

)
, thus the new update rule is

W (t+1) ← W (t) − G(t) ·
dL

dW (t)
. (3.8)

A common choice for the global learning-rate is η = 0.01.

3.3.3 Adadelta

The major problem of Adagrad is the diminishing learning-rate if the accumulated gradients are
large. This entails that Adagrad basically stops learning as soon as the values in the matrix G(t)

become too large. Adadelta’s [Zei12] goal is to prevent this from happening while retaining the
parameter adaptive learning-rate. Instead of using the uniformly weighted sum over all the squared
past gradients, Adadelta applies an exponential weight decay for older gradients:

g̃
(t+1)
i := γg̃(t)i + (1 − γ)

(
dL

dW (t)i

) 2
, with g̃

(0)
i = 0. (3.9)

The suggested value for the weight decay factor γ is 0.9.

In addition, Zeiler [Zei12] mentions the need for a global learning-rate η as another drawback of
Adagrad. In order to eliminate it from Equation (3.7), it is replaced by the sum of squared parameter
updates, with the same exponential weight decay applied

h(t+1)i := γh(t)i + (1 − γ)(W
(t+1)
i −W (t)i )

2, with h(0)i = 0. (3.10)

Analogously to Adagrad, we define two matrices

G̃(t) := diag
©­­«

1√
g̃
(t)
0 + ε

, . . . ,
1√

g̃
(t)
n + ε

ª®®¬ and H(t) := diag
(√

h(t)0 + ε, . . . ,
√

h(t)n + ε
)
, (3.11)

and combine them in the following update rule

W (t+1) ← W (t) − H(t)G̃(t) ·
dL

dW (t)
. (3.12)

3.3.4 ADAM

ADAM [KB15] (Adaptive Moment estimation) uses a concept called momentum to further improve
the convergence of the optimization. Momentum is conceived by observing a common problem
in Gradient descent based optimizers. Take a look at Figure 3.4a. When navigating ravines with
gradients much steeper in one dimension than the others, Gradient descent oscillates between slopes

37



3 Neural Networks

(a) Without moment. (b) With moment.

Figure 3.4: Schematic depiction of gradient descent optimization with and without utilizing mo-
mentum.

while only slowly converging towards the minimum. Momentum aims to solve this by adding a
fraction ρ1 ∈ [0,1) of the updates performed in the previous steps to the current one

m(t) := ρ1m(t−1) + (1 − ρ1)
dL
dW

W (t+1) ← W (t) − m(t).
(3.13)

The result is an acceleration of the optimization towards the bottom of the ravine and thus the
minimum.

In addition to the first moment in Equation (3.13), ADAM uses the second moment

v(t) := ρ2v
(t−1) + (1 − ρ2)

dL
dW
�

dL
dW
. (3.14)

The parameters ρ1, ρ2 ∈ [0,1) control the exponential decay of the moments and are usually close
to 1. Kingma and Ba [KB15] suggest values of ρ1 = 0.9 and ρ2 = 0.999. Moreover, the moments
are initially zero-vectors m(0) = ®0, v(0) = ®0 which leads to a bias towards ®0, especially during the
first few steps. In order to counteract this, we use the bias corrected moments

m̂(t) :=
1

1 − ρt1
m(t),

v̂(t) :=
1

1 − ρt2
v(t).

(3.15)

To be clear: ρt1 is the t-th power of ρ1 and not some step specific constant (the same holds for ρt2).
The ADAM update rule is then

W (t) ← W (t−1) − η
m̂
√
v̂ + ε

. (3.16)

The authors suggest a global learning-rate of η = 0.01 and a smoothing value of ε = 10−8.

Empirical evidence [KB15] shows that ADAM outperforms other optimizers in terms of convergence
speed and quality of the found solution in many cases. In general, adaptive learning-rate methods
seem to be well suited for sparse input data sets, such as the ones we consider in Chapter 5 [KB15;
Rud16].
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(a) Fully connected neural net-
work.

(b) Neural network with dropout
of 0.5 for each layer.

Figure 3.5: A 2 hidden-layer neural network with and without Dropout applied.

3.4 Regularizations

Just like regression, neural networks may suffer from over-fitting, meaning that, after training, the
performance is good on the training data set, but poor on test data due to a lack of generalization.
This section presents different techniques and extensions to prevent this.

3.4.1 Dropout

Dropout [SHK+14] counteracts over-fitting by randomly deactivating some neurons during each
training step (batch). Figure 3.5a shows a fully connected neural network with 4 layers and 4 neurons
for the input as well as each hidden layer. Applying a Dropout of p = 0.5 to a 4 neuron layer means
choosing 2 neurons uniformly at random and disabling them, as shown by the black neurons in
Figure 3.5b. 3 This includes removing all their inputs and outputs, which is equivalent to setting the
corresponding entries of the matrix Wl to zero. Reducing the number of neurons leads to larger
updates to the weights of the neurons. During testing, i.e. after the training has finished and the
neural network is used for prediction, all neurons are enabled, hence we have to compensate for that
by scaling all weights with (1 − p). This way we have the same expected output value during test
and training time [SHK+14]. Training multiple models and subsequent combination of them to get
a better model improves the results for many machine learning techniques. But for neural networks,
it was too impractical and compute intensive to train multiple networks. Dropout can be understood
as a way of realizing this while still making training efficient and feasible.

3Note that in the original paper [SHK+14] the probability p is defined as the probability to retain a neuron, whereas we
define it as the share of disabled neurons in a layer, which is consistent with the definition used in Keras [Cho+15].
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3.4.2 Shuffling

The training data for our neural network is the output of some parser (see Section 4.2). It is
therefore likely that it has some kind of inherent order, for example, the samples may be sorted
alpha-numerically by the name of the log files. The order of the samples affects the gradients used
during optimization (and thus the result) because it changes which samples are put together into
batches. Hence it is a good idea, to shuffle the data set before using it as training data. An even
better idea is to shuffle the data after every epoch for three reasons:

• Different batch gradients during each epoch allow the optimizer to escape local minima and
jump to new potentially better ones

• We use batches under the assumption that their gradients serve as a good approximation of
the global gradient (over all samples). It is possible that some of the batches have “bad”
(unrepresentative) gradients, which may ruin the optimization results. This becomes much
less probable when shuffling after each epoch.

• As described in Section 3.3 some of the optimizers use adaptive learning-rates based on the
previous steps. If we use the same mini-batches, the points will be biased by their ordering.
For instance, in Adadelta the most recent update has the largest effect on the g̃ and h values
and therefore on the current step.

The only exception is if we have some kind of expert knowledge about the data which makes training
in a certain order better.

3.4.3 Batch Normalization

As mentioned in Section 3.1, a good weight initialization is choosing them ∼ U(−a,a) with
a =

√
6

nl+nl+1
. The reasoning is that, for this choice, the output variance is equal to 1 (as-

suming the input variance is equal to 1) which facilitates learning [GB10]. Unfortunately, this
property is lost more and more after each update step, a phenomenon to which Ioffe and Szegedy
[IS15] refer to as internal covariance shift. Batch normalization [IS15] prevents this by applying
a transformation to all outputs, such that the mean is 0 and the variance is 1. Evaluation of this
method has shown that using it

• allows for higher learning-rates without causing the optimization to become unstable,

• makes the network less sensitive to weight initialization,

• serves as additional regularization [IS15].

Batch normalization must not be confused with normalization of the input data. Input normalization
refers to scaling and shifting of the input parameters such that their values are in the interval [0,1].
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The previous chapters all focused on theoretical aspects of simulations, load-balancing, and machine
learning, while this one is about the software for a practical realization. We will first take a look at
tools for running the coupled simulations to create the necessary run-time measurements. After
that, an implementation is presented which solves the load-balancing problem by using this data.

4.1 Tools

Realizing a coupled multi-physics simulation requires sophisticated tools. The two most important
aspects are the solvers and coupling library. For our purposes, we use the coupling library preCICE 1,
as well as the single-physics solver Ateles. Additionally, we may need tools to post-process and
visualize the results. But since we are not interested in the actual results and only care about the
run-time of the solvers, they are not presented here.

4.1.1 preCICE

One of the main advantages of partitioned coupling is the reuse of already existing solvers. This
reduces development costs and allows for easy migration to different solvers if needed. Of course,
this flexibility comes at a price; we need a way of combining multiple single-physics solvers to one
multi-physics solver. Fortunately, there is preCICE [BLG+16] which is a library developed exactly
for this cause.

Figure 4.1 shows an overview of how preCICE works. It provides three important functionalities
for realizing a coupled multi-physics simulation:

1. Inter-solver communication: In order to exchange boundary information, the participants of
a coupled simulation need to be able to communicate with each other. preCICE creates the
necessary communication channels using either MPI ports or TCP/IP sockets. Channels are
created between individual ranks of the different solvers on a point-to-point basis without a
central server. However, one process per solver is tasked with steering the simulation [Cho17].

2. Calculation of data mappings: preCICE supports all three of the mappings described in
Section 1.1.2 in their consistent and conservative form.

3. Implementation of coupling schemes: preCICE supports all four of the coupling schemes
mentioned in Section 1.1.1 (explicit-serial, explicit-parallel, implicit-serial and implicit-
parallel).

1preCICE: http://www.precice.org/
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Figure 4.1: Overview of preCICE’s functionalities and solver interaction. (Source: http://

precice.org.)

The individual solvers are treated as black-boxes by preCICE, ignoring their internal state and only
manipulating the inputs processing the output. preCICE is a library, meaning that it does not call
the solvers but the solvers call preCICE. It is, therefore, necessary to create a so-called adapter for
each solver, which serves as an interface between the solver and preCICE. Via the adapter preCICE
has access to the solver’s data and control elements [Cho17].

To run a simulation using preCICE, the user must provide an XML-configuration-file. This file is
used to define the involved participants, as well as configuring certain aspects of the simulation. This
includes selecting a coupling scheme, a data mapping method, and the communication method.

4.1.2 Ateles

Ateles is part of the APES (Adaptable Poly-Engineering Simulator) framework, which is developed
at the chair of Simulation Techniques and Scientific Computing of the University of Siegen. The
framework is developed as a solution for performing mesh-based simulations on supercomputers
and therefore needs to be highly scalable. It is built around the TreElM library [KHZR12] for
octree meshes. Ateles is the frameworks acoustics far-field solver and uses the modal Discontinuous
Galerkin Method for discretization. It supports solving of inviscid and linearized Euler, as well as
compressible Navier-Stokes equations. Due to its high scalability and compatibility with preCICE,
it is the ideal solver for the validation of the proposed load-balancing method.
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4.1.3 Seeder

Just like Ateles, Seeder is part of the APES suite. Its function is to generate the meshes, which then
serve as input to the solvers (e.g. Ateles). For our purpose, this is necessary when we want to vary
the input size of the problem. This allows us to quickly generate samples by running simulations for
different numbers of elements.

4.2 Implementation

The previous section explained the tools for running simulations. They allow us to generate the
necessary data for the pipeline in Figure 4.2. For the remaining steps (orange box) a Python

Implementation

Models

Data 
Simulation 

runs 

Model 1
Model 2 optimal core

assignment
...

Evaluation 
(Plots / Errors) 

Parser Learner Optimizer

Figure 4.2: Pipeline for finding optimal core assignments.

implementation was developed. This section presents this implementation, alongside the choices
made during the development process.

4.2.1 Overview

Python 3 2 was used as programming language for several reasons:

• Rapid-prototyping: Pythons simple syntax, and the fact that it does not need to be compiled,
ensure that changes and new ideas can be realized quickly.

• Library support: As explained in the previous chapters, a wide range of different fields are
combined in our program, for example, combinatorics, machine learning and visualization.
Python libraries already provide a lot of the needed functionalities in an easily accessible way.

• Portability: Sometimes it might be desired to run the program on the same computer as the
simulation since this eliminates the need to transfer the log files. Python distributions are
readily available for most operating systems, therefore this is no problem in most cases.

2Python: http://www.python.org/
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Figure 4.3: Simplified UML-Diagram of the application.

Figure 4.3 shows a simplified UML-Diagram of the applications class structure. It is apparent
that the design of the application maps the steps of the pipeline to classes, which are connected
by the Main class. Thus the structure of the program is easily understandable and maintenance is
unproblematic. Also, the tool is extensible, for example, adding new kinds of learners, optimization
criteria, or parsers for different file types is possible.

4.2.2 Parser

Loading the data into the program is done by a parser. Its job is to read the output files created by
preCICE or the solvers, extract the needed values, and convert them into a format that is usable
by the rest of the program. The parser supports five different file types: preCICE event csv files,
preCICE event json files, Ateles timeinfo files, Seeder mesh header files, and generic .ini files. The
first three of those can be used to find information about the run-time and the number of cores per
solver, the mesh header files contain information about the problem size and the .ini files can be
used to add custom variables. The output of the parser is an array where each row represents one
data point. A data point consists of the parameters and the corresponding run-time.

preCICE Event Files

Performing a simulation with preCICE produces log files with information about the simulation-run.
One such log file is created for each domain of the simulation. Most importantly, they contain
details about certain events alongside a timestamp and the MPI-rank. For all relevant steps during
the execution such an event is triggered, including the handoff to the solver code and the reentrance
to the preCICE code, as well as the beginning and end of the mapping calculation. This allows us to
calculate the solve time for each time step for each rank by summing up the time needed for solving
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Listing 4.1 Defining hardware properties using a params.ini file.
[DEFAULT]

clock_rate=2600

cores_per_node=28

interconnect_bandwidth=5100

and mapping. The median value of these run-times, together with the core count p (and possibly
additional parameters) serves as one data point for this solver. To find p, we simply take the highest
observed rank number and add 1.

Ateles Timeinfo Files

There may be circumstances under which the preCICE event files are not available, for example,
when running non-coupled simulations in order to generate data for testing a learner. If the solver is
Ateles, we can analyze its output files instead. It generates a timeinfo file containing a table with
minimum, maximum and average run-time for various steps during the simulation. This includes
the time spent solving (referred to as simLoop).

Seeder Mesh Header Files

Part of the generated mesh by Seeder is a header.lua file. It contains various details about the
generated mesh, including the number of elements, i.e. the mesh size. All we have to do is read the
appropriate line beginning with nElems.

Generic ini Files

An ini file is a simple text file consisting of one or more sections. In Listing 4.1 the only section is
the default section. Each section defines multiple parameters and assigns values to them. This can
be used to add variables, which should be included in the learning process, but are not part of any
other file, e.g. hardware properties. To parse these files the Python library configparser is used.

4.2.3 Optimizer

Implementing the optimizer, according to the description in Section 1.3, is straight forward. In
order to entirely define an optimization problem the user needs to provide:

• The one-dimensional functions f1, . . . , fN to compose the target function.

• The coupling scheme which defines the target function F.

• An upper bound for the total number of cores P.
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Listing 4.2 Creating compositions of P into N parts using Python.
def compositions(self, P, N, parent=tuple()):

"""

Generator for all the compositions of P into N parts,

without zero values in any of the positions.

E.g. for P=5 N=2: [1,4], [2,3], [3,2], [4,1]

"""

if N > 1:

for i in range(1, P):

if i < N - 1:

continue

if P - i not in self.p_range:

continue

for x in self.compositions(i, N - 1, parent + (P - i,)):

yield x

else:

if P not in self.p_range:

return

yield parent + (P,)

Listing 4.3 Creating compositions of all numbers ≤ P into N parts using Python.
def less_or_equal_compositions(P, N):

"""

Generator for all compositions of numbers less or equal to P into N parts.

without zero values in any of the positions.

E.g. for P=5 N=2: [1,1], [1,2], [1,3], [1,4], [2,1], [2,2], ... [4,1]

"""

for i in range(N, P + 1):

for comp in self.compositions(i, N):

yield comp

Additionally, there are two optional parameters: The first allows the user to define a range to restrict
the possible number of cores each solver may be assigned. The second one is a flag which, if passed,
causes the optimizer to not assume that F(p1, . . . , pN ) is monotonically decreasing, this means that
it has to check all assignments such that

∑N
i pi ≤ P, instead of

∑N
i pi = P.

Without the flag, all necessary compositions can be created using the recursive implementation
in Listing 4.2. If the flag is passed, we can reuse this implementation and repeatedly call it for
all integers in the interval [N,P] to generate all compositions, as shown in Listing 4.3. All left
to do is to iterate over all these compositions (p1, . . . , pN ), evaluate the function F, and pick the
composition with the lowest value F(p1, . . . , pN ).

4.2.4 Learner

Learners (PMNF-Regressor, EPMNF-Regressor, and NN-Learner) have to adhere to the LearnerIn-
terface which specifies two functions: predict and learn. The former is only a template function,
whereas the latter accepts the data points as parameters, performs some checks, and then calls the
actual implementation (learnImpl) of the subclass. For the regression learner, this is either the
PMNF-Regressor in the one-dimensional case or the EPMNF-Regressor for d > 1.
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Listing 4.4 Generating all possible PMNF-hypotheses in Python.
from itertools import combinations, product

IcrossJ = product(I, J)

candidates = combinations(IcrossJ, r=n)

PMNF-Regressor

The PMNF-Regressor implements the, in Section 2.1 presented, method for finding prediction
models. It supports user-defined search-spaces and adheres to the introduced notions for n, I and J.
As a reminder, the PMNF is given by:

f (p) :=
n∑

k=1

ck · pik · log
jk
2 (p). (4.1)

Observe that each term of the PMNF can be uniquely identified by an assignment for ik and jk .
Therefore the cartesian product I × J creates all possible terms. To generate all hypotheses, we need
to find all length n combinations of these terms, without repetitions and ignoring their order. An
implementation using the itertools Python package is shown in Listing 4.4. We can now iterate this
list to find the best model among the candidates. For each hypothesis three steps are necessary:

1. Create the corresponding feature matrix.

2. Perform k-Fold cross-validation by repeatedly training a regression and evaluating it on the
remaining data set.

3. Calculate the total loss by summing up over the individual losses.

To train the regression, the scikit library [PVG+11] is used, which supports standard Linear Regres-
sion as well as Ridge Regression. The user can choose between the mean squared error and the
symmetric mean approximation error as the loss function for the second step.

EPMNF-Regressor

As described in Section 2.2, the multi-dimensional regression is covered by the Extended Perfor-
mance Model Normal Form. Finding a model can be done with two different approaches; the
unoptimized approach, covering the whole search space, and the optimized approach, which only
considers models that are combinations of the best single parameter models (see Section 2.2.1).
To find out how much the assumption made by the hierarchical search affects the quality of the
resulting model, both of them were implemented.

For the EPMNF a term can no longer be defined by a tuple (ik, jk), but by two lists of length d, i.e.
ik ∈ Id, jk ∈ Jd, hence we need to create two n × d-matrices for each model. With this observation,
composing all possible terms and hypotheses works analogously to the one-dimensional case.
We first create all possible terms Id × Jd and then generate all models by forming all length n
subsets. The corresponding Python code is shown in Listing 4.5. For large search spaces, the list
of candidates might become really big. Fortunately, Python generates each entry on-the-fly while
iterating through the list, thus memory constraints are not an issue.
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Listing 4.5 Generating all possible EPMNF-hypotheses in Python.
from itertools import combinations, product

Id = product(I, repeat=d)

Jd = product(I, repeat=d)

terms = product(Id, Jd)

candidates = combinations(terms, r=n)

Listing 4.6 Generating all combinations of subsets of terms.
for regressor in regressor_list:

# one term is defined by a pair (i,j) this generates all possible terms

terms = zip(regressor.opt_i_list, regressor.opt_j_list)

# all possible subsets of terms

regressor.powerset = powerset(terms)

# all possible combinations of terms for all variables

all_combinations = regressor_list[0].powerset

for regressor in regressor_list[1:]:

all_combinations = product(all_combinations, regressor.powerset)

The hierarchical search approach uses the best single parameter models to derive the best multi-
parameter model, therefore we use the previously introduced PMNF-Regressor to find the best
single-parameter models in a first step. This provides us with lists of ik and jk assignments for each
dimension. As explained in Section 2.2.1, we want to create all combinations of subsets of terms,
which is implemented by the code in Listing 4.6. To generate all subsets of terms for one dimension,
we first create a list of all terms out of the ik, jk-lists (line 3), and then compute the powerset (line 5).
All that is left to do, is to take the cartesian product over all these powersets (lines 7-9). In the next
step, we simply iterate over all all_combinations, assemble the corresponding i- and j-matrices,
and create the model. Minimizing the loss yields the optimal one.

Modified golden section search (see Section 2.2.1) was not implemented since hierarchical search
is sufficient to make EPMNF regression feasible.

Neural Network Learner

To implement the neural network learner, Keras [Cho+15] with the TensorFlow [MAP+15] backend
is used. Keras is an easy to use Python library for neural networks. It functions as an abstraction
layer on top of the powerful TensorFlow framework providing its capabilities in a more accessible
fashion. One of the core concepts is mapping the components of a neural network, such as layers,
activation functions, and optimizers to classes and objects. To clarify this, take a look at the example
in Listing 4.7. After importing the required libraries (line 1 and 2), a sequential neural network is
created (line 3) and populated. There is no need to explicitly define an input layer, therefore the
first layer is a hidden layer with 30 neurons and ReLu activation function (line 5). We then apply a
Dropout to that layer (line 5) and add another layer with 20 neurons and sigmoid activation (line 6).
The last layer is the output, in our case one neuron suffices (line 7). Before a model can be used, it
needs to be compiled and the optimizer and loss function defined. The final step is to feed the data
into the network (line 9), i.e. training. This example shows that Keras already packages a lot of
different choices for activation functions, loss functions, and layers. Additionally, it can be extended
by custom tailored modules.
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Listing 4.7 Example code for composing a Neural Network with 2 hidden layers and Dropout using
Keras.
import tensorflow as tf

from tensorflow.keras import layers

model = tf.keras.Sequential()

model.add(layers.Dense(30, activation='relu'))

model.add(layers.Dropout(0.3))

model.add(layers.Dense(20, activation='sigmoid'))

model.add(layers.Dense(1))

model.compile(optimizer=tf.train.AdamOptimizer(), loss='mse')

model.fit(X, y, epochs=1000, batch_size=len(X), verbose=1)

4.2.5 Evaluation

The application supports the evaluation of prediction models through the user in several ways. It is
possible to split the input data into training and test data via a user-defined function. This is crucial
for the validation of machine learning algorithms because a model might perform very well on
the input data points, but generalize poorly to new data. Only the training data is used to create
the models and the test data is used for the evaluation. After training, several error metrics and
visualizations are available to the user, including 3D and 2D-plots of the model and data points.
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This chapter presents several test cases in order to confirm the proposed method works. The main
ingredient for successfully applying this method is creating good performance models, hence a
second focus is on comparing the two modeling approaches presented in Chapters 2 and 3.

5.1 Load-balancing

The first test case we consider is a gaussian pressure pulse with half-width 0.25 and magnitude
1.0. It begins in the center and spreads over the domain as the simulation progresses, as shown in
Figure 5.1. While – strictly speaking – this is not a multi-physics simulation (because there is only
one kind of physics involved), it still has all the elements we are looking for. The system is divided
into an inner (inside the white box in Figure 5.1a) and an outer domain. Both of them use the
discontinuous Galerkin discretization and are solved using Ateles. In the inner domain the inviscid
Euler equations of scheme order 3 are solved, whereas in the outer domain we consider linearized
Euler equations of scheme order 6. The inner domain uses a finer mesh resolution with 262,144
elements in a 1 × 1 × 1 unit length cube. In comparison, the outer domain spans a cube of 5 × 5 × 5
(including the inner domain), but only has 63,488 elements. Due to the non-matching meshes,
nearest projection mapping is used. Coupling of the equations is performed by preCICE using an
explicit-parallel scheme, meaning the optimization function is given by F( ®p) := max

i
fi(pi) (see

Table 1.1). We set the pressure and background pressure for the linearized equations to 100 kPA.
The density and background density are both set 1.0 kg/m3. In both domains the timestep length is
dt = 10−6 s.

(a) Beginning of the simulation t = 0 s. (b) After t = 1.2 · 10−3 s.

Figure 5.1: Gaussian pressure pulse for different times during the simulation. The white square
indicates the domain boundary.[TPS+19]
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Number of cores 150 170 200 250 300 330 350
Median run-time [ms] 453 379 305 253 269 196 176

Table 5.1: Inner domain measurements.

Number of cores 74 110 136 142 148 174 210
Median run-time [ms] 418 281 220 229 224 186 140

Table 5.2: Outer domain measurements.

We performed our tests on the supercomputer SuperMUC at the Leibniz Supercomputing Centre
(Leibniz-Rechenzentrum) 1. Per node, it uses two Haswell Xeon E5-2697 v3 processors with 14
cores each. The nominal frequency of each processor is 2.6 GHz and the bisection bandwidth for
inter-node communication amounts to 5.1 T Byte/s.

We run 20 timesteps of the simulation for different core numbers and then parse the produced
preCICE log files. The median of the solvers’ run-times along with the number of cores serves as
input for our regression model (see Tables 5.1 and 5.2). 2 By restricting the number of measurements
to seven data points, we can evaluate how well the approach works even for few samples. The
total number of cores (inner + outer domain) is always a multiple of 28 because there are 28 cores
per node on the test machine. The core numbers for the solvers are chosen so that the expected
optimization results are within the measurement range.

Feeding them into the regression-learner with the search space

n = 2, I = {−2,−1.75,−1.5, . . . ,2.75}, J = {−2,−1, . . . 2}, (5.1)

yields the regressions shown in Figures 5.2 and 5.3. Compared to the examples in Chapter 2, a
range of negative values was included in I and J, which allows for a more accurate reflection of the
behavior exhibited by the data. Using these regressions, we solve the optimization problem for
P ∈ {280,336,392,448,504,560}. The next step is to re-run the simulation with the optimal core
assignments shown in Table 5.3. In order to confirm the quality of our models, we compare the
measured run-time for the optimized core assignments (see green points in Figures 5.2 and 5.3)
to the model predictions. We find that the deviations are usually small and the models seem to
generalize well to new data.

To assess if they can still be enhanced, we study the effect of two possible improvements. First we
increase the size of our search space by incrementing n and expanding J:

n = 3, I = {−2,−1.75,−1.5, . . . ,2.75}, J = {−2,−1, . . . 5}.

P 280 336 392 448 504 560
Inner 190 228 266 304 342 381
Outer 90 108 126 144 162 179

Table 5.3: Optimization results.

1For a full system description see https://www.lrz.de/services/compute/supermuc/systemdescription/Flyer.pdf.
2Before taking the median, it should be ensured that the solve-time is approximately the same for each timestep.
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Figure 5.2: Regression and data points for the inner domain.
i1 = −1.5, i2 = −1.0, j1 = 2.0, j2 = 2.0
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Figure 5.3: Regression and data points for the outer domain.
i1 = −0.25, i2 = 0.0, j1 = 2.0, j2 = 1.0

We choose to expand J because both values ( j1 and j2) hit the upper bound of the interval in the
original model. Second, we can use the new data points as additional inputs and incorporate them
into our model. For the inner domain, the three models are shown in Figure 5.4. While there is
a notable difference outside the measurement range, all models are very similar in the interval
[150,380]. This indicates the model is, in fact, a suitable run-time predictor in this range. However,
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Figure 5.4: Comparison of the original regression model, the model incorporating the new data
and the model for the larger search space.
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Figure 5.5: Solve-time discrepancies for the optimized core assignments.

small deviations are still possible, which may lead to non-optimal core assignments (±3 cores). But
since the actual run-time of the solvers is subject to noise and might fluctuate between timesteps,
perfect precision is unachievable anyway.

Whether the load-imbalance was successfully eliminated, becomes apparent by looking at the solve-
time discrepancy between the two domains (for optimal core assignments).
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Figure 5.6: Comparison of solve-time per timestep for the old and new load-balancing ap-
proach.[TPS+19]

If the run-time difference between the inner and outer domain solvers is large for (supposedly)
optimal core assignments, the entire method would be flawed. Fortunately, Figure 5.5 shows that the
discrepancy is generally low (≤ 23 ms) for most of the optimized core assignments. One exception
is the instance for P = 448 with a difference of 42 ms. This sample corresponds to the assignment
pinner = 304 and pouter = 104 (see Table 5.3). By examining the regression models in Figures 5.2
and 5.3 the problem becomes apparent: the model for the inner domain underestimates and the outer
model overestimates the actual run-time. Especially the prediction for the inner domain is very poor
for this particular sample. As there are two very close samples with similar results, random noise is
unlikely to be the cause. Additionally, the run-time even increases in comparison to the previous
sample with about 40 cores less. This might indicate some unexpected solver behavior, which is
hard to distinguish from noise during learning, and incorporating this into a model is difficult.

To unequivocally prove the effectiveness of the method, we can compare the run-times with those
of the old load-balancing approach. The old load-balancing approach refers to scaling the number
of cores according to the domain’s degrees of freedom. Figure 5.6 shows this comparison for the
different core numbers. The results are impressive, with about 40% run-time improvement per
iteration for all P. We can conclude that the new approach is significantly better than the old one.

In addition, it was tried to use neural networks for creating the run-time models. But the mod-
els were either heavily under- or over-fitting, and had unsatisfying results for all (tested) hyper-
parameter choices. This can generally be expected for problems with very few data points and small
dimensionality, as neural networks are not really suited for that.
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5.2 Performance Modeling

The previous section proved that the optimization and general approach are working. During our
next test case, we, therefore, focus on the performance modeling aspect. In particular, we compare
the neural network and regression approach using the same test case in a monolithic version. Instead
of dividing the simulation domain, we consider non-linear Euler equations in the whole cube.
Additionally, we reduce the timestep length to dt = 5 · 10−7 s because we want to test higher mesh
resolutions, and may violate the CFL condition [CFL28] otherwise. The other parameters and test
hardware remain unchanged.

5.2.1 Different Mesh Resolutions

A secondary goal of this thesis is to investigate the quality of performance models when including
additional parameters. A variable of particular interest is the number of elements in the grid. We use
Seeder (Section 4.1.3) to create meshes of different sizes for Ateles, and train our models using the
core number and discretization level as parameters. The discretization level l is simply the log8 of
the number of elements since the grid structure is octree based. In combination with load-balancing
this would, for example, allow us to deduce optimal core assignments for previously untested core
assignments.

We generate the data by running the simulation for l = 3,4, . . . ,8 and P = 28,42,56, . . . ,560. Levels
l = 1,2 are skipped because the number of elements (8 and 64 respectively) cannot be lower than
the number of cores. Higher levels than 8 caused problems for Ateles, which is the reason why
they are ignored as well. Moreover, Ateles crashes for l = 8 and low core numbers for an unknown
reason, leaving us with 220 total data points.

In a first test, we will split the whole data set into 80% training and 20% test data and then study
the quality of the EPMNF-Regression and neural network models. For the EPMNF-Regression,
a first task is to compare the results of searching the full search space and the hierarchical search.
Unfortunately, the full search space for d = 2 and the parameters in Equation (5.1) contains(
(20·5)2

2

)
= 49,995,000 models. The implementation is capable of evaluating about 225 models per

second on the test machine 3, which means the search would take about 62 hours. Instead we shrink
the search space to

n = 2, I = {−1,0.5, . . . ,1.5}, J = {−1,0, . . . 3}, (5.2)

totaling in
(
(6·5)2

2

)
= 404,550 candidates. The generated model, using the mean squared error as

loss function, is shown in Figure 5.7a.

While the model may not seem bad at first sight, it performs quite bad for a majority of the training
and test data points as Table 5.4 proves. A primary issue is the negligence of data points with
small levels. Since the run-time is generally low for those l, the MSE barely penalizes deviations
by the model. The result for l = 3 is depicted in Figure 5.7b 4. In contrast, the model seems to

3Intel i5-4300U, 8GB RAM
4Due to the different magnitudes of regression and data points, it seems as if the solver does not scale, when in fact it

does (see Figure 5.13).
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Figure 5.7: Plots of the EPMNF model using full search and MSE loss.

MSE (training) SMAPE (training) MSE (test) SMAPE (test)
EPMNF
(full, MSE-loss)

6997.8 140.2 6696.7 151.7

EPMNF
(full, SMAPE-loss)

17343.80 133.7 3866.5 135.9

EPMNF
(hierarchical,
SMAPE-loss)

8381.5 136.2 6841.4 143.9

Neural Network
(MSE-loss)

1721.9 95.63 633.4 81.3

Neural Network
(MAPE-loss)

1760.8 9.4 52.1 14.3

Table 5.4: Errors for the different models.

reasonably-well predict run-times for large l. A possible remedy is to use a different loss function
such as SMAPE. Albeit the results improve for l = 3, the overall model seems to underfit and is
almost insensitive to core number changes (Figure 5.8a). This is most likely due to the limited
search space.

We, therefore, continue to use the SMAPE loss and run the hierarchical search, using the same
search space. Figure 5.8b shows the model and Table 5.4 proves that it is still far from being a good
model. Even extending the search space provides no notable improvements.

To find out why it is so difficult to generate a good model using hierarchical search, take a look
at the single parameter models created in the first step of the procedure (Figures 5.9 and 5.10).
The single variable regressions need to fit all data points at the same time, without any information
about the filtered dimension. Ultimately, this leads to choosing a single-parameter model that poorly
captures the behavior of the solve-time with regard to the considered parameter (see Figure 5.9). Of
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(a) Full search EPMNF model.
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(b) Hierarchical search EPMNF model.

Figure 5.8: Comparison of the full EPMNF and hierarchical EPMNF using SMAPE loss.
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Figure 5.9: Single parameter regression for the core count.

course, we cannot expect to find a good model as a combination of single parameter models if these
are unfit. This fundamental flaw in the hierarchical search approach is hard to come by without
going back to the full search.

For an initial test of the neural network approach, we consider a network with 2 hidden layers with
30 (ReLU) neurons each and a dropout probability of 0.3 between those. Moreover, we use the
MSE as loss function and ADAM as the optimizer. The batch size is set to the number of input
data points (176), and the optimization is run for 8000 epochs. Plenty of other hyper-parameter
combinations were tested, but these showed the best results. Furthermore, we normalize the input
data by shifting and scaling the values for each parameter to the interval [0,1]. The results exhibit
the same problem as the first run of the full EPMNF search: the model is under-fitting data points

58



5.2 Performance Modeling

3 4 5 6 7 8 9

0

500

1,000

1,500

level

So
lv

e-
tim

e
[m

s]
Regression
Training data

Figure 5.10: Single parameter regression for the level.
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Figure 5.11: Slice for l = 3 of the neural network model with MSE loss.

with small l (Figure 5.11), while the overall model seems to be the best one so far considering the
errors (Table 5.4). Fortunately, Keras implements MAPE as another possible loss function. But
using MAPE increases the complexity of the objective function, hence we need to increase the
model complexity as well. We raise the number of neurons per layer to 300 and keep the other
parameters. The model depicted in Figure 5.12 and errors in Table 5.4 prove, that this is the best
modeling approach. Figure 5.13 proves that we successfully fixed the problem of under-fitting for
small l.

59



5 Validation

Cores
100 200 300 400 500

Level
3

4
5

6
7

8

So
lv

e-
tim

e

200
400
600
800
1000
1200
1400
1600

Training data
Test data

Figure 5.12: Neural network model using MAPE loss.
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Figure 5.13: Slice for l = 3 of the neural network model with MAPE loss.

Fewer Training Samples

In practice we may not always be able to generate a lot of data as quickly as for this test case for two
reasons:

• It is possible that even running a few timesteps of the simulation takes a long time, which
makes the creation of each data point expensive.
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MSE (test) SMAPE (test)
EPMNF
(hierarchical,
SMAPE-loss)

21235.4 150.8

Neural Network
(MAPE-loss)

1966.8 11.1

Table 5.5: Test errors for the different models when training on 34 and testing on 186 data points.

• Varying a certain dimension can be difficult, e.g., when accounting for hardware properties,
we have to set up the whole simulation on a different machine.

Therefore it is interesting to study, which of the performance analysis approaches better deals with a
low amount of input data.

For each level we only use the data points where p ∈ {28,84,196,294,420,504} as training data.
We end up with 34 total samples (for level 8 the data points p = 28 and p = 84 do not exist), which
is slightly more than the 5d suggested as lower bound for the EPMNF by Calotoiu et al. [CHPW13].
The remaining data is used for testing. The errors in Table 5.5 show, that the neural network
outperforms the EPMNF by a large margin. This is surprising due to the good performance of the
regression approach in Section 5.1 and the fact that the EPMNF includes additional “information”
by predetermining the basis function.

Predicting the run-time for new levels

Equipped with the insights gained during the previous tests, we now look at the models’ general-
ization properties for previously untested levels. Concretely this means, we use all data points for
l ≤ 7 as training and the rest (i.e. l = 8) as test data. Using the same hyper-parameters as in the
previous section (SMAPE-loss, 2 hidden layers, 300 neurons each), we rerun the neural network
modeling. Consider the slice of the model created for l = 8 Figure 5.14. Clearly, the model did not
learn the correct dependency between the level and run-time increase, which leads to large errors
on the test data (Table 5.6). Hyper-parameter changes (more / less neurons, different activation
functions, increase / decrease dropout) did not lead to notable improvements.

One may expect the EPMNF-Regressor to perform better in these cases since it predetermines the
dependency as a product of powers and logarithms. Unfortunately, this is not true. Figure 5.15
proves that the single variable regression fails to find the proper dependency, too. As a result, the
combined model cannot be good. Because increasing the search space does not yield improved
results as well, we need to look for another method.

By applying the log2 to the run-time of the data points before training and accounting for it later,
it is possible to significantly improve the results. Especially, for the neural network approach the
predictions become very accurate, as proven by Table 5.6 and Figure 5.16. A likely reason for this
is that the neural network has trouble to learn the exponential dependency between the level and the
solve-time. The logarithm simplifies this relationship to a linear one, as shown in Figure 5.17. One
of the major advantages of neural networks is that no prior knowledge about these dependencies is
necessary, but by using the log-improvement we are doing exactly that.

61



5 Validation

100 150 200 250 300 350 400 450 500 550

200

400

600

800

1,000

1,200

Number of cores

So
lv

e-
tim

e
[m

s]
Test data

Figure 5.14: Slice for l = 8 (test data) of the neural network model with MAPE loss.
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Figure 5.15: Single-parameter regression for the level when using l = 8 as training data.
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Figure 5.16: Slice for l = 8 (test data) of the neural network model using MAPE loss and the log-
improvement.
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Figure 5.17: Neural network model for the log2 of the run-times.
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MSE (test) SMAPE (test)
EPMNF
(hierarchical,
SMAPE-loss)

342495.8 145.7

EPMNF
(hierarchical,
SMAPE-loss,
log-improvement)

75076.8 38.9

Neural Network
(MAPE-loss)

197853.5 96.5

Neural Network
(MAPE-loss, log-
improvement)

4629.6 6.2

Table 5.6: Test errors for the different models, when using l = 8 as test data.
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Figure 5.18: Single parameter regression with respect to the level for the hierarchical EPMNF with
log-improvement.

Applying the same method, significantly improves the predictions of the hierarchical EPMNF, too.
Figure 5.18 shows that this can be attributed to the better single parameter model found for the level
variable. Although, the resulting model still underestimates the run-time for all test data points.

5.2.2 Different Hardware Parameters

Besides the simulation parameters, hardware properties have a large influence on the run-time. In
this test case, we, therefore, consider two different machines: the first is SuperMUC as described in
Section 5.1. The second is HazelHen a supercomputer at the High-Performance Computing Center
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Stuttgart (HLRS). Their hardware properties are listed in Table 5.7. Highlighted rows indicate
properties serving as additional inputs for the machine learning problem, meaning we end up with
four variables (number of cores, level, clock rate and cores per node).

SuperMUC5 HazelHen
CPU Intel Xeon E5-2697 v3 Intel Xeon E5-2680
Clock rate [MHz] 2600 2500
Total number of nodes 3072 7712
Cores per node 28 24
Memory per node [GB] 128 128
Interconnect Infiniband FDR14 Cray Aries

Table 5.7: Hardware properties of SuperMUC and HazelHen.

For SuperMUC we can reuse the samples generated for the previous tests. For HazelHen we run the
simulation for the same levels and p = 24,48, . . . ,552. We then train a network using 80% of the 352
total data points (281), with the remaining 71 samples as test data, and the same hyper-parameters as
before. Figure 5.19 visualizes these results on a per system basis, i.e. the non-displayed parameters
(clock rate and cores per node) were fixed to the respective values of SuperMUC and HazelHen.
The first thing to note is that the SuperMUC-model is almost identical to the original model (see
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Figure 5.19: Plots of the same neural network model for different clock rate and cores per node
combinations.

Figure 5.12), showing that the additional parameters are not interfering with already good results.
This claim is further supported, by the errors on the test data: MSE: 1799.0; SMAPE: 14.4.

5SuperMUC has multiple phases with different hardware properties. The information corresponds to phase 2, which is
the one used for our tests.
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Figure 5.20: Model for p = 336 and l = 6.

Figure 5.20 shows the solve-time behavior of the model with respect to the newly included parameters.
The number of cores is fixed to 336 and the level to 6. We cannot draw any conclusions about the
actual dependencies between the solve-time and the parameters for two reasons:

• The differences in hardware properties between the two systems are too large to be reduced
to (these) two metrics.

• There are not enough data points for the plotted dimensions. Since we only have two different
values for clock rate and cores per node in our data set, the neural network is incapable of
learning the dependency between them and the solve-time.

But this proves that we can use the same approach to include hardware parameters in our modeling.
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6 Summary & Future Work

This thesis introduced a novel approach for load-balancing of coupled multi-physics simulations.
We created a framework to derive optimal core assignments, which consists of two steps. First, we
use performance analysis to model the run-time of each solver, depending on the assigned number of
cores. Then, the predictions of these models are incorporated into an integer optimization problem.
Section 1.3 described a simple method to solve this problem using brute-force. In order to create
performance models, two machine learning methods were presented. The first one is based on the
work by Calotoiu et al. [CHPW13], and searches a space of candidate regressions and chooses
the best-fitting one. The other trains a neural network for the given set of run-time measurements.
Both of them were realized in a Python implementation alongside the necessary optimization and
evaluation tools.

During the validation, we found that the new approach significantly decreases the solvers’ run-times.
As expected, the neural network approach is unsuitable for single-parameter models with very low
amounts of data, but is generally favorable when considering problems with multiple parameters.
Additionally, either SMAPE or MAPE loss should be used when handling data with run-times of
different orders of magnitudes.

Despite the primarily positive results, there are some aspects that could be improved. First of all,
for very large core numbers and many different solvers involved, the proposed method for solving
the optimization problem is infeasible. For example, suppose a simulation consists of N = 4
domains and is running on a machine with P = 105 cores. Even with the simplifying assumption
from Section 1.3.1, we need to check approximately 1015 different core assignments, hence a more
efficient optimization method is needed.

Additionally, the usage of neural networks for performance modeling should be further studied by
performing other experiments. This includes enhancing hyper-parameter choices and topology to
better generalize to new parameter combinations. Especially, exponential dependencies seem to
be a problem as proven by Section 5.2.1. Furthermore, we should examine the predictive qualities
of a model for larger numbers of parameters, e.g., hardware properties. In Section 5.2.2 this was
attempted, but in the end, the lack of data prevented us from making any meaningful statement. One
may also investigate the possibility of using multiple outputs of a neural network to model different
performance metrics. This allows answering questions such as, “What is the optimal core assignment
while adhering to certain memory constraints?” Apart from improving existing approaches, there
may also exist entirely different methods that are better suited for creating run-time models.
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A Usage instructions

The implementation described in Section 4.2 is provided as command line controlled Python appli-
cation. To use it, one has to provide the files containing the parameters and run-time measurements
in a certain folder structure and then execute the program.

Folder structure

case folder

150_74

case.ini

inner.log
outer.log

170_110

inner.log
outer.log

(a) Coupled gaussian pressure pulse
2 solvers, 1 parameter

case folder

4_4_supermuc

case.ini

header.lua
params.ini
timeinfo_inner

4_4_hazelhen

header.lua
params.ini
timeinfo_inner

(b) Monolithic gaussian pressure pulse
1 solver, 3 parameters

Figure A.1: Folder structures for the coupled and monolithic gaussian pressure pulse.

In general, there is a top-level folder (case folder), which contains one subfolder for each measurement
and a case.ini describing some general properties of the problem. For the coupled gaussian pressure
pulse (i.e. two solvers and only taking the core amount into account) this is depicted in Figure A.1a.
Each sample folder follows the naming scheme p1_p2, where p1 and p2 are the amount of cores
assigned to the involved domains. For three solvers this would be p1_p2_p3. This serves as a sanity
check and is compared to the maximum rank found in the log file for each domain. The case.ini
file defines the domains, dimensions and relevant files for each sample. For the above example it is
shown in Listing A.1. The sections of this file define the domains, except the DEFAULT section
which is used for general parameters, e.g. the input dimension of the problem d = 1. For each
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A Usage instructions

Listing A.1 case.ini file for coupled gaussian pressure pulse.
[DEFAULT]

d=1

[Inner]

events=inner.log

[Outer]

events=outer.log

Listing A.2 case.ini file for monolithic gaussian pressure pulse.
[DEFAULT]

d=3

mesh_header=header.lua

additional=params.ini

[Inner]

timeinfo=timeinfo_inner

domain, the user needs to provide a file containing the run-time information, i.e. either a preCICE-
event-log preCICE-event-json or an Ateles-timeinfo-file. The first two use the events keyword and
the latter the timeinfo keyword.

For d > 1, we need to edit the case.ini file and provide files containing the additional parameters.
Figure A.1b shows the new folder structure and Listing A.2 is the new case.ini file. There is no
longer a forced naming scheme for the sample folders, in this case p1_l_system was chosen. The
new case.ini file provides the filenames for the header file and the file containing the new parameters
(params.ini). Also it uses an Ateles timeinfo file instead of the preCICE event file. The params.ini
can be used to provide arbitrary many additional inputs for the sample, e.g. the clock rate and cores
per node as shown in Listing A.3.

Running the application

To run the application the user most always provide a mode (regression, NN or parse) and the path
to a case folder. For example,
./main.py parse --case ../case_folder/

will parse the files in case_folder and output each sample with the corresponding run-time. A more
advanced call may look like this:
./main.py regression --case ../case_folder/ --plot --optimize --optimizeP 560

Listing A.3 Example params.ini file defining a clock rate value.
[DEFAULT]

clock_rate=2600

cores_per_node=28
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This will create regression models for all domains defined by the case, plot the models and run the
optimization for 560 cores.

There is a wide range of options to control the search space of the regression and other behavior of
the program. A full help text, including all parameters, can be printed using
./main.py --help

Listing A.4 Full help text of the program
usage: main.py [-h] [--case CASE] [--plot] [--optimize] [--sort] [--log]

[--plot_1d] [--no_progress] [--plot_len PLOT_LEN]

[--splitp SPLITP] [--optimizeP OPTIMIZEP]

[--no_assume_monotonic] [--alpha ALPHA] [--J_start J_START]

[--J_end J_END] [--J_step J_STEP] [--I_start I_START]

[--I_end I_END] [--I_step I_STEP] [--n {1,2,3,4,5,6,7,8,9}]

[--epochs EPOCHS]

{regression,NN,parse}

Predict and optimize the runtime for solvers.

positional arguments:

{regression,NN,parse}

Which learner to use.

optional arguments:

-h, --help show this help message and exit

--case CASE Path to case folder.

--plot Show plots of the predicted run times

--optimize Perform optimization.

--sort Sort the files into correct folders before parsing.

--log Applies the logarithm to the run-time of the data

points. This helps to increase the accuracy.

--plot_1d Will plot the best single parameter models vor multi-

dimensional regression. Or plot 1d slices for NN

learning.

--no_progress Disables progress bars.

--plot_len PLOT_LEN Plot will be generated up to the amximum p value in

the data plus this.

--splitp SPLITP p to split the dataset into training and test data

(less than p is training data).

--optimizeP OPTIMIZEP

Number of cores to use for the optimization.

--no_assume_monotonic

If this is set, the optimizer will check all possible

core assignments, instead of only those with exactly

optimizeP cores.

--alpha ALPHA Regularization parameter for the Ridge regression.

--J_start J_START Beginning of range for j exponents.

--J_end J_END End of range for j exponents.

--J_step J_STEP j exponents step size.

--I_start I_START Beginning of range for i exponents.

--I_end I_END End of range for i exponents.

--I_step I_STEP i exponents step size.

--n {1,2,3,4,5,6,7,8,9}

Number of terms for the sum

--epochs EPOCHS Number of epochs for the NN optimizer.
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