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Abstract 

Russell Henry Albert Trafford 
IMPLEMENTATION AND ANAYLSIS OF THE ISO/IEC/IEEE P21451-1 DRAFT 

STANDARD FOR A SMART TRANSDUCER INTERFACE COMMON NETWORK 

SERVICES AND ITS APPLICATIONS IN THE INTERNET OF THINGS 

Spring 2019 

John L. Schmalzel, Ph. D., P.E. 

Master of Science in Electrical and Computer Engineering 

 

 The Internet of Things (IoT) has rapidly become the paradigm for the creation 

and improvement of new and old Cyber Physical Systems (CPS), but how much longer 

can this development of IoT devices, networks, and services be sustained? The past 

decade has seen incredible growth in internet connected devices, with current estimates 

placing the number of such devices at about 20 billion in 2017, not including personal 

computers, smart phones, and tablets. Since these new and emerging markets are 

competitive, there originally was no incentive to design systems, which were built to 

have a common protocol to enable interoperability between systems. This can pose a 

large integration effort if two or more of these systems need to communicate together as 

part of a larger system. The revitalization of the IEEE 1451 family of standards can solve 

this problem. The work in this thesis proposes to solve the integration problem by 

providing a common set of services and protocols for devices. This work provides the 

basis for a common architectural foundation for future IoT development. The 

contributions of this thesis include a renewal of the language and intent of the IEEE 

P21451-1 draft standard, development of example implementations to be included in the 

standard, and the development of Open Source hardware and software aimed at lowering 

the cost of adopting this standard. 
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Chapter 1 

Introduction 

Introduction to the Internet of Things 

Smart Cities, Smart Grids, Intelligent Factories, and Autonomous Vehicles are all 

areas in which billions of dollars in technological development and research are being 

spent. There are two main underlying technologies which are being used to power these 

areas which has come to be known as the Internet of Things (IoT). The first is the 

underlying sensor and transducer technology; the second, and rapidly becoming the most 

important, is the ability for sensors to communicate. From a business standpoint, this 

poses an immense opportunity to capitalize on these emerging fields. Not only does 

industry have an interest in these interconnected systems, the expansion of the maker 

movement has led to increased availability of commercial, off-the-shelf (COTS) systems. 

From a research standpoint, the ability to collect Big Data for deep learning applications, 

analyze system performance, and coordinate extremely large distributed systems require 

many new methods to be developed and tested.  

The IoT is a paradigm, which addresses the fundamental change in the use of the 

Internet. IoT moves away from the original usage connecting people to other people or 

businesses to connecting “things.” The most generic definition of a “thing” is anything 

that can connect to the Internet and can have an IP address assigned to it, thereby 

allowing it to send and receive data. Due to the availability and ease of access to the 

internet, objects such as cars, parking meters, industrial systems, and everything in 

between falls under this definition.[1] 
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The IoT can be broken into three main elements: sensing and communication; 

data storage and analytics; and user-level applications. The most significant areas of 

development are the user-level applications, due to the amount of money companies can 

make. Companies such as Nest Labs and Samsung have released platforms based on 

giving homeowners the ability to control their lighting, heating, kitchen appliances, and 

even their locks all from their smartphone. Some companies charge for these services 

whereas others include cloud services within the price of the device. There is also a 

market for building applications, which can tie together different companies’ services 

together into one usable platform [1]. 

These applications are essentially a user interface to a server responsible for 

collecting data from multiple sources and analyzing trends within the data. An example 

of this is an office building with multiple tenants which contains a smart HVAC system 

[2] [3]. The overall system is controlled via a server which can query the thermostats in 

each room of the building and analyze whether any corrective conditioning needs to be 

done. If one of the tenants is going to have a conference of 20 people in their meeting 

room and want to make sure the room is comfortable once everyone is in the room. An 

office worker would have access to a thermostat or panel which they could set the desired 

temperature of the room. The system then begins to chill or heat the room to that 

temperature. As people start to walk into the room, the thermostat will register an 

increase in temperature and alert the main control system to adjust. This goes on 

throughout the meeting and as people leave.  

The data collected from these thermostats can improve this is the system by 

collecting and analyzing the temperature pattern that emerged to maintain the correct 
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temperature. This profile can be stored for later use in other parts of the building. This 

makes it where anyone else wishing to use the room for a meeting could pre-set the 

temperature of the room and the system could better cope with the change in occupancy. 

Using the knowledge of a future large occupancy, the system can pre-chill the room 

lower than the requested temperature so that by the time that all the persons (or heat 

sources) are in the room, the temperature of the room is at the desired level. This is just 

the surface of what an intelligent, smart building can do [2] [4]. 

It can be taken another step further by introducing occupancy sensors which 

traditionally have been used to detect whether a person is in a room. While sensors based 

on sound levels or passive infrared light can detect presence, they can not necessarily 

detect the number of people in a room. Using techniques such as facial recognition and 

radio frequency identification (RFID), the HVAC system could determine how many 

occupants are in a room and utilize this information to better condition the room. If this 

occupancy sensor network is sophisticated and distributed enough, it could even 

determine patterns and flows of persons within the building and begin to pre-condition 

rooms based on the time of day. Using micro-location techniques to pinpoint the exact 

locations of persons within a building can also aid in these patterns. With these patterns, 

the system could know, for example, that the conference rooms and other parts of the 

buildings are rarely occupied during the week. The system then could set the temperature 

higher or lower in these rooms based on the outside weather conditions to reduce the 

energy usage [5].  

This Smart HVAC system is just one subsystem with the entire Smart Building, 

and this Smart Building is just one building within a potentially smart city. Each building 
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within the city could have its own subsystems, and these buildings could communicate to 

one another in some applications. Buildings are just one part of a city. With systems such 

as traffic, lighting, utilities, air quality monitoring, pedestrian safety, and more, cities are 

complex with dynamic systems that need to communicate with multiple controllers at any 

given time. The underlying foundation of all these systems is the ability to sense, actuate, 

and communicate. The IoT provides a framework in which sensors and actuators from 

different manufactures can interoperate by communicating their information through 

gateways, brokers, concatenators, or other devices [6], [7]. 

 

IoT Networks and Fog Computing 

By its previous definition, if every sensor and actuator were to be treated as a 

Thing, hundreds of new nodes which need to be addressed and handled by the building’s 

network. This could potentially cause the building mangers to spend unnecessary funds in 

upgrading the network to handle all the new devices and traffic. However, does every 

sensor need to be able to communicate over the internet, or can some of these sensors be 

grouped together and treated as one single Thing? By grouping the sensors together, the 

number of devices that need addressing and the amount of traffic on the network can be 

reduced, while simultaneously still being able to be considered a Thing. Outside of the 

world of Smart Buildings, this is desirable for IoT networks relying on cellular networks 

to communicate over the internet back to some server. With cost being one of the driving 

factors in many decisions to adopt a new method, using this abstraction method could 

reduce the amount of hardware and data required to enable a system to be IoT capable 

[8]. 
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This is the main idea in a new field of computing called “Fog Computing”. 

Taking its name from meteorology, Fog Computing aims to be the middleman between 

traditional local (ground) computing and the newer paradigm of cloud computing. Cloud 

computing is the idea that users can have reliable, on-demand access to many hardware 

and software services which traditionally would not be available due to hardware costs. 

These types of systems reside on the internet to make access easier; however, this limits 

both the cloud service and the consumer to the capabilities of their Internet Service 

Providers (ISP). A company may have the available hardware and networking support to 

provide a service such as cloud storage of video, but if the end-user has a low-bandwidth 

connection, the quality of the service will suffer. This also can be seen in a scenario 

where multiple users with high internet speeds simultaneously attempt to access the same 

file or program. While the user can support the amount of data transfer required to run the 

service, the cloud infrastructure may not be able to handle the requests at the same time. 

With the prevalence of machine learning, deep learning, and artificial intelligence 

in most applications created today, there is also a problem with transferring that amount 

of data to a cloud service. Fog Computing also aims to reduce this traffic by extending 

the preprocessing, labeling, segmentation, or other bandwidth consuming task down to 

the devices generating the devices. In the example of the Smart Building posed above, a 

more traditional way of performing any learning on the data is to send it to a database in 

the cloud and use its resources to perform classification or training. As gateway or “edge” 

devices become more powerful and cheaper to implement, systems can now begin to do 

these tasks before reaching out to the cloud, reducing the bandwidth needed to connect to 

the cloud as well as reducing the number of requests sent to these servers.   
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These are examples of utilizing Fog Computing ideals to reduce the bandwidth of 

a smart sensor network, but so far there has been the assumption that the bandwidth is not 

limited. In more rural applications, there may not be easy access to high-speed or high-

reliability internet connections. Fog Computing can still be beneficial in these areas to 

help reduce this requirement, however, another area which has been growing is remote 

sensing systems connected by cellular networks [9]. 

Low Bandwidth: Cellular Networks 

The availability of Smart Phones and the popularity of the 4G networks provided 

in the United States has led to a sharp increase in the amount of data transmitted per user. 

While the cellular network companies are working constantly to support this traffic, what 

is going to happen when technologies such as automated vehicles which are time 

sensitive to commands and produce large amounts of sensor data come to the market? 

When a person is on Facebook or YouTube on their phone, some latency is expected in 

the form of buffering, but for an automated vehicle, having to buffer could mean making 

a life-critical decision on old data. As the IoT expands, it can only be expected as more 

sensor nodes join a network that there are going to be more of these latency issues. There 

needs to be a communication architecture developed which minimizes the amount of 

traffic added to these existing networks, while still providing users access to the 

transducer information they request. 

Cellular network companies in the United States on average are beginning to drop 

support for older network architectures and coding schemas. Multiple third-party 

companies plan to use this to their advantage and market the slower, bandwidth-restricted 

networks towards the IoT [10], [11]. An example of this type of cellular connection can 
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be seen with the Neo SIM Program. As of writing this thesis, if a network of sensors were 

to be implemented with 10 nodes, each with their own SIM card, and utilizing up to 

750kB of data per month, it would cost $27.50 for the SIM cards themselves, and $10.00 

a month for the data. There are additional costs which come in the form of hardware 

required to utilize the SIM card. Altogether, it would cost the manager of the network 

roughly $1 per node per month to keep the network running. Since most of these 

available programs charge for the amount of data utilized, it would be in the best interest 

of developers to work towards a network architecture which minimizes the amount of 

data needed to control the transducers [12]. 

To analyze where data limitations can be put in place, a model of the general 

architecture of a smart transducer network needs to be generated. At its core, most 

existing systems include a party which requests the information from or requests a 

change to a transducer module, which is connected directly to a sensor or actuator. This 

commanding party is commonly known as the Client will be referred to as such 

throughout the rest of this thesis. This Client can take the form of a variety of 

embodiments, such as a Smart Phone application, web page interface, control server, etc. 

An average consumer trying to control their lights in their house through the internet will 

most likely be using a smartphone application, whereas a large building HVAC system 

will most likely be using a control server that manages the temperatures in each of the 

rooms. For these systems to be able to work, however, all parties involved (whether 

directly or indirectly) must be able to talk and communicate over the internet. One 

interoperability problem is that there are many ways to communicate over the internet, 

each with its benefits and downfalls. With all the potential options available to 
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developers, without a scaffold to build from, there will be a multitude of different ways to 

implement a network, which can lead to integration problems. 

The Argument for Standardization 

 As the drive for connected cities and large-scale sensor networks grows 

stronger, so does the inherent need for a standardized approach to developing these 

networks. The issue with many projects created in the early days of the IoT is they were 

normally so narrow in scope. This led to decisions about the framework of the 

architecture which, at the time, seemed sufficient. However, these architectures quickly 

could run into problems once the companies or engineers tried to expand the available 

services. An example of this would be a company which started by developing 

thermostats which could be controlled from anywhere and could learn user behavior want 

to expand fully into the Smart Home market including devices such as door cameras. 

Originally the architecture for passing commands and data could be very simplistic for 

needing only single points of data, but now there needs to be support for streaming video. 

This is still only restricting this example to a singular company. Once the Smart Home 

market began to flourish, more companies with better or cheaper products may each use 

their own servers and protocols, making it very difficult to integrate with other 

companies.  This is seen in almost any facet of the IoT, not just in Smart Homes.   

At its core, most IoT systems are built for the simple task of retrieving sensor data 

or to control some transducer. Previous implementations of IoT systems varying from 

using cars within a city as central hubs for sensors to achieve a real-time flow of traffic, 

to controlling the temperature in a house, to even automated manufacturing systems 

revolve around these two fundamental functions [13].  It may seem like too much of a 
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trivialization to just say this is all that is required; but everything that happens, between 

the request being sent over the internet to the physical sensor or transducer doing 

something, is all there to facilitate the ability to read or write to a transducer. This 

freedom is what gives power to designers to customize their own proprietary way to 

communicate to sensors. Without abstraction layers or some sort of structure, there is no 

guarantee that one person’s internet capable device will be able to talk to someone else’s. 

Without the ability for subsystems to communicate easily, innovation and further 

advancement at a higher-level grind to a halt.  

By standardizing the architecture for the IoT and encapsulating specific 

responsibilities within layers of abstraction, designers and developers will have a 

foundation to build their systems from. As these networks are built, they will have at their 

core the ability to be interoperable with other systems, abstracting away the complexities 

of their own system to allow for simplistic integration into a larger distributed transducer 

scheme. There will be few people with the resources to be able to build a transducer 

network from the silicon level up to the application level, but most development into the 

IoT will come from the private sector trying to enter a brand-new market for their clients. 

These companies and corporations may only specialize in sensor modules, control boxes, 

or software platforms. It is vital to build this cyber-infrastructure in such a way that 

devices from different manufacturers have a simple way to communicate with one 

another. This can be accomplished through the IEEE 1451 family of Smart Transducer 

Network standards, allowing each abstraction layer to interact with one another with 

minimal knowledge about what is actually happening inside each layer [14], [15], [16], 

[17], [18]. 
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IEEE 1451 Current Implementations  

The architecture laid out in the IEEE 1451 family of Smart Transducer Network 

standards has been used in real-world applications spanning from traffic and air quality 

monitoring in a city to agricultural sensing networks to power generation and 

transmission. Kularatna and Sudantha focused on the generation of IEEE 1451 compliant 

gas sensor modules to measure concentrations of carbon monoxide, nitrogen oxides, 

sulfur oxides, and suspended particulate matter along with other toxic gasses. After 

comparing different sensor manufacturing techniques and discussing the necessary signal 

conditioning, they established an architecture to relay the sensor readings back to a client. 

Utilizing the Transducer Electronic Data Sheets (TEDS) as defined in the standard, 

information about each sensor connected to a module could be accessed by the client and 

is used in calculating any readings from the sensors. This information includes 

manufacturer identifiers, location information, as well as calibration dates and 

information. By utilizing the IEEE 1451 family of standards, they were able to create a 

network of these modules which allows for easy expansion to add new sensors types or 

more modules [4]. 

Kim et al [8] designed a Sensor-Ball based system for monitoring the health and 

transmission characteristics of high voltage power lines. This sensor-ball contained 

temperature sensors, wind direction, and velocity sensors, tilt sensors, a camera, and a 

GPS, along with batteries, charging circuitry, solar panels, CPU, and a ZigBee radio. 

Since these sensor-ball systems could be placed on many transmission lines, the issue of 

tracking the measurements, health, and calibration of each of these nodes became a 

daunting task, not to mention having the system work with multiple versions of the 
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hardware. In their work, the team was designing the system to be IEC 61850 compliant; 

however, a common interface method for delivering this information was not found. For 

this, they turned specifically to IEEE 1451.0 and IEEE 1451.1 to supplement these 

missing functionalities. Higuera and Polo also had a similar task in their research by 

applying the 1451 standard to a 6LoWPAN network by creating a compact Transducer 

Electronic Datasheet [19]. 

Wei, et al., analyzed the functionality of IEEE 1451 standards in use with ISO 

11783 to generate a complete set of plug-and-play capabilities for precision agricultural 

monitoring [20]. In their specific work, they applied the concept of a smart transducer 

and the Network Capable Application Processor (NCAP) to monitor weed growth, noting 

the effects of adding additional hardware to the transducer level for cost and 

functionality. Fernandes et al [12] continued this work to further develop into a common 

framework for precision agriculture and viticulture. Their team utilized a ZigBee based 

architecture for the Transducer Interface Module and a 1451.1 compliant NCAP as the 

gateway back to their database.  

Bissi, et al. [1] and Kularatna and Sudantha [4] both take on the challenge of air 

quality monitoring and the detection of potentially harmful gasses. Both groups work 

focuses on the design of a TIM, which is based on gas sensors to detect concentrations of 

volatile organic compounds. The reason these researchers chose to adapt their 

technologies to the 1451 standard was the common interface that could be provided to 

multiple types of gas sensors while having the ability to be implemented at a relatively 

low cost.  R. Wall and A. Huska worked towards generating a design platform for traffic 

signals which could be IEEE 1451 Compatible. The researchers focused on the Network 
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Capable Application Processor to Transducer connection, standardizing the way the 

traditional stoplight components connect. Utilizing this approach would allow for a 

designer to quickly choose between different components as well as simplify the software 

update process [21].  

E. Song and K. Lee proposed a webservices implementation of the functionalities 

found in the IEEE 1451.0 and IEEE 1451.5 through a Simple Object Access Protocol. In 

their test implementation, a Client could connect to an STWS compatible NCAP and read 

its corresponding Transducer Electronic Data Sheets [22]. D. Wobschall implemented a 

Network Capable Application Processor based on serial communication for 

communicating to sensors and ethernet for internet access. While this work was done in 

2002, the main principles of communication and the structure of the related TEDS are 

still carried out through the standard today [23]. A. Fatecha, J. Guevara, and E. Vargas 

proposed a reconfigurable architecture for the smart sensors within an IEEE 1451 

network. This method would utilize a Programmable System on a Chip to adapt the 

system to multiple types of transducers, while utilizing TEDS to manage the 

configuration [24]. Ma et al. developed a 1451-2 and -4 compliant data acquisition 

module. They combined the mixed-mode interface defined in 1451-4 to access TEDS 

with the serial interface defined to communicate with an NCAP [25]. 

W. Kim et al. attempted to integrate the IEEE 1451 family of standards and the 

Health Level 7 standard for exchanging sensor data from multiple medical devices. The 

main approach taken by the researchers focused on the presentation of data, formatting 

the HL7 data to better meld with the TEDS structure within IEEE 1451. The 

communication of devices was another aspect which the research used IEEE 1451 to 
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solve by addressing devices according to the standard [26]. A more traditional application 

of TEDS was implemented by Croitoru et al. who developed TEDS in an I2C based 

EEPROM connected to a PIC32 microcontroller. The main contribution was showing that 

TEDS could be located outside the sensor or transducer which allows for more flexibility 

in what transducers could be used in a 1451 design [27]. Another team focused on 

communicating TEDS information through a plug-and-play interface, Hernández-Rojas 

et al., presented a framework for virtualizing this information. Instead of storing the 

information physically on memory on the sensors or on-board the system, the TEDS 

information could be stored in any entity within the network, or in a cloud service. 

Traditionally in the standard, to reconfigure any TEDS information, you needed to 

physically access the memory with a programmer or design the sensor node with this 

ability. With a virtualized TEDS, information can be more easily accessed and modified 

as needed, also allowing for easier retrofitting of older or existing systems [28].  
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Chapter 2 

An Overview of IEEE 1451 

The IEEE 1451 family of standards can be more easily understood by looking at 

what entities are required in an IoT network to facilitate communication between a 

transducer and an end-user. A diagram of how this interconnection is found in Figure 1. 

 

Figure 1. Communication flow diagram for P21451 based transducer networks. 
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NCAP Client 

At the highest level, there is the NCAP Client Abstraction (referred to as the 

NCAP Client) which interfaces with the entity which wants to control an actuator or read 

some sensor value. The NCAP Client could be a variety of users or technology. In the 

case of a Smart City, or an extremely distributed system comprised of many subnetworks, 

each one of these sub-networks could act as an NCAP Client for another one of the 

networks.  

An example of this can be conceptualized when thinking about a city-wide 

network which utilizes both personal vehicles and public transport to monitor conditions 

within a city, much like the networks talked about in [13]. A municipality could use this 

type of network to monitor traffic flow and better the performance of their public 

transport systems by dynamically routing buses to areas with less congestion. If these 

systems were kept as two separate networks (one interfacing with the personal vehicles 

and one interfacing with the bus system), whenever the bus network wishes to check on 

the traffic flow in the car network, the bus network then becomes an NCAP Client to the 

personal car network. The main server in charge of planning routes for the busses may 

wish to probe specific sectors of the city given time of day or knowledge of a traffic 

incident within the city. If a new path is found or if major delays are imminent, bus 

drivers can be notified and they can change their routes accordingly. 

As for the everyday person using public transport, if the city were to team up with 

a service like Google, a smartphone application could be made available, which allows a 

person to not only see real-time traffic flow but also have access to the real-time 

scheduling of the bus system. In this case, an application user is an NCAP Client, since 
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they are requesting the information. However, in most cases, what the application user is 

seeing is either a modified webpage or receiving public information from a server. The 

server would be the one requesting information in a timed manner and would also be the 

part of the network to notify all users of the application if something were to happen in 

the public transit system. This all depends on how much information and functionality the 

designer of the application and the network wants to make available to the public. In this 

case, both the end-user and the server can be lumped together into a single NCAP Client 

abstraction layer. Applications like this already exist in major cities such as New York 

City and London, however they focus more on the mass transit systems such as the 

subways and buses.  

NCAP Server 

Using an abstraction-based approach, the rest of the sensing network does not 

need to know exactly how the NCAP Client is implemented, only whether it can 

communicate with it and what functions it needs available to it. The NCAP Client is 

assumed to be talking to the network over the internet, whether that is via WiFi, cellular 

data, etc. The NCAP Clients, however, do not necessarily have a point-to-point 

communication channel with the transducers themselves. What the Client is 

communicating with is one of potentially multiple Network Capable Application 

Processor (NCAP) servers, which act as the brokers between the open internet and the 

actual sensing network. In systems such as the smart city example there is public-facing 

data and private data which can make the task of point-to-point communication more 

complex.  
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Transducer Interface Module (TIM) 

Once a request for some information is reached at the NCAP Server level, it is 

then mapped to its corresponding function call as well as which method of 

communication it will use to talk to a specific Transducer Interface Module (TIM). TIMs 

contain the necessary circuitry to power and condition any transducers attached to it as 

well as contain the processing power to communicate with an NCAP Server. This 

communication is not just limited to one medium, with implementations utilizing 

techniques such as ZigBee, BlueTooth, Inter-Integrated Circuit (I2C) serial 

communications, and more. Each one of these methods of communication is covered 

within the standard, with several having their own set of Transducer Electronic Data 

Sheets (TEDS) which are stored in memory either on the transducers themselves or 

within the memory of the TIM. Along with communication specific information such as 

baud rate, TEDS contain information about the TIM as a whole as well as each transducer 

connected to it, ranging in content from what company manufactured it to calibration 

coefficients. Every TIM is required to have a set of MetaTEDS, which contain the 

information as seen in Figure 2. 

These TEDS facilitate one of the largest benefits in IEEE 1451 enabled networks, 

the ability to “hot swap” TIMs and even transducers within the network. Hot Swapping is 

the process of adding or taking away parts of the transducer network without requiring 

the system to fully shutdown or restart. A similar example of this can be seen when using 

a flash drive with a computer. When the user plugs the flash drive in, the operating 

system recognizes the new drive and begins to ready the system to communicate with the 

new device. Once the user is finished with using the drive, the computer can ensure there 
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is no more communication between it and the flash drive, and then the user can remove it. 

During this entire process, the computer never had to shut down or reboot in order to 

begin or stop using that drive. This same idea exists within this standard, where the TIM 

takes the place of the flash drive and the NCAP Server is the computer. 

  

 

 

 

Figure 2. MetaTEDS Content 
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As mentioned before, each TIM can contain multiple transducers where each 

transducer has its own Transducer Channel. This allows for easier access to specific 

sensors and allows each channel to have its own ChannelTEDS describing what the 

transducer is. In some cases, a transducer may have multiple channels assigned to it. This 

is normally seen with complex transducers which have multiple moving parts or readings. 

An example is the DHT11 temperature and humidity sensor, which returns both humidity 

and temperature information to the TIM. To demonstrate the use of multiple channels for 

one transducer, temperature and humidity readings are separated into two channels. 

When the client requests temperature, a request is formed for Channel 1 of the correct 

TIM; for humidity, the request is for Channel 2. This allows complex systems, such as a 

variable frequency drive, to be managed by a single TIM. 

 

Network Architecture 

These parts of the network come together to form an IEEE 1451 Smart 

Transducer Network as seen in Figure 3. In this figure, there is a single NCAP Client, a 

single NCAP Server, and a single TIM with multiple channels. This is a block diagram of 

one of the early implementations created to begin discovering more about what is 

necessary to create a basic smart transducer network with this standard. The initial idea 

was to simulate a smart home, utilizing a simple Android application to control both a 

light and a fan while being able to request the current temperature in the room. Using this 

basic implementation, different internet communication protocols, as well as multiple 

hardware implementations, were tested for the best suited for an application at Rowan. 
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Defining the NCAP Server 

It is the job of the NCAP Server to act as the liaison between the open internet 

and a closed network of transducers. Because of this, the services required to act as this 

gateway vary greatly, as seen in Figure 4. A communication stack must be managed to be 

able to utilize protocols such as XMPP, UDP, etc. The NCAP Server also needs to keep 

track of the NCAP Clients and TIMs registered to it, as well as manage when these 

entities want to enter or leave the network. This communication stack also manages the 

proper drivers and stacks to communicate with different TIMs, and then compose the 

correct style message to communicate with those TIMs. 

Figure 3. Block Diagram of a IEEE 1451 network consisting of one NCAP and 

Multiple TIMs 
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Communication Models. In the IEEE 1451-1 current draft, there are defined 

three different communication models which govern the flow of information and 

responsibilities of each part of the NCAP, or how the information is exchanged from the 

Client to the NCAP.  
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Figure 4. IEEE 1451 Reference Model 



 

22 

 

Client-Server model. The most fundamental communication model within 

internet communications is the Client-Server communication model. It is defined as a 

relationship between two computer programs in which one program, the “Client”, makes 

a service request to another program, the “Server”. The Server then provides its services 

to fulfill the request. The Client and the Server both typically communicate over a 

computer network on separate hardware; however, this does not mean that they both 

cannot reside in the same system. This model supports communication modes such as 

synchronous, point-to-point, and one-to-many. As can be seen in Figure 5, the NCAP 

Server (Server) provides a service based on the request from the NCAP Client (Client). 

These two terms are encapsulated under the NCAP since it is the entity which is 

responsible for communicating over the internet/network.  

While common in other applications, this model does not provide sufficient 

services required to sustain an IoT enabled transducer network. An example of how this 

model is not robust enough would be a smart home with a security system. If the security 

system relied on the homeowner constantly sending requests to the NCAP Server to 

check if any alarms are triggered, there is a risk that the notification of an event could be 

delayed or even missed. To allow for a close to real-time response from the system, the 

NCAP Server needs to asynchronously send a message to an NCAP client. 

 

 

NCAP

Client
NCAP 

(Server)

Request

Response

Figure 5. Client-Server Communication Model 
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Publish-Subscribe Communication Model. In the publish-subscribe model, 

instead of focusing particularly on the physical entities, the linkages between sources of 

data and consumers of the data are defined. An NCAP Server would be able to provide 

data for consumption by the NCAP Client. The Publish-Subscribe model is more loosely 

coupled than the client-server model and provides asynchronous communication. 

Applications and services that publish information typically do so without waiting. As 

seen in Figure 6, this model also allows for multicast publication or a many-to-many 

form of communication. This brings with it the functionality to communicate to multiple 

NCAP Clients who are subscribed to a particular “topic” of information. The most 

common topic, which is utilized in a smart transducer system, and possibly one of the 

most vital, is an Event. 

 

 

 

Figure 6. Publish-Subscribe Model 
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Event Notification Communication Model.   The noticing and coping with 

events are vital for many systems, and event management could be one of the leading 

drives towards making transducer networks smarter. In the case with measured values, 

notifying a controller or user about certain thresholds being surpassed is vital for 

maintaining the health of the system and its operations. For example, if a factory 

producing raw fish products is not notified of temperatures in their holding tanks or 

freezers, potential health issues can arise. Events can also be about the status and health 

of the network, from the arrival of a new sensor or transducer to noticing that the 

connection between the NCAP and the network has a high packet loss rate. Due to the 

number of different types of events that can be present in any given system and the 

priority these types of message take, a third communication model which handles these 

events needs to be defined. 

As seen in Figure 7, the Event Notification model is almost the exact same layout 

as the previous publish-subscribe model. The only difference coming with the addition of 

the “event” tag as part of the topic. This is to add priority to the message sent from the 

NCAP Server to the NCAP Client. This “event” tag also highlights the need for message 

validation (whether the message was received), self-automation (performing some 

immediate task with the need for NCAP Client permissions), and other considerations. 
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Figure 7. Event Notification Model 

 

 

NCAP Functionalities 

With these communication models in mind, it is now the task of the standard to 
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as can be seen in Figure 8. The request is sent every second and is treated as a broadcast 

to any NCAP Client that is willing to listen.  

 

 

   

 

In the same way, if the NCAP Server needs to shut down (possibly due to 

situations like low battery), the NCAP Server will send an NCAP Unregister Request as 

seen in Figure 9 so that the NCAP Client can handle the departure. It should be noted that 

the specifics in the content of these messages and any headers rely on other members of 

the standard family, such as IEEE 1451-1-4. 

 

 

 

Figure 9. NCAP Unregister Service 
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Another part of the registration portion of the Identification Services for the 

NCAP Server is to manage the registration of TIMs which are connected to it, as well as 

the transducers which are connected to those TIMs. One major feature that separates the 

registration portion of the Identification Services and the rest is that these services are 

NCAP Server initiated. Instead of waiting for a request from an NCAP Client, the NCAP 

performs these services on a schedule. 

Discovery Services are the services which the NCAP Client have access to and 

can initiate with a request to the NCAP Server. These provide an NCAP Client the ability 

to discover what is connected to the network from the NCAP Server level down to the 

individual transducers. Unlike the registration portion of the services, the discovery 

services are based on the “Client-Server” communication model, wherein the NCAP 

Client needs to send a request for information from the NCAP Server. At the highest 

level, there is the NCAP Server Discover service in which the NCAP Client receives a 

list of all the NCAP Servers available on the network. As can be seen in Figure 10, the 

NCAP Client sends the request out on the entire network and any available NCAP 

Servers return a message containing identifying information.  
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Figure 10. NCAP Discover Service 
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The NCAP Client can also query a particular NCAP Server as to what TIMs are 

connected to it. This TIM Discovery Service, as seen in Figure 11, is initiated by the 

NCAP Client and targets a specific NCAP Server. Upon receiving a TIM Discovery 

Service request, the NCAP server then proceeds to locate all TIMs connected to it either 

physically or wirelessly. The NCAP Server will then compile the TIM Identifications, 

TIM Descriptions, as well as the number of TIMs connected and send a response back to 

the NCAP Client. 

 

 

Figure 11. TIM Discover Service 

 

 

An NCAP Client can also request information about the Transducers attached to a 

specific TIM by sending a Transducer Discovery Service request. As seen in Figure 12, 
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contain information about what the transducer is. The request for this information is 
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handled by the TEDS Access services; however, this service provides the proper 

identification information for these transducers. 

To make a grouping of NCAP Servers possible, the NCAP Client Join and Unjoin 

services have been added to the current draft of the standard. These services are initiated 

by the NCAP Client much like those functions seen in Figure 11 and Figure 12, but have 

the same contextual information as the Registration Services. An NCAP Client can send 

an NCAP Client Join request to an NCAP, which forms a group between those two 

entities. An NCAP Client can also leave a group by sending an NCAP Client Unjoin 

request. An NCAP Client can also request a current roster of the participating NCAP 

Servers and NCAP Clients within a group. These groups enable the use of the Publish-

Subscribe Model, wherein a message being sent by an NCAP Server can be sent to 

NCAP Clients as well as other NCAP Servers. 

 

 

 

 

The addition of these services allows for much easier implementations of 

background processes such as health reporting of a TIM or NCAP Server as well as open 

the door to semi-autonomous smart transducer networks. In a factory setting with high-
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Figure 12. Transducer Discovery Service 
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temperature oven or processes, there may be hard and soft thresholds in place. The soft 

thresholds are ones which could damage the product being heated or alter a material 

property undesirably in a finished product. A hard threshold could be considered a point 

of no return, where the temperature exceeds operating thresholds. For each of these 

thresholds, different procedures may be used to force the system back to a normal 

operating range. If the temperature rises above the soft threshold for a given process, a 

normal event notification message sent to a plant controller may be enough to handle the 

situation. If the process goes over a hard threshold the NCAP Server, which is 

communicating to the monitoring TIM, could send out an event notification. However, 

instead of just going to an NCAP Client, this message is also sent to another NCAP 

Server within a group. The notified NCAP Server could then proceed to initiate 

emergency procedures while the plant controller can halt operations in other parts of the 

factory safely. 

Transducer Data Access Services. The Transducer Data Access Services allow 

for the reading or writing to specific transducers within the network. The data varies 

between a single point for/from a single transducer to data for multiple transducers at a 

time. To facilitate easier access to timed sequences of data, the concept of Block Data is 

introduced. Unlike the previous Registration Services, the NCAP Client is required to 

send more information in its initial request as to identify within the network a transducer. 

This information includes an NCAPID, TIMID, and a Transducer Channel ID to isolate 

one transducer. Other runtime parameters such as timeouts (how long should the NCAP 

Server attempt to retrieve the information before giving up), how many samples are 

required, which sampling time should the data be taken, and more. Due to the 
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requirement of having this information, these services are normally invoked after 

initializing the network and after the NCAP Client has discovered all the entities it 

requires. 

The basic division among these services depends on whether the requested 

information needs to be read or written. Read services deal with acquiring sensor data; 

write services set the transducer to a value. By definition, a transducer can contain both 

sensing and actuating elements; for example, a servo motor can have its position set as 

well as have its current position read. When calling the services, however, the 

information fields which need to be filled out are essentially the same for reading and 

writing. From here, the Transducer Access Services can be grouped into three main 

categories: Synchronous, Asynchronous, and Secure.  

Synchronous Services. Synchronous communications are built off the Client-

Server Communication model, where both communicating parties must be present during 

the entire exchange of messages. Doing this allows both communicators to be time 

synchronized. As can be seen in Figure 13, there is a message pair which is sent by both 

parties during this service. This request-response sequence is common among all the 

Synchronous services, and each service has its own specific set of information required to 

successfully complete the request. 
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Figure 13: Synchronous access of transducer data 
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One of the two fundamental building blocks required for these services to work is 

the “Read Transducer Sample Data From A Channel Of A TIM” service. This is a request 

for the current state or measurement of a transducer connected to a specific Channel on a 

specific TIM on connected to a specific NCAP Server. The request sent by the NCAP 

Client must contain an NCAPID, TIMID, ChannelID, Timeout, and Sampling Mode on 

order for the NCAP server to query the correct TIM in the specified fashion. After the 

NCAP Server retrieves the information from the TIM (with the correct TIMID), the 

NCAP Server forms a response containing an ErrorCode, NCAPID, TIMID, ChannelID, 

and finally the TransducerSampleData.  

An example request for a single point of data would be structured as: (7211 

[FunctionID], 1 [NCAPID], 1 [TIMID], 1 [ChannelID], 10 [Timeout in Seconds], 5 

[Immediate Sampling Mode]). The response from this (assuming there were no errors 

during execution) would look like: (7211 [Function ID], 0 [Error Code], 1 [NCAPID], 1 

[TIMID], 1 [ChannelID], 243 [Transducer Data]).  

At first glance there seems to be redundant data being sent back and forth in this 

exchange; however, this “redundancy” can help solve some issues which may arise in 

these systems. The first is security. This type of request-response allows for verification 

that the response the NCAP Client is receiving is genuine, making it where basic attacks 

on the system such as flooding the communication channel with random information can 

be negated. The second reason is the need for an NCAP Client to manage multiple 

conversations at the same time. While waiting to hear about the reading of a transducer, a 

new NCAP Server may come online. Without the information such as the Function ID 

and the NCAP ID, it could be very easy for the NCAP Client to confuse this “NCAP 
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Server Arrival” message with the response from the read request. This situation may 

seem very situational; however, in a complex IoT network, there are going to be a lot of 

messages sent to an NCAP Client. By having the information replicated in the response, 

the NCAP Client can then manage these messages and link the response to the proper 

request.  

The message structure of the single channel transducer read service is common 

among the other synchronous read functions; however, each service adds its own extra 

field or two to help set up the acquisition session. For example, the “Read Transducer 

Block Data From A Channel Of A TIM” service has the same fields as the previous 

service; however, the Request also has the addition of the NumberOfSamples, the 

SampleInterval, and the StartTime, while omitting the SamplingMode. This is because 

block data is a time-series based measurement with equally spaced samples of data, and 

as such, the systems needs to know when to start measuring, how much time needs to be 

in between each sample, and how many samples are being requested. The response looks 

extremely similar with the only difference being the data presentation. The request would 

look like (FunctionID [7212 for block read from single transducer], NCAPID, TIMID, 

ChannelID, Timeout, NumberOfSamples, SampleInterval, StartTime). The response 

would be (FunctionID, ErrorCode, NCAPID, TIMID, ChannelID, TransducerBlockData). 

The ability to read multiple points of data at a given time needs to also be 

implemented. For example, a control server may want to query a TIM inside a room 

within a house for the temperature, light level, and humidity. Or the server may need to 

check the temperature of multiple rooms, requiring the request to be sent to multiple 

TIM’s that are attached to the same NCAP Server. Using what has been defined so far, 
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three different messages would need to be sent, sorted, and managed for three different 

responses. Each one of these messages would have almost the exact same content, except 

for the different transducer channels. It is for this reason that there are resources built into 

these services to request from multiple transducers at the same time. 

To allow for this in services such as 

“ReadTransducerSampleDataFromMultipleChannelsOfATIM” and 

“ReadTransducerBlockDataFromMultipleChannelsOfATIM”, only one field must be 

changed in the request and responses of these functions. Instead of declaring a single 

ChannelID, an array of Channel IDs corresponding to the transducers where data is to be 

retrieved. In the case where different channels are on the same TIM, the request would 

look like: (7213 [FunctionID for Single Data from Multiple Channels], NCAPID, TIMID, 

ChannelIDs [ex. {1, 3, 4}], Timeout, SamplingMode). The multi-channel block read 

request is also formatted the same as the single channel counterpart, only with an array of 

ChannelIDs instead of just one. 

This same approach is taken when an NCAP Client wants to access transducers 

from multiple TIMs. Out of all the Synchronous services, the read requests for “Multiple 

Channels Of Multiple TIMs” have the most complex syntax due to the amount of 

information needed. Instead of having a single TIMID, there needs to be an array of 

accessible TIMs. Since the NCAP Client may not want information about the transducers 

on the same set of ChannelIDs, there needs to be an array of ChannelIDs for each of the 

TIMIDs in the request. This could be difficult for a program to figure out exactly which 

ChannelIDs go with each TIMID. To aid in this, a new field is added in the request which 

states how many Channels of each TIM need to be read. With all of this in place, the 
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“Request for Reading Transducer Sample Data From Multiple Channels Of Multiple 

TIMs” would look like: (7215 [FunctionID], {1,2} [TIMIDs], {3, 1} 

[NumberOfChannels], {{1, 3, 4}, {2}} [ChannelIDs], 10s [Timeout], 5 

[SamplingMode]). The NCAP Server sends a similar response back to the NCAP Client 

once the acquisition is completed, containing arrays of data for each of the TIMs. 

Asynchronous Services. The functions within the Transducer Access Services that 

have been presented so far have been synchronous, where the NCAP Client waits for a 

specific response from the targeted NCAP Server. This model of communication is not 

applicable to all situations, such as receiving data from a transducer over a long period of 

time. For example, a system may require the measurement of a specific transducer of the 

period of a day at a sampling rate of 1 measurement per minute. Using the Synchronous 

functions provided in the standard, the NCAP Client could expect a message containing 

1440 data points, which could be difficult to send through a communication channel all in 

one packet. This also can be difficult to parse through and manage efficiently in program 

memory on both the NCAP Server and Client. There could also be systems where an 

NCAP Client wished to monitor an entire subsystem in a process, which may contain 

large amounts of transducers over a long period of time (such as a day). It is for these 

reasons that an Asynchronous Communication Model is needed to facilitate long term or 

“indefinite” term acquisition requests.  

The communication model as seen in Figure 14 still requires the “handshake” 

request-response messages that are present in Synchronous services; however, there is a 

callback message that is only sent from the NCAP Server to the NCAP Client. The flow 

of communication begins with the NCAP Client initiating the acquisition session, sending 
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a request message containing similar information as the Synchronous Block Read service. 

The NCAP Server will then ready itself for the acquisition and once ready, will send a 

Response back to the NCAP Client containing an ErrorCode corresponding to any issues 

it may have had, as well as an Operation Identifier (OperationID).  

 

 

 

 

After the Response is sent, and if no error occurred during the initialization, the 

NCAP Server begins to acquire data. Because this operation could take tens of seconds to 

hours, the NCAP Server will compile the data into one message and send it once the 

acquisition is completed.  This frees up the NCAP Client to perform other functions 

while waiting for the Callback from the NCAP Server. The Callback contains roughly the 

same information as a BlockData response from the synchronous services. Each 

Asynchronous process which is currently running on the NCAP Server is assigned an 

OperationID once the initial request is received from the NCAP Client. This allows for 

multiple processes to run on the same NCAP Server at any given instance. The 

OperationID also allows the NCAP Client to map any Callback received to a 

corresponding open function call.  
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Figure 14. Asynchronous access of transducer data. 
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Because these services are meant to be used over periods of time, the data sent to 

the Client will be in the form of blocks. In the same fashion as their Synchronous 

counterparts, the ReadBlockData services for single Channel, MultiChannel, and Multi 

TIM requests contain the ID’s required to isolate a particular transducer within the 

network, sampling intervals, duration, and a timeout. The only function unique to the 

asynchronous transducer access services is the ReadTransducerStreamData service. This 

service is very similar to those dealing with BlockData, however, instead of requesting a 

specific number of data points separated by a sampling interval, start and end times are 

used. A sampling interval is still utilized to acquire data; however, this service makes it 

easier to schedule services that run at specific times. 

TEDS Access Services. Every TIM in the network contains TEDS. Depending on 

the way in which the TIM communicates to the NCAP Server, there are a variety of 

different TEDS which may need to be read. Some sections of different TEDS can be 

edited by the NCAP Client. Both the reading and writing services which are available for 

use follow the Request-Response communication model as can be seen in Figure 15. For 

the sake of the theory of operation, the read and write versions of the services have a 

similar form to Requests and Responses. 

 

 

NCAP

Client
NCAP

Read or Write Transducer TEDS Request

Read or Write Transducer TEDS Response

Figure 15. TEDS Access Services Communication Model 
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For the Read TEDS Services, the NCAP Client initiated Request contains the 

FunctionID, NCAP_ID, TIM_ID, and a Timeout duration. The only exception to these 

included pieces of information are the Read Services dealing with specific Transducer 

Channels within a TIM. In these cases, the addition of a ChannelID is required to ensure 

the NCAP Client is targeting the correct Transducer. As for the Responses, the Read 

TEDS services respond only with an ErrorCode and an array containing the requested 

information. Write TEDS Services are very similar in style to the Read TEDS Services, 

with each one requiring the same information to perform the task. All Write TEDS 

Services Requests contain a FunctionID, NCAP_ID, TIM_ID, Timeout, and an array 

containing the information to be written. As with the Read Services, those services which 

target specific Transducers require a ChannelID in addition to the other information. The 

Response from the NCAP Server is simply an ErrorCode.  

Although the TEDS Access Services seem very familiar, the distinguishing piece 

of information which allows both the NCAP Client and NCAP Server to access the 

specific set of TEDS is the FunctionID. Every type of accessible TEDS has its own 

unique FunctionID within the standard, meaning that a WriteTIMMetaIdTEDSservice 

Request (FunctionID 7319) and a WriteTransducerChannelMetaIdTEDS Request 

(FunctionID 7320) can be differentiated and handled accordingly. Since these services 

require that the NCAP Client have knowledge of the NCAP_ID’s and their associated 

TIM_ID’s and Transducer ChannelIDs, these services are meant to be requested after the 

NCAP Client initializes its connection to the network by performing utilizing the 

Identification Services as discussed previously. 
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Event Notification Services. Up to this point, services related to initialization, 

configuration, or access to the network have been discussed. With only these services, an 

effective transducer network can be implemented; however, there is a lot of responsibility 

and effort required by the NCAP Client to ensure that the network is running correctly 

and to monitor for any changes within the network. In the case of an owner of a smart 

HVAC system in their house, this would mean that the owner’s phone or device would 

constantly be sending out requests for transducer data, TIM and NCAP Server discovery 

requests, and many more. This could put quite a strain on the NCAP Client’s resources, 

and if this is a device to be used for other purposes, it could affect the overall 

performance of the device. This also means there would be a lot of messages being sent 

between the NCAP entities, limiting the application to those which have high enough 

bandwidth and internet access. 

When a closer look is taken, the NCAP Client should not have to constantly 

request a TIM Discovery service to see if any new TIMs have been connected or existing 

TIMs removed? What about monitoring for abnormal conditions within the sensing 

network, such as temperatures of transducer reaching a specific threshold? If it is 

assumed that during normal operation of the network, there are no new TIMs being added 

or removed and that the transducers will remain within their safe region of operation, 

then these monitoring messages are just wasted time, processing power, bandwidth, and 

effort. It would be more power and resource-efficient for the NCAP Client to move these 

responsibilities to the NCAP Server. Messages would only be sent when changes were 

necessary. 
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The Client-Server, Request-Response synchronous communication models cannot 

easily shift this monitoring from the NCAP Client to the NCAP Server. Instead, the 

Publisher-Subscriber communication model as seen in Figure 6 is utilized. This model 

contains two steps, Subscription and Notification, as seen in Figure 16. 

 

 

 

 

An analogy for how this works can be seen when creating an account for a 

website or service. As part of the registration process, a user can choose to “Subscribe” or 

opt-in to receive updates from the company about different topics. The user is sending a 

request to the web service to be added into an email list, which the company will access 

when a newsletter or notification needs to be sent. Normally, the company will then send 

a verification email Response to ensure that the user was added to the list. From this point 

on, whenever the company wants to send notifications, they can simply access their list of 

active subscribers and send a notification email to the user, without the user having to 

manually request it. 

NCAP

Client
NCAP 

Subscribe Event Request

Subscribe Event Response

NCAP

Client
NCAP 

Event Notify

(Multicast)

Figure 16. Event Notification Services communication model 
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To see why users would want to “opt-in” to these notifications and not be 

automatically subscribed to every event, social media provides an excellent example. 

Facebook allows users to manage what they are notified about from the friends and 

company pages they are subscribed to. Imagine if upon adding a new friend or 

subscribing to a new group, a user was automatically notified whenever they did so much 

as “like” something or made a new post. The user would be so overwhelmed in the 

amount of available information from these notifications, that trying to find the useful 

information that pertains to a specific thing or topic would be almost impossible. But this 

does not limit what information can be found, as a user can still manually request 

information about a specific person and see what has changed on their profile or wall. 

There are two main events that occur within the network that could be placed 

under the responsibility of the NCAP Server to monitor that would greatly reduce the 

amount of bandwidth and messaging overhead for the NCAP Client. The first is a group 

dealing with the arrivals and departures of TIMs to and from the network. Whether these 

are caused by someone manually removing or adding the TIM, or by a malfunction in the 

electronics, these events are necessary to monitor since the NCAP Client could then 

automatically perform a set of Identification Services to register the change. The second 

set of notifications deal with alerts from the transducers, specifically dealing with the 

passing and setting of thresholds. As discussed, each service has two components: the 

traditional Request-Response for subscribing to an event, and then the Notification to 

announce when the event occurs. 
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TIM Arrival and Departure Notification Services. At the NCAP Server level, as a 

new NCAP Server comes online and tries to become part of the network, it broadcasts a 

message every second to catch the attention of interested NCAP Clients. NCAP Servers 

which decide to leave the network due to power issues or some other reason also have a 

service available in the Identification Services to announce their departure. These 

services would also be useful at the TIM level to notify the NCAP Client when new 

TIMs, and in turn new transducers, are available to retrieve data from. However, since a 

point-to-point connection between the NCAP Client and the TIM does not exist, this 

service must be managed through the NCAP Server. This means that the NCAP Server, 

not the NCAP Client, must check for changes with the TIMs connected to it. 

The Subscription Request to be notified of the arrival of a new TIM must contain 

the proper FunctionID, NCAP_ID for which NCAP Server needs to be monitored the 

changes, a Request Timeout, and a “Subscriber” which is a string which the NCAP Client 

and Server uses to manage all active subscriptions. Upon receiving and executing the 

Request without error, the NCAP Server will send a Response containing the FunctionID, 

an ErrorCode, a NewTIMPublisher string, and a SubscriptionID much like that seen in 

the Asynchronous Transducer Access Services. The NewTIMPublisher is a string which 

both NCAP Client and Server can use to uniquely identify between different notifications 

sent from the same entities. This Publisher within the NCAP Server is not unique for each 

of the different NCAP Clients which are subscribed to it. Rather this Publisher is used in 

the same way as the FunctionID to determine what the eventual notification is for. This 

helps with managing the different Event Notification Services since there would be only 

one Publisher used for all the NCAP Clients rather than a unique one for each subscriber. 
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The NCAP Client can also use this publisher to discern between different notification 

sent from the same NCAP Server.  

With the NCAP Client subscribed and the publication destination known to the 

NCAP Server, whenever a new TIM connects to an NCAP Server, it can send an 

AnnounceANewTIM message to the correct NCAP Clients. This message contains a 

FunctionID, the NCAP_ID of the NCAP Server, the NewTIMPublisher string the NCAP 

Server created, the SubscriptionID assigned to the NCAP Client, the 

TIMAnnouncementTime, the NewTIMID, and the NewTIMDescription which the NCAP 

Clients can use to update their roster. 

Another useful notification to have is when a TIM departs from the NCAP Server. 

The Subscription Request for this TIM Departure Service contains the NCAP_ID, a 

Timeout, and a new DepartureTIMSubscriber which is used in the same way as the 

ArrivalTIMSubscriber. The Response to this assuming the request went through without 

error contains an ErrorCode, the DepartureTIMPublisher, and the SubscriptionID which 

is unique to each NCAP Client. Once the subscription is established, anytime a TIM is 

disconnected from an NCAP Server, an AnnounceADepartedTIM notification message is 

sent to each subscribed NCAP Client, with the body of the message containing the 

FunctionID, NCAP_ID, the oldTIM_ID, the SubscriptionID for the particular NCAP 

Client, the DepartureTIMPublisher, the AnnouncementTime, and the 

DepartedTIMDescription. 

Transducer Alert Notification services. Transducer Alerts are primarily focused 

around the sensing portion of a transducer, mainly dealing with maintaining processes 

between thresholds. This Transducer Alert Notification can be initiated in two ways, 
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either by the TIM directly alerting the NCAP Server or by the NCAP Server noticing a 

threshold has been exceeded. The TIM has the facility to alert an NCAP Server directly 

in the case of measurements exceeding a threshold. A TIM can only have a single 

threshold value (minimum and maximum) assigned to each available Transducer 

Channel. Some applications may require different thresholds for the same transducer, 

such as heat treatments or even system safety. A persistent question remains to facilitate 

multiple thresholds for the same transducer if the TIM can only handle one threshold. 

The solution for this is to allow the NCAP Server to also initiate these alerts by 

monitoring the readings from these transducers.  

As with the Transducer Access Services, these services follow the Request-

Response communication model. An NCAP Client can request changes to the thresholds 

of a specific Transducer Channel on a specific TIM by sending a message to the NCAP 

Server. This message needs to contain the following: proper FunctionID, NCAP_ID, 

TIM_ID, ChannelID of the Transducer, a Timeout for the Request, and the new minimum 

and maximum values of the threshold limits. If the Request is processed without error, 

the NCAP Server simply Responds with the FunctionID and an ErrorCode. The 

minimum and maximum range for the Transducers applies for analog Transducers, but 

Transducers with a finite amount of states need a little more care when setting the 

thresholds, as discussed in an example below. Much like the Transducer Access Services, 

all that is required to set the thresholds of multiple Transducer Channels at one time is 

swapping out the singular NCAP_ID, TIM_ID, and/or ChannelID for an array of ID’s to 

fit whichever circumstance is needed. The threshold values in these cases need to be 
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written as an array of threshold “pairs” with the form {MinValue, MaxValue} for each 

Transducer Channel. 

Once the TIM level thresholds are set, the NCAP Client can also set different 

threshold values within the NCAP Server. These threshold alerts require the NCAP 

Client to Subscribe to a sensor alert, thus requiring the use of the Subscriber-Publisher 

communication model. The initial Request to set a threshold alert requires the 

FunctionID, NCAP_ID, TIM_ID, and ChannelID of the specific transducer, along with 

the MinMax threshold to compare against, and the Subscriber for the Sensor Alert. Upon 

successful processing of the Request, the NCAP Server will respond with the FunctionID, 

an ErrorCode, the Publisher for the Sensor Alert, and the SubscriptionID. It should be 

noted that a single NCAP Client can Request and set multiple Thresholds per Transducer 

Channel. Once any threshold in the NCAP Server’s list of active SensorAlert 

Subscriptions is surpassed, the NCAP Server will compile and send a SensorAlert 

Notification.  

As previously mentioned, the NCAP Client can Request to set up alert services 

for multiple transducers at one time. In this case, each of the services requested is treated 

as single TIM, single Transducer Sensor Alert Service Requests and processed by the 

NCAP Server as such. This means that if any of the requested transducers surpass the 

thresholds set by that specific multi-transducer request, then a NotifySensorAlert 

message will be generated and sent for that sensor. It does not mean that a 

NotifySensorAlert request will be sent if and only if the requested thresholds are all met. 

More complex event structures can be developed for applications requiring them. The 

NCAPClient will have to manage the NotifySensorAlerts from each transducer. 
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There could be transducers which only have True and False as possible states and 

an NCAP Client would want to be alerted when the state of the Transducer is True. If the 

True state can be represented as a 1 and the False state as a 0, then a 

SetupSensorAlertThreshold request can be made with “1” as the Maximum Threshold, 

and a “-1” as the Minimum threshold. Although “-1” is an unachievable state, this 

triggers a notification when the Maximum Threshold is met, thus only notifying the 

NCAP Client when the Transducer moves to a True state.  

This same transducer could also be used to alert a house owner when it changes 

states. If there is direct access to the TIM (if it is programmable), a StateChange variable 

can be created and have the TIM send an alert to the NCAP Server if this value changes. 

However, most users may not have access or the programming skill to be able to change 

the software running on the TIM. Another method would track the StateChange variable 

in the NCAP Server and initiate an alert if the state changes. This option is only available 

for programmable NCAP Servers. This leaves the NCAP Client, which is more easily 

accessible by a user. The NCAP Client would first send a SetupSensorAlertThreshold 

Request, changing the minimum threshold to “0” or “FALSE” and the maximum 

threshold to “1” or “TRUE”. Doing this will send an alert to the NCAP Client when the 

state changes in either direction. The applications running on the NCAP Client can then 

analyze the alert and determine from the previous state of the Transducer if there was a 

change. 
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Transducer Management Services. The last set of services which an NCAP Server 

can provide to an NCAP Client are the Transducer Management Services. These services 

alone could be an entire thesis: This work acknowledges their existence but makes no 

further advancement. These services contain the ability to check the health of the entire 

network. Starting at the internet communication, there are services which allow the 

checking of packet loss rates, latencies, and link utilization between the NCAP Client and 

Server. At the TIM level, services including fault diagnostics, overall health reports, self-

testing initiation, location information, and calibration settings are accessible. Each one 

of these services needs careful consideration based on the type of communication 

protocol, technology, and overall resources available to the TIM and the NCAP Server.  

 

Problem Definition 

The NCAP Server could be considered the keystone in the architecture of the 

IEEE 1451 Family of Standards. It needs to be able to communicate on the internet to the 

NCAP Client utilizing communication protocols such as UDP, XMPP, and more, 

potentially at the same time. The NCAP Server also needs to be able to communicate to 

multiple TIMs, each possibly using different communication methods varying from serial 

interfaces to wireless. For each of these types of TIM interfaces, the NCAP Server needs 

to have the proper drivers to operate on those interfaces with proper protocols to talk to 

specific TIMs. Since all TIM’s are not the same, the NCAP Server needs to also keep 

track of which TIMs are connected at any given time. This can be done by learning 

enough information about them from the TEDS on the TIMs to be able to communicate 

with the correct protocol. The NCAP Server must also be able to handle multiple requests 
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at the same time from potentially different NCAP Clients. Since machine and human 

health could be at risk in some implementations, the NCAP Server cannot simply just 

queue messages and wait for each one to process. Imagine an NCAP Server attempting to 

read 5 minutes’ worth of data from a sensor, and while this is happening, another sensor 

breaks a threshold indicating a fault in the system. Without proper care, that alert could 

take up to five minutes to propagate to those who need notifying.  

One of the interesting goals of the IEEE P21451 Family of Standard is to allow a 

system designer to still create their own hardware and software but giving them 

guidelines so that they can easily integrate their work with an existing network. Instead of 

having to recreate the wheel in attempts to establish their own message structure and set 

of common services, they can instead use the standard as a framework to build their 

products around. This is the goal of many communication standards working groups. 

There are two common factors, which hinder the development and adaptation of any 

communication standard. First, the concepts, theory, and layout of the standard need to be 

explained in such a way that its intended uses are easy to understand. This includes 

defining new objects, abstractions, or key terms clearly so that someone looking to adopt 

the standard does not have to spend hours, days, weeks, or even months of a company’s 

time and money trying to understand how it works. Having to invest this much time and 

effort may turn away those who could benefit from a standard in lieu of making their own 

proprietary implementations or to adopt a different standard. 

As mentioned previously, one designer demographic that could pave the way for 

an extensible and adaptable IoT are the Makers. Many websites and forums support the 

Maker community where ideas and questions are exchanged. One common theme is 
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Open-Source code, libraries, or designs. Due to the nature of the open-source materials 

that are used, designers have open access to see what exactly is happening in the code 

and can change certain pieces to fit to their needs. If the designer finds a bug in the code, 

a driver conflict, or maybe a better implementation of some function, they can send a 

request to the owner of the code, providing a means of user feedback. 

The second feature which was found to be important in the adoption of a standard 

is the availability of reference designs and how many resources there are to help construct 

and test a compliant system. This is different from what has already been mentioned is 

that this feature deals specifically with the actual implementation of the standard. If the 

only reference material is the standard documentation itself, it can be extremely difficult 

to ensure that the implementation complies within the bounds of the standard. Within the 

realm of the IEEE 1451 Family of Standards, there are no reference designs that someone 

could purchase or design easily to test out if their interpretation of the standard is 

compliant. This means that if a designer has an idea to make a smart process and develop 

a TIM to facilitate connecting this process to the internet, they also must design from 

scratch an NCAP Server as well as the NCAP Client. This means way more cost, time, 

and skill than the designer may be able to put towards the project. On the other end of the 

spectrum, if someone has an idea for a smartphone application to interface with IEEE 

1451 compliant networks, they will have to either find or create their own smart 

transducer network. 

Three problems are proposed to be solved. 

1. The NCAP Server object within the standard should be built on readily 

available, low cost embedded platforms. 
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2. Software and hardware developed during this research must be Open 

Source. 

3. Reference designs must be developed for easily implementable devices. 
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Chapter 3 

Methodologies and Project Management 

This research was based on the work performed by a previous graduate student 

which began to implement a basic IEEE 1451 Smart Transducer Network. This 

implementation was focused on a single NCAP Server, single NCAP Client, and a single 

TIM. During the first semester of working on this project in the Spring of 2015, the 

project team consisted of 10 undergraduate students and 2 graduate students. The 

previous graduate student was using a shared DropBox folder to organize reference 

materials, drafts of the standards, as well as the code. The entire project team would meet 

twice a week during the Junior/Senior Clinic class times, where most of the development 

on the project was performed. While the previous methods of communication, resource 

and code management, and project management worked for a smaller group, a new 

management structure and project schedule was needed to facilitate larger groups of 

students. This, in combination with learning about the standard and reading through all 

the documentation related to the project, mainly comprised the first quarter of this 

research. 

Familiarization With the Standard and the Current Implementation 

In the literature, research related to the IEEE P21451-1 standard focused on a 

functionally limited NCAP Server, a basic NCAP Client, and a basic TIM. The first 

major research goal evaluated the existing implementation to determine compliance with 

the family of standards. 
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Initial NCAP Server Implementation. The initial NCAP Server had been 

developed to work on a Raspberry Pi Model 1 B+ development board, which can be seen 

in Figure 17. The Raspberry Pi (RPi) Model B+ development platform contains a 

Broadcom BCM2835 System-on-a-Chip (SoC), which houses a 700 MHz Low Power 

ARM1176J2FS Applications Processor, a dual core VideoCore IV® graphics co-

processor, and 512MB of RAM. This model of the RPi also contains 4 USB 2.0 ports, a 

10/100 Base T Ethernet Socket, a full HDMI female connector, microSD card slot, and 

40 General Purpose Input/Output (GPIO) pins. Power is supplied via a micro USB cable, 

requiring a 5-volt power supply that can provide up to 2 Amps of current. 

 

 

 

 

Figure 17. Raspberry Pi Model B+ ARM based development board 
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This development board was chosen by the previous graduate student due to the 

available amount of supporting documentation, open-source libraries, low cost, and the 

ease of use. The Raspberry Pi board uses a special version of Debian Linux called 

Raspbian, which allows users to treat this board as a stand-alone, Single-Board computer. 

Since the developer has access to a full operating system, one of the programming 

languages that is natively supported by the operating system is Python, which was chosen 

as the main programming language for the NCAP Server. This development board is also 

widely used around the world as an introduction to embedded systems and a tool for 

rapid prototyping.  

Choosing a Programming Language. While Python at first glance may not seem 

like the best choice for an embedded system, due to the number of resources required to 

support programs and the fact that Python is not a compiled language, it allowed rapid 

development. This is simpler than corresponding tedious details associated with 

languages such as C. An example of this simplicity is summarized in the “Hello World” 

metric in Appendix A. Printing “Hello World” in common languages such as C, C++, and 

Java take between five to six lines of code to whereas Python only takes one. 

Python also has large support for the Raspberry Pi, as the interpreter needed to 

run the code is built into the Raspbian operating system. Low-level platforms dealing 

with serial communications, hardware abstraction layers, and driver calls were previously 

dominated by the compiled languages C and C++. With the Python interpreter being 

directly linked to the operating system, it can now perform these same functions while 

providing high levels of functional abstraction. Because of this native support for Python, 

it has been one of the fastest growing embedded platforms, alongside platforms such as 
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Arduino, in the world of makers. As mentioned previously, where there are makers, there 

are tutorials, reference designs, and examples abound. This explosion in popularity also 

has caused those companies who curate products for makers to begin making Python 

libraries for their inventory. All of this comes together as a very compelling argument for 

using Python for an NCAP Server implementation; however, there must be an analysis of 

the negative impacts Python use could have on a system. 

Drawbacks of Python.  Along with the fast-paced, yet gentle, learning curve and 

high-level functional nature of the language, Python also has an incredible amount of 

resources in the forms of tutorials and forums, especially when using it with the 

Raspberry Pi. One of the requirements of the Raspberry Pi is an operating system, or at 

least a Python interpreter. This architecture requires substantial power, which limits an 

implementation from being exported to low-power microprocessors. As mentioned in the 

problem statement, this could be an issue if firmware is to be designed which can be 

ported to many different devices. Because of the interpreter, it also can be difficult to 

design a system that consumes small amounts of power during normal operation, as 

compared to compiled languages on processers which support sleeping modes. However, 

there are ways which some of the overhead power requirements within the Raspberry Pi 

can be mitigated, as discussed later in this section. 

Having the requirement of the interpreter also can limit the speed of execution of 

a program. Since it is not compiled to machine language and executed at that level, it 

takes the interpreter time to perform the proper driver calls and function to achieve the 

same effect. This being a major argument for not choosing Python in many cases, 

developers have begun making interpreters such as PyPy which attempt to bring the 
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speed and efficiency of language such as C by compiling the Python code into something 

closer resembling machine code. Using these “compiled” interpreters may require 

different syntax with certain function calls, and as such, the use of these interpreters in 

place of the native CPython interpreter was not looked at. Using alternate interpreters 

would be a future step in maximizing the performance of implementations on specific 

platforms.  

One other major issue that is often cited is that Python code does not allow for the 

flexibility in coding style that many other languages offer. This is mainly due to the use 

of whitespace instead of brackets to separate sections of code. This means that if two 

people want to work on the same piece of code, they must choose how to indent their 

code so that during runtime, there are no issues with functional hierarchy. While there is 

no formal definition for spaces required to indent the lines within an enclosed function 

block (such as an if statement), the programmers must choose between using tabs or 

spaces when doing indentation. A related issue is that even though the programmers 

might utilize tabs for indentation, different machines treat tabs in different ways, making 

it difficult to sometimes move code from one person’s computer to another. While this 

can take a little getting used to and since most code editors insert spaces instead of the tab 

character, the result of forcing programmers to use indentation is human-readable code 

that is simple to follow and understand.  This project consistently had 6-10 students 

working on it at any given time, making this issue quite a challenge to those who did not 

note which spacing convention others were using. Even with these concerns, it was found 

that Python was still the target language for an initial implementation. 
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Initial NCAP Server/TIM Hybrid Implementation. For simplicity, the 

implementation created by the previous graduate student combined the NCAP Server and 

the TIM abstraction layers into one device. Although this may seem like this goes against 

everything that has been talked about so far, there is nothing in the standard that prevents 

combining these two abstraction layers together. When combined, the NCAP Server must 

contain all the proper drivers as well as the functionalities which the TIM traditionally 

would contain. An advantage to this type of implementation is the ability for the NCAP 

Server services to have a much closer relationship with the TIM services, providing for 

quick execution and a reduction in overall system cost. Because the implementation used 

the Raspberry Pi, the 40 digital GPIO pins were available to interface with transducers 

and signal conditioning circuitry.  

A block diagram of this implementation can be seen in Figure 3, with the NCAP 

Client being an XMPP or UDP chat client, and the NCAP Server and TIM being located 

on the Raspberry Pi. The three transducers which were chosen to be controlled were a 

thermistor, a fan, and a light. For signal conditioning, the thermistor was placed in a 

voltage divider configuration and was powered using the 5V rail of the Raspberry Pi. 

Since the GPIO lines of the Raspberry Pi are digital, a Texas Instruments ADS1015 12-

bit ADC was used to obtain the analog voltage across the thermistor. Since the fan and 

the light both required 120V AC, solid-state relays were used to interface between these 

devices and two digital GPIO pins on the Raspberry Pi.  

NCAP Server implemented functions and operation. The implementation was 

primarily focused on establishing communication between the NCAP Server and NCAP 

Client, as well as getting two major services to work: 
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ReadTransducerSampleDataFromAChannelOfATIM and 

WriteTransducerSampleDataFromASingleChannelOfATIM. It was decided that the 

Transducer Access Services could be constructed from a robust version of these two 

services. Since the initial implementation only required single reads and writes, it made 

sense to focus on developing these functions first as well. The previous work which had 

been done on the project relied upon using the User Datagram Protocol (UDP) as the way 

to communicate between NCAP Client and NCAP Server. With these requirements in 

mind, the procedural flow of the NCAP Server’s program is as follows. 

The first step the NCAP Server did upon being turned on and the program started 

with initializing the libraries required to communicate via UDP, including verifying a 

stable connection to the internet. During this time, the NCAP Server also registered itself 

as an NCAP on the network it was connected to by establishing an NCAP ID for itself. 

Once this was completed, the NCAP Server initialized the GPIO on the Raspberry Pi as 

well as the drivers required to communicate to the transducers. After all the proper 

initialization was completed, the NCAP Server would then be ready to receive messages 

from the NCAP Client. At this point, the NCAP Server was ready to receive and process 

messages, following the basic information flow diagram as seen in Figure 18.  

In the example given in Figure 3, the NCAP Client sends a request for a single 

point of data from a transducer (in the case of the initial implementation, temperature 

from a thermistor). This message is received by the NCAP Server and then parsed based 

on the type of message received. At the front of the message is the Function ID, which 

tells the parsing function what the following data in the message pertains to. After 

parsing the required information, the proper communication drivers are called to 
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communicate with the transducer, which in this case is handled over UART. 

Traditionally, the NCAP Server would not directly make a driver call for the Transducer, 

however, since this implementation is an NCAP Server TIM hybrid it must perform all 

the required tasks. Since only one point of data is required, once the data is ready, it is 

compiled and sent back to the original sender. 

  

 

Figure 18. Example communication between NCAP Client and Server requesting block data. 
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Chapter 4 

Implementation, Results, and Discussion 

“Low Cost” and Encapsulated Implementation 

Room Monitoring TIM. Since the Room Monitoring TIM needed to be separate 

from the NCAP Server, the TIM implementation was migrated to the Texas Instruments 

MSP430F5529 Launchpad, as seen in Figure 19, once the functionality and initial 

performance were prototyped using a Raspberry Pi. This Launchpad can be purchased for 

less than $15 and contains a 16-bit MCU, 128KB of Flash Memory, 8KB of RAM, and 

can run up to 25MHz. This microprocessor also has an integrated 12-bit ADC, several 

timers, dedicated resources for communicating over serial communications and more. 

Because of the platform’s popularity, there is a lot of support to get different applications 

and transducers working with the device.  

 

 

Figure 19. MSP430F5529 Launch Pad 
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The TIMs developed have two main components which need to work together: 

NCAP Server to TIM communication and transducer management. The development of 

these two subsystems was done initially with another Raspberry Pi so that the behavior of 

the TIM functioning on its own could be investigated. The transducer management 

subsystem which dealt with signal conditioning, acquisition, etc. was relatively straight 

forward to set up using a variety of transducers. The idea was to focus on building a TIM 

that was easily reproducible but also contain enough variety to show how to manage 

different types of sensors. For this, a 6 channel TIM was created which focused around 

an application in a Smart Building. A mixture of digital and analog sensors was selected 

along with a small LED array for actuation. A prototype of this TIM can be seen in 

Figure 20. 

 

 

 

 

Figure 20: Prototype of a 6 Channel Smart Building TIM 
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The sensors utilized were a DHT11 Temperature and Humidity sensor, a Passive 

Infrared (PIR) sensor, a bulk thermistor, and a bulk photoresistor. Each of these sensors 

required differing levels of signal conditioning as well as protocols to retrieve the sensor 

information. 

DHT11 Temperature and Humidity Sensor. The DHT11, as seen in Figure 21, 

is a low-cost digital sensor which works utilizing a 1-wire protocol to send the 

temperature and humidity to the requesting device in degrees and relative humidity. This 

sensor has an accuracy of roughly ±2°C for temperature and ±5% relative humidity, 

making it ideal for beginner application not requiring high accuracy. One caveat about 

this sensor is due to the protocol required to read data from the device, the device will 

return both temperature and humidity readings whenever data is requested. This meant 

that instead of treating this sensor as a single Sensor Channel, the temperature and 

humidity could be represented through two Sensor Channels. Both a single channel and 

dual channel implementation are supported by the IEEE 1451 Standards and provide 

certain benefits to the implementations of the NCAP Server and Client.  

 

 

 

Figure 21. DHT 11 Temperature and Humidity Sensor 
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PIR Occupancy Sensor. The PIR sensor seen in Figure 22 is used to detect 

occupancy. The sensor contains an infrared sensor behind a pyroelectric lens, allowing 

for a viewing angle of around 120 degrees. By supplying 5V to the sensor, the onboard 

microcontroller and signal conditioning can determine whether there has been a change in 

occupancy in the room. If the sensor detects occupancy, it will raise the output pin high 

which can be read by the TIM; whereas no occupancy will bring the output low.   

 

 

 

 

LED Array. An array of 4 LED’s with altering colors as seen in Figure 23 was 

used as the actuator for the TIM. There were two types of data which were experimented 

with to control which LEDs were on. The first method was sending an array of ones or 

zeros ({1,0,1,0}, for example) from the NCAP Client that would need to be parsed by the 

NCAP Server and sent to the TIM. While this allowed for intuitive control of the lights, it 

Figure 22. PIR Sensor 
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meant creating a new type of payload which would need to be handled by the 

WriteTransducerSampleDataFromAChannelOfATIM service within the NCAP Server.  

To ensure that one “value” was returned by the function, the desired LED 

configuration such as {0,1,0,1} was represented as a hex byte, 0x05. The NCAP Client is 

responsible for converting the desired configuration into a corresponding byte and 

sending it to the NCAP Server. The TIM then converts the received byte into binary, 

which then assigns the proper state to each LED. Using this method also reduced the 

message complexity when requesting block writes. 

 

 

 

 

Photoresistor and Thermistor. The previously selected sensors had onboard 

signal conditioning and had a digital interface to retrieve the information. To show the 

extent of the mixed-signal capabilities of the standard, two analog sensors were 

implemented. To measure temperature, a Vishay 10kΩ nominal thermistor with 5% 

tolerance was utilized; light intensity was measured using a photoresistor. These sensors 

Figure 23. Green and Red LED Array 



 

64 

 

were placed into a voltage divider and its output was read by a 10-bit ADC. For the 

greatest amount of flexibility during implementation, the ADC readings were directly 

reported back to the NCAP Server which would then calculate the actual temperature or 

light level. 

Ultrasonic TIM. A second TIM was implemented to test the services which 

interacted with multiple TIMs. The Elec Freaks HC-SR04 Ultrasonic Sensing Module, as 

seen in Figure 24, is another self-contained sensor requiring no signal conditioning other 

than power. The module works by the TIM holding the Trigger pin high for at least 10 

microseconds, which tells the module to begin sending 40kHz pulses out towards the 

direction it is facing. The module then will listen for any pulses that would be reflected 

from an object. When it determines there is an echo, it will raise the Echo pin high. The 

distance can then be calculated using the time-of-flight for the pulse and how fast the 

pulse was traveling. The TIM is responsible for performing this calculation, and the 

results are what is returned to the NCAP Client.  

 

 

Figure 24. HC-SR04 Ultrasonic Sensor 
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This TIM implementation also allows for a simple test of the Event Notification 

services. Temperature and Light levels can be difficult to precisely control without 

specialized equipment, whereas distance from a sensor can be quickly measured and 

manipulated. This makes the Ultrasonic sensor a better candidate for testing these Event 

Notification services.  

TIM Operation 

Both TIMs at the software level operate in the same way, with the only difference 

being how they acquire sensor data and manage actuators in the “Transducer 

Management” layer. Above this layer is the “NCAP Server to TIM Communication” 

layer. This manages the communication between the two entities and is responsible for 

decompiling messages, making the correct driver call, and compiling message back to the 

NCAP Server. These fundamental functionalities, reading and writing to transducer 

channels, were isolated and implemented first since the research is oriented at the 

implementation and behavior of the NCAP Server.  

NCAP Server – TIM Communication Structure. The interface between the 

NCAP Server and TIM was chosen to be UART. Messages sent from the NCAP Server 

to the TIM had the following format: “TIMFunctionID, TIMChannelID, \r” where \r is 

the carriage return byte in ASCII. Unlike the FunctionID mentioned before, these 

TIMFuctionIDs correspond to those found in Appendix B. The two TIMFunctionIDs 

which were implemented in both TIMs were 0 and 128. 

When an NCAP Client sends a request for information about a sensor, the NCAP 

Server parses the message from the NCAP Client and determines which TIM and 

Transducer Channels it needs to access. From here, based on if the operation is a Read or 
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Write, the message will be compiled in the previously mentioned form and sent to the 

TIM over UART. The TIM will then parse through the incoming message and identify 

which channel it needs to access. The appropriate driver calls are made to access the 

sensor information or write to the actuator. Following a successful execution will send 

back to the NCAP Client the data requested and/or an acknowledgment that the action 

completed. If the NCAP Server wants to read or write block data, it will need to send 

requests for individual data point until the required amount of data has been read/written. 

Global vs Individual ChannelID. The TIMChannelID can take two different 

values, either a 0 or a specific transducer channel. If a non-zero TIMChannelID is 

received, whichever function is called will operate only on that corresponding channel. If 

a TIMChannelID of 0 is received, this changes the function to act on a Global scale, 

meaning that it will perform the function for all the available channels. For example, if an 

NCAP Server wanted to request readings from all the Transducer Channels on a 40-

channel TIM monitoring a manufacturing process, the NCAP Server would need to send 

individual requests for every single transducer channel. This takes up a large amount of 

time on both the NCAP Server and TIM in compiling, sending, and parsing through loads 

of messages. Instead, the NCAP Server can send a request (for example, “128,000,/r”) to 

the TIM, and the TIM will then compile a message by concatenating the data from each 

channel starting at TIMChannelID 1, thus eliminating the superfluous addressing 

overhead.  
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Abstracting the TIM From the NCAP Server 

The implemented TIMs contained the signal conditioning circuitry and drivers, 

which previously were in the NCAP server. This led to restructuring the NCAP Server to 

operate solely on sending properly formatted messages to these TIMs. An example of 

how this is impacted the overall code can be seen in Figure 25, with long comments 

removed for readability. 

 

 

 

 

This code snippet (35 lines out of roughly 100 for the entire function) is just one 

service (reading a single point of data from a single transducer on a single TIM), and only 

Figure 25. Code Snippet of an older version of a Single Transducer Read containing drivers. 
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covers 2 out of the already mentioned 5 sensors that are contained between the Room 

Monitoring and ultrasonic TIMs. Not only does including these driver calls inside of this 

function create non-reusable code, but having these drivers also slow down the execution 

of this function. The ReadSampleDataFromAChannelOfATIM function “Reading Work 

Horse” function since in the NCAP Server, the rest of the Transducer Read functions 

implemented call upon this function. For example, if block data is required to be read, the 

NCAP Server will in a loop call the Reading Work Horse function for however many 

points of data are required. It can be easy to see why making this function as minimal and 

efficient as possible it of upmost importance to the overall performance of the NCAP 

Server.  By abstracting the driver calls into the TIMs themselves, that same Reading 

Work Horse function can be written in roughly 15 lines of code, as can be seen in Figure 

26. In this version of the function, all that is required are simple string concatenations and 

a single driver call to send and listen to the TIMs over the UART connection. Not only is 

this code more legible to the average coder, but it is computationally simpler and less 

strenuous than the previous version.  
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This same effect can be seen in the “Writing Work Horse” function, 

WriteSampleDataToAChannelOfATIM. The original function before the stand-alone 

TIMs can be seen in Figure 27. While the driving portion of this function is not as 

complex, it still requires the NCAP Server to run through a loop for each point of data 

and directly access the GPIO on the Raspberry Pi. Specifically, for the LED array, this 

also utilizes quite a large amount of GPIO pins, limiting how many other TIMs or 

transducers can be connected. Once the drivers were abstracted away, the Writing Work 

Horse function was simply implemented in a few lines as seen in Figure 28. Without the 

debugging code on lines 408 and 409, it can be seen that after checking to make sure the 

requested ChannelID can be written to, all the is required is compiling a UART message 

containing the data and the ChannelID that is passed into the function and sending it.  

 

Figure 26. Code Snippet of the simplified Reading Work Horse function after removing TIM-specific 

driver calls. 
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NCAP Server Operation 

There are a few main groups of services and functionality which make this 

implementation possible. First, the NCAP Server must connect with an XMPP server 

target so that it can begin to transmit and receive messages. Once connected to the XMPP 

server, the NCAP Server can begin managing NCAP Client subscriptions, processing 

requests, and connected TIMs. A few techniques such as the parsing function and 

threading will be discussed as they were important to solve earlier problems. The coding 

Figure 27. Code Snippet of the Writing Work Horse function before abstracting the TIM specific drivers. 

Figure 28. Code Snippet of the Writing Work Horse function after abstracting the TIM specific drivers. 
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style was chosen to better support development of a framework for a library or Software 

Development Kit (SDK), which can be used to quickly and easily add Standard 

functionality to a project. 

NCAP Server Initialization. The communication utilizing the XMPP server is 

managed on the Raspberry Pi by a library called SleekXMPP, which would need to be 

installed on the NCAP Server in any implementation utilizing this code. As previously 

mentioned, upon powering up and establishing an internet connection, the NCAP Server 

will attempt to connect to a remote XMPP server. This is done through an eXtensible 

Markup Language (XML) roster-based system. The Jabber IDs (JIDs) or usernames of all 

parties connected to an XMPP server will be shared with the NCAP Server. During this 

process, one of the messages the NCAP Server sends to the XMPP Server is a request to 

have its status changed from Offline to Online, indicating to those entities who are 

subscribed to the NCAP Server that it has turned on. Once this has taken place, the 

NCAP Server then loads a set of XMPP extension protocols (XEPs) which are required 

by the P21451-1-4 supporting document for P21451-1. After these XEPs are loaded from 

the XMPP Server, the Raspberry Pi begins to run in a loop listening for any incoming 

messages sent by the XMPP Server. 

Receiving and Parsing Messages. Once the NCAP Server is ready to listen, a 

callback routine is utilized so that whenever a message is received, the information can 

be extracted and passed on to other functions. The first function called during the 

callback is MessageParse(msg), where msg is the actual XML stanza sent from the 

NCAP Client. The first part of the MessageParse function, as seen in Figure 29, is 

isolating the body of the message which contains all the important addressing information 
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as well the all-important FunctionID. 

 

  

 

 

The body of the message is comma delimited, meaning that all the fields for each 

type of message are separated by commas. This string is parsed into an array with each 

cell informing the NCAP Server what to do next. The only common piece of information 

that is in every service available to the NCAP Client is that the first part of the body is 

always the FunctionID. As seen in Figure 30, the ClientJoin and ClientUnJoin services 

(FunctionIDs 7108 and 7109 respectively) only require the FunctionID and nothing else. 

If the service requested is one of these, the MessageParse function will stop immediately 

and return only the FunctionID back to the Callback routine. Otherwise, the other 

implemented services require NCAPID, TIMID, and ChannelId fields. The arguments for 

each of these services appear in the same order in the message body. 

 

Figure 29. Code Snippet of the initial parsing within the MessageParse() function. 
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Each of these services requires different information to operate. Figure 31 shows 

the parsing function. Depending on which service is requested, the information within a 

message varies based on membership and order. On return, the Callback resumes 

execution. Python does not have support for case-select structures; therefore, cascaded if 

statements are used to determine which function to call. This can be seen in Figure 32. 

Based on the FunctionID, the parsed information is passed to the corresponding service. 

In the original implementation, which also utilized UDP, two requests could not be 

processed in parallel. This was because the code was written to run sequentially, which is 

traditionally used in lower power microprocessors, leading to large delays in the 

completion of multiple tasks. One of the biggest advantages of the Raspberry Pi is that it 

runs a full version of Linux, which provides access to tools such as threading. 

 

Figure 30. Code Snippet of the MessageParse function after the initial parse. 
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Threading.  A thread is an encapsulated execution unit which the operating 

system can supply to that unit its own stack, set of registers, and a program counter. This 

allows parallel execution of code by breaking up the program into small, lightweight 

processes, which the operating system can quickly switch between. Using a native 

threading package for Python and Linux, the “Start_new_thread” command is called to 

begin a self-contained execution environment for each request. The design challenge at 

this point becomes determination of thread placement within the system in such a way as 

to minimize indeterminate states when dealing with multiple messages. 

If every incoming message is assigned its own thread, the processing delay 

between each incoming message is reduced to the minimum amount of time it takes to 

parse it. This can be seen in Figure 32. After the parsing function is called, the body of 

the message and the addressing information are passed into a new thread. The 

Start_New_Thread call contains the previously specified services and the functionality 

needed to send a response. An example is shown in Figure 33. 

Figure 31. Code Snippet of the MessageParse function which isolates specific information based on the FunctionID. 
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Each of the implemented services will need one of these threading functions. The 

first thing this function does is translate the message information from a tuple to a 

dictionary. Dictionaries are data structures much like an array; however, they have the 

added benefit of being searchable for labeled data. The requested service is called with 

input arguments filled with information in the converted dictionary. Depending on the 

Figure 32. Code Snippet of the Callback Routine where threads are started based on the FunctionID. 

Figure 33. Code Snippet of the function which runs inside a thread. 
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service, information such as error codes and/or data is then returned to a thread-local 

variable. A response message is compiled and sent with this data and the NCAP Client 

identification information, and the thread is closed. Other threads can simultaneously 

execute.  

Implemented Identification Services. While the XMPP Server handles most of 

the Discovery and Identification services laid out in the P21451-1 document, two main 

functions needed for a proof of concept was the NCAP Client Join and Unjoin services. 

These services manage an XML roster which contains all the JIDs of NCAP Clients 

which are subscribed to that NCAP Server. This lays a lot of the groundwork down for 

further work in utilizing the group services as well as implementing secure services. The 

way these services work is simple. For the Joining service, it checks the roster to make 

sure the NCAP Client is not already registered and then appends them to the list. Unjoin 

services will first check the roster against the transmitted JID and remove matching JIDs 

from the roster. The last function created from these services is a RosterCheck function, 

which can be utilized by other services. The RosterCheck function, as seen in Figure 34, 

simply takes in an NCAP Client ID and attempts to find a match in the roster. If it is 

successful, it returns a 1. Otherwise, the JID index function will fail. The try/except 

structure will catch and handle this condition by returning a 0.  
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Implemented Transducer Access Services. At the core of the NCAP Server is 

the ability to acquire data from Transducers which are connected to TIMs. This meant 

that the following two services were the focus: 

ReadTransducerSampleDataFromAChannelOfATIM and 

WriteTransducerDataToAChannelOfATIM, which previously were referred to as the 

“Work Horse” functions of the Transducer Access Services. Other services within this 

group, such as ReadTransducerBlockDataFromAChannelOfATIM, calls back to the 

ReadTransducerSampleDataFromAChannelOfATIM service multiple times. Because of 

this, these two services need to be robust as well as easy to understand. These services 

will be discussed in two main groups, Reading and Writing. 

Figure 34. Code Snippet of RosterCheck function. 
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Transducer Read Services. The “Workhorse” read function discussed previously 

and shown in Figure 26, contains the necessary concatenation functions to compile 

messages for UART-enabled TIMs. The “Workhorse” function needs a TIMID, 

ChannelId, timeout, and samplingMode. In this current implementation, different 

samplingModes and robust timeout functions were not implemented. The focus was on 

the communication model. The TIMID and ChannelId are extracted from the parsed 

information obtained from the original message. 

The implemented network contained two different TIMs, so the TIMID 

determines which UART bus to utilize. Although communication is the same for each 

TIM, a generic approach expandable to multiple TIMs with multiple types of 

communication techniques was developed. A TIM roster is implemented, which has 

information collected from the TEDS onboard the TIM that defines communication 

protocols. The service would first check the timId against this roster to determine the 

method of communication (UART, I2C, Bluetooth, ZigBee, etc.). This approach allows 

for more autonomy within the network and creates more versatile NCAP Servers. The 

data retrieved through normal operations along with any error codes (for this 

implementation, default is 0) is packaged into a dictionary and returned to the main 

Thread function. The Thread function can package this information into a proper XMPP 

message and send it back to the NCAP Client.  

An additional feature added to the Reading Work Horse function was verification 

that the requesting NCAP Client was subscribed to the NCAP Server. The RosterCheck 

function validates this subscription before beginning to acquire any information. This can 

be seen in Figure 35. If the SenderInfo matches what is on the roster, the thread begins 
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acquisition. Otherwise, it sends a message to the NCAP Client saying that they are not 

registered to the NCAP Server. Further work on the project should be the improvement of 

NCAP Server security. This can be done within the roster and roster check functions by 

adding elements from public-private key systems to secure messages over insecure 

channels. 

 

 

 

 

With the Work Horse function established, other Read services, such as 

ReadTransducerBlockDataFromAChannelOfATIM, can be constructed. An example is 

shown in Figure 36. Since the BlockData services require a start time, a local OS-based 

sleep function is used to pause the thread for a specific amount of time. The Reading 

Work Horse function is then called repeatedly until a specified number of samples are 

read. To enforce the SamplingInterval required for BlockData, the thread is paused at the 

end of every iteration of the for loop. For more precise collection of data, this service 

should be executed at the TIM level. Once there is the ability to obtain block data, there 

needs to be the ability to request data from multiple channels of a TIM at the same time. 

The major difference between the Single Channel Single Read service and the Multiple 

Channel Single Read is the use of multiple ChannelIDs. The first step of this service is to 

Figure 35. Code Snippet of the Thread based function for the ReadSampleDataFromAChannelOfATIM service. 
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parse the ChannelIDs from a string into an array, as seen in Figure 37. The ChannelId 

string is delimited using semicolons to allow the parsing functions to properly operate.  

 

 

 

 

This corresponds to the chosen hierarchy of commas (,), semicolons (;), and then 

colons (:). This is done so that functions which need arrays can have that information 

passed through different parsing stages. From here, the Reading Work Horse function is 

called multiple times in a for loop much like with the block data; however, each time the 

workhorse function is called the ChannelID is incremented. The resulting data is 

compiled into a semicolon-delimited string.  

 

 

 

 

 

 

 

Figure 36. Code Snippet of the ReadTransducerBlockDataFromAChannelOfATIM. 
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For more complex functions such as “Read Transducer Block Data From Multiple 

Channels Of A TIM” or even “Read Transducer Block Data From Multiple Channels Of 

Multiple TIMs”, the previously made functions can be repeaditly called on as shown 

before. As can be seen, getting the “Read Sample Data From A Channel Of A TIM” 

function as robust and efficient as possible is vital to the overall performance of the 

NCAP Server. By structuring the code in this manner, any hardware specific code for 

devices such as Bluetooth radios, serial lines, etc., can be abstracted away, making the 

process of adapting this code to other projects much less complicated.  

Transducer Write Services. The writing workhorse function is the “Write Sample 

Data To A Channel Of A TIM” service, which can be seen in Figure 28. Just like with the 

Reading services, this workhorse can be called repeatedly within for loops to obtain the 

full list of writing services defined in the standard. The limitation of one TIM with an 

actuator meant the workhorse function and the “Write Block Data To A Channel Of A 

Figure 37. Code Snippet of the 

ReadTransducerSampleDataFromMultipleChannelsOfATIM service. 
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TIM” were implemented. This is illustrated in Figure 38. For this data to be maintained 

as an array through parsing, the comma delimiter was utilized to separate the values 

which to be written. In the Write Block Data service, instead of stepping through a list of 

channelIds or the timIds, the data supplied are iterated through and those values are 

written. The only data returned from this function is an errorCode, which under normal 

operation should be 0. 

 

 

 

 

IEEE SAS 2017: Plugfest 

During the Spring semester of 2017, Rowan University hosted the IEEE Sensors 

Application Symposium where one of the events was an IEEE 1451 “Plugfest”. The idea 

behind a plugfest originally was so that people interested in the standard and that have 

developed NCAP Clients, NCAP Servers, or TIMs could come and interface with an 

established network. A tutorial was designed to guide participants in the use of the 

developed code base and the Raspberry Pi to develop standard compliant devices. For 

this tutorial, a few different resources were required. 

To start, standard-compliant hardware for the participants was needed. For the 

Figure 38. Code Snippet of the WriteTransducerBlockDataToAChannelOfATIM service. 
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NCAP Server, the existing code base generated over the past semesters and the newer 

versions of the Raspberry Pi Zero that include WiFi and Bluetooth capability were used. 

The bigger issue at the time was the development of an example TIM that could be used 

to teach the standard. Due to the time constraints of the PlugFest workshop and no 

requirement on participants knowing how to program microcontrollers, the Raspberry Pi 

were again utilized for this. The Raspberry Pi having all digital I/O does not come with 

native sensors which could be utilized, so a “Pi Hat” or daughter card for use with the 

workshop had to be generated. 

 

 

 

Figure 39: Building TIM used for SAS2017 Plugfest 

 

 

The Building TIM seen in Figure 39 features an RM24C32DS EEPROM for 

TEDS and data storage, an SI 7006 Humidity and temperature sensor, an LTR-303 

ambient light sensor, and five RGB LEDs controlled by a PCA9532 LED Driver. All 

these devices are connected back to the Raspberry Pi B+ style header, drawing power 

from the 3.3V and 5V lines provided by the Raspberry Pi, and communicating over a 



 

84 

 

shared I2C bus. The bill of materials and the associated design files are in Appendix C. 

By utilizing I2C, generating the associated TIM code to read and write to these devices 

became very simple. The NCAP Server and the TIM were connected using UART for 

simplified testing, rather than implementing a wireless interface. 

The software running on the TIM focused on the core functions as mentioned 

earlier in the main implementation: the ability to read sensors and write to them. When 

developing the code, encapsulating the sensor specific content for the I2C commands 

within their own functions became a primary focus. An example sensor function of this 

can be seen in Figure 40. Within this function, the I2C address and device specific 

command to read the temperature. This specific module will return a word which needs 

to them be converted into a temperature in Celsius.  

 

 

 

Figure 40. Code Snippet of the Temperature Read function of the Building TIM. 

 

 

The flow of the TIM program is as follows. After initializing all the sensors and 

the necessary drivers, the TIM awaits messages over the UART channel, as seen in 

Figure 41. Once a message is received, it is parsed using a comma as the delimiter. The 

Channel ID is then extracted from the message and passed into the ChannelSelect 
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function. 

 

 

Figure 41. Main while loop for the Building TIM 

 

 

The ChannelSelect function seen in Figure 42 takes in the ChannelID from the 

NCAP Server message then calls upon the specific function to read or write the data. This 

function must have the ability to take in more than one string however because 

transducers which need to be written to require a value at which to set it at. The 

difference in how this function handles these two types of requests can be seen when 

comparing a call for TempRead() and a call for LED().  
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As previously mentioned, the TempRead function shown in Figure 40 will request 

a single temperature reading from the Humidity sensor. An example transducer access 

function such as setting the LED array state is shown in Figure 43. The LEDNumber and 

Color determine the bytes, which need to be sent to the LED driver. Since the LED driver 

works on 8-bit control registers for I/O, changing one LED requires an update to an entire 

register. 

Figure 42. Channel Select function which calls maps the ChannelID's with specific Transducers. 
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Figure 43. LED Color Changing function of the Building TIM 

 

 

Once the function execution has completed, control is passed back to the main 

while loop where it transmits a response to the NCAP Server. The NCAP Server, in turn, 

takes the data and translates it into a form useable by the XMPP server and the Client.  

The overall flow of the PlugFest workshop started by familiarizing participants 

with the Raspberry Pi platform and the fundamentals of the IEEE P21451 architecture. 

The participants were then asked to work with two Raspberry Pi boards as if they were 
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doing this at home and asked to command the Pi to pull the latest version of the TIM and 

NCAP code onto two different boards. From there, the daughter boards and appropriate 

connectors were distributed, and the participants were asked to experiment with the TIM 

code by utilizing USB-to-UART cables and a local serial terminal on their laptops. Once 

the felt that they understood how the TIM worked and the required message structure, 

they then connected their second Raspberry Pi to the UART channel of the TIM and 

began exploring the NCAP Server code. The workshop concluded by utilizing an XMPP 

chat client to send messages to the NCAP Server and seeing the results unfold on the 

daughter board. 
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Chapter 5 

Conclusions 

This chapter serves as a review of all the topics covered within this document and 

lay a groundwork for those building their systems modeled after the approach taken here. 

The motivation for and accomplishments of this research are briefly recapped. The 

implementation details are described, followed by recommendations for future work.  

Summary of Research Accomplishments 

The overall objective for this thesis was to take a close look at the IEEE P21451 

Family of Standards, specifically the P21451-1 standard, and determine its suitability for 

IoT applications. The previous work of the Rowan University S.M.A.R.T. Lab defined 

the core services required of Smart Transducer Network for most use-cases. 

Implementation of each layer of abstraction (NCAP Client, NCAP Server, and TIM) was 

developed and matured. This approach met the objectives defined in Chapter 2 which are 

repeated below. 

Low-cost and Easily Implementable NCAP Server. The Raspberry Pi platform 

was utilized as the prototyping platform, and because of this choice, Python was chosen 

to be the main programming language. Python allowed the code produced to not only be 

easily readable by humans but also to be easily implemented by other people. The 

Raspberry Pi also utilizes a full Linux Operating System, which allows us to leverage 

Threading to alleviate previous implementation issues such as system lag when 

processing multiple messages. All the code generated during the project was placed on 

GitHub®, paving the path to an open-source library of code for anyone to utilize. This 
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repository, which is compatible with low-cost ($5-$35) development platforms such as 

the Raspberry Pi has made learning about and adopting the standard more accessible.  

Open Source Code and Hardware. To facilitate easy access to this work and 

attract new developers to the standard, all code and hardware are Open Source. All files 

are hosted via GitHub® and can be accessed by anyone. The design and complexity of 

the software architecture abstracts most of the standard functions to simplify integration 

into other projects. For the hardware, board designs were constrained to use design rules 

from the most popular PCB prototyping companies.  

 

Verifying the P21451-1 standard. This work not only creates much-needed 

reference designs on for the standard but also evaluate the standard in the context of the 

IoT and other paradigms. It was found that while some of the number limitations (for 

example, only 255 TIMs can be connected to any NCAP Server) seemed outdated, the 

ideals and services laid out in the document still hold true to designs today. Previously, it 

was thought that an NCAP Server could only communicate to TIMs and NCAP Clients in 

only one or two different methods. After investigating the available resources and 

libraries which accompany platforms such as the RPi and the MSP430, it can be realized 

that an all-in-one NCAP Server which contains the different methods of communicating 

to the TIM in one platform. It also can be seen that with the increase in processing power 

since the creation of the last draft of this standard, that the lines between the NCAP 

Server and TIM abstraction layers can begin to blur together. This is one area where 

further research needs to be done, investigating the impact of NCAP Server/TIM hybrids 

on the performance and autonomy of the network. 
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Recommendations for Future Work 

The future work laid out below pertains mainly to the implementation at Rowan 

University and the associated research being performed there. One of the most prevalent 

needs in the implementation is the inclusion of the TEDS services laid out in the IEEE 

P21451-1 standard. To be able to test these however, work also needs to be done on 

enhancing the robustness and richness of the TIMs. Either through acquisition or 

development, to be able to properly test the P21451-1 services, a large number of 

standard-compliant TIMs are needed. Further work is needed to make a user-friendly 

SDK or library. This way, a designer can simply add this functionality to their existing 

projects. 

An effort was made to look at the possibility of entirely “virtualizing” the TIM. If 

another Raspberry Pi, MSP430, or other embedded platforms could contain the same 

services as a TIM with virtualized sensors and actuators. The work in this type of project 

can go as far as even allowing designers to simulate single sensor dynamics and even 

more complex systems such as portions of a factory or buildings. This could be done as 

an SDK which can then be implemented outside of the embedded platform. 

The last recommended work is to expand the Rowan University baseline 

implementation. This could eventually lead to a campus-wide implementation in the 

future, giving the Rowan University S.M.A.R.T. lab one of the largest open-source 

testbeds for IoT devices to date, and could serve as a model Smart City. This would mean 

additional work such as looking at ArchLinux as an operating system for less power 

consumption as well as using other methods to connect to the internet such as the Cellular 
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networks. Research into using other messaging protocols such as MQTT, CoAP, and 

SNMP which are rapidly becoming the defacto standard for IoT development must be 

considered if this standard and the resources generated are to keep up with the growth of 

the IoT paradigm. 
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Appendix A - The “Hello World” metric  

The “Hello World” metric is a measure of how many lines of code are needed to 

print “Hello World” onto the screen. For this test, the common programming languages 

of C, C++, Java, and Python were compared. This test was not meant to compare these 

languages in terms of execution time, amount of memory required to utilize, etc., but 

rather how simple it is for someone with very little background in developing embedded 

systems to get started with the language. In this metric, the lower the score, the easier it is 

to work with the programming language. 

C is a compiled language, meaning that it is broken down into machine language 

(a language consisting of fundamental instruction which the processor on the computer 

can understand) and executed. Because of this, programmers need to direct the compiler 

to use a library of code which is built into the operating system to allow us to access the 

terminal or screen on the computer. A library of code is a collection of functions and 

custom datatypes which can be utilized in other programs. C (and consequently C++) 

also require a “main” function which is the epicenter of the entire program. This is the 

function which will execute upon starting the program after any initialization is required. 

Because of all this, the resulting code to print “Hello World” on the screen is: 

#include  

  

int main(void) 

{ 

    puts("Hello, world!"); 

} 

Not included above are the required Linux commands to compile this code into an 

executable file which the computer can then run. Without counting whitespaces or empty 
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lines, C receives a Hello World metric score of 5 Significant Lines of Code (SLOCs), 

when the braces containing the function are considered. 

C++, which was built off of C and is compiled, retains many of the necessities of 

C to print “Hello World” as can be seen below. Due to the addition of the need for the 

return, C++ receives a Hello World metric score of 6 SLOCs. 

#include  

  

int main() 

{ 

    std::cout << "Hello, world!"; 

    return 0; 

} 

Java is built around the idea of object-oriented code and it lends itself greatly to 

applications dealing with data or datasets. Java is not just a compiled language in the way 

C or C++ is. It is compiled down into bytecode which ten requires a Java Virtual 

Machine to interpret it. Much like C++ and C, the program needs to reach into the 

operating system and call upon a set of functions and drivers to print to the screen within 

a terminal window. This can be seen below: 

public class HelloWorld { 

    public static void main(String[] args) { 

        System.out.printIn(“Hello World”); 

    } 

}  

Including the terminating braces, Java is at a tie with C with a Hello World Metric 

Score of 5 SLOCs. 

Unlike the previous examples, Python has built-in functions which encapsulate a 

lot of the complexities into high-level functions, removing a lot of the steepness in the 

learning curve. Since it is also an interpreted language like Java, it requires (in most 
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cases) a Python runtime environment to execute the code. Python also can be treated as a 

scripted language where the developer directly tells the program what to do, instead of 

generating specific functions (such as in all the previous examples), running each line of 

code in order. Python can be used in the object-oriented ways as seen above, however if it 

is scripter, “Hello World” can be printed using the simple code below: 

print “Hello World” 

 

Coming in at the lowest possible Hello World Metric score of 1, the intuitive 

nature of the Python language, combined with the strong operating system level support 

within the Raspbian operating system made this the best choice for the main 

programming language for the NCAP Server. Using this would allow new students on the 

project, and eventually, developers attempting to work with the standard, a quick climb 

up the associated learning curve so that they can get to what is important. 
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Appendix B – Table of TIM Services 
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