
Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

6-25-2019

Inverted cone convolutional neural network for deboning MRIs Inverted cone convolutional neural network for deboning MRIs

Oliver John Palumbo
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Biomedical Engineering and Bioengineering Commons, and the Electrical and Computer

Engineering Commons

Let us know how access to this document benefits you -
share your thoughts on our feedback form.

Recommended Citation Recommended Citation
Palumbo, Oliver John, "Inverted cone convolutional neural network for deboning MRIs" (2019). Theses and
Dissertations. 2682.
https://rdw.rowan.edu/etd/2682

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact LibraryTheses@rowan.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Rowan University

https://core.ac.uk/display/225572813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F2682&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=rdw.rowan.edu%2Fetd%2F2682&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=rdw.rowan.edu%2Fetd%2F2682&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=rdw.rowan.edu%2Fetd%2F2682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/etd/2682
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/etd/2682
https://rdw.rowan.edu/etd/2682?utm_source=rdw.rowan.edu%2Fetd%2F2682&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:LibraryTheses@rowan.edu

INVERTED CONE NEURAL NETWORK FOR DEBONING MRIS

by

Oliver Palumbo

A Thesis

Submitted to the
Department of Electrical & Computer Engineering

College of Engineering
In partial fulfillment of the requirement

For the degree of
Master of Science in Electrical and Computer Engineering

At
Rowan University
November 4, 2018

Thesis Chair: Nidhal Bouaynaya, Ph.D.

© 2019 Oliver Palumbo

Dedications

To my parents and family.

iv

Acknowledgment

 This work was supported by the National Science Foundation under Award

Numbers NSF DUE-1610911 and NSF ACI-1429467.

v

Abstract

Oliver Palumbo
INVERTED CONE NEURAL NETWORK FOR DEBONING MRIS

2018-2019
Nidhal Bouaynaya, Ph.D.

Master of Science in Electrical and Computer Engineering

Data plenitude is the bottleneck for data-driven approaches, including neural

networks. In particular, Convolutional neural networks (CNNs) require an abundant

database of training images to achieve a desired high accuracy. Current techniques

employed for boosting small datasets are data augmentation and synthetic data

generation, which suffer from computational complexity and imprecision compared to

original datasets. In this paper, we intercalate prior knowledge based on spatial relation

between images in the third dimension by computing the gradient of subsequent images

in the dataset to remove extraneous information and highlight subtle variations between

images. The approach is coined ``Inverted Cone" because the volume of brain images

below the level of the eyes is ordered to form an inverted cone geometry.

The application explored in this work is deboning, or brain extraction, in brain

magnetic resonance imaging (MRI) scans. The difficulty of obtaining ground truth for

this application prevents the ability of obtaining a large quantity of training images to

train the CNN. We considered a limited dataset of 23 patients with and without malignant

glioblastoma. Deboning was performed by employing an optimized CNN architecture

with and without the Inverted Cone processing. The classic CNN without prior

knowledge achieved a validation accuracy of 77 %, while the Inverted Cone CNN model

achieved a validation accuracy of 86 % in a dataset of 451 brain MRI slices.

vi

Table of Contents

Abstract ..v

List of Figures .. viii

List of Tables ...x

Chapter 1: Introduction ...1

1.1 Motivation, Problem Statement and Background ..1

1.2 Research Contributions ..2

1.3 Organization ...3

Chapter 2: Literature Review ..5

2.1 Neural Networks ..5

2.2 Convolutional Neural Networks ..12

2.3 Data Augmentation and Synthetic Data Generation ..21

Chapter 3: The Big Picture ...23

3.1 Brain MRI Processing ..23

3.2 Brain MRI Deboning as Classification Problem ...25

3.3 Inverted Cone Preprocessing ...28

Chapter 4: Inverted Cone CNN...29

4.1 Temporal Derivative ..29

4.2 The Inverted Cone CNN ..31

4.3 Database ...33

4.4 Preprocessing ...34

Chapter 5: HPC Implementation ...36

5.1 System Specifications ..36

vii

Table of Contents (Continued)

5.2 Python, Tensorflow, and Keras ..39

5.3 Utilizing the HPC ...41

Chapter 6: Simulation Results and Discussion ...43

6.1 Performance Evaluation and Discussion ...43

Chapter 7: Summary and Future Work ...47

References ..49

viii

List of Figures

Figure Page

Figure 1. A simple artificial neural network with two hidden layers6

Figure 2. An artificial neuron with weight connections and bias7

Figure 3. Sigmoid activation function ..8

Figure 4. ReLU activation function ..9

Figure 5. Multiple-neuron single hidden layer ANN ..11

Figure 6. Gaussian blur filter ..13

Figure 7. Image filtered with Gaussian blur ...14

Figure 8. Local connectivity achieved through receptive fields for each neuron15

Figure 9. Parameter sharing via feature maps ...16

Figure 10. Features extracted by a deep convolutional neural network18

Figure 11. Block diagram of convolutional neural network ..20

Figure 12. Standard MRI scan from volume of images produced by an MRI machine ...23

Figure 13. FSL software interface for deboning brain MRI scans24

Figure 14. Patch library extracted from brain MRI database with brain patches in the top
image and skull patches in the bottom image ..26

Figure 15. Skull and non-skull classified patches ...27

Figure 16. Skull segmentation of brain MRI scan ..28

Figure 17. Complex MRI scan containing eye sockets and sinus structures30

Figure 18. Block diagram of Inverted Cone CNN ..32

Figure 19. Brain MRI scans preprocessed by Inverted Cone ...35

Figure 20. HPC node cluster diagram ...36

Figure 21. HPC at Rowan University ...37

ix

List of Figures (Continued)

Figure Page

Figure 22. Processing flow diagram for CUDA API ..40

Figure 23. Cisco AnyConnect Secure Mobility Client interface41

Figure 24. MobaXTerm SSH Client interface ..42

Figure 25. Validation accuracy for standard and inverted cone CNN45

Figure 26. Segmentation Results: 1st column: Original MRI scans; 2nd column: Ground
truth deboning; 3rd column: Segmentation of the standard CNN; 4th column:
Segmentation of the Inverted Cone CNN; 5th column: Deboning of the FSL
software. ...46

x

List of Tables

Table Page

Table 1. Specification list for Rowan University HPC ...38

Table 2. List of hyperparameters for Inverted Cone CNN ...44

Table 3. Accuracy, validation accuracy, and loss ...45

1

Chapter 1

Introduction

 In this chapter, we will outline the motivation and problem in deboning brain MRI

scans as well as the current approaches taken in medical image segmentation.

Additionally, we will elaborate on the contributions of this thesis work.

1.1 Motivation, Problem Statement and Background

Deep learning has been widely utilized in object detection and recognition.

Convolutional neural networks (CNNs) allow processing and analyzing large sets of

image data into classification of predefined classes. Beginning with the AlexNet

architecture developed in 2012 by the SuperVision group [1], CNNs have been proven to

outperform classical modeling for object detection. AlexNet ranked with the top-5 error

rate of models for the ImageNet Large Scale Visual Recognition Challenge with only

15.3 % error by classifying 1.2 million images into 1,000 categories [1].

Since then, deep learning for object recognition has been expanded into many

different applications, such as pothole detection for intelligent transportation systems [2]

and medical brain tumor segmentation as an aide for medical diagnoses [3], [4]. Image

segmentation is a concentrated application of object detection that distills an image into a

series of patches such that every pixel in an image can be classified.

The Multimodal Brain Tumor Segmentation (BRATS) competition [5] strives to

improve the brain tumor segmentation application by evaluating a set of image

segmentation models, both classical and deep learning, to determine which technique

produces the highest accuracy. The task is to develop a model that detects and classifies

2

5 distinct regions in a brain magnetic resonance imaging (MRI) scan (normal tissue,

necrosis, edema, non-enhancing, and enhancing tumor). A CNN model was awarded first

place in the 2015 BRATS challenge with Dice Similarity Coefficients of 0.88, 0.83, and

0.77 in the complete, core, and enhanced regions, respectively, as computed by the

BRATS organization [4].

A vital issue that arises in specific applications such as brain MRI segmentation

or pothole detection is the requirement of a large database of images to train the network.

The BRATS competition employed a training dataset comprising 276 patients' four

modalities MRIs with each MRI modality containing approximately 150 images. Often

times, especially for medical image applications, image datasets are limited with a small

number of images available for training the network, which can result in over fitting of

the model to the images in the training database and not being able to generalize well on

unseen images. The Inverted Cone CNN introduced in this work serves to increase the

classification accuracy of a CNN on brain MRI scans by leveraging prior knowledge of

the ordered nature of MRI scans to reduce the complexity of the dataset for training

purposes.

1.2 Research Contributions

The contributions of this research involve deriving the Inverted Cone framework

for deboning magnetic resonance images (MRIs). This approach exploits the temporal

structure of the MRIs to improve classification results by machine learning algorithms. A

fundamental limitation of neural networks and other machine learning techniques is the

quantity of thoroughly-labeled data which is required to train an accurate system.

3

The Inverted Cone method relies on the known ordered nature of a brain MRI

scan sequence to remove difficult to classify regions in a size-restricted dataset. By

calculating the gradient between the area of subsequent scans, large and complex sinus

structures can be removed in preprocessing that significantly improve the accuracy of a

standard CNN model.

The Inverted Cone framework was implemented on brain MRIs, with and without

tumors, provided by the University of Alabama at Birmingham School of Medicine. The

brain MRI scans of 23 patients were analyzed with each patient scan consisting of 17-38

slices.

1.3 Organization

This thesis work will be organized in the following way.

In Chapter 2, we perform a literature review for the current methods of brain MRI

deboning. The techniques used in the field include by hand analysis of the MRI scans as

well as software that relies upon a manually adjusted parameter and visual inspection.

The automation that is granted by the work in this thesis will remove the need for

manually adjusted parameters and lessen the work of visually inspecting the scans.

Furthermore, we discuss the foundations for neural networks and CNNs, and how each of

these can be designed to solve classification problems.

In Chapter 3, an overall perspective is taken of the brain MRI processing

procedure. Each step of the brain diagnosis process is broken down and specific analysis

taken on the deboning stage. Additionally, the brain MRI deboning problem is framed in

this section as a classification problem on which a neural network could be employed.

4

In Chapter 4, the Inverted Cone CNN framework is introduced. We will explore

the motivation behind utilizing the Inverted Cone method to preprocess brain MRIs prior

to deboning via CNN. The database of MRI scans provided by the University of

Alabama at Birmingham will be detailed in this section and the process of preparing each

scan with the Inverted Cone method prior to deboning with neural network architecture.

In Chapter 5, we will describe the implementation of the Inverted Cone CNN

technique for brain MRI deboning on the high-performance computer (HPC) at Rowan

University. The specifications of the HPC system will be described along with the

languages and libraries utilized to design the Inverted Cone CNN.

In Chapter 6, the simulation results of deboning brain MRIs with the Inverted

Cone CNN will be discussed. We will show that the CNN employing the Inverted Cone

preprocessing technique outperforms a standard CNN in validation accuracy measures.

Example segmentation results will also be provided.

In Chapter 7, we will summarize this work by explaining the contributions and

successes uncovered in the development of our thesis. The research procedure and

findings will be outlined with conclusions drawn. Furthermore, we will speculate upon

future developments to the thesis work.

5

Chapter 2

Literature Review

 In this chapter, we will review the current techniques being employed in the

medical field in order to debone brain MRI scans. Additionally, we will review the

fundamentals contributions of neural networks with particular interest in CNNs.

2.1 Neural Networks

Neural networks are powerful machine learning tools that create systems with

unparalleled capability to extract features from datasets and classify inputs based on these

features. The core principle of neural networks is training a series of artificial neurons

with a large quantity of training data for the network to understand the features of this

dataset and can make predictions on the classifications of new input data.

Neurons are arranged in a parallel fashion in the form of layers. An input and

output layer exists at the input and output of the network respectively. The input layer

consists of a weighted connection between each data point of the input with each neuron

in the first hidden layer. The output layer consists of several neurons corresponding with

the desired number of classes to be predicted or to combine the data in the desired

fashion. Between the input and output layers reside hidden layers containing several

parallel neurons. Weighted connections relate each neuron in one layer to every neuron

in the next layer. A simple diagram of a two-hidden layer neural network is pictured in

figure 1.

6

Figure 1. A simple artificial neural network with two hidden layers [12]

 Each neuron in an artificial neural network (ANN) acts as an activation function

to translate a summed input of weights and biases to a combined output [12]. Weights

are scalar values that function as connections between neurons in a network while biases

perturb the network to prevent over fitting. Figure 2 represents the connections between

the neurons of an input layer with a single neuron hidden layer (also known as a single

layer perceptron).

7

Figure 2. An artificial neuron with weight connections and bias

 The activation function of a neuron acts as a classifier based on the input weights

and biases. The input data is scaled based upon the weights connecting to the neuron in

the next layer and each weighted input is then summed at the input of each neuron. The

equation for the input of the neuron (pre-activation) can be seen in (1) where a(x)

describes the input to the activation function while the transformed output equation g(x)

can be seen in (1). The vector w represents the weights of the input layer while the

vector x represents each input value. The scalar value b represents the bias.

() T
i i

i
a x b b w x= + = +∑w x (1)

() (()) ()i i
i

h x g a x g b w x= = +∑ (2)

8

A common activation function to utilize for a neuron is the sigmoid function.

There are multiple benefits to using a sigmoid function: non-negativity (negative input

values set to zero), upper bounded at 1 and lower bounded at 0, and always increasing;

furthermore, the sigmoid function introduces non-linearity to the transformation of the

input data which allows for the development of complex classifiers. The equation for a

sigmoid function can be seen in (3) with a graphical representation in figure 3.

1() ()
1 exp()

g a sigm a
a

= =
+ −

 (3)

Figure 3. Sigmoid activation function

9

 There are numerous choices for activation functions, but the rectified linear unit

(ReLU) function has become the most popular in neural network design. The ReLU

function can be calculated by taking the maximum value between 0 and the input value;

thereby, restricting the output to non-negative values while retaining the value of non-

negative inputs. The ReLU function has gained such notoriety as an activation function

since the monotonically increasing positive portion of the function retains the positive

inputs directly and the negative portion sets all negative inputs to zero, allowing the

ReLU function to be non-linear while reducing processing requirements [13]. A

graphical view of the ReLU function can be seen in figure 4.

Figure 4. ReLU activation function

10

 Consequently, the non-linearity provided by the aforementioned activation

functions allows a neural network to make increasingly more complex classifications

based upon the number of hidden layers in the network. At every layer, every neuron is

connected to every neuron in the next layer; therefore, the non-linear transformation of

the input data at the output of the first hidden layer will be subjected to even greater non-

linearity at the output of the next hidden layer. A visualization of a more complex, two-

layer network can be seen in figure 1 while a detailed view of a multiple-neuron single

layer network can be seen in figure 5. The values x1 through x3 represent the inputs, the

values w11 through w33 represent the weights between the input layer and the hidden

layer, the values w1 through w3 represent the weights between the hidden layer and the

output layer, and the values b1 and b2 represent the bias for the hidden layer and output

layer respectively.

11

Figure 5. Multiple-neuron single hidden layer ANN

 Neural network architecture primarily consists of the parameters: numbers of

hidden layers, neurons within each hidden layer, input values at the input layer, and

classes at the output layer [14]. The activation function is chosen as the ReLU function

for CNN applications.

 Training is performed once the neural network architecture is established. A

database of labeled data is provided as input to the system. The network learns to

classify this data based on the class labels. An error function is formulated to determine

the accuracy of classification after each forward-pass through the neural network.

Empirical risk is determined by comparing the predictions made at the output layer with

the predetermined classes of the dataset [14]. The formula for empirical risk

12

minimization can be seen in (4) where l is the loss function, f(xi) is the predicted

classification of the input xi, yi is the correct classification, and n is the number of inputs.

1

1() ((),)
n

n i i
i

E f l f x y
n =

= ∑ (4)

Subsequently, the network learns features of the dataset during back-propagation.

Minimization of the error function calculated on the outset of a forward-pass is

performed through standard optimization techniques. Stochastic gradient descent is a

common choice in optimization algorithms that operates by subtracting the gradient of

the gradient of the loss function from the weight values of the forward-pass to determine

the adjusted weight values [15]. A step size is chosen to adjust the speed of convergence

for the optimization algorithm. In machine learning, this step size is known as the

learning rate. The stochastic gradient descent equation can be seen in (5) where Q is the

loss function, ϒ is the step size, and w is the weight value being calculated.

1 (,)t t t w t tw w Q z w+ = − ϒ ∆ (5)

 Ultimately, the weights of connections between each layer are updated every

iteration of back-propagation until the desired number of iterations or desired accuracy

measure has been achieved.

2.2 Convolutional Neural Networks

A central motivation of computer vision is object recognition: to take as an input

2D array describing an image and output a known class in which this image belongs.

One property which allows CNNs to excel at object recognition is that local connectivity

is emphasized. Object recognition can be accomplished with a typical ANN by

vectorizing the image into a 1 dimensional vector and applying this vector as input to the

13

network, but this technique fails to consider the relationships between adjacent pixels in

an image that highlight important features such as corners, edges, or textures.

CNNs are an extension of ANNs that calculate weights via back-propagation in a

2-dimensional space in order to create optimized filters to extract complex features. Each

entry in the simple Gaussian blur filter in figure 6 becomes a variable weight. The

optimized weight values produced by a CNN can extract accurate features that machine

learning designers themselves cannot understand; therefore, CNNs are especially suited

to excel at tasks in computer vision. The convolution operation is performed by taking

the calculating the product of one function with another over all points of the original

function. The formula for convolution between two generic functions f and g can be seen

in (6) where t is the independent variable and τ is the variable that shifts the functions.

0

()() () ()
t

f g t f g t dτ τ τ∗ = −∫ (6)

 In computer vision, convolution can be leveraged to pass a relatively small filter

(or kernel) over the entirety of an image. A kernel is a matrix of values that can

manipulate an input image. The kernel representing a Gaussian blur filter can be seen in

figure 6.

1 2 1
1 2 4 2

16
1 2 1

 
 
 
  

Figure 6. Gaussian blur filter

14

2D convolution can be used to process images and extract features such as corners

or edges. Gaussian blur filters, such as in figure 6, operate by taking the weighted

product of all pixels starting at coordinate [0, 0] with the filter, and then taking the

average over the sum of weights in the filter [16]. Through convolution, this product is

taken between the filter and every pixel region as the filter passes over the image. An

example image before and after convolution with a Gaussian blur filter can be seen in

figure 7.

Figure 7. Image filtered with Gaussian blur

Each neuron in a hidden layer of a CNN is connected to all pixels in a small

region of the image (determined by desired filter size) known as the receptive field for

that activation unit. Additionally, the total number of computations required by the

network to back-propagate through the weights is vastly decreased as compared to a fully

connected network with each pixel having a weighted connection to each neuron. An

example of receptive field connectivity can be seen in figure 8.

15

Figure 8. Local connectivity achieved through receptive fields for each neuron

Furthermore, neurons in a CNN are arranged into feature maps that determine

complex features in an image and further reduce the computational complexity of the

network. Feature maps contain enough neurons to cover the entirety of the input image

in relation to the size of the filters being produced; thereby, calculating the weights for

every available receptive field within each feature map. The weighted connections that

determine the filter convolved with the receptive fields are shared between all neurons in

a feature map, also known as parameter sharing, which allows for robust filter

16

development without higher computational cost. An example of parameter sharing

through feature maps can be seen in figure 9, with each color representing shared kernel

parameters.

Figure 9. Parameter sharing via feature maps

 Filters are calculated for every feature map in a hidden layer and then convolved

with every receptive field in the image. The result of this operation is a singular feature

extraction across the entire image for each feature map. Consequently, the number of

feature maps determines the number of features that are extracted from the image at a

certain hidden layer. The number of feature maps can vary between each layer

depending on the desired number of features to be used for classification.

17

 The weight matrix, denoted as kij, contains the weights for the ith channel in the

image and jth feature map. The kernel matrix is then convolved with the corresponding

receptive field in the image, denoted as xij. Then the output of the feature map after

activation, denoted as yj, is calculated by taking the summation of the convolution across

all channels in the image as input to the activation function as seen in (7).

tanhj j ij i
i

y g k x = ∗ 
 
∑ (7)

 Expanding the feature maps into a cascading series forms the foundation for

hidden layers in a CNN. As an image passes from one hidden layer to the next,

increasingly complex features are extracted by the network. The initial hidden layer

extracts features directly from receptive fields in the input image while subsequent layers

extract features from the features extracted in the previous layer [17]. An example of

features extracted by a deep neural network (one with many hidden layers) can be seen in

figure 10.

18

Figure 10. Features extracted by a deep convolutional neural network [17]

19

Additionally, the first and last layers of the network are the input and output

layers, similar to the ANN. Images are passed to the activation functions of the first

hidden layer through the weighted connections of feature maps. At the output layer

exists a neuron for each of the predetermined classes that could describe the input image

[14]. A full CNN architecture can be seen in figure 11.

20

Figure 11. Block diagram of convolutional neural network

21

 At the first hidden layer, the network calculates weights for the kernel

connections between the layer and the input image. The weights are adjusted during each

pass of back-propagation to extract the optimal features from the image for the desired

classification criteria. The output of this layer is a filtered version of the input image per

feature map [17]. For example, if a network was designed with 64 feature maps in the

first layer, then the output of the first layer would contain 64 copies of the input image

with each copy filtered by a separate kernel.

 Subsequently, subsampling and pooling layers are typically utilized in CNN

architectures to reduce the size of the filtered images propagating through the network;

thereby, reducing computational complexity and increasing runtime efficiency.

Furthermore, subsampling layers serve to highlight relevant features that span across

local regions of the image and prevents over fitting by disrupting the input information

[18]. This operation is performed until, at the input to the final layer, there is a vectorized

string of 1x1 elements describing the features extracted from the image by the network.

This vector is attached to a fully connected layer which is then classified in the output

layer by the neurons signifying the possible class sets.

2.3 Data Augmentation and Synthetic Data Generation

Several preprocessing techniques have been developed to alleviate some of the

issues that arise with the limited datasets. Data augmentation is one way to artificially

increase the size of a database by duplicating and performing transformations on the

original dataset [6], [7] and [8]. For example, one could perform a series of 90°, 180°

and 270° rotations on each image to effectively quadruple the size of their database [4].

22

Furthermore, these transformations would make the model rotationally invariant,

allowing accurate object detection regardless of how the object is oriented within the test

images. However, data augmentation increases the computational complexity, which is

undesirable especially for medical image analysis intended for diagnosis purposes.

Additionally, a database can be expanded through synthetic data generation [9].

Originally proposed as a solution to imbalanced classes, the Synthetic Minority Over-

sampling technique has been utilized to increase the amount of training data in an

underrepresented class [10], [11]. Each training class could be manipulated through this

technique until all classes contain an equal quantity of training images. This concept

could then be expanded to the dataset; generating synthetic data to increase the total size

of the database. However, medical images are usually very difficult to imitate and include

critical information that need to be extracted. By synthesizing these medical images, we

may be losing some information that might help in diagnosis and treatment.

23

Chapter 3

The Big Picture

In this chapter, we will discuss the current procedure employed to generate brain

MRI scans, debone each scan, segment the results, quantify brain structure information,

and perform diagnostic predictions based upon this data. Furthermore, we will analyze

the brain MRI deboning problem as a classification problem.

3.1 Brain MRI Processing

Magnetic resonance imaging (MRI) machines are employed in the medical field

as a non-invasive diagnostic tool which can produce images of internal organs and bones.

Brain MRI scans are often taken when patients are at risk of malignant brain tumors,

changes in volume indicating Alzheimer’s disease, stroke, multiple sclerosis, and many

others. First, a patient must be scanned for several minutes in the MRI machine to

produce suitable images. An example of an MRI scan can be seen in figure 12.

Figure 12. Standard MRI scan from volume of images produced by an MRI machine

24

Prior to diagnoses, skull structures that are unrelated to the illness under

evaluation must be removed from each image. Currently, this process is performed either

by hand or by manually adjusting a single variable within preprocessing software, such as

the FSL software [19]. This variable must be readjusted for every image in each MRI set,

thus increasing the time and labor for each diagnosis. The interface for the FSL software

can be seen in figure 13.

Figure 13. FSL software interface for deboning brain MRI scans

From there, the deboned brain MRI scan is segmented either by hand or through

an automated method based on statistical modeling. One such modeling method is the

Active Contour, which utilizes an energy minimization function to propagate a boundary

toward connected structures in an image. Typically, physicians will segment brain MRI

25

scans by hand and through visual inspection. Once the structures of the brain are

properly distinguished – with area and volumes quantified – then a diagnosis can be made

based on this information.

3.2 Brain MRI Deboning as a Classification Problem

Brain MRI deboning can be framed as a classification problem by analyzing each

scan on a pixel-by-pixel basis. Segmentation is performed to classify multiple objects or

classes within a single image. In the deboning application, segmentation could be

formulated as a binary classification problem of skull vs. brain. The process of

segmentation involves patching to be applied to the dataset to extract local regions of a

specified size from a variety of areas. An equal number of patches are extracted from the

training set of images for each of the two classes. Each patch is classified by the central

pixel in that patch. Once a balanced library of patches is derived from the dataset, the

network is then trained on that library. The weights in the network are adjusted after

each pass through the library of patches until all epochs are completed.

After training has been completed, testing can be performed on images that the

network has not yet seen. The input images to the system are decomposed into patches of

a specified size and input into the network. Each patch would then be analyzed by the

network to classify the central pixel of that patch into one of the predefined classes of the

training set. Image segmentation is complete once all pixels have been classified by the

network. An example patch library extracted from a database of brain MRI images can

be seen in figure 14.

26

Figure 14. Patch library extracted from brain MRI database with brain patches in the top
image and skull patches in the bottom image

27

Each pixel of the brain MRI database can be determined to exist in one of two

classes: skull or non-skull. A training database can be constructed containing skulls that

have been labeled by hand (each pixel of skull as a 1 and all other pixels as 0) by

breaking all images in this dataset down into patches. Each small patch taken from an

image in the dataset, such as a 15x15 square, can be utilized by a CNN to classify the

central pixel of that patch based on the features of the surrounding 15x15 region. An

example of a skull classified patch and a non-skull classified patch can be seen in figure

15.

Figure 15. Skull and non-skull classified patches

 Once a CNN has been trained upon the patch library extracted from the brain MRI

database then new brain MRI scans can be segmented by the system. At the input to the

network, each new scan will be broken down into a library of patches that encompasses

all pixels in the image. Then central pixel of each patch will be classified based upon the

trained network classifier. The result will be a pixel-by-pixel prediction by the network

of where the skull exists in the image. A brain MRI along with the segmented result via

CNN can be seen in figure 16.

28

Figure 16. Skull segmentation of brain MRI scan

3.3 Inverted Cone Preprocessing

Although CNN architectures are robust for general object recognition with large

and diverse training data, faults arise when specific applications lack a suitable database.

The standard approach to dealing with this deficiency would be to artificially expand the

training data through data augmentation and synthetic data generation. Both of these

techniques involve adding additional data points to the database in the preprocessing step

that do not truly exist in the dataset. The solution proposed in this thesis is to impose a

constraint on the dataset in both preprocessing and during the testing of the CNN

architecture based upon prior knowledge of the dataset.

The application explored in this paper is the deboning process for brain MRI

scans. The proposed modification, named the Inverted Cone Method, utilizes the known

order of images in an MRI dataset to remove the most complex skull structures prior to

process by the CNN.

29

Chapter 4

Inverted Cone CNN

In this chapter, we will be exploring the Inverted Cone CNN to debone brain MRI

scans. We will discuss how the nature of the dataset can be leveraged to increase

accuracy when spatial relationships are determined. The database of MRI scans used for

this work will be described and the Inverted Cone CNN will be dissected.

4.1 Temporal Derivative

The Inverted Cone method relies on a sequentially ordered dataset, such as in a

stream of video or a series of MRI scans, to isolate relevant information in more complex

images. In the deboning application, all images in an individual patient's MRI scan are

ordered in layers from the base to the top of the skull and separated by a constant

thickness per slice.

MRI scan slices that are taken from the top to the middle of the skull are easily

segmented by both visual inspection and through CNN processing. At these locations,

the skull is present in a well-defined ring around the brain. As the scans descend further

into the skull, sinus cavities begin to appear in the skull structure as the area occupied by

the brain shrinks.

MRI slices that have been taken closer to the base of the skull introduce highly

irregular areas and deviate greatly from the typical central slice. In these lower images,

the sinus cavities and eye sockets create more complex structures to classify. An

example of a complex MRI slice containing eye sockets can be seen in figure 17.

30

Figure 17. Complex MRI scan containing eye sockets and sinus structures

The ordered and related nature of the brain MRI images allows the use of

preprocessing to remove the most difficult to classify sections of the skull. By working

from the central slices outward, the MRI images with the largest area of brain can be

leveraged to remove extraneous skull structures in the more complex scans.

The difference is taken between each image with a larger area of brain and the

next image in the dataset to highlight the relevant area of analysis in that next image. The

skull structures that result from this difference can be removed from the subsequent

images to reduce presence of the most difficult to classify areas.

31

4.2 The Inverted Cone CNN

To construct the Inverted Cone CNN, a preprocessing system was created that

must be applied during both the training and the testing phases of the CNN. The training

set is prepared with this system prior to training the CNN, and then applied in a feedback

loop during the testing of the network. A block diagram depicting the overall process for

the Inverted Cone CNN can be seen in figure 18.

First, the training set of images must be preprocessed through the Inverted Cone

method. The preprocessing was performed by finding the MRI slice for a specific patient

with the largest area of brain in the ground truth. The resultant image would be from the

central area of the MRI volume, and the difference would then be taken between this

image and the subsequent image for that patient's MRI. This difference would include all

irrelevant skull structures that fall outside the immediate area surrounding the brain. This

process was then performed upon all the following images; thereby, the MRI sets for

each patient were simplified based on a central slice for each patient. A CNN

architecture would then be trained upon this modified dataset.

32

Fi
gu

re
 1

8.
 B

lo
ck

 d
ia

gr
am

 o
f I

nv
er

te
d

C
on

e
C

N
N

33

During the testing phase, the Inverted Cone method was applied in a similar

fashion. When classifying a new set of MRI scans, the scans were input into the system

starting with the slices that are taken at the top of the skull. The area of the brain that is

identified in each slice will be stored and compared to the area in the subsequent slice,

until the central slice with the largest area of brain is discovered. This central slice would

then be utilized to identify extraneous skull structures in the following image. Once these

structures are removed from the slice, the image would be processed as an input to the

network. The segmented result is then fed back as an input to the network to compare

with the next image in the set, thus creating a gradient of change around the immediate

area of the brain. This process is performed on each subsequent image until the entire

MRI set for a patient is classified and deboned.

4.3 Database

The Inverted Cone CNN was applied to a database of anonymized

gadoliniumenhanced T1-Weighted MRI images of human brain with and without

malignant glioblastoma multiforme, a malignant brain tumor. The database, provided by

the University of Alabama at Birmingham School of Medicine, was comprised of patient

files containing a series of MRI scan slices for each patient. Patient files which held MRI

scans that did not equal the common size of 256x256 were removed from the database.

The resulting size of the dataset that was utilized in the training of this system was 23

patients with 17-38 slices per MRI scan. Ultimately, the system was trained with 451

MRI slices.

34

4.4 Preprocessing

For the application of deboning, a library of 300,000 patches was created for a

data set consisting of 23 patients and between 17-38 slices per MRI scan. The total

number of images in the dataset was 451 MRI slices. Patch sizes of 33x33 and 15x15

were investigated in this model. Larger patch sizes allow for a larger region of features

to be analyzed around the pixel being classified which makes the network more robust to

local structures, yet increases computational complexity and overfitting due to a loss of

resolution. Ultimately, a patch size of 15x15 was chosen for the final model.

The Inverted Cone method was applied to the deboning dataset during

preprocessing to remove complex skull structures at the base of the skull. The ground

truth for each image following the central slice was used to filter the subsequent slice for

that patient. Once the difference was taken between the areas of the brain in the previous

image with the second image, the difference could then be removed from the second

image as extraneous skull structures. A series of brain MRI slices preprocessed using the

Inverted Cone method can be seen in figure 19 with the processed scans on the left hand

side and unprocessed scans on the right hand side.

35

Figure 19. Brain MRI scans preprocessed by Inverted Cone

36

Chapter 5

HPC Implementation

In this chapter, we will discuss the application of high-performance computing

technologies to efficiently train and test the CNN employed in the brain MRI deboning

problem.

5.1 System Specifications

The Rowan University high-performance computer provided the capability to

train and test the Inverted Cone CNN with an extensive dataset consisting of 300,000

15x15 patches extracted from 451 brain MRI scans. Each node of the HPC acts as a

powerful processing unit with high memory nodes being allocated even greater resources.

A diagram of a typical HPC cluster architecture can be seen in figure 20.

Figure 20. HPC node cluster diagram

37

The HPC at Rowan University is comprised of 59 nodes and 1,372 physical processing

cores with 7,616 GB of RAM. An example image of the Rowan University HPC can be

seen in figure 21.

Figure 21. HPC at Rowan University

Three types of nodes exist on the Rowan University HPC: compute nodes, high-

memory nodes, and graphics processing unit (GPU) nodes. The GPU nodes – on which

this system was trained – contain 64 GB of RAM, 10 core processors, and 2 NVIDIA

Tesla K20 graphics cards. A detailed specifications list for the GPU nodes, high-memory

nodes, and compute nodes can be seen in table 1.

38

Table 1

Specification list for Rowan University HPC

 Compute Nodes

CPU
2x Intel Xeon E5-2670v3 2.3 GHz (12-
Core)

RAM 64 GB (8 x 8 GB)
System
Disks

1x 240 GB Intel DC S3500 Series MLC
SSD

Storage
Disks 1x 1 TB Seagate Constellation ES.3

Switch Mellanox 1-Port FDR Infiniband
GPU N/A

 High Memory Nodes

CPU
2x Intel Xeon E5-2670v3 2.3 GHz (12-
Core)

RAM 512 GB (16 x 32 GB)
System
Disks

1x 240 GB Intel DC S3500 Series MLC
SSD

Storage
Disks 1x 1 TB Seagate Constellation ES.3

Switch Mellanox 1-Port FDR Infiniband
GPU N/A

 GPU Nodes

CPU
2x Intel Xeon E5-2670v3 2.3 GHz (12-
Core)

RAM 64 GB (8 x 8 GB)
System
Disks

2x 240 GB Intel DC S3500 Series MLC
SSD

Storage
Disks 1x 1 TB Seagate Constellation ES.3

Switch Mellanox 1-Port FDR Infiniband

GPU
2x NVIDIA Tesla K20m GPU 5 GB
GDDR5

 The size of the dataset that can be used for training the neural network was

primarily restricted by the quantity of RAM on the computing system since the patch

library must be stored in memory; therefore, the utilization of the HPC allowed for a

39

much greater variety of training data with the expanded memory capabilities.

Additionally, multiple models could be run on separate nodes in order to rapidly

prototype an array of hyperparameter values to find those ideal for the brain MRI

deboning application.

5.2 Python, Tensorflow, and Keras

Python was chosen as the language to complete this thesis as there are extensive

libraries for neural networking and machine learning that are constantly being expanded

by community development. Limitations arose in attempting to develop using MATLAB

deep learning toolboxes since they are not an open-source development platform, and

thus the toolboxes restricted the ability to train a complex convolutional system. Training

the Inverted Cone CNN model on the HPC required that a GPU node be configured to

execute Python code with Tensorflow and Keras neural network libraries. A series of

steps were involved in connecting to the HPC and properly setting up the environment

therein.

 Firstly, a virtual environment was created and activated to work within the HPC

cluster. Within this environment, the Python pip functionality must then be upgraded to

allow for the installation of Tensorflow.

 Secondly, the Tensorflow machine learning framework was installed on the

virtual environment. Tensorflow is an open-source platform designed by the Google

Brain team that has been a primary tool in machine learning development since its release

to the public on November 9th, 2015 [20]. Additionally, the open-source API Keras was

installed to run on top of Tensorflow to provide additional tools and ease-of-use. These

40

libraries allow the simple creation of layers with inputs and outputs to construct neural

networks of any variety.

 Finally, the Compute Unified Device Architecture (CUDA) and the CUDA Deep

Neural Network (cuDNN) library were installed in the environment in order to access the

full functionality of the NVIDIA GPUs on the GPU node. The CUDA API allows for

parallel computing tasks involving the GPU while the cuDNN library allows for faster

performance of machine learning algorithms with optimization of runtimes. A diagram

of the processing flow for the CUDA API can be seen in figure 22.

Figure 22. Processing flow diagram for CUDA API

41

 Data is copied from the main memory to the memory for the GPU which can pass

that data for processing to the GPU cores in a parallel execution by instructions from the

central processing unit (CPU). Once the GPU cores process the data, the results can be

copied back into the main memory of the system.

5.3 Utilizing the HPC

Once an account is obtained, the high-performance computer can be accessed

directly through the Rowan University campus network or virtually through a virtual

private network (VPN) connection. The Cisco AnyConnect Client was used to access the

Rowan University network when off-site. An image of the VPN client can be seen in

figure 23.

Figure 23. Cisco AnyConnect Secure Mobility Client interface

 Once connected to the network, a Secure Socket Shell (SSH) client was used to

remotely connect to the HPC cluster. From there, Tensorflow and Keras were imported

to allow execution of the Python-based Inverted Cone CNN architecture. MobaXterm

42

was used to simplify file management on the system. The interface of this software can

be seen in figure 24.

Figure 24. MobaXTerm SSH Client interface

 The database of 451 brain MRI scans was copied onto the HPC along with the

code-base for the Inverted Cone CNN method. At runtime, a library of 300,000 patches

was stored into memory on the operating GPU node and trained on two NVIDIA Tesla

K20 graphics processors. The system then iterated through a directory containing test

images unseen by the system to determine validation accuracy.

43

Chapter 6

Simulation Results and Discussion

In this chapter, we will evaluate the performance of the Inverted Cone CNN on

deboning brain MRI scans against a standard CNN model and discuss the implications of

those results.

6.1 Performance Evaluation and Discussion

The architecture utilized in the Inverted Cone CNN was a three-layer

convolutional network followed by two densely connected layers and a classification

layer at the output. Three hidden layers in this network could extract a better feature-set

from the data then a shallow network with only a single layer. An increase in the number

of layers past three resulted in a decrease of overall accuracy due to over fitting. A

standard ReLU activation function was used in each layer along with batch normalization

to prevent over fitting. Batch normalization ensures that the mean activation of the

previous layer is close to zero and the standard deviation is close to one. The full list of

hyperparameters for this network is displayed in Table 1.

 Kernel sizes were chosen to be cascading in size from 7x7 for the first layer, 5x5

for the second layer, and 3x3 for the third layer. Smaller kernel size allowed for a three-

hidden layer design with a small patch size of 15x15. Larger kernels were employed at

the outer layers to extract features with more locality information. The kernels decrease

in size in the two subsequent layers in order to reduce the number of weights and deter

over fitting.

44

Table 2

List of hyperparameters for Inverted Cone CNN

The architecture described in Table 1 was trained with and without using the

Inverted Cone method to process the inputs. The results from the Inverted Cone CNN

deboning were compared to a standard CNN as well as the widely used FSL deboning

software. The accuracy measurements for the FSL software was acquired by manually

adjusting the parameter for the central slice of each test MRI set and using this parameter

for all other slices in the set. Accuracy, validation accuracy, and loss measurements for

the two CNN techniques are shown in Table 2. The Inverted Cone CNN outperformed

the standard CNN model and the FSL software on this dataset. Accuracy and validation

accuracy were plotted for both CNN models over the 10 epochs, as seen in figure 25.

45

Table 3

Accuracy, validation accuracy, and loss

Figure 25. Validation accuracy for standard and inverted cone CNN.

The Inverted Cone CNN outperformed the standard model in validation accuracy.

The results show that utilizing the ordered nature of the brain MRI scans during

preprocessing can reduce the complexity of the dataset and provide the system with a

46

greater capacity to learn the data. Figure 26 contains both simple and complex images

segmented using the standard CNN model and the modified Inverted Cone CNN. As can

be observed, the Inverted Cone CNN could segment the validation set more accurately as

compared to the ground truth than the standard CNN architecture for both complex and

simple MRI slices. In the complex image, the Inverted Cone model was able to identify

skull structure immediately bordering the brain more readily than the standard model.

Figure 26. Segmentation Results: 1st column: Original MRI scans; 2nd column: Ground
truth deboning; 3rd column: Segmentation of the standard CNN; 4th column:

Segmentation of the Inverted Cone CNN; 5th column: Deboning of the FSL software.

47

Chapter 7

Summary and Future Work

Modifications to training data for a CNN are vital in situations where the quantity

of that data is limited. In the past, data augmentation has been used to multiply the size

of the database through duplicating and transforming available images. Synthetic data

generation has also been employed to create additional, artificial images to the dataset.

Knowledge of intrinsic attributes for a set of images can be leveraged in the training and

testing of a network through specific preprocessing operations to increase the overall

accuracy of the system. Two such attributes, order and spatial relation, were incorporated

into the preprocessing for the application of deboning brain MRI scans.

Since MRI scans are oriented from the top to the base of the skull in sequential

order, each scan is a slight gradient from the previous scan. When descending further

into the slices of a scan, the area of the brain occupying the slice grows. Knowledge of

the ordered nature of the data along with the relationship between subsequent images

allows the Inverted Cone preprocessing method to be employed. Once the slice with the

largest area of brain is determined, which will be a central slice in the scan, each slice

afterwards can be filtered by the previous slice. The only area of interest -- the brain --

decreases in size from the central slice to the base of the skull while the size and

complexity of the skull structures increase.

By ignoring the skull structures that fall outside of the area occupied by the brain

in the previous slice, the classification problem becomes much simpler for the neural

network to learn. The most difficult to classify images, which contain sinus cavities,

48

become more similar in shape and relative area of each class when the inverted cone

processing is applied; thereby increasing the overall accuracy of the system.

49

References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks.” NIPS, pp. 1106 – 1114, 2012.

[2] Y. J. Cha, W. Choi, and O. Buyukozturk, “Deep learning-based crack damage

detection using convolutional neural network.” Computer-Aided Civil and
Infrastructure Engineering, vol. 32, pp. 361-378, 2017.

[3] P. Moeskops, M. A. Viergever, A. Mendrik, L. S. de Vries, M. J. N. L. Benders, and

I. Igum, “Automatic segmentation of mr brain images with a convolutional neural
network,” IEEE Transactions on Medical Imaging, vol. 35, 2016.

[4] S. Pereira, A. Pinto, V. Alves, and C. A. Silva, “Brain tumor segmentation using

convolutional neural networks in MRI images,” IEEE Transactions on Medical
Imaging, vol. 35, pp. 1240 – 1251, 2016.

[5] B. H. Menze, A. Jakab, and et al, “The multimodal brain tumor image segmentation

benchmark (brats),” IEEE Transactions on Medical Imaging, vol. 34, pp. 1993 –
2024, 2015.

[6] J. Lemley, S. Bazrafkan, and P. Corcoran, “Smart augmentation learning an optimal

data augmentation strategy,” IEEE Access, vol. 5, pp. 5858 – 5869, 2017.

[7] J. Ding, X. Li, and V. N. Gudivada, “Augmentation and evaluation of training data for

deep learning,” 2017 IEEE International Conference on Big Data (BIGDATA), 2017.

[8] I. Oliveira, J. Medeiros, and V. de Sousa, “A data augmentation methodology to

improve age estimation using convolutional neural networks,” 2016 29th SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI), 2016.

[9] M. Babaee and A. Nilchi, “Synthetic data generation for x-ray imaging,” 21st Iranian

Conference on Biomedical Engineering (ICBME 2014), 2014.

[10] J. W. Anderson, K. E. Kennedy, and L. B. Ngo, “Synthetic data generation for the

internet of things,” 2014 IEEE International Conference on Big Data, 2014.

[11] S. C. Wong, A. Gatt, and V. Stamatescu, “Understanding data augmentation for

classification: When to warp?” 2016 International Conference on Digital Image
Computing: Techniques and Applications (DICTA), 2016.

[12] Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-

444. DOI: 10.1038/nature14539

50

[13] Glorot, X., Bordes, A. & Bengio. Y. Deep sparse rectifier neural networks. In Proc.
14th International Conference on Artificial Intelligence and Statistics 315–323
(2011).

[14] Schmidhuber, Jürgen. “Deep Learning in Neural Networks: An Overview.” Neural

Networks, vol. 61, 2015, pp. 85–117., doi:10.1016/j.neunet.2014.09.003.

[15] Wijnhoven, R.g.j., and P.h.n. De With. “Fast Training of Object Detection Using

Stochastic Gradient Descent.” 2010 20th International Conference on Pattern
Recognition, 2010, doi:10.1109/icpr.2010.112.

[16] E. S. Gedraite and M. Hadad, “Investigation on the effect of a gaussian blur in

image filtering and segmentation,” in ELMAR Proceedings, 2011.

[17] Zeiler, Matthew D., and Rob Fergus. “Visualizing and Understanding Convolutional

Networks.” Computer Vision – ECCV 2014 Lecture Notes in Computer Science,
2014, pp. 818–833., doi:10.1007/978-3-319-10590-1_53.

[18] Scherer, Dominik, et al. “Evaluation of Pooling Operations in Convolutional

Architectures for Object Recognition.” Artificial Neural Networks – ICANN 2010
Lecture Notes in Computer Science, 2010, pp. 92–101., doi:10.1007/978-3-642-
15825-4_10.

[19] S. Smith, M. Jenkinson, M. Woolrich, C. Beckmann, T. Behrens, H. Johansen-berg,

P. Bannister, M. Luca, I. Drobnjak, D. Flitney, R. Niazy, J. Saunders, J. Vickers, Y.
Zhang, N. Stefano, J. Brady, and P. Matthews, “Advances in functional and
structural MR image analysis and implementation as FSL,” NeuroImage, vol. 23, pp.
208 – 219, 2004.

[20] M. Abadi, A. Agarwal et al., “Tensorflow: Large-scale machine learning on

heterogeneous distributed systems,” arXiv:1603.04467, 2016.

	Inverted cone convolutional neural network for deboning MRIs
	Let us know how access to this document benefits you - share your thoughts on our feedback form.
	Recommended Citation

	[15] Wijnhoven, R.g.j., and P.h.n. De With. “Fast Training of Object Detection Using Stochastic Gradient Descent.” 2010 20th International Conference on Pattern Recognition, 2010, doi:10.1109/icpr.2010.112.
	[16] E. S. Gedraite and M. Hadad, “Investigation on the effect of a gaussian blur in image filtering and segmentation,” in ELMAR Proceedings, 2011.

