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Abstract 

Oliver Palumbo 
INVERTED CONE NEURAL NETWORK FOR DEBONING MRIS 

2018-2019 
Nidhal Bouaynaya, Ph.D. 

Master of Science in Electrical and Computer Engineering 
 

 

Data plenitude is the bottleneck for data-driven approaches, including neural 

networks. In particular, Convolutional neural networks (CNNs) require an abundant 

database of training images to achieve a desired high accuracy. Current techniques 

employed for boosting small datasets are data augmentation and synthetic data 

generation, which suffer from computational complexity and imprecision compared to 

original datasets. In this paper, we intercalate prior knowledge based on spatial relation 

between images in the third dimension by computing the gradient of subsequent images 

in the dataset to remove extraneous information and highlight subtle variations between 

images. The approach is coined ``Inverted Cone" because the volume of brain images 

below the level of the eyes is ordered to form an inverted cone geometry. 

The application explored in this work is deboning, or brain extraction, in brain 

magnetic resonance imaging (MRI) scans. The difficulty of obtaining ground truth for 

this application prevents the ability of obtaining a large quantity of training images to 

train the CNN. We considered a limited dataset of 23 patients with and without malignant 

glioblastoma. Deboning was performed by employing an optimized CNN architecture 

with and without the Inverted Cone processing. The classic CNN without prior 

knowledge achieved a validation accuracy of 77 %, while the Inverted Cone CNN model 

achieved a validation accuracy of 86 % in a dataset of 451 brain MRI slices. 
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Chapter 1 

Introduction 

 In this chapter, we will outline the motivation and problem in deboning brain MRI 

scans as well as the current approaches taken in medical image segmentation.  

Additionally, we will elaborate on the contributions of this thesis work. 

 

1.1 Motivation, Problem Statement and Background 

Deep learning has been widely utilized in object detection and recognition.  

Convolutional neural networks (CNNs) allow processing and analyzing large sets of 

image data into classification of predefined classes.  Beginning with the AlexNet 

architecture developed in 2012 by the SuperVision group [1], CNNs have been proven to 

outperform classical modeling for object detection.  AlexNet ranked with the top-5 error 

rate of models for the ImageNet Large Scale Visual Recognition Challenge with only 

15.3 % error by classifying 1.2 million images into 1,000 categories [1]. 

Since then, deep learning for object recognition has been expanded into many 

different applications, such as pothole detection for intelligent transportation systems [2] 

and medical brain tumor segmentation as an aide for medical diagnoses [3], [4].  Image 

segmentation is a concentrated application of object detection that distills an image into a 

series of patches such that every pixel in an image can be classified. 

The Multimodal Brain Tumor Segmentation (BRATS) competition [5] strives to 

improve the brain tumor segmentation application by evaluating a set of image 

segmentation models, both classical and deep learning, to determine which technique 

produces the highest accuracy.  The task is to develop a model that detects and classifies 
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5 distinct regions in a brain magnetic resonance imaging (MRI) scan (normal tissue, 

necrosis, edema, non-enhancing, and enhancing tumor).  A CNN model was awarded first 

place in the 2015 BRATS challenge with Dice Similarity Coefficients of 0.88, 0.83, and 

0.77 in the complete, core, and enhanced regions, respectively, as computed by the 

BRATS organization [4]. 

A vital issue that arises in specific applications such as brain MRI segmentation 

or pothole detection is the requirement of a large database of images to train the network. 

The BRATS competition employed a training dataset comprising 276 patients' four 

modalities MRIs with each MRI modality containing approximately 150 images.  Often 

times, especially for medical image applications, image datasets are limited with a small 

number of images available for training the network, which can result in over fitting of 

the model to the images in the training database and not being able to generalize well on 

unseen images.  The Inverted Cone CNN introduced in this work serves to increase the 

classification accuracy of a CNN on brain MRI scans by leveraging prior knowledge of 

the ordered nature of MRI scans to reduce the complexity of the dataset for training 

purposes.  

 

1.2 Research Contributions 

The contributions of this research involve deriving the Inverted Cone framework 

for deboning magnetic resonance images (MRIs).  This approach exploits the temporal 

structure of the MRIs to improve classification results by machine learning algorithms.  A 

fundamental limitation of neural networks and other machine learning techniques is the 

quantity of thoroughly-labeled data which is required to train an accurate system. 
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The Inverted Cone method relies on the known ordered nature of a brain MRI 

scan sequence to remove difficult to classify regions in a size-restricted dataset.  By 

calculating the gradient between the area of subsequent scans, large and complex sinus 

structures can be removed in preprocessing that significantly improve the accuracy of a 

standard CNN model. 

The Inverted Cone framework was implemented on brain MRIs, with and without 

tumors, provided by the University of Alabama at Birmingham School of Medicine.  The 

brain MRI scans of 23 patients were analyzed with each patient scan consisting of 17-38 

slices. 

 

1.3 Organization 

This thesis work will be organized in the following way. 

In Chapter 2, we perform a literature review for the current methods of brain MRI 

deboning.  The techniques used in the field include by hand analysis of the MRI scans as 

well as software that relies upon a manually adjusted parameter and visual inspection.  

The automation that is granted by the work in this thesis will remove the need for 

manually adjusted parameters and lessen the work of visually inspecting the scans.  

Furthermore, we discuss the foundations for neural networks and CNNs, and how each of 

these can be designed to solve classification problems. 

In Chapter 3, an overall perspective is taken of the brain MRI processing 

procedure.  Each step of the brain diagnosis process is broken down and specific analysis 

taken on the deboning stage.  Additionally, the brain MRI deboning problem is framed in 

this section as a classification problem on which a neural network could be employed. 
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In Chapter 4, the Inverted Cone CNN framework is introduced.  We will explore 

the motivation behind utilizing the Inverted Cone method to preprocess brain MRIs prior 

to deboning via CNN.  The database of MRI scans provided by the University of 

Alabama at Birmingham will be detailed in this section and the process of preparing each 

scan with the Inverted Cone method prior to deboning with neural network architecture. 

In Chapter 5, we will describe the implementation of the Inverted Cone CNN 

technique for brain MRI deboning on the high-performance computer (HPC) at Rowan 

University.  The specifications of the HPC system will be described along with the 

languages and libraries utilized to design the Inverted Cone CNN. 

In Chapter 6, the simulation results of deboning brain MRIs with the Inverted 

Cone CNN will be discussed.  We will show that the CNN employing the Inverted Cone 

preprocessing technique outperforms a standard CNN in validation accuracy measures.  

Example segmentation results will also be provided. 

In Chapter 7, we will summarize this work by explaining the contributions and 

successes uncovered in the development of our thesis.  The research procedure and 

findings will be outlined with conclusions drawn.  Furthermore, we will speculate upon 

future developments to the thesis work. 
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Chapter 2 

Literature Review 

 In this chapter, we will review the current techniques being employed in the 

medical field in order to debone brain MRI scans.  Additionally, we will review the 

fundamentals contributions of neural networks with particular interest in CNNs. 

 

2.1 Neural Networks 

Neural networks are powerful machine learning tools that create systems with 

unparalleled capability to extract features from datasets and classify inputs based on these 

features.  The core principle of neural networks is training a series of artificial neurons 

with a large quantity of training data for the network to understand the features of this 

dataset and can make predictions on the classifications of new input data.   

Neurons are arranged in a parallel fashion in the form of layers.  An input and 

output layer exists at the input and output of the network respectively.  The input layer 

consists of a weighted connection between each data point of the input with each neuron 

in the first hidden layer.  The output layer consists of several neurons corresponding with 

the desired number of classes to be predicted or to combine the data in the desired 

fashion.  Between the input and output layers reside hidden layers containing several 

parallel neurons.  Weighted connections relate each neuron in one layer to every neuron 

in the next layer.  A simple diagram of a two-hidden layer neural network is pictured in 

figure 1. 
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Figure 1.  A simple artificial neural network with two hidden layers [12] 
 
 
 

 Each neuron in an artificial neural network (ANN) acts as an activation function 

to translate a summed input of weights and biases to a combined output [12].  Weights 

are scalar values that function as connections between neurons in a network while biases 

perturb the network to prevent over fitting.  Figure 2 represents the connections between 

the neurons of an input layer with a single neuron hidden layer (also known as a single 

layer perceptron). 
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Figure 2.  An artificial neuron with weight connections and bias 
 
 
 

 The activation function of a neuron acts as a classifier based on the input weights 

and biases.  The input data is scaled based upon the weights connecting to the neuron in 

the next layer and each weighted input is then summed at the input of each neuron.  The 

equation for the input of the neuron (pre-activation) can be seen in (1) where a(x) 

describes the input to the activation function while the transformed output equation g(x) 

can be seen in (1).  The vector w represents the weights of the input layer while the 

vector x represents each input value.  The scalar value b represents the bias. 

( ) T
i i

i
a x b b w x= + = +∑w x          (1) 

( ) ( ( )) ( )i i
i

h x g a x g b w x= = +∑        (2) 
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A common activation function to utilize for a neuron is the sigmoid function.  

There are multiple benefits to using a sigmoid function: non-negativity (negative input 

values set to zero), upper bounded at 1 and lower bounded at 0, and always increasing; 

furthermore, the sigmoid function introduces non-linearity to the transformation of the 

input data which allows for the development of complex classifiers.  The equation for a 

sigmoid function can be seen in (3) with a graphical representation in figure 3. 

1( ) ( )
1 exp( )

g a sigm a
a

= =
+ −

       (3) 

 
 
 

 

Figure 3.  Sigmoid activation function 
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 There are numerous choices for activation functions, but the rectified linear unit 

(ReLU) function has become the most popular in neural network design.  The ReLU 

function can be calculated by taking the maximum value between 0 and the input value; 

thereby, restricting the output to non-negative values while retaining the value of non-

negative inputs.  The ReLU function has gained such notoriety as an activation function 

since the monotonically increasing positive portion of the function retains the positive 

inputs directly and the negative portion sets all negative inputs to zero, allowing the 

ReLU function to be non-linear while reducing processing requirements [13].  A 

graphical view of the ReLU function can be seen in figure 4. 

 
 
 

 
Figure 4.  ReLU activation function 
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 Consequently, the non-linearity provided by the aforementioned activation 

functions allows a neural network to make increasingly more complex classifications 

based upon the number of hidden layers in the network.  At every layer, every neuron is 

connected to every neuron in the next layer; therefore, the non-linear transformation of 

the input data at the output of the first hidden layer will be subjected to even greater non-

linearity at the output of the next hidden layer.  A visualization of a more complex, two-

layer network can be seen in figure 1 while a detailed view of a multiple-neuron single 

layer network can be seen in figure 5.  The values x1 through x3 represent the inputs, the 

values w11 through w33 represent the weights between the input layer and the hidden 

layer, the values w1 through w3 represent the weights between the hidden layer and the 

output layer, and the values b1 and b2 represent the bias for the hidden layer and output 

layer respectively. 
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Figure 5.  Multiple-neuron single hidden layer ANN 
 
 
 

 Neural network architecture primarily consists of the parameters: numbers of 

hidden layers, neurons within each hidden layer, input values at the input layer, and 

classes at the output layer [14].  The activation function is chosen as the ReLU function 

for CNN applications. 

 Training is performed once the neural network architecture is established.  A 

database of labeled data is provided as input to the system.  The network learns to 

classify this data based on the class labels.  An error function is formulated to determine 

the accuracy of classification after each forward-pass through the neural network.  

Empirical risk is determined by comparing the predictions made at the output layer with 

the predetermined classes of the dataset [14].  The formula for empirical risk 
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minimization can be seen in (4) where l is the loss function, f(xi) is the predicted 

classification of the input xi, yi is the correct classification, and n is the number of inputs. 

1

1( ) ( ( ), )
n

n i i
i

E f l f x y
n =

= ∑         (4) 

Subsequently, the network learns features of the dataset during back-propagation.  

Minimization of the error function calculated on the outset of a forward-pass is 

performed through standard optimization techniques.  Stochastic gradient descent is a 

common choice in optimization algorithms that operates by subtracting the gradient of 

the gradient of the loss function from the weight values of the forward-pass to determine 

the adjusted weight values [15].  A step size is chosen to adjust the speed of convergence 

for the optimization algorithm.  In machine learning, this step size is known as the 

learning rate.  The stochastic gradient descent equation can be seen in (5) where Q is the 

loss function, ϒ is the step size, and w is the weight value being calculated. 

1 ( , )t t t w t tw w Q z w+ = − ϒ ∆         (5) 

 Ultimately, the weights of connections between each layer are updated every 

iteration of back-propagation until the desired number of iterations or desired accuracy 

measure has been achieved. 

 

2.2 Convolutional Neural Networks 

A central motivation of computer vision is object recognition: to take as an input 

2D array describing an image and output a known class in which this image belongs.  

One property which allows CNNs to excel at object recognition is that local connectivity 

is emphasized.  Object recognition can be accomplished with a typical ANN by 

vectorizing the image into a 1 dimensional vector and applying this vector as input to the 
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network, but this technique fails to consider the relationships between adjacent pixels in 

an image that highlight important features such as corners, edges, or textures. 

CNNs are an extension of ANNs that calculate weights via back-propagation in a 

2-dimensional space in order to create optimized filters to extract complex features.  Each 

entry in the simple Gaussian blur filter in figure 6 becomes a variable weight.  The 

optimized weight values produced by a CNN can extract accurate features that machine 

learning designers themselves cannot understand; therefore, CNNs are especially suited 

to excel at tasks in computer vision.  The convolution operation is performed by taking 

the calculating the product of one function with another over all points of the original 

function.  The formula for convolution between two generic functions f and g can be seen 

in (6) where t is the independent variable and τ is the variable that shifts the functions. 

0

( )( ) ( ) ( )
t

f g t f g t dτ τ τ∗ = −∫         (6) 

 In computer vision, convolution can be leveraged to pass a relatively small filter 

(or kernel) over the entirety of an image.  A kernel is a matrix of values that can 

manipulate an input image.  The kernel representing a Gaussian blur filter can be seen in 

figure 6. 

 
 

1 2 1
1 2 4 2

16
1 2 1

 
 
 
  

 

Figure 6.  Gaussian blur filter 
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2D convolution can be used to process images and extract features such as corners 

or edges.  Gaussian blur filters, such as in figure 6, operate by taking the weighted 

product of all pixels starting at coordinate [0, 0] with the filter, and then taking the 

average over the sum of weights in the filter [16].  Through convolution, this product is 

taken between the filter and every pixel region as the filter passes over the image.  An 

example image before and after convolution with a Gaussian blur filter can be seen in 

figure 7. 

 

 

Figure 7.  Image filtered with Gaussian blur 
 
 
 

Each neuron in a hidden layer of a CNN is connected to all pixels in a small 

region of the image (determined by desired filter size) known as the receptive field for 

that activation unit.  Additionally, the total number of computations required by the 

network to back-propagate through the weights is vastly decreased as compared to a fully 

connected network with each pixel having a weighted connection to each neuron.  An 

example of receptive field connectivity can be seen in figure 8. 
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Figure 8.  Local connectivity achieved through receptive fields for each neuron 

 

Furthermore, neurons in a CNN are arranged into feature maps that determine 

complex features in an image and further reduce the computational complexity of the 

network.   Feature maps contain enough neurons to cover the entirety of the input image 

in relation to the size of the filters being produced; thereby, calculating the weights for 

every available receptive field within each feature map.  The weighted connections that 

determine the filter convolved with the receptive fields are shared between all neurons in 

a feature map, also known as parameter sharing, which allows for robust filter 
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development without higher computational cost.  An example of parameter sharing 

through feature maps can be seen in figure 9, with each color representing shared kernel 

parameters. 

 

 

 

Figure 9.  Parameter sharing via feature maps 
 
 
 

 Filters are calculated for every feature map in a hidden layer and then convolved 

with every receptive field in the image.  The result of this operation is a singular feature 

extraction across the entire image for each feature map.  Consequently, the number of 

feature maps determines the number of features that are extracted from the image at a 

certain hidden layer.  The number of feature maps can vary between each layer 

depending on the desired number of features to be used for classification. 
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 The weight matrix, denoted as kij, contains the weights for the ith channel in the 

image and jth feature map.  The kernel matrix is then convolved with the corresponding 

receptive field in the image, denoted as xij.  Then the output of the feature map after 

activation, denoted as yj, is calculated by taking the summation of the convolution across 

all channels in the image as input to the activation function as seen in (7). 

tanhj j ij i
i

y g k x = ∗ 
 
∑         (7) 

 Expanding the feature maps into a cascading series forms the foundation for 

hidden layers in a CNN.  As an image passes from one hidden layer to the next, 

increasingly complex features are extracted by the network.  The initial hidden layer 

extracts features directly from receptive fields in the input image while subsequent layers 

extract features from the features extracted in the previous layer [17].  An example of 

features extracted by a deep neural network (one with many hidden layers) can be seen in 

figure 10. 
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Figure 10.  Features extracted by a deep convolutional neural network [17] 
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Additionally, the first and last layers of the network are the input and output 

layers, similar to the ANN.  Images are passed to the activation functions of the first 

hidden layer through the weighted connections of feature maps.  At the output layer 

exists a neuron for each of the predetermined classes that could describe the input image 

[14].  A full CNN architecture can be seen in figure 11. 
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Figure 11.  Block diagram of convolutional neural network 
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 At the first hidden layer, the network calculates weights for the kernel 

connections between the layer and the input image.  The weights are adjusted during each 

pass of back-propagation to extract the optimal features from the image for the desired 

classification criteria.  The output of this layer is a filtered version of the input image per 

feature map [17].  For example, if a network was designed with 64 feature maps in the 

first layer, then the output of the first layer would contain 64 copies of the input image 

with each copy filtered by a separate kernel. 

 Subsequently, subsampling and pooling layers are typically utilized in CNN 

architectures to reduce the size of the filtered images propagating through the network; 

thereby, reducing computational complexity and increasing runtime efficiency.   

Furthermore, subsampling layers serve to highlight relevant features that span across 

local regions of the image and prevents over fitting by disrupting the input information 

[18].  This operation is performed until, at the input to the final layer, there is a vectorized 

string of 1x1 elements describing the features extracted from the image by the network.  

This vector is attached to a fully connected layer which is then classified in the output 

layer by the neurons signifying the possible class sets. 

 

2.3 Data Augmentation and Synthetic Data Generation 

Several preprocessing techniques have been developed to alleviate some of the 

issues that arise with the limited datasets. Data augmentation is one way to artificially 

increase the size of a database by duplicating and performing transformations on the 

original dataset [6], [7] and [8].  For example, one could perform a series of 90°, 180° 

and 270° rotations on each image to effectively quadruple the size of their database [4].  
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Furthermore, these transformations would make the model rotationally invariant, 

allowing accurate object detection regardless of how the object is oriented within the test 

images. However, data augmentation increases the computational complexity, which is 

undesirable especially for medical image analysis intended for diagnosis purposes.  

Additionally, a database can be expanded through synthetic data generation [9].  

Originally proposed as a solution to imbalanced classes, the Synthetic Minority Over-

sampling technique has been utilized to increase the amount of training data in an 

underrepresented class [10], [11].  Each training class could be manipulated through this 

technique until all classes contain an equal quantity of training images.  This concept 

could then be expanded to the dataset; generating synthetic data to increase the total size 

of the database. However, medical images are usually very difficult to imitate and include 

critical information that need to be extracted. By synthesizing these medical images, we 

may be losing some information that might help in diagnosis and treatment.    
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Chapter 3 

The Big Picture 

In this chapter, we will discuss the current procedure employed to generate brain 

MRI scans, debone each scan, segment the results, quantify brain structure information, 

and perform diagnostic predictions based upon this data.  Furthermore, we will analyze 

the brain MRI deboning problem as a classification problem. 

 

3.1 Brain MRI Processing 

Magnetic resonance imaging (MRI) machines are employed in the medical field 

as a non-invasive diagnostic tool which can produce images of internal organs and bones.  

Brain MRI scans are often taken when patients are at risk of malignant brain tumors, 

changes in volume indicating Alzheimer’s disease, stroke, multiple sclerosis, and many 

others.  First, a patient must be scanned for several minutes in the MRI machine to 

produce suitable images.  An example of an MRI scan can be seen in figure 12. 

 

 

 

Figure 12.  Standard MRI scan from volume of images produced by an MRI machine 
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Prior to diagnoses, skull structures that are unrelated to the illness under 

evaluation must be removed from each image.  Currently, this process is performed either 

by hand or by manually adjusting a single variable within preprocessing software, such as 

the FSL software [19].  This variable must be readjusted for every image in each MRI set, 

thus increasing the time and labor for each diagnosis.  The interface for the FSL software 

can be seen in figure 13. 

 

 

 

Figure 13.  FSL software interface for deboning brain MRI scans 
 
 
 

From there, the deboned brain MRI scan is segmented either by hand or through 

an automated method based on statistical modeling.  One such modeling method is the 

Active Contour, which utilizes an energy minimization function to propagate a boundary 

toward connected structures in an image.  Typically, physicians will segment brain MRI 
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scans by hand and through visual inspection.  Once the structures of the brain are 

properly distinguished – with area and volumes quantified – then a diagnosis can be made 

based on this information. 

 

3.2 Brain MRI Deboning as a Classification Problem 

Brain MRI deboning can be framed as a classification problem by analyzing each 

scan on a pixel-by-pixel basis.  Segmentation is performed to classify multiple objects or 

classes within a single image.  In the deboning application, segmentation could be 

formulated as a binary classification problem of skull vs. brain.  The process of 

segmentation involves patching to be applied to the dataset to extract local regions of a 

specified size from a variety of areas.  An equal number of patches are extracted from the 

training set of images for each of the two classes.  Each patch is classified by the central 

pixel in that patch.  Once a balanced library of patches is derived from the dataset, the 

network is then trained on that library.  The weights in the network are adjusted after 

each pass through the library of patches until all epochs are completed. 

After training has been completed, testing can be performed on images that the 

network has not yet seen.  The input images to the system are decomposed into patches of 

a specified size and input into the network.  Each patch would then be analyzed by the 

network to classify the central pixel of that patch into one of the predefined classes of the 

training set.  Image segmentation is complete once all pixels have been classified by the 

network.  An example patch library extracted from a database of brain MRI images can 

be seen in figure 14. 
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Figure 14.  Patch library extracted from brain MRI database with brain patches in the top 
image and skull patches in the bottom image 
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Each pixel of the brain MRI database can be determined to exist in one of two 

classes: skull or non-skull.  A training database can be constructed containing skulls that 

have been labeled by hand (each pixel of skull as a 1 and all other pixels as 0) by 

breaking all images in this dataset down into patches.  Each small patch taken from an 

image in the dataset, such as a 15x15 square, can be utilized by a CNN to classify the 

central pixel of that patch based on the features of the surrounding 15x15 region.   An 

example of a skull classified patch and a non-skull classified patch can be seen in figure 

15. 

 

 

 

Figure 15.  Skull and non-skull classified patches 
 
 
 

 Once a CNN has been trained upon the patch library extracted from the brain MRI 

database then new brain MRI scans can be segmented by the system.  At the input to the 

network, each new scan will be broken down into a library of patches that encompasses 

all pixels in the image.  Then central pixel of each patch will be classified based upon the 

trained network classifier.  The result will be a pixel-by-pixel prediction by the network 

of where the skull exists in the image.  A brain MRI along with the segmented result via 

CNN can be seen in figure 16. 
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Figure 16.  Skull segmentation of brain MRI scan 
 
 
 

3.3 Inverted Cone Preprocessing 

Although CNN architectures are robust for general object recognition with large 

and diverse training data, faults arise when specific applications lack a suitable database.  

The standard approach to dealing with this deficiency would be to artificially expand the 

training data through data augmentation and synthetic data generation.  Both of these 

techniques involve adding additional data points to the database in the preprocessing step 

that do not truly exist in the dataset.  The solution proposed in this thesis is to impose a 

constraint on the dataset in both preprocessing and during the testing of the CNN 

architecture based upon prior knowledge of the dataset. 

The application explored in this paper is the deboning process for brain MRI 

scans.  The proposed modification, named the Inverted Cone Method, utilizes the known 

order of images in an MRI dataset to remove the most complex skull structures prior to 

process by the CNN.  
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Chapter 4 

Inverted Cone CNN 

In this chapter, we will be exploring the Inverted Cone CNN to debone brain MRI 

scans.  We will discuss how the nature of the dataset can be leveraged to increase 

accuracy when spatial relationships are determined.  The database of MRI scans used for 

this work will be described and the Inverted Cone CNN will be dissected.  

 

4.1 Temporal Derivative 

The Inverted Cone method relies on a sequentially ordered dataset, such as in a 

stream of video or a series of MRI scans, to isolate relevant information in more complex 

images.  In the deboning application, all images in an individual patient's MRI scan are 

ordered in layers from the base to the top of the skull and separated by a constant 

thickness per slice. 

MRI scan slices that are taken from the top to the middle of the skull are easily 

segmented by both visual inspection and through CNN processing.  At these locations, 

the skull is present in a well-defined ring around the brain. As the scans descend further 

into the skull, sinus cavities begin to appear in the skull structure as the area occupied by 

the brain shrinks. 

MRI slices that have been taken closer to the base of the skull introduce highly 

irregular areas and deviate greatly from the typical central slice.  In these lower images, 

the sinus cavities and eye sockets create more complex structures to classify.  An 

example of a complex MRI slice containing eye sockets can be seen in figure 17. 
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Figure 17.  Complex MRI scan containing eye sockets and sinus structures 
 
 
 

The ordered and related nature of the brain MRI images allows the use of 

preprocessing to remove the most difficult to classify sections of the skull.  By working 

from the central slices outward, the MRI images with the largest area of brain can be 

leveraged to remove extraneous skull structures in the more complex scans. 

The difference is taken between each image with a larger area of brain and the 

next image in the dataset to highlight the relevant area of analysis in that next image.  The 

skull structures that result from this difference can be removed from the subsequent 

images to reduce presence of the most difficult to classify areas. 
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4.2 The Inverted Cone CNN 

To construct the Inverted Cone CNN, a preprocessing system was created that 

must be applied during both the training and the testing phases of the CNN.  The training 

set is prepared with this system prior to training the CNN, and then applied in a feedback 

loop during the testing of the network.  A block diagram depicting the overall process for 

the Inverted Cone CNN can be seen in figure 18. 

First, the training set of images must be preprocessed through the Inverted Cone 

method.  The preprocessing was performed by finding the MRI slice for a specific patient 

with the largest area of brain in the ground truth.  The resultant image would be from the 

central area of the MRI volume, and the difference would then be taken between this 

image and the subsequent image for that patient's MRI.  This difference would include all 

irrelevant skull structures that fall outside the immediate area surrounding the brain.  This 

process was then performed upon all the following images; thereby, the MRI sets for 

each patient were simplified based on a central slice for each patient.  A CNN 

architecture would then be trained upon this modified dataset. 
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During the testing phase, the Inverted Cone method was applied in a similar 

fashion. When classifying a new set of MRI scans, the scans were input into the system 

starting with the slices that are taken at the top of the skull.  The area of the brain that is 

identified in each slice will be stored and compared to the area in the subsequent slice, 

until the central slice with the largest area of brain is discovered.  This central slice would 

then be utilized to identify extraneous skull structures in the following image.  Once these 

structures are removed from the slice, the image would be processed as an input to the 

network.  The segmented result is then fed back as an input to the network to compare 

with the next image in the set, thus creating a gradient of change around the immediate 

area of the brain.  This process is performed on each subsequent image until the entire 

MRI set for a patient is classified and deboned. 

 

4.3 Database 

The Inverted Cone CNN was applied to a database of anonymized 

gadoliniumenhanced T1-Weighted MRI images of human brain with and without 

malignant glioblastoma multiforme, a malignant brain tumor. The database, provided by 

the University of Alabama at Birmingham School of Medicine, was comprised of patient 

files containing a series of MRI scan slices for each patient. Patient files which held MRI 

scans that did not equal the common size of 256x256 were removed from the database.  

The resulting size of the dataset that was utilized in the training of this system was 23 

patients with 17-38 slices per MRI scan.  Ultimately, the system was trained with 451 

MRI slices.   
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4.4 Preprocessing 

For the application of deboning, a library of 300,000 patches was created for a 

data set consisting of 23 patients and between 17-38 slices per MRI scan.  The total 

number of images in the dataset was 451 MRI slices.  Patch sizes of 33x33 and 15x15 

were investigated in this model.  Larger patch sizes allow for a larger region of features 

to be analyzed around the pixel being classified which makes the network more robust to 

local structures, yet increases computational complexity and overfitting due to a loss of 

resolution.  Ultimately, a patch size of 15x15 was chosen for the final model. 

The Inverted Cone method was applied to the deboning dataset during 

preprocessing to remove complex skull structures at the base of the skull.  The ground 

truth for each image following the central slice was used to filter the subsequent slice for 

that patient.  Once the difference was taken between the areas of the brain in the previous 

image with the second image, the difference could then be removed from the second 

image as extraneous skull structures.  A series of brain MRI slices preprocessed using the 

Inverted Cone method can be seen in figure 19 with the processed scans on the left hand 

side and unprocessed scans on the right hand side. 
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Figure 19.  Brain MRI scans preprocessed by Inverted Cone  
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Chapter 5 

HPC Implementation 

In this chapter, we will discuss the application of high-performance computing 

technologies to efficiently train and test the CNN employed in the brain MRI deboning 

problem.  

 

5.1 System Specifications 

The Rowan University high-performance computer provided the capability to 

train and test the Inverted Cone CNN with an extensive dataset consisting of 300,000 

15x15 patches extracted from 451 brain MRI scans.  Each node of the HPC acts as a 

powerful processing unit with high memory nodes being allocated even greater resources.  

A diagram of a typical HPC cluster architecture can be seen in figure 20. 

 

 

 

Figure 20.  HPC node cluster diagram 
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The HPC at Rowan University is comprised of 59 nodes and 1,372 physical processing 

cores with 7,616 GB of RAM.  An example image of the Rowan University HPC can be 

seen in figure 21. 

 

 

 

Figure 21.  HPC at Rowan University 
 
 
 

Three types of nodes exist on the Rowan University HPC: compute nodes, high-

memory nodes, and graphics processing unit (GPU) nodes.  The GPU nodes – on which 

this system was trained – contain 64 GB of RAM, 10 core processors, and 2 NVIDIA 

Tesla K20 graphics cards.  A detailed specifications list for the GPU nodes, high-memory 

nodes, and compute nodes can be seen in table 1. 
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Table 1 

Specification list for Rowan University HPC 

  Compute Nodes 

CPU 
2x Intel Xeon E5-2670v3 2.3 GHz (12-
Core) 

RAM 64 GB (8 x 8 GB) 
System 
Disks 

1x 240 GB Intel DC S3500 Series MLC 
SSD 

Storage 
Disks 1x 1 TB Seagate Constellation ES.3 

Switch Mellanox 1-Port FDR Infiniband 
GPU N/A 

  High Memory Nodes 

CPU 
2x Intel Xeon E5-2670v3 2.3 GHz (12-
Core) 

RAM 512 GB (16 x 32 GB) 
System 
Disks 

1x 240 GB Intel DC S3500 Series MLC 
SSD 

Storage 
Disks 1x 1 TB Seagate Constellation ES.3 

Switch Mellanox 1-Port FDR Infiniband 
GPU N/A 

  GPU Nodes 

CPU 
2x Intel Xeon E5-2670v3 2.3 GHz (12-
Core) 

RAM 64 GB (8 x 8 GB) 
System 
Disks 

2x 240 GB Intel DC S3500 Series MLC 
SSD 

Storage 
Disks 1x 1 TB Seagate Constellation ES.3 

Switch Mellanox 1-Port FDR Infiniband 

GPU 
2x NVIDIA Tesla K20m GPU 5 GB 
GDDR5 

 

 

 The size of the dataset that can be used for training the neural network was 

primarily restricted by the quantity of RAM on the computing system since the patch 

library must be stored in memory; therefore, the utilization of the HPC allowed for a 
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much greater variety of training data with the expanded memory capabilities.  

Additionally, multiple models could be run on separate nodes in order to rapidly 

prototype an array of hyperparameter values to find those ideal for the brain MRI 

deboning application. 

 

5.2 Python, Tensorflow, and Keras 

Python was chosen as the language to complete this thesis as there are extensive 

libraries for neural networking and machine learning that are constantly being expanded 

by community development.  Limitations arose in attempting to develop using MATLAB 

deep learning toolboxes since they are not an open-source development platform, and 

thus the toolboxes restricted the ability to train a complex convolutional system.  Training 

the Inverted Cone CNN model on the HPC required that a GPU node be configured to 

execute Python code with Tensorflow and Keras neural network libraries.  A series of 

steps were involved in connecting to the HPC and properly setting up the environment 

therein. 

 Firstly, a virtual environment was created and activated to work within the HPC 

cluster.  Within this environment, the Python pip functionality must then be upgraded to 

allow for the installation of Tensorflow. 

 Secondly, the Tensorflow machine learning framework was installed on the 

virtual environment.  Tensorflow is an open-source platform designed by the Google 

Brain team that has been a primary tool in machine learning development since its release 

to the public on November 9th, 2015 [20].  Additionally, the open-source API Keras was 

installed to run on top of Tensorflow to provide additional tools and ease-of-use.  These 
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libraries allow the simple creation of layers with inputs and outputs to construct neural 

networks of any variety. 

 Finally, the Compute Unified Device Architecture (CUDA) and the CUDA Deep 

Neural Network (cuDNN) library were installed in the environment in order to access the 

full functionality of the NVIDIA GPUs on the GPU node.  The CUDA API allows for 

parallel computing tasks involving the GPU while the cuDNN library allows for faster 

performance of machine learning algorithms with optimization of runtimes.  A diagram 

of the processing flow for the CUDA API can be seen in figure 22. 

 

 

 

Figure 22.  Processing flow diagram for CUDA API 



41 
 

 Data is copied from the main memory to the memory for the GPU which can pass 

that data for processing to the GPU cores in a parallel execution by instructions from the 

central processing unit (CPU).  Once the GPU cores process the data, the results can be 

copied back into the main memory of the system. 

 

5.3 Utilizing the HPC 

Once an account is obtained, the high-performance computer can be accessed 

directly through the Rowan University campus network or virtually through a virtual 

private network (VPN) connection.  The Cisco AnyConnect Client was used to access the 

Rowan University network when off-site.  An image of the VPN client can be seen in 

figure 23. 

 

 

 

Figure 23.  Cisco AnyConnect Secure Mobility Client interface 
 
 
 

 Once connected to the network, a Secure Socket Shell (SSH) client was used to 

remotely connect to the HPC cluster.  From there, Tensorflow and Keras were imported 

to allow execution of the Python-based Inverted Cone CNN architecture.  MobaXterm 
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was used to simplify file management on the system.  The interface of this software can 

be seen in figure 24. 

 

 

 

Figure 24.  MobaXTerm SSH Client interface 
 
 
 

 The database of 451 brain MRI scans was copied onto the HPC along with the 

code-base for the Inverted Cone CNN method.  At runtime, a library of 300,000 patches 

was stored into memory on the operating GPU node and trained on two NVIDIA Tesla 

K20 graphics processors.  The system then iterated through a directory containing test 

images unseen by the system to determine validation accuracy.  
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Chapter 6 

Simulation Results and Discussion 

In this chapter, we will evaluate the performance of the Inverted Cone CNN on 

deboning brain MRI scans against a standard CNN model and discuss the implications of 

those results. 

 

6.1 Performance Evaluation and Discussion 

The architecture utilized in the Inverted Cone CNN was a three-layer 

convolutional network followed by two densely connected layers and a classification 

layer at the output.  Three hidden layers in this network could extract a better feature-set 

from the data then a shallow network with only a single layer.  An increase in the number 

of layers past three resulted in a decrease of overall accuracy due to over fitting.  A 

standard ReLU activation function was used in each layer along with batch normalization 

to prevent over fitting.  Batch normalization ensures that the mean activation of the 

previous layer is close to zero and the standard deviation is close to one.  The full list of 

hyperparameters for this network is displayed in Table 1. 

 Kernel sizes were chosen to be cascading in size from 7x7 for the first layer, 5x5 

for the second layer, and 3x3 for the third layer.  Smaller kernel size allowed for a three-

hidden layer design with a small patch size of 15x15.  Larger kernels were employed at 

the outer layers to extract features with more locality information.  The kernels decrease 

in size in the two subsequent layers in order to reduce the number of weights and deter 

over fitting. 
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Table 2 

List of hyperparameters for Inverted Cone CNN 

 

 

 

The architecture described in Table 1 was trained with and without using the 

Inverted Cone method to process the inputs.  The results from the Inverted Cone CNN 

deboning were compared to a standard CNN as well as the widely used FSL deboning 

software.  The accuracy measurements for the FSL software was acquired by manually 

adjusting the parameter for the central slice of each test MRI set and using this parameter 

for all other slices in the set.  Accuracy, validation accuracy, and loss measurements for 

the two CNN techniques are shown in Table 2.  The Inverted Cone CNN outperformed 

the standard CNN model and the FSL software on this dataset. Accuracy and validation 

accuracy were plotted for both CNN models over the 10 epochs, as seen in figure 25. 
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Table 3 

Accuracy, validation accuracy, and loss 

 

 

 

 

Figure 25.  Validation accuracy for standard and inverted cone CNN. 
 
 
 

The Inverted Cone CNN outperformed the standard model in validation accuracy.  

The results show that utilizing the ordered nature of the brain MRI scans during 

preprocessing can reduce the complexity of the dataset and provide the system with a 
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greater capacity to learn the data.  Figure 26 contains both simple and complex images 

segmented using the standard CNN model and the modified Inverted Cone CNN.  As can 

be observed, the Inverted Cone CNN could segment the validation set more accurately as 

compared to the ground truth than the standard CNN architecture for both complex and 

simple MRI slices.  In the complex image, the Inverted Cone model was able to identify 

skull structure immediately bordering the brain more readily than the standard model. 

 

 

 

Figure 26.  Segmentation Results: 1st column: Original MRI scans; 2nd column: Ground 
truth deboning; 3rd column: Segmentation of the standard CNN; 4th column: 

Segmentation of the Inverted Cone CNN; 5th column: Deboning of the FSL software. 
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Chapter 7 

Summary and Future Work 

Modifications to training data for a CNN are vital in situations where the quantity 

of that data is limited.  In the past, data augmentation has been used to multiply the size 

of the database through duplicating and transforming available images.  Synthetic data 

generation has also been employed to create additional, artificial images to the dataset.  

Knowledge of intrinsic attributes for a set of images can be leveraged in the training and 

testing of a network through specific preprocessing operations to increase the overall 

accuracy of the system.  Two such attributes, order and spatial relation, were incorporated 

into the preprocessing for the application of deboning brain MRI scans. 

Since MRI scans are oriented from the top to the base of the skull in sequential 

order, each scan is a slight gradient from the previous scan.  When descending further 

into the slices of a scan, the area of the brain occupying the slice grows.  Knowledge of 

the ordered nature of the data along with the relationship between subsequent images 

allows the Inverted Cone preprocessing method to be employed.  Once the slice with the 

largest area of brain is determined, which will be a central slice in the scan, each slice 

afterwards can be filtered by the previous slice.  The only area of interest -- the brain -- 

decreases in size from the central slice to the base of the skull while the size and 

complexity of the skull structures increase. 

By ignoring the skull structures that fall outside of the area occupied by the brain 

in the previous slice, the classification problem becomes much simpler for the neural 

network to learn.  The most difficult to classify images, which contain sinus cavities, 
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become more similar in shape and relative area of each class when the inverted cone 

processing is applied; thereby increasing the overall accuracy of the system. 
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