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1. Summary 

A novel screening approach for identification of biocatalysts by reverse omics techniques was 

developed. Basic principle is the differential analysis of metatranscriptomes obtained from cultures 

treated either with the substrate or the product of the enzymatic reaction of interest. All genes 

upregulated in the substrate-containing culture respond to the added compound and could be 

involved in its degradation or belong to respective transporters or resistance mechanisms. 

Nitrilases, enzymes degrading often toxic nitriles to the corresponding carboxylic acids and ammonia, 

were chosen as biocatalysts of interest. As effect of nitriles on microbial life is barely known, their 

influence had to be determined before establishment of the screening approach. For that purpose, 

agar plates containing different concentrations of nine tested nitriles (phenylacetonitrile, 

succinonitrile, acetonitrile, crotononitrile, 4-hydroxybenzonitrile, acetone cyanohydrin, 

cyclohexanecarbonitrile, 2-phenylpropionitrile, and pyruvonitrile) were prepared. Growth of 

Agrobacterium tumefaciens, Bacillus subtilis, Corynebacterium glutamicum, and Escherichia coli was 

monitored on these plates and revealed first insights into nitrile toxicity. Subsequently, highest non-

toxic concentrations were used to treat liquid cultures containing a microbial community derived from 

compost. Growth was monitored regularly and cultures were transferred to fresh medium every 

second day to avoid nutrient depletion. Acetone cyanohydrin, 2-phenylpropionitrile, and pyruvonitrile 

exhibited a lethal effect on the microbial community. In contrast, cultures containing succinonitrile, 

acetonitrile, and crotononitrile showed higher optical densities than the control, indicating a growth-

supporting effect. Furthermore, community composition was determined by 16S rRNA gene analysis 

and metagenome sequencing, revealing specific community-shaping effects for every compound, i.e. 

Pseudomonas was detected in most cultures whereas Paenibacillus was highly abundant in cultures 

containing growth-suppressing nitriles. In general, Gram-positive bacteria showed higher nitrile 

tolerance than Gram-negative bacteria. 

Growth-supporting effect of acetonitrile during nitrile toxicity analysis indicated metabolization of this 

compound and therefore presence of nitrile-degrading enzymes. To increase knowledge on nitrile-

degrading organisms and obtain strains for establishment of the screening approach, isolation of 

respective organisms was performed. Finally, eight different isolates belonging to Flavobacterium, 

Pseudomonas, Rhodococcus, and Variovorax were identified. Nitrile-degradation by the latter three is 

common, but only weak degradation by Flavobacterium has been reported before. Genome 

sequencing of the isolates revealed various nitrile-degrading enzymes for all strains except 

Flavobacterium, indicating a novel mechanism for nitrile degradation in this genus. 

Analysis of metagenomes obtained during nitrile toxicity test revealed 70 putative nitrilases in nitrile-

treated cultures. Due to their origin, they were promising candidates for identification of novel nitrile-
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degrading biocatalysts. For fast and simple screening of this number of enzymes, a novel high-

throughput assay was developed. The new method combines real-time measurement of enzymatic 

activity and high sensitivity without dependency on purified proteins. Six putative enzymes exhibited 

nitrilase activity and subsequently, the most interesting biocatalysts was further characterized. The 

novel nitrilase exhibits a broad pH optimum and unusually high long-term stability. Furthermore, it is 

highly specific for phenylacetonitrile and belongs to the class of arylacetonitrilases, which are of 

industrial importance but rarely studied. 

Finally, the proposed screening approach for identification of biocatalysts by reverse omics techniques 

was developed. For initial tests, the previously isolated acetonitrile-degrading Rhodococcus was used. 

Growth condition, cell harvesting, and isolation of DNA and RNA were optimized with this strain. 

Subsequently, a protocol for normalization and differential analysis of transcriptomes was established. 

Only one operon consisting of three genes and a nearby amidase were significantly upregulated in the 

nitrile-treated cultures. The operon did not encode for known nitrile-degrading proteins, but proximity 

to the amidase supports the respective activity. Subsequently, the established parameters were 

applied to a complex microbial community. Metatranscriptomes were normalized based on the 

abundance of single species to allow statistically valid analyses. More than 500 up- and 280 

downregulated genes could be identified under nitrile-treatment, indicating complex interactions 

between members of the community. For one species, a highly upregulated nitrilase and amidase were 

found, whereas no significant upregulation of respective genes was recorded for other species. 

Therefore, unknown nitrile-degrading enzymes may hide behind upregulated putative proteins, 

demonstrating the potential of this novel metatranscriptomic screening approach. 

 



 

Chapter II 

General introduction
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2. General introduction 

During the first half of the 19th century, the era of modern chemistry began. In 1835, Jöns Jacob 

Berzelius first mentioned “catalysis” as a process in which a compound influences a chemical reaction 

without being part of the substrates or products (1). Together with observations of the catalytic 

reactivity of metals like platinum, palladium, and iridium (2, 3), a new research field of chemistry was 

created. Early industrial application of catalysts started in 1913 with the synthesis of up to 30 tons 

ammonia per day using an iron catalyst (4). In the following decades, numerous other catalytic 

processes were established, e.g. the synthesis of hydrocarbons using carbon monoxide and hydrogen, 

the synthesis of methanol, the polymerization of ethylene to polyethylene, and cracking of petroleum 

using zeolite as catalyst (5). 

Even though modern civilization would not be possible without chemical industry, large scale 

production results in a severe environmental footprint. Many chemical processes need strong acids or 

bases, (heavy) metal catalysts, high reaction temperature, and produce large amounts of inorganic 

waste. In addition, the processes can yield unwanted isomers (6–8). For example, the production of 

1 ton ammonia leads to the release of 1.5 tons carbon dioxide. In addition, global ammonia production 

is responsible for 2% of the total industrial energy consumption (9). Subsequently, ammonia can be 

used for production of compounds like acrylonitrile. More than 7 million tons of this important 

monomer are produced per year (10), but synthesis depends on high temperature and pressure. In 

addition, several purification steps for removal of contaminants like hydrogen cyanide or acetone are 

necessary to yield pure acrylonitrile (11). 

With a growing population and increasing standards in developing countries, limited resources and 

environmental problems like climate change become more challenging. Therefore, chemical industry 

must advance and develop new environmentally friendly processes to fulfill the growing demand for 

bulk and fine chemicals. 

2.1. Green chemistry 

During the 1980s, waste production and use of toxic or hazardous materials in industry became a 

growing concern (12), finally leading to the U.S. Pollution Prevention Act of 1990 (13). In contrast to 

previous governmental guidelines it focused on pollution prevention rather than waste treatment, 

marking the beginning of the green chemistry era. Subsequently, twelve principles of green chemistry 

were developed (14):  

1) Waste should be prevented instead of being treated 

2) Incorporation of all involved materials into the final product should be maximized 
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3) Use or generation of toxic substances during production should be minimized 

4) Toxicity of final products should be reduced 

5) Use of auxiliary substances like solvents should be avoided 

6) Energy requirements of chemical processes should be minimized 

7) Renewable feedstock or raw material should be used when practical 

8) Unnecessary derivatization should be minimized 

9) Catalytic reagents should be preferred over stoichiometric reagents 

10) Products should break down into innocuous products at the end of their use 

11) Real-time analyses should be further developed to prevent pollutant formation 

12) Inherently safer chemicals should be used for accident prevention 

These principles are nowadays often used as guideline for the development of new production lines. 

The most promising approach for a sustainable green chemistry is the transition to biobased processes, 

as demonstrated by novel processes for production of acrylonitrile. Traditional synthesis is based on 

ammonia and propene, a byproduct of oil refining, and therefore not sustainable. In contrast, newly 

developed synthesis routes use renewable substrates like glycerol or glutamic acid (15). Furthermore, 

they can achieve higher yields and avoid by-products like hydrogen cyanide (10). Nevertheless, not all 

aims of green chemistry can be fulfilled by change of substrates, as these novel processes still need 

unfavorable conditions and metal catalysts. Consequently, enzymes as biocatalysts are of increasing 

interest as they can help to meet 10 of the 12 criteria of green chemistry (16). 

2.2. Biocatalysis and bioremediation 

Although the principles of catalysis were almost unknown, the potential of enzymes was already 

discovered in the 19th century, when Louis Pasteur demonstrated the conversion of L-(+)-tartaric acid 

to D-(–)-tartaric acid using Penicillium glaucum (17). In 1874, a Danish company (Christian Hansen’s 

Laboratory) started selling enzyme preparations for the production of cheese (18). In 1897, Eduard 

Buchner showed that living organisms are unnecessary for enzymatic activity by using cell-free yeast 

extract for fermentation of sugar, further increasing the interest on biocatalysts (19). 

Enzymes received attention by biologists, but chemists did not recognize their potential as 

(bio)catalysts (20). Even the immobilization of enzymes and a similar handling to classic chemical 

catalysts did not change this view (21). One of the main reasons for this difference may have come 

from limitations during enzyme isolation. As natural producers were often difficult to grow, only small 

isolation volumes and therefore irrelevant quantities for industrial purposes were obtained. This 

problem was solved with development of recombinant DNA techniques in the 1970s and PCR in 1983. 

Transfer of interesting genes into heterologous easy-to-handle host organisms like Escherichia coli or 
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Bacillus subtilis suddenly allowed the efficient production of enzymes (22). In addition, development 

of directed mutagenesis and directed evolution allowed enhancements of substrate range or protein 

stability, finally leading to industrially relevant enzymes (20, 23, 24). 

Modern biocatalysts show high selectivity, work under mild conditions, and can be used without the 

production of critical waste (25). Especially the pharmaceutical industry has interest in biocatalysts as 

many conventional drug synthesis processes produce large amounts of waste (26). The early use of a 

lyase for the production of L-3,4-Dihydroxyphenylalanin, an important drug for the treatment of 

Parkinson’s disease, underlines this interest (27). Nowadays, application of biocatalysts is widespread. 

The food industry uses enzymes for bread and cheese production (28), whereas bulk production of 

bioethanol from starch (42 million m³ per year) demonstrates the full potential of enzymatic processes 

(21). The huge industrial interest reflects also on market data: In 2018 the global enzyme market had 

a value of US $5.5 billion, but is expected to reach US $7.0 billion in 2023 (29). 

With rising awareness of environmental pollution in the public, waste prevention and remediation 

became growing industrial sectors. Bioremediation aims to remove pollution appearing during 

production processes or remediate already contaminated environments by using (genetically 

modified) microorganisms. Examples are the biosorption of metals like nickel, lead, or cadmium from 

soil or wastewater (30, 31) or the bioremediation of radionucleotide-contaminated sites (32, 33). 

Furthermore, microorganisms can be used for removal of mutagenic or carcinogenic dyes from textile 

industry wastewater (34, 35). In rare cases, it can even be the only option for environmental 

decontamination. During an earthquake in India in 2001, damaged acrylonitrile tanks led to the release 

of the chemical and contamination of surrounding soil. Eight months after leakage, no reduction of 

nitrile concentration could be measured, demonstrating its persistence. Subsequent bioaugmentation 

and nutrient-supplementation helped to establish microbial soil communities with nitrile-degrading 

properties, finally leading to successful decontamination of the environment (36, 37). 

2.3. Natural nitriles and their toxicity 

Nitriles are toxic compounds with −C≡N as functional group. Most nitriles are synthesized from amino 

acids (tyrosine, phenylalanine, valine, isoleucine, and leucine) which are converted to aldoximes and 

subsequently transformed to nitriles or cyanogenic glycosides (Figure 1) (38–40). Nitriles are 

widespread in nature and have been identified in form of hydrogen cyanide in insects (41, 42), as 

aeroplysinin in sponges (43), or as antibiotics like borrelidin or toyocamycin in bacteria (44, 45). 

Furthermore, several nitrile-containing compounds have been reported for fungi (46–48). The most 

prominent group of nitriles are cyanogenic glycosides, which can be found in over 3,000 plant species 

belonging to more than 130 families (49). 
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Most of the naturally occurring nitriles and cyanides seem to be involved in defense mechanisms. 

Toyocamycin as nucleoside antibiotic interferes with cell wall synthesis (45) and borrelidin inhibits the 

activity of threonyl-tRNA synthetases (50). For aeroplysinin, several protective functions like antibiotic, 

anti-inflammatory, or anti-angiogenic effects have been described (51). Main purpose of cyanogenic 

glycosides seems to be defense against predators by degradation to hydrogen cyanide after cell 

disruption or attack (52, 53), but use as nitrogen storage has also been described (54). 

 
Figure 1: Nitrile synthesis in nature. Adapted from Prasad et al., 2010 (38). 

Although many nitriles have toxic effects, toxicity does not derive from the nitrile structure itself. The 

proposed mechanism in eukaryotes assumes nitrile degradation by cytochrome P450 to an unstable 

cyanohydrin. Spontaneous decomposition of this compound leads to the release of highly toxic 

cyanide, which can inhibit cytochrome c oxidases (55–59). As this enzyme is the terminal electron 

acceptor of the respiratory chain, inhibition leads to asphyxiation and can be lethal. Even though 

respective studies for bacteria are missing, a similar mode of action can be assumed as 

cytochrome P450 and cytochrome c oxidase are present in many bacteria (60, 61). 

Besides cyanide release, other mechanisms for toxicity are also known. For example, main toxicity of 

acrylonitrile arises from interaction with thiol groups, affecting central and peripheral nervous systems 

(62). As thiol groups are also important for activity of numerous bacterial enzymes, similar toxicity 

mechanisms may apply. Other mechanisms may also account for toxicity of chloroacetonitrile, 

isovaleronitrile, caprylonitrile, and benzonitrile, as no linkage between nitrile concentration and 

intracellular cyanide presence could be found (55). In addition, chemical structure seems to have an 

influence on toxicity. An increased chain length appears to reduce toxicity and dinitriles are slightly 
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less toxic than mononitriles. Nevertheless, toxicity values observed for the first nitrile of a homologous 

series cannot be extrapolated to other members of such a group (63). 

2.4. Nitrile-degrading enzymes 

As nitriles and cyanides are toxic to living organisms, different enzymatic detoxification strategies exist 

(Figure 2). For degradation of cyanide, mainly two pathways are used. The first involves cyanide 

hydratases (EC 4.2.1.66) catalyzing the degradation of cyanide to formamide. They are most likely 

exclusively fungal enzymes consisting of several subunits and can reach up to 3,000 kDa (64–66). The 

second pathway uses cyanide dihydratases that degrade cyanide to formic acid and ammonia. So far, 

this reaction was only detected in a few bacterial genera (67). Like cyanide hydratases, cyanide 

dihydratases do not require metal cofactors and are therefore interesting candidates for 

bioremediation of cyanide-contaminated sites (68). In addition to these two options, other pathways 

such as direct degradation to carbon dioxide and ammonia by cyanide dioxygenases or to methane 

and ammonia by nitrogenases are known (69). 

 
Figure 2: Enzymatic nitrile degradation. Adapted from Prasad et al., 2010 (38). 
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Degradation of nitriles is mainly performed by two pathways. The first involves nitrilases (EC 3.5.5.1), 

which degrade nitriles directly to carboxylic acid and ammonia. These enzymes are known in archaea, 

bacteria, fungi, plants, and animals (70) and belong to the carbon-nitrogen hydrolase superfamily. 

Nitrilases are classified according to their preferred substrates into aliphatic, aromatic, and 

arylacetonitrilases (71). They consist of 6-26 subunits with an α-β-β-α fold and an average mass of 

40 kDa (72–74). Important for enzymatic activity is a metal-independent conserved catalytic triad 

which is present in all known members of the nitrilase family and consists of glutamic acid, lysine, and 

cysteine (72, 75–78). Majority of these enzymes have a temperature optimum of activity between 

30 °C and 55 °C and show catalytic activity under neutral or slightly alkaline conditions (74). Their 

expression is normally induced by their substrates or products, but a few cases of constitutive nitrilase 

expression have also been described (79–81).  

The second pathway for nitrile degradation consists of two enzymes, nitrile hydratases (NHases;  

EC 4.2.1.84) and amidases (EC 3.5.1.4). The former degrade nitriles to amides and the latter 

subsequently the amides to carboxylic acid and ammonia (82). In contrast to nitrilases, NHases belong 

to the carbon-oxygen lyase superfamily and are found in several bacterial genera and few eukaryotes 

(38, 83). They consist of an α- and β-subunit with average molecular masses of around 25 kDa  

(38, 84, 85). Based on the metal cofactor bound to their α-subunit, these enzymes are often divided 

into cobalt or ferric NHases (86). Besides the cofactor, conserved amino acids seem to be important 

for catalytic activity. For cobalt NHases, respective threonine and tyrosine residues have been 

identified, whereas specific serine and threonine residues are conserved in ferric NHases (87, 88). In 

addition, it has been shown that at least for a NHase from Streptomyces rimosus the α-subunit is 

sufficient for enzymatic activity (89). In contrast to nitrilases, NHases are often thermolabile and 

exhibit highest activity between 30 °C and 40 °C, but share the same optimal pH range at around pH 7 

(38). 

Amidases, the second enzyme of this bi-enzymatic pathways, are similar to nitrilases. They also belong 

to the carbon-nitrogen hydrolase superfamily and contain the same conserved catalytic triad (90). 

These ubiquitous enzymes have an average molecular mass of around 40 kDa and can consist of 

monomers, dimers, tetramers, hexamers, or octamers (91–94). Except for amidases involved in cell 

separation using zinc, cofactors are not required for enzymatic activity (95). Most of the characterized 

amidases show optimum activity at neutral or slightly alkaline pH values and temperatures between 

40 and 55 °C (91, 96–99). 
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2.5. Nitriles and nitrile-degrading enzymes in industry 

Nitriles as well as nitrile-derived amides and carboxylic acids are of great importance for industry. The 

first amidase was described in 1949 (100), followed by nitrilases in 1964 (101), and NHases in 1980 

(102). Increasing numbers of publications for all these enzymes demonstrate the intensified research 

activity in this area (Figure 3). Nevertheless, literature on nitrile-degrading enzymes is scarce when 

compared to other enzymes like phosphatases, esterases, or lipases. 

 
Figure 3: Total number of publications targeting nitrile-degrading enzymes. Data were obtained by 
search for “amidase”, “nitrile hydratase”, and “nitrilase” in the Web of Science. Date of search: 12th 
November 2018. 

Nitriles and nitrile-derived products can be found in different fields of industry. In pharmacy, more 

than 30 drugs containing nitrile groups are used nowadays and several more are in clinical studies. 

Their spectrum reaches from antidiabetics (vildagliptin) and anticancer drugs (anastrazole) over 

cardiotonic agents (olprinone) to antidepressants (escitalopram) (103). Probably the most important 

application in pharmacy is the utilization of a penicillin amidase to produce 6-aminopenicillic acid from 

penicillin G, allowing the cost-efficient production of penicillin derivates (104, 105). In addition, a 

nitrilase catalyzing the hydrolysis of the industrially produced 2-(4’-isobutylphenyl)propionitrile to 

ibuprofen is known and leads to high yields of the active isomer (106). 

Besides synthesis of small amounts of expensive chemicals, nitriles and nitrile-degrading enzymes are 

also used for production of bulk chemicals. Companies like BASF AG or Mitsubishi Rayon use NHases 

for production of more than 600,000 tons acrylamide per year (107, 108). Another example for 

industrially used NHases is the production of 11,500 tons nicotinamide, a form of vitamin B3, by Lonza 

in 2006 (109). Furthermore, hundreds of tons of mandelic acid and nicotinic acid are produced per year 
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using nitrilases (74, 110). Especially the synthesis of nicotinic acid is a good example how biocatalysts 

can help to fulfill the principles of green chemistry. The most common manufacturing process is based 

on liquid-phase oxidation of 2-methyl-5-ethylpyridine at high temperatures and high pressure (111). 

In addition, it depends on the use of toxic, flammable, and hazardous nitric acid, which is difficult to 

handle and a threat to the environment (112). With transition to nitrilase-based production processes, 

these unfavorable conditions are omitted, leading to a safer and greener chemical industry. 

Nitriles are not only industrially important substrates or products, but also used in agriculture. 

Prominent examples are the herbicides bromoxynil and dichlobenil (113, 114), the latter also available 

for private households. Transgenic oxynil-herbicide resistant crops have been developed to deal with 

toxic effects (115) but accumulation in the environment could cause problems. In addition, other 

industrially used nitriles released into (waste)water and soil have deleterious effects on the local biota. 

Consequently, bioremediation involving nitrile-degrading enzymes is of increasing scientific and 

economic interest. Classic treatment of nitrile-contaminated industrial waste is performed with 

chemicals like hydrogen peroxide or by alkaline chlorination, carrying the risk of subsequent 

contamination with toxic chemicals (116). Therefore, several remediation processes based on 

enzymatic nitrile degradation have been developed during the last decades. Most of them focus on 

immobilization of nitrile-degrading bacteria with alginate to simplify operation of decontamination 

systems (117, 118). Another approach uses bacterial consortia consisting of biofilm-forming and nitrile-

degrading organisms for bioremediation of acetonitrile-containing waste water (119). In addition, a 

recombinant biofilm-forming Bacillus containing a Rhodococcus nitrilase was created (120). Due to its 

biofilm, this strain exhibits high resistance to nitrile toxicity and is therefore a promising organism for 

industrial bioremediation. 

2.6. Enzyme screening methods 

Discovery of novel enzymes is important, especially as not every limitation for industrial application 

can be solved by protein engineering. Probably the most traditional screening methods are culture-

based techniques. For that purpose, a microbial inoculum is grown under presence of a chemical of 

interest used as e.g. sole carbon source. Only microorganisms with desired enzymatic can grow by 

metabolization of the added compound and are further analyzed. Similarly, agar plates containing 

indicator dyes can be used, showing color changes or halos around microorganisms with desired 

activity (121, 122). Despite its simplicity, this technique is highly limited as only 1 % of all 

microorganisms can be grown under standard laboratory conditions. Therefore, most metabolic 

potential cannot be harvested by this approach (123). 
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As consequence, two screening approaches have been developed to explore the genetic diversity of 

non-culturable microorganisms. The first method uses gene libraries from metagenomic DNA and 

activity-based screens. By combining expression of metagenomic genes in hosts like Escherichia coli 

with simple activity assays like the previously described plate method, novel enzymes can be identified 

(124–127). The drawback of this system is its high effort and problems with the heterologous 

expression, as often less than 50% of the investigated genes are expressible in E. coli (128). 

The second method uses comparative genomics to mine (meta)genomes for new biocatalysts. For that 

purpose, (public) sequence data are searched for homologues of an enzyme of interest, often leading 

to the prediction of several new proteins. Subsequently, these candidates are subcloned into E. coli or 

other hosts and tested for activity. Sequence -driven discovery of many novel enzymes such as methyl 

halide transferases, mandelate oxidases, rare arylmalonate decarboxylases, and nitrilases 

demonstrates the potential of this approach (129–132). Nevertheless, identified putative proteins do 

not necessarily exhibit the targeted function. Furthermore, entirely novel enzymes cannot be 

identified as only homologues to already known proteins are detected (133). 

Besides (meta)genome-based screening approaches, transcriptome-based screenings have been 

developed recently. By comparison of different growth conditions, differential transcriptomics can 

help to identify novel enzymes or metabolic pathways. This approach was already used for 

determination of genes involved in heat-shock response in Brevibacillus borstelensis, adaption of E. coli 

to different toxins, or identification of biocatalysts for synthesis of chiral alcohols in Pseudomonas 

monteilii (134–136). Major benefit of this approach is the simultaneous detection of several interesting 

genes at once, also allowing the identification of novel enzymes and entire pathways. Nevertheless, 

differential transcriptomics for identification of biocatalysts have only been applied to single 

organisms. Therefore, neither complex interactions between members of microbial communities nor 

organisms difficult to isolate can be analyzed by this approach. 

2.7. Aim of the thesis 

Aim of this thesis is the establishment of a novel approach for identification of biocatalysts by reverse 

omics techniques. This approach is based on differential analysis of metatranscriptomic datasets 

without the necessity of designing a suitable screen for the targeted biocatalyst. For this purpose, 

microbial communities are incubated in the presence and absence of the target compound. 

Subsequently, mRNA of both approaches is isolated and sequenced. Ideally for quantification and later 

identification of full-length genes, the RNA datasets are mapped on a metagenome backbone 

determined from the same sample. By differential analyses of the metatranscriptomic dataset, genes 

specifically expressed under the presence of the added compound are identified. 
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Nitrilases were chosen as genes of interest. Therefore, growth media for the proposed 

metatranscriptomic screening approach contain either a nitrile or its degradation product in form of 

the corresponding carboxylic acid and ammonia. Upregulated genes identified during differential 

analysis of respective metatranscriptomes should belong to nitrilases, nitrile hydratases, amidases, or 

unknown resistance mechanisms. Before testing the novel screening approach, toxicity of different 

nitriles and corresponding carboxylic acids must be determined to avoid unintended lethal effects 

during screening. With the respective values in hand, the novel screening approach will be tested. A 

known nitrile-degrading organism will be used to establish growth conditions, sample preparation, and 

bioinformatic analysis. Subsequently, the optimized parameters will be applied to a complex microbial 

community, leading to the identification of novel biocatalysts. 
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ABSTRACT 

Nitriles are organic molecules with a nitrile group (−C≡N) as functional group and often toxic for living 

organisms. Detoxification can occur via nitrilases that degrade nitriles directly to carboxylic acids and 

ammonia, or with nitrile hydratases and amidases that convert nitriles to amides and subsequently to 

carboxylic acids and ammonia. Despite the knowledge of enzymatic degradation pathways, the 

influence of these compounds on the composition of bacterial communities has not been studied. 

Initially, the tolerances of four phylogenetically different bacterial strains without known nitrile 

detoxification systems (Agrobacterium tumefaciens, Bacillus subtilis, Corynebacterium glutamicum, 

and Escherichia coli) to the toxic effects of nine different nitriles and the corresponding carboxylic acids 

were determined. Based on these results, the effect of nitriles on diversity and composition of 

environmentally-derived bacterial communities was monitored over time by 16S rRNA gene amplicon-

based and metagenome analyses. Three nitriles (acetone cyanohydrin, 2-phenylpropionitrile, and 

pyruvonitrile) exhibited a lethal, three (phenylacetonitrile, 4-hydroxybenzonitrile, and 

cyclohexanecarbonitrile) a growth-suppressing and three (succinonitrile, acetonitrile, and 

crotononitrile) a growth-promoting effect on the studied communities. Furthermore, each tested 

nitrile exhibited a specific community-shaping effect, e.g. communities showing growth-suppression 

exhibited high relative abundance of Paenibacillus. In general, analysis of all data indicated a higher 

resistance of Gram-positive than Gram-negative bacterial community members and test organisms to 

growth-suppressing nitriles. Finally, more than 70 putative nitrilase-encoding and more than 20 

potential nitrile hydratase-encoding genes were identified during analysis of metagenomes derived 

from nitrile-enrichments, underlining the high yet often unexplored abundance of nitrile-degrading 

enzymes. 

IMPORTANCE 

In this study, we present a systematic analysis of the influence of different nitriles on a complex 

microbial community. Significant changes of bacterial community diversity and composition depending 

on the added nitrile occurred. Furthermore, numerous putative nitrile-decomposing enzymes were 

identified from metagenomes. Thus, the here presented results reveal the potential impact of nitriles 

and their degradation products on microbial communities and approaches for its determination. 
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INTRODUCTION 

Nitriles are structurally diverse organic molecules with a nitrile group (−C≡N) as functional group. 

Naturally occurring nitriles are found in bacteria, fungi, plants, and animals as well as in marine and 

terrestrial habitats (1–4). The most widespread nitriles are cyanogenic glycosides, which often are 

present in plants (5) and other organisms (6). They can serve as storage form of reduced nitrogen (7) 

or defense compound when degraded to highly toxic hydrogen cyanide (4). 

Toxicity of most nitriles does not originate from the nitrile itself, but from cyanide release due to 

degradation by e.g. cytochrome P450 in eukaryotes (8–10). Subsequently, cyanide inhibits cytochrome 

c oxidases and therefore the terminal electron acceptor of the respiratory electron transport chain 

(11). As cytochrome P450 and cytochrome c oxidase are also present in many bacteria (12, 13), a 

similar mode of action as in eukaryotic organisms is indicated. 

Detoxification and degradation are facilitated by two known enzymatic routes. The first involves 

nitrilases (EC 3.5.5.1), which belong to the carbon-nitrogen hydrolase superfamily and harbor a 

conserved catalytic triad consisting of glutamic acid, lysine, and cysteine (14, 15). These enzymes 

degrade nitriles directly to carboxylic acids and ammonia. In the second route, nitriles are degraded to 

amides and subsequently to carboxylic acids and ammonia. The hydration of nitriles to amides is 

catalyzed by nitrile hydratases (NHases; EC 4.2.1.84), which consist of an α- and β-subunit and are 

classified based on the used cofactor as cobalt or ferric NHases. The subsequent hydrolysis of amides 

to carboxylic acids and ammonia is performed by amidases (EC 3.5.1.4) (16). 

Nitriles are also important industrial precursors for the production of bulk chemicals like acrylamide 

(17) or part of various pharmaceuticals such as the anti-cancer drug letrozole or etravirine for HIV 

treatment (18). Non-intended release of man-made nitriles can lead to environmental accumulation 

and impact natural communities. In addition, some nitriles are used as herbicides, e.g. dichlobenil (19) 

or bromoxynil (20). The effect of these synthetic compounds on bacterial communities, the key players 

in most nutrient cycles (21–23), is almost unknown. While toxicity values and effects of many nitriles 

on mammals have been reported, comparable values are almost unavailable for microorganisms 

(8, 11, 24, 25). 

The aim of this work was to investigate the effect of nine nitriles and their corresponding degradation 

products on bacterial communities. Initially, the toxicity of these nitriles and their corresponding 

carboxylic acids were explored using four bacterial test strains containing no known nitrile 

detoxification system. Based on these results a community growth experiment was performed and 

revealed the specific impact of each nitrile on a bacterial community with respect to composition and 

diversity. Additionally, metagenome sequences provided insight into potential mechanisms of nitrile 

stress management, as quantity and distribution of nitrile-degrading enzymes were analyzed.  
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RESULTS 

Limits for bacterial life. To establish stable nitrile-containing mixed cultures it is necessary to 

determine the toxic effect of these compounds. Therefore, we analyzed the influence of a set of nine 

nitriles on the four model organisms Agrobacterium tumefaciens, Bacillus subtilis, Corynebacterium 

glutamicum, and Escherichia coli by using agar plates containing a rich complex or a minimal medium 

with different nitrile concentrations. All four tested strains do not contain any known nitrile-

degradation pathway. As carboxylic acids, the products of a potential nitrile detoxification reaction, 

also affect microbial growth, their influence was tested in addition. 

Growth was monitored for four days on solid agar plates supplemented with a nitrile or the 

corresponding carboxylic acid and examined every 24 hours (Data Set S1). In general, the Gram-

positive strains (B. subtilis and C. glutamicum) showed better growth at higher nitrile and carboxylic 

acid concentrations than the Gram-negative strains (A. tumefaciens and E. coli). Some tested strains 

revealed different behavior with respect to the nitriles and the corresponding carboxylic acids. For 

example, 4-hydroxybenzonitrile suppressed the growth of A. tumefaciens and E. coli even at 5 mM 

concentration but all organisms except A. tumefaciens were able to grow at 25 mM of the 

corresponding carboxylic acid (Table 1). The higher susceptibility of the tested Gram-negative strains 

was also observed for pyruvonitrile, as growth was inhibited at 15, 20, and 25 mM concentration, 

whereas Gram-positive strains grew at 15 mM. In addition, cyclohexanecarbonitrile had no influence 

on the growth of all tested organisms, but cyclohexanecarboxylic acid inhibited growth at 10 mM. 

The results provided a first insight into the inhibitory potential of the nitriles and carboxylic acids with 

respect to bacterial growth. The highest non-inhibitory concentration considering all four test strains 

was chosen for further experiments. In cases where the highest concentration of a nitrile and the 

corresponding carboxylic acid differed, the lower concentration was chosen for both substances. For 

substances inhibiting growth even at lowest tested concentration, 5 mM were used subsequently. 
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Nitrile and carboxylic acid impact on bacterial growth. To determine bacterial community alterations 

under the influence of nitriles and their corresponding carboxylic acids a growth experiment in liquid 

minimum medium was performed. A compost sample from the Experimental Botanical Garden 

Göttingen (Germany) served as inoculum.  

A general reduction of the final OD with each cultivation passage was observed for the nitrile-based 

and the carboxylic acid-based cultures (Figure 1). At the last measuring point of the carboxylic acid-

supplemented cultures, seven of nine conditions revealed higher optical densities than the control, 

thereby indicating beneficial effects of the supplemented carboxylic acids. In case of the nitrile-

supplemented cultures only three nitriles (succinonitrile, acetonitrile, and crotononitrile) exhibited a 

growth-supporting effect in comparison to the control without nitriles. The beneficial impact of 

acetonitrile was already obvious from the second passage on. Addition of cyclohexanecarbonitrile did 

not affect growth, whereas a negative effect on microbial growth was observed for phenylacetonitrile 

and 4-hydroxybenzonitrile. In contrast, cultures supplemented with acetone cyanohydrin,  

2-phenylpropionitrile, or pyruvonitrile showed no growth at all after the first passage. 

 
Figure 1: Growth of a microbial community in M9-HEPES treated with (A) nitriles or (B) the 
corresponding carboxylic acids. 
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Bacterial community composition and diversity. The bacterial community composition of the control 

cultures without addition of nitriles or the corresponding carboxylic acids was determined via 

amplicon-based 16S rRNA gene analysis (Fig. 2 and Data Set S2). Analysis of Simpson indices of diversity 

(SID) at genus level revealed reduction of diversity from inoculum (SID 0.98) to the first sampling of 

the control after 68 h of incubation (SID 0.58). Diversity increased again after 118 h of incubation  

(SID 0.78) and stabilized in the later taken control samples (166 and 214 h; SID 0.91 in both cases). 

Besides inoculum and control cultures, only communities showing growth after 214 h with the nitrile 

or the corresponding carboxylic acid were analyzed by 16S rRNA gene analysis (Figure 2). Cultures 

supplemented with acetone cyanohydrin, 2-phenylpropionitrile, and pyruvonitrile were excluded from 

this analysis due to absence of viability after first passage. Consequently, the respective carboxylic 

acid-supplemented cultures were also removed, as in these cases comparison between a nitrile and its 

carboxylic acid was not feasible. 

 
Figure 2: Abundance of bacterial genera based on 16S rRNA gene analysis in cultures containing 
different nitriles or carboxylic acids after 214 h of incubation. Others, genera with a relative 
abundance of >1%. 

Nitrile-supplemented cultures indicated a general formation of two distinct bacterial community 

types. Cultures containing succinonitrile, acetonitrile, or crotononitrile showed a high diversity (SID 

0.88, 0.91 and 0.86, respectively) when compared to cultures with phenylacetonitrile,  

4-hydroxybenzonitrile or cyclohexanecarbonitrile (SID 0.52, 0.14 and 0.65, respectively). Cultures 

supplemented with the corresponding carboxylic acids exhibited a similar pattern. Communities with 

acetic acid (SID 0.77), crotonic acid (SID 0.73), 4-hydroxybenzoic acid (SID 0.82), and 
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cyclohexanecarboxylic acid (SID 0.83) exhibited a higher diversity compared to cultures supplemented 

with phenylacetic acid (SID 0.61) and succinic acid (SID 0.56). In addition, some carboxylic acid-

containing cultures showed strong variations in diversity in relation to the corresponding nitrile-

containing cultures. In case of succinonitrile and succinic acid, diversity decreased from SID 0.88 to 

0.56. A similar trend was observed for acetonitrile (SID 0.91) and acetic acid (SID 0.77). In contrast, a 

highly increased diversity could be detected in 4-hydroxybenzoic acid-containing cultures (SID 0.82) 

compared to the corresponding nitrile (SID 0.14). These differences in diversity indicate a specific effect 

of the nitrile group in comparison to the carboxylic acid group. 

Nitrile-affected cultures showed distinct communities when compared with the carboxylic acid 

counterparts. Pseudomonas was present under most conditions, except in cultures containing 

phenylacetonitrile or 4-hydroxybenzonitrile. A similar behavior was recorded for Aeromonas. 

Interestingly, Paenibacillus is the dominant genus in phenylacetonitrile- or 4-hydroxybenzonitrile-

containing cultures with relative abundances of 57% and 92%, respectively. Members of this genus are 

also present in all other cultures but in lower relative abundances. In addition, Brevundimonas was 

present (>1% relative abundance) in three of the six nitrile-treated cultures, but only in one containing 

a carboxylic acid. Furthermore, Acinetobacter and Aeromonas showed an on average higher relative 

abundance under acetic acid treatment. In contrast, Pedobacter was only identified in the controls 

(>1% relative abundance), while Aneurinibacillus, Chryseobacterium, and Glutamicibacter were only 

present after treatment with phenylacetonitrile, succinonitrile or 4-hydroxybenzonitrile, respectively. 

Finally, Serratia showed high relative abundance in cultures containing phenylacetonitrile (40 %) or 

crotonic acid (42 %). 

The combination the 16S rRNA gene analysis with the corresponding growth curves revealed further 

linkages between the density of a culture and its diversity. Cultures with phenylacetonitrile and  

4-hydroxybenzonitrile did not only reveal reduced optical density, but a reduced diversity when 

compared to the cultures containing the corresponding carboxylic acids. In contrast, succinic acid-

containing cultures showed low diversity, but exhibited higher density than the control. Finally, several 

cultures (succinonitrile, acetonitrile, 4-hydroxybenzoic acid, and cyclohexanecarboxylic acid) showed 

higher density and higher diversity than the control, indicating a growth-benefiting effect of the added 

chemicals. 
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How to handle nitriles. To assess in which way the different bacterial communities manage the 

supplemented nitriles, metagenomes of all cultures incubated for 214 h and showing growth were 

sequenced. Subsequently, the metagenomes were assembled, annotated, and analyzed. The samples 

were checked for presence of genes encoding nitrilases and nitrile hydratase subunits. Finally, the 

taxonomic assignment of the contigs harboring the targeted genes was used to infer the phylogenetic 

origin of the deduced enzymes (Data Set S3). 

In general, the metagenomes showed a similar taxonomic composition as previously determined via 

16S rRNA gene analysis. Other domains were barely present, as only three respective microorganisms 

were detectable (Figure 3A). The first is the nematode Parastrongyloides, whose DNA was detected in 

the control culture after 166 h of incubation (2 %) as well as in cultures with succinonitrile (4 %), 

acetonitrile (4 %), and crotononitrile (8 %). The second is a Spounalikevirus with a relative abundance 

of 8 % in the culture containing 4-hydroxybenzonitrile. Third, a green alga belonging to the genus 

Pyramimonas was detected in cyclohexanecarbonitrile-containing cultures with 2 % relative 

abundance. 

Analysis of nitrile-degrading enzymes encoded by the metagenomes revealed a broad distribution. 

Especially members of the genus Pseudomonas harbor several potential genes encoding nitrilases and 

NHases in nitrile- and carboxylic acid-supplemented cultures (Figure 3A). Furthermore, the untreated 

control cultures showed high abundance of nitrile-degrading enzymes when compared to other 

treatments (Figure 3B). 

Regarding a potential impact of a nitrile on a bacterial community, several effects were observed. For 

example, the abundance of Pseudomonas increased in the cyclohexanecarbonitrile-containing culture 

compared to its carboxylic acid counterpart, while the diversity of putative nitrilases was reduced by 

50% (Fig. 3A). At the same time, abundance of nitrilase genes increased almost fourfold, indicating 

nitrile-induced enrichment of nitrile-converting genes and correspondingly enrichment of nitrile-

degrading capacity of the community (Figure 3B). 
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Figure 3: Putative nitrilases and nitrile hydratases found in metagenomes of enrichment cultures.  
A, Distribution of enzymes. Numbers in white box represent number of nitrilases and numbers in black 
box represent number of nitrile hydratase subunits. Others, genera with an abundance of >1%. B, Gene 
abundance based on coverage. 
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Figure 4: Phylogenetic tree containing all putative metagenome-derived nitrilases. 500 bootstrap 
replicates were calculated and tree nodes were condensed at values below 50 %. ALIPH, aliphatic 
nitrilase; ARO, aromatic nitrilase; ARY, arylacetonitrilase; ALA(CN), β-cyano-L-alanine-nitrilase; CN, 
cyanide dihydratase. Green, putative cluster of cyanide dihydratases; blue, putative cluster of aromatic 
nitrilases; red, putative cluster of arylacetonitrilases; orange, putative cluster of β-cyano-L-alanine-
nitrilases. 

A phylogenetic tree containing all identified and reference nitrilases (Figure 4) revealed no treatment-

specific clusters. Approximately 25% of all putative enzymes group together with β-cyano-L-alanine-

degrading nitrilases. In addition, small clusters of arylacetonitrilases and cyanide dihydratases were 

found, containing 21 or 8 of the putative nitrilases, respectively. For the remaining 156 putative 

nitrilases, specific clustering was not recorded. 
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DISCUSSION 

Studies on the susceptibility of prokaryotes to several bioactive compounds such as antibiotics (26), 

cytostatics (27), fungicides (28), insecticides (29), and nematicides (30) are performed frequently. To 

our knowledge literature addressing bacterial sensitivity towards nitriles and their degradation 

products has not been published. Toxicity data, determined for A. tumefaciens, B. subtilis, 

C. glutamicum and E. coli, indicate several differences in their susceptibility. Both Gram-positive strains 

revealed increased tolerance to possible growth-inhibiting effects of nitriles compared to the Gram-

negative strains, whereby A. tumefaciens was most susceptible. 

Among the tested compounds, 4-hydroxybenzonitrile was the most toxic. As the closely related 

compounds 3,5-diiodo-4-hydroxybenzonitrile (ioxynil) and 3,5-dibromo-4-hydroxybenzonitrile 

(bromoxynil) are common herbicides (31, 32), a certain toxicity to microorganisms could be inferred. 

Especially bromoxynil has a documented negative impact on the soil microbial biomass (33). The 

second most toxic chemical was pyruvonitrile, which has structural similarities to the key metabolite 

pyruvate. This similarity leads to interference with central metabolism and deleterious effects. The 

toxicity of the carboxylic acids was generally reduced compared to the corresponding nitriles, except 

for cyclohexanecarboxylic acid. Its toxicity was significantly higher for the tested prokaryotes than that 

of its nitrile counterpart. The respective mechanism remains unknown but underlines the importance 

to investigate also potential degradation products of a nitrile. 

The toxicity assay served mainly as an initial test to define working concentrations for the investigation 

of bacterial communities. Optical density data, representative for the viability of a community, 

underlined the value of the liquid culture setup. In case of the tested nitriles, only succinonitrile, 

acetonitrile and crotononitrile (Fig. 1A) exhibited a positive effect on microbial growth. This indicates 

that the predominat bacterial community members of these cultures possess the ability to degrade 

and utilize these nitriles. For acetonitrile this effect was already experimentally confirmed through the 

successful isolation of nitrile-degrading strains from similar cultures (34). All other nitrile-containing 

cultures revealed reduced density indicating reduced degradation ability or tolerance levels with 

respect to the tested compounds.  

For the differences between the solid and liquid cultures with the substrates acetone cyanohydrin,  

2-phenylpropionitrile, and pyruvonitrile, two explanations could be assumed. (1) In case of 

cyanohydrins, spontaneous decomposition has been described under different conditions (35, 36), and 

probably similar mechanisms also apply for other nitriles. Consequently, different stabilities of the 

nitriles under both tested conditions could have had influence on their effect. (2) The compost sample 

did not contain any acetone cyanohydrin, 2-phenylpropionitrile or pyruvonitrile resistant or degrading 

microorganisms. However, 16S rRNA gene analysis of the inoculum revealed the presence of 
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A. tumefaciens, B. subtilis, C. glutamicum, and E. coli, species successfully grown during the initial plate 

test and thus making the first assumption more likely. Furthermore, degrading organisms or at least 

nitrilases for acetone cyanohydrin and 2-phenylpropionitrile have already been identified (37–44), 

indicating the existing potential to handle these chemicals. 

Monitoring diversity of the complex communities via 16S rRNA gene analysis revealed a reduction of 

diversity in the liquid cultures compared to the inoculum. As often more than 99 % of all environmental 

microorganisms cannot be cultivated under laboratory conditions (45–47), a decline was expected. 

Generally, the 16S rRNA gene analysis of the control samples confirmed the experimental setup as 

appropriate and sufficient to establish a stable community. Re-diversification of the controls over the 

course of the experiment is explained by the prolonged incubation time. Extended incubation is a well-

known factor for increasing the number of isolates on solid media (46). Apparently, regular transfer to 

fresh medium and therefore prolonged incubation without nutrient deficiency leads also to an increase 

of proliferating and fast-growing bacteria in liquid medium. Slow-growing organisms get the possibility 

to overcome their lag period and proliferate during longer incubation times. This re-diversification has 

a severe impact on results using liquid cultures, as several genera would be missed in case of earlier 

sampling and analysis. In this experiment, diversity stabilized between the third and fourth sampling 

time. The 16S rRNA gene data after 214 h of incubation revealed diverse individual cultures, stating 

that nitriles and their degradation products significantly impact bacterial community composition and 

diversity. In accordance with initial toxicity test, we could confirm an increased relative abundance of 

Gram-positive genera in cultures containing growth-suppressing nitriles such as phenylacetonitrile,  

4-hydroxybenzonitrile and cyclohexanecarbonitrile. It appears that these organisms are more resistant 

to the negative influence of these specific compounds. Nevertheless, high abundance of Paenibacillus 

in the 4-hydroxybenzonitrile-containing sample was unexpected, as we could not find any confirmed 

nitrile-degrading enzyme for this genus in literature. However, putative nitrilase-encoding genes are 

present in publicly available Paenibacillus genomes. In addition, closely related cyanide dihydratases 

were just recently predicted for this genus (48). For Brevundimonas, also showing higher abundances 

in the nitrile-containing communities compared to the carboxylic acid-containing ones, database 

entries or literature on nitrile-degrading enzymes were not found. Nitrile degradation has been 

described for Serratia (49, 50), but potential nitrile-converting genes phylogenetically assigned to this 

genus were not predicted in the metagenome derived from the phenylacetonitrile-treated culture. 

Nevertheless, with an abundance of 40 % in the respective culture, members of the Serratia genus 

seem to be well-adapted to phenylacetonitrile. Therefore, probably other mechanism lead to the 

nitrile tolerance. Thus, further investigation of all three genera could be of great value for the discovery 

of novel nitrile-degrading enzymes and resistance mechanisms. 
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A few reports mentioned nitrile-degrading activity of Acinetobacter (51, 52), but not for Aeromonas. 

The absence of putative nitrilases and nitrile hydratases for Aeromonas and only few nitrile hydratase 

subunits assigned to Acinetobacter indicate the rarity of respective genes in both genera. The reduced 

average abundance of both genera in nitrile-treated cultures is probably explained by a higher 

susceptibility to possible toxic effects of the nitriles and subsequent displacement of these genera by 

better adapted microorganisms such as Paenibacillus and Brevundimonas. 

Pedobacter is known for broad antibiotic resistance potential and heavy metal tolerance (53–55), but 

it seems like this genus is not adapted to nitrile-harboring or carboxylic acid-containing environments. 

In addition, genes encoding putative nitrilases or nitrile hydratases were not predicted to be derived 

from members of this genus. Interestingly, the same applies for putative nitrile-degrading enzymes 

derived from Aneurinibacillus, Chryseobacterium, and Glutamicibacter, but every genus shows growth 

in one nitrile-containing culture. Thus, the presence of so far unknown nitrile resistance or degradation 

mechanisms is indicated. 

It is doubtful that with Parastrongyloides a parasite of Australian possums was living in German 

compost, but probably other related nematodes present in this environment could be able to survive 

in M9-HEPES, especially as Parastrongyloides shows growth in liquid medium (56).  

The assumption that nitriles and their handling are a common feature in nature (1–7) could be 

confirmed as many nitrile-degrading enzymes are commonly present in different genera. They could 

even be frequently identified in the control culture facing neither the nitrile itself nor the potential 

degradation product. Of special interest for further investigations could be the high abundance of 

nitrilase-encoding genes in the cyclohexanecarbonitrile-containing culture, demonstrating enrichment 

of respective genes. This could be an indicator for proliferation of a nitrile-degrading bacterium and 

consequently for active nitrile degradation.  

Phylogenetic analysis revealed a high diversity of the encountered putative nitrilases as they were 

assigned to several different groups. The close clustering of aromatic nitrilases and arylacetonitrilases 

was expected as both groups act on substrates containing aromatic structures. The R. rhodochrous K22 

nitrilase preferably acts on aliphatic nitriles but is similar to benzonitrile-degrading nitrilases with 

respect to sequence (57). This could explain its clustering with other aromatic nitrilases, even though 

it has a different substrate specificity. 
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Conclusion and outlook. The here employed experimental setup for the investigation of the impact of 

nitriles and their degradation products on bacterial communities showed that these compounds 

significantly influence the composition of bacterial communities and partially lead to a strong 

reduction of diversity. In addition, it revealed strains with potential for remediation purposes such as 

Paenibacillus in case of 4-hydroxybenzonitrile. 

In conclusion, this work provides a first insight on the influence of different nitriles and their 

rcorresponding carboxylic acids on microorganisms. A different susceptibility of Gram-negative  

(A. tumefaciens and E. coli) and Gram-positive (B. subtilis and C. glutamicum) test strains was observed 

during toxicity tests, but the number of tested organisms and chemicals should be increased to provide 

insights in the underlying mechanisms. The liquid culture experiment with a compost community as 

inoculum highlighted problems when transferring complex communities for several times to fresh 

medium, as the maximal optical densities were reduced each passage. Nevertheless, the analysis of 

the control cultures over time revealed a diversification and stabilization of the bacterial community 

composition, indicating that the time point for analysis of the chemically-treated cultures was 

appropriate. In addition, the toxic effects of certain nitriles (acetone cyanohydrin,  

2-phenylpropionitrile, and pyruvonitrile) for microbial communities could be documented. Prevention 

of environmental contamination with these compounds seems therefore important, as bioremediation 

might be problematic. At the same time, lethal effects of the corresponding carboxylic acids were not 

observed, indicating specific toxicity of the nitriles.  

The comparison of the cultures under the influence of nitriles with the cultures containing the 

respective carboxylic acids revealed many differences. The nitrile group exhibited a different effect on 

microorganisms than the acid counterpart. As some carboxylic acids show higher growth suppression 

and a strong influence on community composition, it seems reasonable to study the influence of 

educts and products of an enzymatic reaction. This should preferably be done before starting with 

enrichment or screening experiments for organisms harboring the corresponding enzymes to avoid 

unintended lethal effects.  Especially putative nitrilases clustering with already characterized enzymes 

in the here presented phylogenetic tree are interesting candidates for further investigation, as chances 

for enzymatic activity are high. Additionally, a broader picture of nitrile influence on the nitrile-treated 

cultures could be gained by metatranscriptomic studies, as these have the potential to reveal stress 

responses, resistance mechanisms and novel degradation strategies. This knowledge could help 

developing novel or better biotransformation and bioremediation strategies and finally lead to a 

reduction of environmental contamination.  
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MATERIAL AND METHODS 

Media and stock solutions. For growth of microorganisms, LB-Miller medium (10 g tryptone, 10 g NaCl 

and 5 g yeast extract per liter) (58) or M9-HEPES was used. M9-HEPES was prepared using 15.5 g HEPES, 

1 g NH4Cl and 0.5 g NaCl per liter. The pH was adjusted to 7.0 before autoclaving. Ten ml ATCC vitamin 

supplement (LGC Standards, Teddington, UK), 10 ml ATCC trace mineral supplement, 10 ml glucose 

solution (20 %), 1 ml MgSO4 x 7H2O solution (1 M), 1 ml CaCl2 solution (14.7 g/l) and 1 ml thiamine-HCl 

solution (1 mg/ml) were added afterwards. For toxicity determination, following chemicals were 

solved in H2O, DMSO, or ethanol and added to the medium: phenylacetonitrile (N1), succinonitrile 

(N2), acetonitrile (N3), crotononitrile (N4), 4-hydroxybenzonitrile (N5), acetone cyanohydrin (N6), 

cyclohexanecarbonitrile (N7), 2-phenylpropionitrile (N8), pyruvonitrile (N9), phenylacetic acid (A1), 

succinic acid (A2), acetic acid (A3), crotonic acid (A4), 4-hydroxybenzoic acid (A5), 2-hydroxyisobutyric 

acid (A6), cyclohexanecarboxylic acid (A7), 2-phenylpropionic acid (A8), and pyruvic acid (A9) (all 

chemicals from Sigma-Aldrich, Taufkirchen, Germany and TCI Chemicals, Eschborn, Germany). In case 

of carboxylic acids, an equimolar amount of ammonia was added in form of ammonia water (Carl Roth, 

Karlsruhe, Germany). For agar plates, 15 g agar per liter was added.  

Nitrile toxicity tests on selected strains. Agrobacterium tumefaciens NTL4(pCF372)(pCF218) (59), 

Bacillus subtilis NCIB 3610 (60), Corynebacterium glutamicum ATCC 13032 (61) and Escherichia coli 

W3110 were used as model organisms during this study. Precultures of these strains were grown in LB 

medium at 30 °C and 180 rpm (Multitron shaker, Infors, Einsbach, Germany) for 24 h. Afterwards, each 

strain was plated on a quadrant of a LB or M9-HEPES plate containing one of the nine nitriles or the 

respective carboxylic acid in a concentration of 5, 10, 15, 20 or 25 mM. As control, plates with LB or 

M9-HEPES were used. Every 24 h, the growth on the plates was analyzed and categorized on a scale of 

0 to 4 by comparison with the control. In case of no growth a 0 was given, whereas similar growth 

compared to the control was treated as 4. The remaining values were given for approx. 25% (=1), 50% 

(=2) and 75% (=3) of colony size and opaqueness when compared to the control. 

Nitrile toxicity on an environmental community. Compost (100 g, pH 7.5) of the Experimental 

Botanical Garden Göttingen, Germany (51°33'22.6"N 9°57'16.2"E) were solved in 500 ml ddH2O and 

subsequently filtered with a 2.7 µm GF/D glass fiber filters (Whatman, Little Chalfont, UK). Baffled 

flasks (total volume 100 ml) were filled with 35 ml M9-HEPES containing one of the nitriles or carboxylic 

acids in the above-mentioned tested concentrations (Table 1). Flasks filled only with M9-HEPES served 

as control. All conditions were prepared in triplicates. The solved and filtered compost (5 ml) were 

added to each baffled flask and the cultures were incubated at 25 °C and 75 rpm (Multitron shaker). 

To monitor the growth of the cultures, the optical density at 600 nm (OD600) was measured. Two 

prevent starvation of the microorganisms, cultures were transferred after three days to fresh medium 
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containing the same nitrile or carboxylic acid at the concentrations used before. The new cultures were 

adjusted to an OD600 of 0.1 and incubated again at 25 °C and 75 rpm. In case that cultures showed no 

growth, the cultures were not transferred to fresh medium but further incubated. The procedure was 

repeated two additional times after two days of incubation per growth period. The final cultures were 

again incubated for two days. 

DNA extraction. DNA of the compost sample solved in water was isolated before and after filtering 

using the PowerMax soil DNA isolation kit (MO BIO Laboratories, Carlsbad, CA, USA) according to the 

manufacturer’s protocol. DNA of the M9-HEPES-containing enrichment cultures was isolated using the 

MasterPure Complete DNA and RNA purification kit as recommended by the manufacturer (Epicentre, 

Madison, WI, USA). Concentration of isolated DNA was measured using a NanoDrop ND-1000 (Thermo 

Fisher Scientific, Waltham, MA, USA) or with a Quant-iT dsDNA HS assay kit and a Qubit fluorometer 

as recommended by the manufacturer (Invitrogen, Carlsbad, CA, USA). 

16S rRNA gene sequencing. For amplification of the V3-V4 region of bacterial 16S rRNA genes, the 

primers S-D-Bact-0341-b-S-17 and S-D-Bact-0785-a-A-21 (62) were used. The primers contained 

adapters for Illumina MiSeq sequencing (Ilumina, San Diego, CA, USA). The DNA isolated from solved 

compost or M9-HEPES-containing enrichment cultures was used as template. PCR reaction mixtures 

(50 µl final volume) contained 10 µl 5-fold Phusion GC buffer, 0.2 µM of each of the primers, 0.2 µM 

MgCl2, 2.5 µl DMSO, 200 µM of each of the four dNTPs, 1 U of Phusion DNA polymerase (Thermo Fisher 

Scientific), and 25 ng template DNA. For amplification, the following protocol was used: initial 

denaturation at 98°C for 1 min, 25 cycles of denaturation at 98 °C for 45 s, annealing at 60 °C for 45 s, 

and elongation at 72 °C for 30 s, followed by final elongation at 72 °C for 5 min. PCR reactions for each 

culture were performed in triplicate, pooled in equal amounts, and purified with the NucleoMag 96 

PCR kit (Macherey-Nagel, Düren, Germany) according to the manufacturer’s protocol. For 

quantification of the PCR products, a Qubit fluorometer was used in combination with the Quant-iT 

dsDNA HS assay kit as recommended by the manufacturer (Invitrogen). The purified amplicons were 

indexed using the Nextera XT DNA library prep kit according to the instructions of the manufacturer 

(Illumina). Dual index paired-end sequencing (2 x 300 bp) with v3 chemistry was done on an Illumina 

MiSeq platform as recommended by the manufacturer (Illumina). 

16S rRNA gene sequence analysis. CASAVA data analysis software (Illumina) was used for 

demultiplexing and clipping of sequence adapters from raw sequences. Before removing sequences 

with an average quality score below 20 and unresolved bases with split_libraries_fastq.py from QIIME 

1.9.1 (63), paired-end sequences were merged using PEAR v0.9.10 with default parameters (64). 

Default settings of cutadapt 1.14 (65) were used for removal of non-clipped reverse and forward 

primer sequences. Subsequently, the UNOISE2 pipeline of USEARCH 9.2.64 (66) was used to remove, 
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dereplicate, and denoise reads shorter than 380 bp, leading to zero-radius operational taxonomic units 

(zOTUs). Furthermore, chimeric sequences were removed. For this purpose, UCHIME2 was used in 

reference mode against the SILVA SSU database version 128 (67). To create a zOTU table, the quality-

filtered sequences were mapped to chimera-free OTUs using USEARCH. With 

parallel_assign_taxonomy_blast.py taxonomic classification of the zOTU sequences against the SILVA 

database was done. Filter_otu_table.py was used for removal of chloroplasts, unclassified OTUs, and 

extrinsic domain OTUs. Finally, the lowest number of sequences by random subsampling (12,100 reads 

per sample) was used for sample comparison at the same surveying effort. 

Metagenome sequencing and analysis. DNA isolated from each culture triplicate was pooled in equal 

amounts. Paired-end metagenome sequencing was performed with an Illumina HiSeq 4000 

(2 × 150 bp) using the Nextera XT DNA library prep kit. For quality-trimming and verification of the 

paired-end reads, Trimmomatic version 0.36 (68) and FastQC version 0.11.5 (69) were used. Assembly 

and coverage calculation was performed with SPAdes version 3.10 (70). Contigs >200 bp were 

annotated with Prokka 1.11 (71). For taxonomic assignment of nitrilases, a BLASTn search (72) of the 

nitrile containing contigs was performed against the NCBI non-redundant database. Abundance of 

nitrile-degrading genes was calculated by mapping quality-filtered reads against the sequence-based 

identified putative nitrile-converting genes with Bowtie2 version 2.3.4.2 (73). Normalization was done 

by dividing the number of mapped nucleotides by the total number of nucleotides. Subsequently, 

these values were normalized against the number of putative target genes. 

Phylogenetic tree. Evolutionary analyses were conducted in MEGA X version 10.0.5 (74). Alignment of 

the amino acid sequences was done with MUSCLE (75) and standard settings. The evolutionary history 

was inferred by using the Maximum Likelihood method and LG model (76) as recommended by build-

in model test tool of MEGA X. The tree with the highest log likelihood (-31012.19) is shown. Initial 

tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ 

algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the 

topology with superior log likelihood value. A discrete Gamma distribution was used to model 

evolutionary rate differences among sites (5 categories (+G, parameter = 1.1643)). This analysis 

involved 276 amino acid sequences. A total of 491 positions were in the final dataset. Extensive subtree 

pruning regrafting and a very weak branch swap filter were used. Phylogeny was tested by calculating 

500 bootstrap replicates and nodes with values below 50% were condensed for the final image. 

Reference sequences were recovered from the NCBI database (accession numbers in parentheses): 

For aromatic nitrilases, Rhodococcus rhodochrous J1 (BAA01994) (77), R. ruber NHB-2 (CCN27135) (78), 

and Gordonia terrae MTCC 8139 (AGR86048) (79) were used as references. Aliphatic nitrilases were 

derived from Comamonas testosteroni (AAA82085) (80), Synechocystis sp. PCC6803 (BAA10717) (81), 
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and R. rhodochrous K22 (BAA02127) (82), while arylacetonitrilases were obtained from Alcaligenes 

faecalis JM3 (BAA02684) (83), Pseudomonas fluorescens EBC191 (AAW79573) (84), and Pseudomonas 

putida MTCC 5110 (ABV21758) (85). β-Cyano-L-alanine nitrilases were derived from P. fluorescens Pf0-

1 (ABA74312) (86, 87), Pseudomonas protegens Pf-5 (AAY92181) (86, 88), and Pseudomonas 

pseudoalcaligenes CECT 5344 (CDM40486) (89, 90). Cyanide dihydratases were retrieved from 

Pseudomonas stutzeri AK61 (AIY29195) (91), Bacillus pumilus C1 (AF392815) (92), and B. pumilus 8A3 

(AAN77003) (92). Furthermore, three amidases were included, originating from Pseudomonas 

aeruginosa PAC142 (P11436) (93), R. rhodochrous M8 (AAX83004) (94), and Geobacillus pallidus RAPc8 

(AAO23013) (95). 

Accession numbers. Raw data of 16S rRNA gene analysis and metagenome sequences as well as 

assembled metagenomes have been deposited at NCBI under the following biosample accession 

numbers: compost sample, SAMN09932763; filtered compost sample, SAMN09932764; control after 

68 h, SAMN09932785; control after 188 h, SAMN09932808; control after 166 h, SAMN09932809; 

control after 214 h, SAMN09932848; phenylacetonitrile enrichment, SAMN09930795; succinonitrile 

enrichment, SAMN09932325; acetonitrile enrichment, SAMN09932597; crotononitrile enrichment; 

SAMN09932603; 4-hydroxybenzonitrile enrichment, SAMN09932608; cyclohexanecarbonitrile 

enrichment, SAMN09932617; phenylacetic acid enrichment, SAMN09932620; succinic acid 

enrichment, SAMN09932700; acetic acid enrichment, SAMN09932745; crotonic acid enrichment, 

SAMN09932756; 4-hydroxybenzoic acid enrichment, SAMN09932757; cyclohexanecarboxylic acid 

enrichment, SAMN09932758. 
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INTRODUCTION

Nitriles are a diverse group of organic compounds with –C≡N as functional group. Most nitriles
are slightly cytotoxic but some cause severe toxic effects. More than 120 naturally occurring
nitriles without considering cyanogenic glycosides are present in terrestrial and marine habitats,
especially in plant components such as almonds or other fruit pits. The most common group
of naturally occurring nitriles are cyanogenic glycosides, which can be found in more than 100
plant families as well as in fungi, bacteria, and animals. This group of molecules can be chemically
or enzymatically hydrolyzed, leading to the release of highly toxic hydrogen cyanide and thereby
act as natural defense compound (Fleming, 1999). For detoxification, two enzymatic pathways for
the degradation of nitriles are known. The first one involves nitrilases (EC 3.5.5.1), a subgroup of
the carbon-nitrogen hydrolase superfamily, which degrade nitriles directly to carboxylic acids and
ammonia. The second one is a bi-enzymatic pathway using nitrile hydratases (NHases; EC 4.2.1.84)
for the degradation of nitriles to amides and amidases (EC 3.5.1.4) for the subsequent degradation
to carboxylic acids and ammonia (Gong et al., 2012). The enzymatic hydrolysis of nitriles proceeds
under mild reaction conditions, whereas the chemical hydrolysis is dependent on acidic or alkaline
conditions and high temperatures. The latter also results in the production of large quantities
of byproducts and inorganic waste (Clouthier and Pelletier, 2012; Vergne-Vaxelaire et al., 2013).
Consequently, nitrile-converting enzymes are of increasing industrial importance with respect to
green chemistry. A constantly increasing number of nitrile-derived amides [e.g., acrylamides or
carboxylic acids (e.g., glycolic acid)] are produced with these enzymes (Schmid et al., 2001; Panova
et al., 2007). In addition, nitrilases can be used for the treatment of nitrile-polluted wastewater (Li
et al., 2016) and other environmentally-friendly bioremediation processes (Gong et al., 2012).

Here, we report data on the taxonomic composition of an enrichment culture with acetonitrile
as nitrogen source. In addition, we present eight individual bacterial draft genome sequences of
isolates obtained from this enrichment. The genome content of these isolates was analyzed with
respect to genes responsible for the nitrile-degrading phenotype. Genome and average nucleotide
identity analysis indicated that the isolated bacterial strains are affiliated to the species Rhodococcus
erythropolis, Flavobacterium sp., Variovorax boronicumulans, Pseudomonas sp., and Pseudomonas
kilonensis.

MATERIALS AND METHODS

Isolation of the Bacteria
Compost (100 g, pH 7.5) of the Experimental Botanical GardenGöttingen, Germany (51◦33′22.6′′N
9◦57′16.2′′E) was suspended in 500 ml H2O and filtered with a 2.7 µm GF/D glass fiber
filter (Whatman, Little Chalfont, UK). Enrichment and control cultures were each initiated
with 750 µl of the resulting filtrate. Enrichment cultures were grown in 40 ml M9 medium
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(Atlas, 2010) with ATCC trace mineral supplement (LGC
Standards, Teddington, UK), 10 mM glucose as carbon source
and 25 mM acetonitrile as sole nitrogen source at 25◦C for 4
days. Control cultures were grown in same medium but the
medium contained 18.7 mM NH4Cl instead of acetonitrile. The
enrichment culture was streaked on solid M9 medium with
25 mM acetonitrile as sole nitrogen source and incubated at
25◦C. The obtained 33 colonies showed four distinct colony
morphologies, and were picked and purified over five rounds of
incubation. Growth in the absence of an added nitrogen source
was not recorded.

16S rRNA Gene Sequencing
Genomic DNA of the liquid cultures and the specific isolates
was extracted using the MasterPure complete DNA and RNA
purification kit (Epicentre, Madison, WI, USA), while DNA
isolation of the compost sample was done with the PowerMax soil
DNA isolation kit (MO BIO Laboratories, Carlsbad, CA, USA).
The bacterial composition was determined by amplicon-based
analysis of the V3-V4 region of the 16S rRNA gene using the
bacterial primers S-D-Bact-0341-b-S-17 and S-D-Bact-0785-a-A-
21 (Klindworth et al., 2013) with adapters for Illumina MiSeq
sequencing (Illumina, San Diego, CA, USA). The PCR reaction
mixture (50 µl) contained 10 µl 5-fold Phusion GC buffer,
200µM of each of the four dNTPs, 2.5 µl DMSO, 0.2 µM of each
primer, 200 µM MgCl2, 1 U of Phusion polymerase (Thermo
Fisher Scientific, Waltham, MA, USA), and 25 ng of isolated
DNA as template. The following cycling scheme was used: initial
denaturation at 98◦C for 1 min and 25 cycles of denaturation
at 98◦C for 45 s, annealing at 60◦C for 45 s, and extension at
72◦C for 30 s, followed by a final extension at 72◦C for 5min.
PCR reactions were performed in triplicate for each sample.
The resulting PCR products were pooled in equal amounts
and purified using the NucleoMag 96 PCR kit (Macherey-
Nagel, Düren, Germany) as recommended by the manufacturer.
Quantification of the PCR products was performed using the
Quant-iT dsDNA HS assay kit and a Qubit fluorometer as
recommended by the manufacturer (Invitrogen, Carlsbad, CA,
USA). Indexing of the PCR products was performed with Nextera
XT DNA library prep kit as described by the supplier (Illumina).
Sequencing was performed with the Illumina MiSeq platform
using the dual index paired-end approach (2 × 300 bp) and v3
chemistry.

The 16S rRNA genes of specific isolates were amplified
with the primer pair 08f (5′-AGAGTTTGATCCTGGC-3′)
and 1504r (5′-TACCTTGTTACGACTT-3′). The previously
mentioned cycling scheme was modified to an annealing
temperature of 40◦C and an extension time of 45 s. Sanger
sequencing of the PCR products was done by Seqlab (Göttingen,
Germany).

16S rRNA Gene Amplicon Analysis
Demultiplexing and clipping of sequence adapters from raw
amplicon sequences were performed by employing CASAVA
data analysis software (Illumina). Paired-end sequences were
merged using PEAR v0.9.10 with default parameters (Zhang et al.,
2014). Subsequently, sequences with an average quality score

lower than 20 and containing unresolved bases were removed
with the split_libraries_fastq.py script of QIIME 1.9.1 (Caporaso
et al., 2010). Non-clipped reverse and forward primer sequences
were removed by employing cutadapt 1.12 with default settings
(Martin, 2011). USEARCH version 9.2.64 was used following the
UNOISE pipeline (Edgar, 2010). In detail, reads shorter than 380
bp were removed, dereplicated, and denoised with the UNOISE2
algorithm of USEARCH resulting in zero-radius operational
taxonomic units (zOTUs). Additionally, chimeric sequences
were removed using UCHIME2 in reference mode against the
SILVA SSU database release 128 (Yilmaz et al., 2014). All
quality-filtered sequences were mapped to chimera-free OTUs
and a zOTU table was created using USEARCH. Taxonomic
classification of the picked reference sequences (zOTUs) was
performed with parallel_assign_taxonomy_blast.py against the
same SILVA database. Extrinsic domain OTUs, chloroplasts, and
unclassified OTUs were removed from the dataset by employing
filter_otu_table.py. Sample comparisons were performed at same
surveying effort, utilizing the lowest number of sequences by
random subsampling (31,000 reads per sample).

Genome Sequencing and Analysis
Genome sequencing was performed using an Illumina MiSeq
system with the Nextera XT DNA library prep kit as
recommended by the manufacturer (Illumina). Paired-end reads
were quality-trimmed with Trimmomatic version 0.36 (Bolger
et al., 2014) and verified with FastQC version 0.11.5 (Andrews,
2010). Assembly and first coverage calculation was performed
with SPAdes version 3.9.0 (Bankevich et al., 2012). All contigs
>500 bp and with a coverage >5 were annotated using Prokka
version 1.11 (Seemann, 2014). Final coverage was calculated
with Bowtie 2 version 2.2.9 (Langmead and Salzberg, 2012). A
BLASTn search (Altschul et al., 1990) was performed against
the NCBI non-redundant database to verify assembled contigs.
For taxonomic assignment, the full-length 16S rRNA gene
sequences of all isolated organisms were searched against the
NCBI database. Combination of these data with an analysis of
the tetra-nucleotide signatures (Tetra) and the average nucleotide
identities (ANI) performed with JSpeciesWS (Richter et al., 2016)
as well as in silico DNA-DNA hybridization results calculated
with the online tool GGDC 2.1 (Meier-Kolthoff et al., 2013) were
employed for taxonomic classification of the isolates. Putative
nitrilases, NHases, and amidases were compared with the non-
redundant protein database of the NCBI using BLASTp (Altschul
et al., 1990). The hit with the highest score is given in Table 1.

RESULTS AND DISCUSSION

Enrichment of the compost sample with M9 minimal medium
containing acetonitrile as sole nitrogen source resulted in
microbial growth, indicating the presence of acetonitrile-
degrading organisms. The bacterial diversity and composition of
the compost sample and the enrichment culture were determined
via amplicon-based 16S rRNA gene analysis. The compost
sample used as starting material for enrichment comprised
520 zOTUs, which were reduced to 63 during enrichment
(Supplementary Table S1). The dominant bacterial genera after
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enrichment wereAeromonas (33%) and Pseudomonas (55%) with
similar abundances in the control sample (Figure 1A). In the
enrichment culture the relative abundances of Flavobacterium
and Bacillus were 5 and 2%, respectively, and in the control
culture 2 and 0.4%, respectively.Chryseobacterium, Paenibacillus,
Pedobacter, and Sphingobacterium varied between 1.1 and
1.3% in the control culture, but showed relative abundances
below 0.1% in the acetonitrile-containing enrichment. In
contrast, Variovorax (3%) was only detected in the acetonitrile
enrichment culture in significant amounts. We performed
isolation experiments from enrichment cultures on solid
media with acetonitrile as sole nitrogen source. A total
of 33 isolates (Figure 1B) were recovered of which eight
isolates (ACN1 to ACN8, Table 1) showed a different 16S
rRNA gene sequence. All isolates were able to grow with
acetonitrile as sole nitrogen source in axenic culture. No
growth was observed in the absence of an added nitrogen
source. The genomes of all eight isolates were sequenced
and analyzed with the focus on genes potentially involved
in nitrile-degradation (Table 1). Based on average nucleotide
identity, tetra-nucleotide signatures and in silico DNA-DNA
hybridization, the eight isolates were affiliated to the genera
Flavobacterium, Pseudomonas, Rhodococcus and Variovorax.
Besides Rhodococcus all isolated strains belonged to genera
detected during 16S rRNA gene analysis of the bacterial
community in the enrichment culture.

FIGURE 1 | (A) Community composition of acetonitrile-enrichment and

control culture and (B) 16S rRNA gene analysis of 33 acetonitrile-degrading

isolates; “Others” refers to genera with an abundance of <1%. M9, control;

ACN, acetonitril enrichment.

Rhodococcus (ACN1)
In contrast to all other isolates, only slight traces of Rhodococcus
could be found during 16S rRNA gene analysis. Nevertheless,
this isolate was obtained multiple times from the enrichment,
indicating its ability to degrade acetonitrile. The reason for the
discrepancy between 16S rRNA gene analysis of the community
and the isolation results may be due to non-optimal media
conditions for Rhodococcus in the enrichment culture, leading
to low abundance. Genome sequencing of R. erythropolis
ACN1 and quality-filtering resulted in 2,641,652 paired-end
reads resulting in a draft genome of 7.24 Mbp with a 93.9-
fold coverage. Similarity searches for putative genes involved
in nitrile-degradation revealed two genes (BKP42_65670 and
BKP42_65680), coding for one of the two putative NHase
subunits. These enzymes are known to be responsible for
nitrile degradation in various R. erythropolis strains (Kaufmann
et al., 1999; Brandão et al., 2003; Vejvoda et al., 2007; Kamble
et al., 2013). The deduced protein sequences showed highest
identity to the alpha subunit of Rhodococcus sp. N-774 (Ikehata
et al., 1989) and the beta subunit of R. erythropolis deep-
sea strain 122-AN065 (Brandão et al., 2003). The deduced
acetamidases (BKP42_40660 and BKP42_26750) aremost similar
to acetamidases of R. erythropolis and Rhodococcus sp. 311R
(Ehsani et al., 2015). The two aliphatic amidases of the isolated
strain (BKP42_54900 and BKP42_64640) most resemble an
acylamide amidohydrolase from Gordonia desulfuricans and an
amidase of Rhodococcus sp. R312 (Fournand et al., 1998). An
additional amidase (BKP42_65660) is most similar to an amidase
of Rhodococcus sp. N-774 (Table 1).

Variovorax (ACN3)
Members of the genus Variovorax were prime candidates
for active nitrile degradation, as the genus appeared only
in significant abundances in the bacterial community after
enrichment with acetonitrile. With the isolation of ACN3
identified as V. boronicumulans a member of this genus was
recovered. Sequencing and assembly of 3,471,160 paired-end
reads resulted in a draft genome of 7.14Mbp (131-fold coverage).
Although V. boronicumulans is a species described just recently
(Miwa et al., 2008), evidence for nitrile degradation by this
microorganism was reported before (Zhang et al., 2012; Liu
et al., 2013). A search for genes encoding putative nitrile-
degrading enzymes resulted in the identification of genes for
two possible degradation pathways, the first one via a nitrilase
(BKP43_17560) and the second one via an NHase (BKP43_58000
and BKP43_58010) and amidase (BKP43_28100). The most
similar enzymes to the nitrilase, alpha and beta subunits of
NHase, and the aliphatic amidase are an amidohydrolase,
NHase subunits and acylamide amidohydrolase of another V.
boronicumulans strain, respectively (Table 1).

Pseudomonas (ACN4, ACN5, ACN7, and
ACN8)
With a relative abundance of over 50%, Pseudomonas is the major
genus of the bacterial community in the acetonitrile enrichment
culture. Several Pseudomonas species such as P. chlorographis
and P. fluorescens are able to use nitriles as nitrogen source

Frontiers in Environmental Science | www.frontiersin.org 5 September 2017 | Volume 5 | Article 56

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Egelkamp et al. Nitrile-Degrading Bacteria Isolated from Compost

and harbor genes encoding nitrilases, or NHases and amidases
(Nagasawa et al., 1987; Kiziak et al., 2005; Howden et al., 2009).
The presence of these genes could be due to the plant habitat of
some Pseudomonas species, which is rich in different and unusual
nitriles like indole-3-carbonyl nitrile (Rajniak et al., 2015).

Isolates ACN4 and ACN7 were affiliated to P. kilonensis, a
species described in 2001 (Sikorski et al., 2001). Sequencing of
the ACN4 genome resulted in 2,239,346 paired-end reads, an
average coverage of 96.7-fold, and a draft genome of 6.55 Mbp.
Genes encoding a putative nitrilase (BSF43_29400) and amidase
(BSF43_35090) were detected, which showed highest identity to a
Pseudomonas nitrilase and a putative acylamide amidohydrolase
of P. sp. Root401 (Bai et al., 2015), respectively.

The genome assembly of isolate ACN7 was based on 2,049,404
paired-end reads and resulted in a draft genome of 6.49 Mbp
and a 74.9-fold coverage. The GC-content is 61.0%. The draft
genome encodes a nitrilase (BSG18_13010) and an amidase
(BSG18_29450) similar to a nitrilase of P. sp. Ep R1 (Chiellini
et al., 2014) and an acylamide amidohydrolase of P. sp. Root401,
respectively.

The two Pseudomonas isolates ACN5 and ACN8 could not be
assigned to a specific Pseudomonas species. The genome of ACN5
(6.69 Mbp, 61.3-fold coverage) was assembled from 1,350,588
paired-end reads. Potential genes for two nitrilases, one NHase
and two amidases were predicted in the ACN5 genome. The
aliphatic nitrilase (BSF40_48900) showed highest similarity to
a nitrilase of Pseudomonas sp. UW4 (Duan et al., 2013), while
the other nitrilase (BSF40_42250) most resembles a nitrilase of
Pseudomonas sp. GM48 (Brown et al., 2012). The NHase alpha
and beta subunits (BSF40_24660 and BSF40_24650) are related
to the corresponding ones of Pseudomonas and P. sp. UW4.
The predicted amidases (BSF40_24670 and BSF40_59650) are
similar to an amidase of P. sp. GM33 and GM49 (Brown et al.,
2012). For the assembly of the ACN8 genome, 1,505,826 paired-
end reads were used, resulting in a draft genome of 6.34 Mbp
and 66.0-fold coverage. Genes for two nitrilases (BSF44_34690
and BSF44_52950) were predicted, which resemble two different
nitrilases from P. fluorescens. Furthermore, two genes encoding
putative amidases (BSF44_36240 and BSF44_50390) similar to an
amidase of P. composti and P. sp. GM74 (Brown et al., 2012) were
detected.

Flavobacterium (ACN2 and ACN6)
The two isolates ACN2 and ACN6 from the acetonitrile
enrichment culture were affiliated to the Gram-negative genus
Flavobacterium. A total of 1,503,824 paired-end reads were
used for the assembly of the ACN2 genome, resulting in a
draft genome of 5.40 Mbp with an average coverage of 72.7-
fold. ACN6 genome assembly of 2,409,950 paired-end reads
yielded a draft genome of 5.13 Mbp with average coverage of
120.4-fold. Genes encoding putative nitrile-degrading enzymes
were not detected in both draft genomes. As the nitrile
degrading capacity of both strains was independently verified
multiple times by growth experiments with acetonitrile as sole
nitrogen source, the presence of so far unknown genes and
pathways for nitrile utilization is indicated. In addition, the
ability to overcome the nitrogen limitation via nitrogen fixation

from air was experimentally excluded as no growth could be
monitored in liquid M9 medium without any added nitrogen
source. Furthermore, typical genes for nitrogen fixation such as
dinitrogenases and dinitrogenase reductases were not identified
in the genome sequences. Thus, two explanations are possible
for the discrepancy between the observed phenotype of both
strains and the lack of putative genes for nitrile degradation. First,
genes responsible for nitrile degradation could not be annotated
as they are located in contig gaps, as both genomes are still
in the draft state. This is unlikely as most contig gaps are due
to repetitive regions longer than the read length of the used
sequencing technology (Whiteford et al., 2005; Chaisson et al.,
2015). Second, genes for new types of nitrile degradation enzymes
are present. The only other available study on nitrile degradation
by Flavobacteria reports weak degradation of 3-cyanopyridine by
F. aquatile IFO 3772, F. suaveolens IFO 3752 and F. rigense IAM
1238 (Kato et al., 2000), but genes responsible for the observed
phenotype were not reported and genomes of the three strains
are not available. Thus, further analyses are required to unravel
the basis of the nitrile-degrading phenotype of the flavobacterial
isolates.

CONCLUSION

The here presented data revealed the potential of specifically
designed enrichment experiments for the isolation of organisms
with a desired metabolic activity like nitrile degradation. Our
study provided new candidates to cover the industrial demand for
new nitrile-degrading biocatalysts as part of a green chemistry.
While for the isolates R. erythropolis ACN1, V. boronicumulans
ACN2, P. kilonensis ACN4 and ACN7 as well as P. sp. ACN5
and ACN8 nitrilases and/or NHases and amidases could be
annotated, the nitrile-degrading pathway of F. sp ACN2 and
ACN6 remains to be unraveled.
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kilonensisACN7,MRCR00000000; P. sp. ACN8,MRCS00000000.
Raw sequence data of all genomes are available at the NCBI SRA
archive and linked to the respective BioSamples. The sequences
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ABSTRACT 

This study describes a workflow for simple and fast acquisition of nitrilase candidates from large 

metagenomic sequence sets. For identification of active enzymes, a NADH-coupled high-throughput 

assay was established. Purification of enzymes could be omitted as crude extract containing the 

overexpressed putative nitrilases was used. In addition, long incubation times could be avoided by 

combination of nitrile and NADH conversion in a single reaction. This allowed the direct measurement 

of nitrile degradation and provides not only insights into substrate specificity but also in degradation 

efficiency. The novel assay was subsequently used for investigation of seventy putative nitrilases 

previously identified during sequence-based screens of metagenomes derived from nitrile-treated 

microbial communities. Six enzymes showed activity and the most interesting nitrilase was purified 

and analyzed. The activity of the characterized arylacetonitrilase exhibited a broad pH range and a high 

long-term stability. The enzyme showed high specificity for phenylacetonitrile with KM of 1.29 mM and 

Vmax of 13.85 U/mg protein. In conclusion, we provide a setup for simple and rapid analysis of putative 

nitrilases from sequence to function, demonstrated by the identification, isolation, and 

characterization of the here described arylacetonitrilase. 

INTRODUCTION 

Nitriles are often toxic compounds with −C≡N as functional group. They are widespread in nature and 

present in plants in form of cyanoglycosides (1). Other naturally occurring nitriles are e.g. cyanohydrins 

in fungi and arthropods, different antibiotics in bacteria, or ricine and phenylacetonitrile in plants (2). 

For the enzymatic degradation of nitriles, two pathways are known. The first is the direct conversion 

of nitriles to corresponding carboxylic acids via nitrilases (EC 3.5.5.1) and the second the degradation 

of nitriles to corresponding amides via nitrile hydratases (NHases) (EC 4.2.1.84) and the subsequent 

hydrolysis of amides to carboxylic acids and ammonia using amidases (EC 3.5.1.4). Nitrile degrading 

catalysts can be found in many organisms including bacteria, filamentous fungi, yeasts, and plants  

(3–5). In industry, these enzymes are used for production of bulk chemicals such as nicotinic acid or 

glycolic acid (6, 7). Identification of novel nitrile-degrading enzymes is important due to their industrial 

use and the often observed substrate and product inhibition under production conditions (8–11). 

Many nitrile-degrading enzymes were found via (meta)genome mining techniques. A functional 

screening approach could be applied to identify nitrilase genes from plasmid libraries containing 

metagenomic DNA from different sources (12–14). In silico screening of (meta)genomic sequence data 

is used to identify putative nitrilases and nitrile hydratases in publicly available sequence space (15). 

Although sequence-based approaches lead very quickly to many new enzyme candidates, they remain 

to be predictions until functional verification. To overcome this limitation and take advantage of the 
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constantly growing metagenomic sequence pool, procedures are needed for efficient verification of 

nitrilase activity. 

The focus of this investigation was to establish a workflow which enables fast functional verification of 

nitrilases identified by sequence-based screenings. As starting material, six metagenomes which were 

obtained during determination of nitrile-influence on microbial communities (Chapter 3.1) were 

chosen. A procedure was established to reduce the 70 putative nitrilase-encoding genes derived from 

sequence-driven mining of the metagenomes to candidates with verified enzyme activity. Serving as 

prove of concept, one enzyme candidate was heterologously expressed and purified. Subsequently, 

the recovered enzyme and its activity were characterized including the determination of optimal pH, 

temperature range, relative stability, and substrate specificity. In addition, influence of divalent ions 

and other substances on enzyme activity, and enzyme kinetics were determined. 

RESULTS 

Screening optimization. Most modern high-throughput nitrilase assays have drawbacks such as low 

sensitivity or work only under specific conditions. One of the most promising approaches is a NADH-

coupled assay in which ammonia released by the nitrilase reaction is consumed by a glutamate 

dehydrogenase (GDH) under conversion of NADH to NAD+. The conversion of this cofactor is monitored 

at 340 nm and reveals activity of the tested (putative) nitrilases (15). However, it requires extended 

incubation times for nitrilase reaction and provides only qualitative information and no insights 

regarding enzymatic efficiency. We modified the assay to allow fast and simple screening without 

additional incubation steps in a single reaction mixture. Therefore, concentration of all test ingredients 

was optimized to allow continuous measurement of NADH conversion in a 96-well plate, leading to 

first insights into efficiency of nitrile degradation. In comparison to the previous method, the amount 

of NADH was increased to 0.5 mM for a larger measuring range and the concentration of  

α-ketoglutarate was reduced to prevent inhibition of the GDH reaction. These modifications were 

tested by the use of an already characterized nitrilase from Rhodococcus rhodochrous K22 (16, 17) 

(Figure 1). 

To reduce identification of false positives or enzymes with low activity, a threshold was defined. During 

the first 15 minutes of measurement, total conversion of succinonitrile, fumaronitrile, and 

crotononitrile by the K22 nitrilase could be observed. As activity for these substrates was described 

before (16, 17), only reactions taking place in the first 15 minutes were considered as nitrilase activity 

during subsequent experiments. 
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Figure 1: Nitrile degradation of the R. rhodochrous K22 nitrilase. The assay was performed in triplicate 
at 37 °C in a 96-well plate. NADH conversion was monitored at 340 nm. Fumaronitrile, succinonitrile, 
and crotononitrile were degraded after 15 min, thereby defining the threshold (red line) for the 
experimental time. 

Analysis of putative nitrilases. Six metagenomes of microbial communities obtained from 

phenylacetonitrile-, succinonitrile-, acetonitrile-, crotononitrile-, 4-hydroxybenzonitrile-, or 

cyclohexanecarbonitrile-containing cultures (Chapter 3.1) served as source for putative nitrilases. In 

total, 70 annotated putative nitrilases were identified in these metagenomes and subsequently 

analyzed (Data Set S1). Initially, all enzyme candidates were compared with 46 reference nitrilases 

obtained from SWISS-Prot to relate the deduced protein sequences to already characterized enzymes. 

Results led to 13 protein clusters (Data Set S2) and reduced our data set to 60 unique candidates. The 

first three clusters contained characterized as well as putative nitrilases ranging from 5.96 to 

38.68 kDa, 12.7 to 40.2 kDa, and 10.41 to 38.62 kDa. Six clusters consisted just of known and 

characterized nitrilases, whereas the remaining four clusters included just putative enzyme sequences. 

As the smallest characterized prokaryotic nitrilase (from Pyrococcus abyssi GE5) consists of 262 amino 

acids (18), all putative nitrilases smaller than this were checked for ribosomal binding sites (RBS) to 

exclude artificial peptides caused by incomplete metagenomic assembly. Finally, 37 candidates were 

selected for cloning and overexpression in E. coli.  

After amplification of the respective genes from metagenomic DNA and sequence verification, 

frameshift mutations were observed in some cases and led to the exclusion of these candidates. In 

other cases, point mutations were observed, which were included into subsequent analyses as not 

every point mutation leads to non-functional proteins. Finally, a total number of 26 putative nitrilases 

were sub-cloned (Data Set S1). Subsequent overexpression and verification via SDS page revealed 13 

putative nitrilases. 
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The previously established assay was used to verify nitrilase activity with the 13 putative nitrilase 

candidates using nine different nitriles as substrate (Table 1). Six of the putative enzymes showed 

nitrilase activity for at least one nitrile. Most were active with succinonitrile or fumaronitrile. In 

addition, one converted the aromatic phenylacetonitrile (Figure 2). Thus, the workflow presented here 

has shown a way to successfully narrow down bioinformatically identified enzyme candidates to the 

interesting functional representatives. 

Table 1: Overexpressed putative nitrilases. Metagenome: metagenomic origin of the genes. Variant: 
Variants obtained by point mutations (for sequences, see Data Set S1). Origin: gene sequences were 
used for a blastn search against the NCBI nr database and best hits are shown; Q: query cover;  
E: e value; I: ident; A: accession. Substrate: substrate determined with high-throughput assay.  
SUN: succinonitrile; CAN: acetonitrile; CRN: crotononitrile; CCN: cyclohexanecarbonitrile;  
PAN: phenylacetonitrile; FUN: fumaronitrile. 

Meta-
genome 

Nitrilase Variant Mass [kDa] Origin Substrate 

SUN D3C71_ 
601570 

B 36.12 Variovorax boronicumulans  
(Q: 100%, E: 0.0, I: 98%, A: KY937903) 

PAN 

SUN D3C71_ 
775930 

B 33.0 Pseudomonas fluorescens  
(Q: 99%, E: 0.0, I: 87%, A: CP010945) 

- 

SUN D3C71_ 
946180 

C 35.13 Pseudomonas sp. 
(Q: 99%, E: 0.0, I: 94%, A: CP003880) 

SUN, FUN 

ACN D3C72_ 
113100 

A 38.7 Janthinobacterium sp. 
(Q: 99%, E: 0.0, I: 87%, A: CP000269) 

- 

ACN D3C72_ 
306600 

A 38.62 Pseudomonas sp. 
(Q: 97%, E: 0.0, I: 89%, A: AP017423) 

SUN, FUN 

ACN D3C72_ 
447890 

A 32.93 Pseudomonas fluorescens 
(Q: 99%, E: 0.0, I: 87%, A: CP010945) 

- 

ACN D3C72_ 
810700 

C 36.74 Cupriavidus basilensis 
(Q: 98%, E: 0.0, I: 87%, A: CP010537) 

SUN, FUN 

CRN D3C73_ 
384910 

A 35.2 Pseudomonas sp. 
(Q: 100%, E: 0.0, I: 98%, A: CP003880) 

SUN, FUN 

CRN D3C73_ 
384910 

B 35.18 Pseudomonas sp. 
(Q: 100%, E: 0.0, I: 98%, A: CP003880) 

SUN, FUN 

CRN D3C73_ 
406050 

A 32.84 Pseudomonas sp. 
(Q: 100%, E: 0.0, I: 95%, A: CP003880) 

- 

CRN D3C73_ 
406050 

B 32.86 Pseudomonas sp. 
(Q: 100%, E: 0.0, I: 91%, A: CP003880) 

FUN 

CRN D3C73_ 
579180 

G 32.91 Pseudomonas sp. 
(Q: 100%, E: 0.0, I: 97%, A: CP003880) 

- 

CCN D3C75_ 
459950 

B 32.83 Pseudomonas sp. 
(Q: 100%, E: 0.0, I: 91%, A: CP003880) 

- 
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Figure 2: Substrate specificity of enzyme D3C71_601570. The assay was performed at 37 °C in a 96-
well plate. NADH conversion was monitored at 340 nm. Degradation of phenylacetonitrile was 
observed until the 15 min threshold (red line). 

Characterization of enzyme D3C71_601570. To prove the previous observations, we chose the 

phenylacetonitrile-degrading enzyme candidate for detailed characterization and verification of 

enzymatic activity under defined conditions. For further experimental characterization, a sequence 

encoding a His6 tag was added to the N-terminal end of the gene. Subsequently, the enzyme was 

produced and purified. SDS-PAGE analysis of the enzyme preparation confirmed the from the 

sequence deduced molecular mass of 36 kDa. The purified enzyme was subjected to a detailed 

characterization with focus on optimal enzymatic conditions, stability, and kinetics. Phenylacetonitrile 

was used as standard substrate, as the nitrilase showed only activity for this compound during high-

throughput screening. 

Investigations regarding pH dependency showed pH 6 to be optimal, whereby at pH 5.5 to 8 about 90% 

enzyme activity could still be observed. The limits of the enzyme were observed at pH 5 and 10.5, as 

only 20% activity remained (Figure 3A). Optimum temperature of the enzyme was determined in the 

range of 25 °C to 60 °C at pH 6. Highest activity was measured between 45 °C and 55 °C, with an 

optimum at 50 °C (Figure 3B). At 60 °C, nitrilase activity was reduced to 30%. Furthermore, stability of 

the nitrilase was tested over several weeks while the enzyme was stored at 4 °C. Remaining catalytic 

activity >80% could be observed during the first three weeks, followed by a slow decline (Figure 3C). 

After three months, 8% of the initial activity remained. 
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Figure 3: Temperature and pH dependence, and long-term stability of enzyme D3C71_601570. (A) pH 
optimum. Reactions were run for 2 min at 37 °C in the respective buffers (0.1 M) containing 1.25 µg 
purified protein and 5 mM phenylacetonitrile. 100% relative activity corresponds to 2.79 U/mg. 
(B) Temperature optimum. Reactions were run for 2 min at various temperatures using citrate-
phosphate buffer (pH 6.0), 1.25 µg purified protein, and 5 mM phenylacetonitrile. 100% relative 
activity corresponds to 5.68 U/mg. (C) Stability assay. Enzyme was stored at 4 °C in a buffered system 
(50 mM monosodium phosphate, 300 mM sodium chloride, 250 mM imidazole, pH 8.0). Reactions 
were run for 2 min at 50 °C using citrate-phosphate buffer (pH 6.0), 1.25 µg purified protein, and 5 mM 
phenylacetonitrile. 100% relative activity corresponds to 5.68 U/mg. 

Catalytic activity of the nitrilase was tested with the substrates also used for the high-throughput assay, 

verifying its specificity for phenylacetonitrile under the tested conditions. To determine activity of the 

enzyme for structurally related compounds, four aromatic nitriles (2-phenylbutyronitrile,  

3-phenylpropionitrile, benzonitrile, and mandelonitrile) were additionally tested. With  

2-phenylbutyronitrile and benzonitrile as substrate, nitrilase activity was not detected but the enzyme 

exhibited reduced activity with mandelonitrile and 3-phenylpropionitrile (22 and 16 % of activity 

measured with phenylacetonitrile, respectively) (Table 2). In conclusion, the metagenome-derived 

nitrilase D3C71_601570 is highly specific for phenylacetonitrile and belongs to the group of 

arylacetonitrilases. 

To assess the effect of potential inhibitors and solvents on enzyme activity, the purified enzyme was 

tested against different chemicals. For detection of essential thiol residues, the thiol-binding reagents 

HgCl2 and AgNO3 were applied to the reaction mixture. The observed decline of enzyme activity to  

1.6 and 2.0%, respectively, indicated that the functionality of nitrilase D3C71_601570 depends on 

these residue (Table 3). As the metal-chelating agent EDTA had no effect on enzymatic function, 

dependence on metal-cofactors could be excluded. This was further supported by missing effects of 

divalent ions such as Mg2+, Fe2+, and Mn2+ on nitrilase activity. Interestingly, Zn2+ increased activity to 

114%. Most likely, stimulating effect of Zn2+ derives from a different mechanism, i.e. increased protein 

stability in the presence of Zn2+. Furthermore, treatment with H2O2 and SDS led to expected reduction 

of activity, which is most likely due to denaturation of the nitrilase. 
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Strong inhibitory effects were encountered in the presence of DMSO, acetone, and chloroform even 

at 5% concentration (Table 4). At this concentration, nitrilase activity was less sensitive to methanol, 

ethanol, isopropanol, and glycerol treatment. At 20% concentration, only glycerol did not abolish the 

main enzymatic activity. 

Table 2: Substrate specificity of enzyme D3C71_601570. Reactions were run for 15 min at 50 °C using 
citrate-phosphate buffer (pH 6.0), 1.25 µg purified protein, and 20 mM nitrile. Activity with 
phenylacetonitrile as substrate (5.19 U/mg) was set as 100% relative activity. 

Substrate Relative activity [%] 
Phenylacetonitrile 100.00 ± 1.19 
Succinonitrile 0.17 ± 0.03 
Acetonitrile 0.00 ± 0.01 
Crotononitrile 0.08 ± 0.01 
4-Hydroxybenzonitrile 0 ± 0.00 
Acetone cyanohydrin 0.13 ± 0.02 
Cyclohexanecarbonitrile 0.09 ± 0.01 
Fumaronitrile 0.45 ± 0.04 
2-Phenylpropionitrile 0.52 ± 0.05 
Mandelonitrile 22.01 ± 0.61 
2-Phenylbutyronitrile 0.07 ± 0.01 
3-Phenylpropionitrile 15.81 ± 0.80 
Benzonitrile 0.48 ± 0.32 

Table 3: Effects of various compounds on the activity of enzyme D3C71_601570. Reactions were run 
for 2 min at 50 °C using citrate-phosphate buffer (pH 6.0), 1.25 µg purified protein, 5 mM 
phenylacetonitrile, and 1 mM putative inhibitor. Enzyme activity with phenylacetonitrile as substrate 
without additions was set as 100% relative activity (5.68 U/mg). 

Compound Relative activity [%] 
EDTA 104.45 ± 1.62 
DTT 76.21 ± 3.29 
H2O2 24.56 ± 2.35 
HgCl2 1.57 ± 0.36 
AgNO3 1.96 ± 0.18 
CaCl2 106.29 ± 2.71 
MnSO4 98.01 ± 3.80 
MgSO4 101.87 ± 5.92 
FeSO4 98.25 ± 5.65 
CuSO4 86.98 ± 3.82 
CoSO4 81.01 ± 2.60 
ZnCl2 114.00 ± 2.04 
Sodium azide 98.89 ± 2.13 
SDS 12.02 ± 2.77 
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Table 4: Effect of different organic solvents on activity of enzyme D3C71_601570. Reactions were run 
for 2 min at 50 °C using citrate-phosphate buffer (pH 6.0), 1.25 µg purified protein, and 5 mM 
phenylacetonitrile. Enzyme activity with phenylacetonitrile as substrate without additions was set as 
100% relative activity (5.68 U/mg). 

Solvent Relative activity of enzyme with 5% 
v/v organic solvent [%] 

Relative activity of enzyme with 20% 
v/v organic solvent [%] 

Methanol 88.01 ± 6.18 9.26 ± 1.97 
Ethanol 85.22 ± 7.12 4.82 ± 0.41 
Glycerol 81.11 ± 8.68 76.65 ± 9.06 
Isopropanol 77.55 ± 9.43 3.63 ± 0.91 
DMSO 4.80 ± 1.06 2.32 ± 0.72 
Acetone 28.96 ± 4.79 0.14 ± 0.07 
Chloroform 24.81 ± 3.44 3.70 ± 1.38 
Toluol 8.12 ± 2.13 2.44 ± 1.60 

Finally, kinetic constants of nitrilase D3C71_601570 were determined. The reaction rate increased with 

substrate concentration until a plateau was reached at 5 mM. Between 10 and 50 mM a rapid decrease 

in activity was recorded, followed by a slow decline until 100 mM (Figure 4A), indicating inhibition by 

the substrate. Based on these data, kinetic constants were calculated with a non-linear model due to 

superior precision compared to linear methods like Lineweaver-Burk plots (19). Phenylacetonitrile was 

converted at 37 °C with a KM of 1.29 mM and Vmax of 13.85 U/mg, reaching the saturation point at 

6 mM (Figure 4B). The enzyme is highly specific for this nitrile and the low KM value indicated high 

affinity for the substrate. 

 

Figure 4: Influence of substrate concentrations on the reaction rate of enzyme D3C71_601570. 
Reactions were run with phenylacetonitrile as substrate at 37°C in a UV/Vis spectrophotometer. A: 
steady-state measurement until 100 mM substrate concentration. B: steady-state measurement until 
saturation point at 6 mM substrate concentration. C: Lineweaver-Burk plot. 

  



Results 60 

DISCUSSION 

High-throughput nitrilase screening. In this study, a fast and simple high-throughput assay for 

screening of functional nitrilases was established. In comparison to the previously described method 

(15), it improves the total screening time by combining nitrilase reaction and subsequent ammonia 

conversion in a single reaction. Furthermore, it allows constant measurement of nitrile degradation 

and provides insights into the efficiency of the tested enzymes. Unfortunately, the measurement is 

limited by the GDH as only nitrilase reactions slower than the GDH can be monitored in detail. In 

addition, different enzymes in the crude extract can lead to ammonia release and influence the 

measurement. Other enzymes may also be involved in the reverse reaction of NAD+ to NADH, leading 

to distorted results. To minimize the effect of these factors, additional precautions have to be taken. 

Most important is the use of crude extract containing the empty expression vector as negative control. 

To further reduce the likelihood of false positive hits, a time limit for nitrilase reaction can be used. 

Based on the reactions observed with the well-characterized R. rhodochrous K22 nitrilase (16, 17), this 

threshold was set at 15 minutes. 

After establishment of screening parameters, 70 putative nitrilases identified in metagenomes of 

nitrile-treated microbial communities were taken as input. Combining the sequence-based nitrilase 

clusters obtained during bioinformatical analysis with results from the high-throughput assay, only 

candidates clustering with characterized nitrilases showed enzymatic activity. Skipping clusters 

consisting just of putative nitrilases during future screenings would reduce subsequent work but 

involves the risk of missing nitrilases with novel sequences. Therefore, decisions on the cost-benefit 

ratio of including these clusters in further analyses must be individually made.   

Although only preselected putative nitrilase genes were amplified, not all of them could be 

overexpressed or the gene products formed inclusion bodies in E. coli. These results could be due to 

different codon usage of E. coli TOP10 compared to the native hosts of the enzymes. Diverging rare 

codons in E. coli could lead to suboptimal expression and low amounts of the desired protein or 

unwanted mRNA degradation (20–23). Furthermore, misfolding and aggregation due to missing 

translational pauses could occur (24). One possibility to avoid these problems is using lower 

temperatures during protein expression or the utilization of low-copy-number plasmids (25–28). In 

addition, codon-optimization of the candidate genes for E. coli could be performed. However, these 

methods were not applied as they are mostly not suitable for large numbers of candidates. 

Characterization of an arylacetonitrilase. The prediction and subsequent isolation of a 

phenylacetonitrile-degrading nitrilase shows the reliability of the novel nitrilase high-throughput 

screening. According to sequence similarity, the isolated arylacetonitrilase is affiliated to Variovorax 



Results 61 

boronicumulans (Table 1). Nitrile-degrading abilities of this species have been described before, but 

phenylacetonitrile degradation has not been mentioned (29–31). 

With 36 kDa the here described enzyme is close to molecular mass of other known phenylacetonitrile-

degrading nitrilases such as the nitrilases from Synechocystis sp. PCC 6803 (40 kDa), Bradyrhizobium 

japonicum USDA 110 (34.5 kDa), or Alcaligenes faecalis ATCC 8750 (36 kDa) (32–34). In contrast, the 

broad pH range of D3C71_601570 activity is not that common (34, 35). In addition, it exhibits an 

unusual long-term stability, as similar nitrilases loose up to 80% activity in ten days (32, 35), whereas 

the here characterized enzyme still retained 80% activity after three weeks. 

One major difference of the here presented enzyme to all other phenylacetonitrile-degrading nitrilases 

is its narrow substrate range. Phenylacetonitrile was the preferred substrate and even small 

differences in molecular structure seem to inhibit proper catalytic function. During high-throughput 

assay, minor degradation of other nitriles was observed in the crude extract of the strain producing 

enzyme D3C71_601570. None of these substrates were degraded by the purified enzyme, underlining 

again the importance of the 15-minute threshold to avoid identification of false positive candidates. 

Nevertheless, the differences can also come from the His6-tag added for purification (36, 37). 

CONCLUSION 

In this study, we could show that a combination of targeted sequence data analyses with a high-

throughput activity assay can assist in the fast identification of candidates for functional nitrilases. Due 

to real-time measurement of NADH degradation, the here presented assay does not only provide hints 

on possible substrates but also on the catalytic efficiency of tested enzymes. Furthermore, the use of 

crude extract is less time consuming compared to methods demanding purified enzymes. 

One of the active enzymes showed phenylacetonitrile-degrading abilities. The most likely to Variovorax 

belonging nitrilase is highly specific for this arylacetonitrile, as closely related molecules were barely 

degraded. To our knowledge, the enzyme shows unique properties, as other nitrilases usually degrade 

several (related) substrates. Therefore, it can give new insights into sequence function relationship of 

arylacetonitrilases and help to develop better biocatalysts. 

MATERIAL AND METHODS 

Metagenomic DNA and putative nitrilases. Metagenomic DNA originated from soil enrichment 

cultures containing either phenylacetonitrile, succinonitrile, acetonitrile, crotononitrile,  

4-hydroxybenzonitrile, or cyclohexanecarbonitrile (Chapter 3.1). Genbank accession numbers of the 

annotated metagenomes are as follows: phenylacetonitrile, RCUE00000000; succinonitrile, 

RCUP00000000; acetonitrile, RCUQ00000000, crotononitrile, RCUN00000000; 4-hydroxybenzonitrile, 

RCUF00000000; cyclohexanecarbonitrile, RCUO00000000. 
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Bioinformatic analysis. Nitrilase reference data were obtained from the SWISS-Prot database (38) 

(date of search: December 12th, 2017). The data were further processed by removing misannotated 

enzymes, mere subunits, or nitrile hydratases designated as nitrilases. Clustering of data was done 

with the web suite CD-HIT (39). A fasta file containing the SWISS-Prot nitrilases and the putative 

nitrilases was used as input and a sequence identity cut-off of 40% was set for clustering.  

Nitrilase positive control. An already characterized aliphatic nitrilase from Rhodococcus rhodochrous 

K22 was used as positive control for establishing the high-throughput nitrilase assay (16, 17). The 

nitrilase was codon-optimized for Escherichia coli K12 derivates using the web suite JCat 

(http://www.jcat.de) (40) and synthesized by Integrated DNA Technologies (Leuven, Belgium). 

Media. LB-Miller (10 g tryptone, 10 g NaCl, and 5 g yeast extract per liter) (41) was used for growth of 

microorganisms. For agar plates, 15 g agar per liter was added. Media were sterilized by autoclaving 

at 121 °C for 20 min. 

PCR protocol. 50 µl PCR reaction mixture contained 10 µl 5-fold Phusion HF buffer, 200 µM of each 

dNTP, 0.2 µM of both primers (Data Set S3), 3% DMSO, 50 ng metagenomic DNA as template, 1 U of 

Phusion polymerase (Thermo Fisher Scientific, Waltham, MA, USA) and was filled up with ddH2O. Initial 

denaturation was done at 98 °C for 5 min, followed by 30 cycles of denaturation (98 °C, 30 s), annealing 

(temperature based on primer properties, 30 s) and elongation (72 °C, 45 s/kbp). The final elongation 

was for 5 min at 72 °C. 

Plasmids. Amplified putative nitrilase-encoding genes (Data Set S2) were sub-cloned into the pBAD18 

vector system (42). For selection, a final concentration of 100 µg/ml ampicillin was used. The fidelity 

of the constructs was checked by sequencing (Microsynth Seqlab, Göttingen, Germany) with forward 

primer 5’-ATTAGCGGATCCTACCTGACG-3’ and reverse primer 5’-CAGACCGCTTCTGCGTTCTG-3’. 

Strains and transformation. Chemically competent Escherichia coli TOP10 cells (Thermo Fisher 

Scientific, Waltham, MA, USA) were transformed according to the manufacturer’s protocol. 

Subsequently, cells were plated on ampicillin-containing LB plates and incubated overnight at 37 °C. 

Heterologous expression. E. coli TOP10 containing the pBAD18 vector with desired insert was grown 

in LB medium at 37 °C overnight at 180 rpm (Innova 44 shaker, New Brunswick Scientific, Nürtingen, 

Germany). The preculture was used to inoculate 10 ml LB medium to an OD600 of 0.1, which was 

subsequently incubated for 1.5 h at 37 °C and 180 rpm (Innova 44 shaker) to reach an OD600 of 0.6–

0.8. For induction of expression, 1.5% L-(+)-arabinose were added, followed by 6 h of incubation. 

  



Results 63 

Cell disruption and purification of His6-tagged protein. Cells containing the overexpressed (His6-

tagged) nitrilase were washed twice with 1x LEW buffer from the Protino Ni-TED kit (Macherey-Nagel, 

Düren, Germany) and resuspended in 1.5 ml buffer with 40 µg/ml DNase I and 0.1% w/v lysozyme. The 

cells were then disrupted at least three times by French press at 1.38 × 108 Pa (Thermo Fisher 

Scientific). The soluble fractions of the thereby recovered solution were obtained by centrifugation at 

6000 × g and 4 °C for 20 min to remove cell debris. For purification, the resulting supernatant was then 

loaded according to the manufacturer’s protocol. The purified enzyme was further analyzed by 12% 

SDS-PAGE and protein concentration was determined using Bradford method (43) with bovine serum 

albumin as standard. 

Nitriles. Nitriles were solved at a concentration of 2.7 M in DMF (Merck KGaA, Darmstadt, Germany). 

These stock solutions were filtered sterile and stored at 4 °C. Following nitriles were used: 

phenylacetonitrile, acetonitrile (all TCI Deutschland GmbH, Eschborn, Germany), succinonitrile, 

crotonitrile, 4-hydroxybenzonitrile, acetone cyanohydrin, cyclohexanecarbonitrile, fumaronitrile, and 

2-phenylpropionitrile (all Sigma-Aldrich Chemie GmbH, Munich, Germany). In addition, mandelonitrile, 

2-phenylbutyronitrile, benzonitrile (all Sigma-Aldrich), and 3-phenylpropiontrile (Alfa Aesar, Haverhill, 

MA, USA) were used for characterization of the arylacetonitrilase. 

High-throughput nitrilase assay. Degradation of nitriles was measured by monitoring the release of 

ammonia in a coupled enzymatic reaction (44). The ammonia reacts with NADH and α-ketoglutarate 

through a glutamate dehydrogenase (GDH) to glutamate. The reduced cofactor is monitored by its 

absorbance change at 340 nm. For screening of putative nitrilases, the high-throughput assay of 

Vergne-Vaxelaire et al. (15) was adjusted to allow real-time measurements without time-consuming 

incubation steps (15). The assay was performed with technical replicates in a flat-based 96-well plate. 

The reaction mixture (final volume 250 µl) contained 0.5 mM NADH, 1 mM α-ketoglutarate, 37 µl of a 

2.7 M nitrile stock solution (solved in DMF), 20 µg crude extract (added at the end), and 1 U/ml GDH 

from bovine liver type II (Sigma-Aldrich Chemie GmbH) and 50 mM Tris-HCl (pH 8.0) buffer. As negative 

control, crude extract containing the pBAD18 cloning vector was used. The reaction mixture was 

incubated at 37 °C in a Synergy 2 microplate reader (BioTek Instruments GmbH, Bad Friedrichshall, 

Germany). The absorbance was constantly measured for 1.5 h at 340 nm. For calculation, the values 

of the pBAD18 crude extract (negative control) were subtracted from that of the nitrilase crude extract. 

To avoid identification of false positives, only reactions completed during the first 15 minutes of 

measurement were considered as nitrilase activity. 
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Nitrilase characterization. The selected nitrilase (NCBI accession D3C71_601570) was characterized 

using a colorimetric assay for detection of ammonia (45). Nitrilase reaction was performed in a 500 µl 

mixture containing 25 µl nitrile (100 mM, solved in DMF), 1.25 µg purified His6-tagged nitrilase and 

0.1 M citrate-phosphate buffer (pH 6.0) for 2 min at 50 °C. The experimental environment was at 23 °C. 

111 µl of this reaction were transferred into 222 µl sodium phenate, followed by 333 µl of 0.01% 

sodium nitroprusside and 333 µl of hypochlorite. The reaction mixture was incubated for 15 min at 

27 °C in darkness and subsequently absorption was measured at 630 nm. Same procedure was used 

for substrate determination with 20 mM of the respective nitrile and 15 min incubation. 

Nitrilase inhibitors. Effect of various compounds on nitrilase activity was tested. Incubation was 

carried out at 50 °C for 2 min in the standard reaction mixture containing a putative inhibitor at 1 mM 

or 5% v/v and 20% v/v when testing organic solvents. 

Nitrilase stability. For stability testing, the His6-tagged purified enzyme was stored in Protino® Ni-TED 

elution buffer (Macherey-Nagel, Düren, Germany) containing 1 mM sodium azid at 4 °C in the dark. 

Steady-state activity assay. The steady-state kinetics for arylacetonitrilase activities were measured 

using a GDH (bovine liver type II) to detect the concomitant oxidation of NADH at 340 nm and 37 °C 

using a UV/Vis spectrophotometer (Cary 100 UV-Vis, Varian Medical Systems, Darmstadt, Germany). 

The reaction mixture contained 0.5 mM NADH, 1 mM α-ketoglutarate, 0.1 mM to 100 mM of 

phenylacetonitrile (final volume 37 µl, nitrile solved in DMF), 5 µg purified nitrilase (added at the end), 

and 1 U/ml GDH from bovine liver type II (Sigma-Aldrich Chemie GmbH) filled up to 1000 µl with 0.1 M 

HEPES (pH 8.0) buffer. Negative control did not contain the nitrilase. The slope (∆A340) was determined 

by Cary WinUV version 3.0 (Varian Medical Systems). The kcat values were plotted against 

phenylacetonitrile concentrations. Further, the macroscopic constants kcat and KM were analyzed using 

the Michaelis-Menten equation of R package ‘drc’ (46). 
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INTRODUCTION 

Molecules containing a -C≡N functional group are known as nitriles. These structurally divers and often 

toxic compounds are widespread in nature and present mainly in plants (1). Enzymatic degradation of 

nitriles is performed by two different known pathways: the direct degradation of nitriles to 

corresponding carboxylic acids and ammonia by nitrilases, or the hydration of nitriles to amides by 

nitrile hydratases (NHases) and the subsequent degradation to carboxylic acids and ammonia by 

amidases. In addition to their natural occurrence, nitriles are also an important compound in industry 

for the production of different bulk chemicals and pharmaceuticals (2–5). Due to the increasing 

interest in green chemistry and therefore a high demand on nitrile-degrading enzymes, identification 

of novel nitrilases is of increasing importance (6). 

In general, screening for novel enzymes by (meta)genomic approaches is done employing two 

methods. The first is a function-based screening using (meta)genomic libraries and their expression in 

heterologous hosts like Escherichia coli (7). This method could lead to the discovery of genes encoding 

unknown enzymes but requires high effort. Furthermore, heterologous protein expression could lead 

to non-functional proteins and therefore prevent their detection. The second approach is a sequence-

based approach in which (meta)genomic datasets are screened for genes of interest (8). This method 

is limited to homologues of already known enzymes, making the detection of truly novel proteins 

impossible. In addition, genes merely identified by sequence similarities do not necessarily exhibit the 

targeted function. 

During the last years, a third screening approach based on differential transcriptomics arose (9–11). 

For this purpose, an organism is treated under at least two different conditions and respective 

transcriptomes are sequenced. By statistical analysis, up- and downregulated genes of each treatment 

are identified, providing insight into genes important for specific conditions. Drawback of this method 

are the complex models for normalization and the high computational power needed for analysis  

(12, 13). 

In this study, an experimental setup for the (meta)transcriptome-based discovery of genes encoding 

nitrile-degrading enzymes is presented. For microbial growth, media with acetonitrile and for 

comparison with acetic acid and ammonia as sole carbon and nitrogen sources were used. Therefore, 

genes upregulated in acetonitrile-treated cultures compared to acetic acid-containing samples are 

promising candidates for novel nitrile-degrading enzymes. In addition, unknown transporters or 

resistance mechanisms can be identified by this method. In a previous experiment, Rhodococcus 

erythropolis ACN1 was isolated from compost and its acetonitrile-degrading ability experimentally 

confirmed (14). The isolate was used during the here presented study to establish growth conditions 
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and bioinformatic analysis strategies. Subsequently, the approach was applied to a complex microbial 

community for identification of genes encoding novel nitrilases by differential metatranscriptomics. 

RESULTS 

Establishment of a transcriptome-based nitrilase screening. R. erythropolis ACN1 was grown in 

minimal medium containing acetic acid and ammonia (ACA) or acetonitrile (ACN) as sole carbon and 

nitrogen sources. Growth of the ACN cultures was delayed by approx. 25 hours when compared with 

ACA samples. After initial lag phase, similar growth pattern was observed (Figure 1). Final optical 

density (OD600) of the ACA and the ACN cultures were almost identical (1.6 and 1.5, respectively). 

 
Figure 1: Growth of R. erythropolis ACN1 under different treatments. 

For both conditions, transcriptomes were harvested during logarithmic growth. After quality-filtering, 

lowest number of transcriptome reads was 17.8 million and more than 99% of the filtered reads 

mapped onto the genomic sequence of R. erythropolis ACN1 (14). Subsequent normalization and 

analysis were performed with DESeq2, an algorithm optimized for transcriptome comparison (15). The 

algorithm offers a false discovery rate (FDR) cutoff to reduce number of erroneously identified 

differentially expressed genes. To minimize number of false positives, a cutoff of 0.025 was chosen for 

further analysis. With this setting, 186 differentially expressed genes were identified of which 26 were 

upregulated and 160 downregulated in the ACN culture when compared to the ACA treatment.  

Besides this statistical parameter, the difference between both conditions considered as significantly 

up- or downregulated was defined. For that purpose, a logarithmic fold change (log2FC) between the 

normalized gene read counts was calculated. As a log2FC of 2.0 is commonly used and streamlines 

subsequent analysis (16–18), respective values were applied in this study. This second criterium 

reduced the number of differentially expressed candidate genes to 23 of which 4 were upregulated 
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and 19 downregulated in the ACN culture (Table 1). Further analysis focused on upregulated genes, as 

they are most promising to comprise the targeted genes encoding nitrile-degrading enzymes. 

The upregulated genes belonged to two groups. The first group contained an amidase (BKP42_54900) 

with a log2FC of 2.1, while the second group consisted of the remaining upregulated genes and was in 

proximity to the amidase. All members were upregulated at least six-fold, indicating a strong effect of 

the nitrile on their expression. Nevertheless, none of the respective annotations indicated a nitrile-

related function, as they consisted of a tubulin-like protein (BKP42_54850), a hypothetical protein 

(BKP42_54860), and a GTPase domain (BKP42_54870). When performing additional blastn and blastp 

searches against the NCBI nr database, annotation of the aliphatic amidase was confirmed, whereas 

best hits for the remaining upregulated genes always consisted of hypothetical proteins (Table 2). An 

additional motif search against the NCBI CDD (conserved domain database) supported annotation of 

the amidase and the tubulin family GTPase. 

Table 1: Significantly up- or downregulated genes in R. erythropolis ACN1 when grown with 
acetonitrile compared to treatment with acetic acid and ammonia. Differential expression was 
analyzed with DESeq2 with an FDR of 0.025 and log2FC of ≥2 as cutoff. Positive values (bold) represent 
genes upregulated under ACN treatment; negative values represent downregulated genes. 

Locustag Gene log2FC 
BKP42_13460 CAAX amino terminal protease self- immunity -2.0 
BKP42_14580 putative siderophore transport system permease protein YfiZ precursor -2.2 
BKP42_22340 hypothetical protein -2.2 
BKP42_29290 Enterobactin exporter EntS -2.3 
BKP42_29300 Ferrienterobactin-binding periplasmic protein precursor -2.3 
BKP42_29310 Linear gramicidin synthase subunit B -2.6 
BKP42_29320 Flavodoxin -2.3 
BKP42_29330 Isochorismatase -2.6 
BKP42_29340 2,3-dihydroxybenzoate-AMP ligase -2.4 
BKP42_29350 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase -2.0 
BKP42_29370 Isochorismate synthase DhbC -2.0 
BKP42_29390 hypothetical protein -3.3 
BKP42_39400 Ferrienterobactin-binding periplasmic protein precursor -3.4 
BKP42_39410 Enterochelin esterase -2.3 
BKP42_43800 putative siderophore transport system permease -2.0 
BKP42_43810 Ferric enterobactin transport system permease protein FepG -2.7 
BKP42_54850 Tubulin-like protein CetZ 3.2 
BKP42_54860 hypothetical protein 3.9 
BKP42_54870 Tubulin/FtsZ family, GTPase domain 3.9 
BKP42_54900 Aliphatic amidase 2.1 
BKP42_65440 Fe(3+)-citrate-binding protein YfmC precursor -2.1 
BKP42_65450 Iron(3+)-hydroxamate-binding protein FhuD precursor -2.0 
BKP42_65460 putative siderophore transport system ATP-binding protein YusV -2.1 
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Figure 2: Expression profile of R. erythropolis ACN1 under acetonitrile treatment. BKP42_54860: 
tubulin-like protein CetZ; BKP42_54860: hypothetical protein; BKP42_54870: tubulin/FtsZ family; 
GTPase domain; BKP42_54900: alipathic amidase. Arrows: position of genes; red: forward strand; blue: 
reverse strand. 

The expression profile of the upregulated genes revealed two independently transcribed regions 

(Figure 2). The first contained the amidase, while the second was an operon consisting of the three 

remaining genes. Between both regions, only a gene encoding for an aliphatic amidase expression-

regulating protein was identified on the same strand. To exclude erroneous open reading frame (ORF) 

prediction during previous genome annotation, NCBI ORFfinder was used to search for all possible 

ORFs of the respective region (Figure S1). Combination of the obtained results and the expression 

profile revealed the original prediction as most plausible and strengthened assumptions on 

identification of a novel nitrile degrading enzyme. 

Metatranscriptomic screening approach. Due to the distinct results obtained for R. erythropolis ACN1, 

setup was repeated with a complex microbial community. For that purpose, a compost sample was 

enriched in minimal medium containing either acetonitrile (ACN) or acetic acid and ammonia (ACA) as 

carbon and nitrogen sources. Subsequently, fresh medium with ACN or ACA was inoculated with the 

precultures. Obtained growth curves showed major differences between both inoculi (Figure 3). 

Cultures derived from the ACN inoculum and subsequently treated with ACA reached a final optical 

density of 1.4, whereas cultures containing ACN reached an OD600 of 1.1. Furthermore, doubling time 

of the ACN-treated communities was lower than of the ACA-treated cultures. Cultures derived from 

the ACA inoculum behaved differently. While subsequent ACA-treatment led to fast growth and an 

endpoint OD600 of 1.8, cultures treated with ACN showed a prolonged lag phase, slow growth, and 

reached only an optical density of 0.7. 
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Figure 3: Growth of microbial communities under different treatments. ACA: acetic acid and 
ammonia; ACN: acetonitrile. 

Metagenomes of both precultures as well as of all four enrichments were sequenced. After assembly, 

approx. 97% of the quality-filtered reads mapped to the corresponding metagenomes (Table 3) and 

confirmed high quality of the assembly. In addition, a length weighted median (N50) was calculated 

and exhibited high values for samples derived from the ACN preculture when compared to ACA-

derived metagenomes. 

Taxonomic analysis of the cultures revealed specific communities for each treatment (Figure 4, Data 

Set S2). Dominant genera in the ACN preculture were Cupriavidus (34.0% abundance) and 

Pseudomonas (48.8%). Similar relative abundances were recorded after subsequent ACA treatment 

(23.2 and 68.1%, respectively), but differed in the ACN-treated culture (74.4 and 10.1%, respectively). 

Community composition of cultures derived from the ACA inoculum differed significantly. The ACA 

inoculum mostly consisted of Acinetobacter (53.2%) and Pseudomonas (42.6%). The relative 

abundance of Acinetobacter increased approximately two-fold during further ACA enrichment (90.6%), 

whereas Pseudomonas comprises 65.8% of the subsequently ACN-enriched community. In addition, 

only traces of Acinetobacter were detected in the ACN-treated cultures. Furthermore, other organisms 

such as Achromobacter, Cupriavidus, and Variovorax exhibited a relative abundance over 1%, although 

they were barely present in the preculture. 
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Table 3: Metagenome data. Coverage based on bowtie2. Mapping reads: Percentage of quality-
filtered reads mapping to the assembled metagenome. 

Metagenome Contigs Size [Mb] Coverage [x-fold] Mapping reads [%] N50 [kb] 
ACA preculture 96.3 k 85.7 46.3 96.9 1,171 
ACA preculture further 
enriched with ACA 

33.1 k 30.4 166.6 98.5 1,041 

ACA preculture further 
enriched with ACN 

47.6 k 67.6 80.3 97.3 3,099 

ACN preculture 80.5 k 103.8 51.7 97.2 2,606 
ACN preculture further 
enriched with ACA 

42.6 k 67.4 61.0 97.2 5,629 

ACN preculture further 
enriched with ACN 

56.8 k 75.5 144.9 97.3 4,325 

 
Figure 4: Composition of complex communities. Community composition based on annotation of 
metagenomic contigs. ACA: acetic acid and ammonia; ACN: acetonitrile. Others: Organisms with 
abundance ≤1%. 
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Due to the differences in community composition between cultures derived from the ACA inoculum, 

transcriptome normalization was not possible. Subsequent analysis was therefore performed only for 

ACN-derived cultures. For normalization, the previously assembled metagenomic contigs were binned 

and the seven largest bins belonging to Pseudomonas, Ensifer, Cupriavidus, and Flavobacterium were 

used for further analysis. Lowest number of quality-filtered metatranscriptomic reads was 46.9 million 

and on average 60.3% of the reads mapped to one of the bins.  

Table 4: Number of significantly up- or downregulated genes in the largest metagenomic bins 
derived from ACN cultures. Differential expression was analyzed with DESeq2 with an FDR of 0.025 
and log2FC of ≥2 as cutoff. 

Bin Genus No. of upregulated genes No. of downregulated genes 
#1 Pseudomonas 154 54 
#2 Ensifer 28 100 
#3 Cupriavidus 27 29 
#4 Pseudomonas 186 65 
#5 Pseudomonas 67 3 
#6 Flavobacterium 0 0 
#7 Pseudomonas 43 38 

After transcriptome normalization for each bin, differential analysis was performed with DESeq2 with 

the previously established parameters. In total, 505 up- and 289 downregulated genes were identified 

(Table 4, Data Set S3). Two of the Pseudomonas bins (#1 and #4) contained more than 66% of the 

upregulated genes, while no differentially expressed genes were identified for Flavobacterium. Search 

for genes encoding nitrile-related enzymes revealed three hits, all belonging to bin #1. The first one is 

an aliphatic nitrilase (log2FC 3.2), followed by an amidase (log2FC 3.6) and a putative amide transporter 

(log2FC 5.4) (Data Set S3). For the other species, different groups of upregulated genes were identified. 

In case of Cupriavidus, five cytochrome c-related genes were upregulated, whereas another 

Pseudomonas (bin #4) contained upregulated genes belonging to the nitrate/nitrite metabolism. 

In addition to a metatranscriptome analysis with focus on differential gene expression of single 

organisms, the normalized read counts can be pooled and analyzed as a whole. Due to the accumulated 

counts, non-differential expression of a gene found in several of the monitored species can become 

significant or vice versa (19). DESeq2 analysis on the combined normalized read counts revealed 112 

up- and 77 downregulated genes under ACN treatment. Compared with the analysis of single bins, the 

number of differentially expressed genes was reduced by 75.3%. Of the previously identified nitrile-

related genes of bin#1, only the putative amide transporter was still significantly upregulated in the 

combined dataset. In addition, three upregulated cytochrome c-related genes were observed, 

indicating a distinct effect of nitriles on this type of enzymes. 
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DISCUSSION 

During transcriptome analysis of R. erythropolis ACN1, only 23 significantly up- or downregulated 

genes were identified. The low number was unexpected as transcriptome studies on bacteria often 

identify more than 100 differentially expressed genes between two conditions (10, 20, 21). Thus, 

nitriles seem to have a highly specific effect on the gene expression of nitrile-degrading organisms. 

One of the upregulated genes encoded for an amidase. Together with nitrile hydratases, these 

enzymes are part of a bi-enzymatic pathway for nitrile degradation, but no upregulated nitrile 

hydratase was found. In contrast, an upregulated operon consisting of a tubulin-like protein, a 

hypothetical protein, and a GTPase domain of the tubulin/FtsZ family was identified. Due to proximity 

to the amidase, involvement in nitrile degradation appears likely. This assumption is further supported 

by reports on GTPase activity of nitrile hydratase activator proteins (22, 23). Although size of the genes 

does not match common nitrile hydratase subunits (24–26), it seems likely that there is similar 

enzymatic activity. A structurally unique nitrile hydratase of Streptomyces rimosus is published (27) 

and R. erythropolis ACN1 could contain an additional unknown structure for these enzymes. In the end, 

only subcloning, overexpression, and characterization of respective genes could answer questions 

regarding their function. 

Major difference between transcriptomes of single organisms and metatranscriptomes of complex 

communities is the abundance of different organisms. In case of transcriptomes, all reads can be 

normalized on a single genetic backbone representing the sole organism in the culture. In contrast, 

abundance of members of a microbial community change under different treatments (28–30). An 

organism highly present under the first condition can be absent under the second, making 

normalization and comparison of metatranscriptomes difficult (19). Consequently, cultures derived 

from the acetic acid-treated inoculum could not be analyzed due to major changes in community 

composition. 

Community composition of the acetonitrile-derived cultures was suitable for bioinformatic analysis, as 

most genera with an abundance >1% were found in all treatments (Figure 4). After binning of the 

metagenomic contigs, the seven largest bins were used for subsequent normalization. Most of the bins 

belonged to Pseudomonas, but bins belonging to Ensifer, Cupriavidus, and Flavobacterium were also 

identified. Discrepancies between community composition and organisms identified by binning can be 

explained with the high number of different species in complex communities. For subsequent analysis, 

only the seven largest bins (based on bps) were considered. Although e.g. Ralstonia shows higher 

abundance in the community than Flavobacterium, this genus may comprise several species. 

Therefore, contigs of these different species would result in several different and probably smaller bins 

than obtained by a single Flavobacterium. Presumably as consequence of the low abundance, no 
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differentially expressed genes were identified for the flavobacterial bin. Modern normalization 

algorithms like DESeq2 and edgeR often remove low gene read counts to suppress background noise 

(15, 31). Although deeper sequencing would solve this problem, increasing costs must be considered 

during experimental design. 

Quality of metagenomes is often verified by two approaches (32, 33). The first is the percentage of 

quality-filtered reads mapping to the final metagenome, while the second is a size-related statistic 

such as N50 to compare contig lengths. All acetonitrile-derived metagenomes exhibited mapping 

values >97%, demonstrating the high quality of the assembly. In addition, high N50 values between 

2606 and 5629 were obtained, whereas other metagenomic studies often have values below 1800 

(32, 34, 35). This discrepancy arises presumably from the low diversity of our microbial communities, 

as high coverage of a metagenome assists during the assembly of long contigs and therefore leads to 

high N50 values. Additional sequencing could probably further increase their quality, but based on the 

mapping and N50 values, the here obtained metagenomes were suitable as backbone for 

metatranscriptome normalization. 

A first analysis of the binned metatranscriptomes demonstrated the potential of the novel screening 

approach. The upregulated nitrilase and amidase identified for Pseudomonas (bin #1) indicate nitrile 

degradation by at least one of the possible pathways. It can be assumed that the putative amide 

transporter leads to an export of amides into the medium and therefore to cross-feeding of other 

community members. This assumption is further supported by another Pseudomonas (bin #4), as its 

upregulated nitrate/nitrite metabolism suggests other methods than nitrile degradation to be involved 

in nitrogen acquisition. Thus, separate transcriptome analysis for each bin can give insights into 

metabolic networks of microbial communities and probably help to optimize them for bioremediation 

purposes. 

Additional analysis of the combined metatranscriptomic read counts highlighted differences between 

the two analytical methods. While the upregulated nitrilase and amidase of Pseudomonas (bin #1) lost 

statistical significance, the putative amide transporter was still identified. Probably, similar genes were 

expressed in other members of the community but removed during bioinformatical analysis due to 

low read counts. In contrast, after combination of all read counts the obtained signal was strong 

enough to be detected. Thus, no insights into specific responses of single community members can be 

obtained after pooling of read counts, but larger pattern of differential expression can be observed. In 

conclusion, a combination of both approaches is recommended to harness the full potential of 

metatranscriptomics (19). 
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CONCLUSION AND OUTLOOK 

The here presented screening approach demonstrates the potential of differential transcriptomics. 

During analysis of the R. erythropolis ACN1 transcriptomes, only four significantly upregulated genes 

were identified under nitrile treatment. The experimental setup seems to result in highly specific 

expression pattern and can therefore assist in the identification of novel biocatalysts. One of the 

upregulated genes belonged to an amidase, fitting our expectations, whereas the remaining 

upregulated genes did not belong to known nitrile-degrading enzymes. Involvement in nitrile 

degradation can be assumed due to the strong effect of nitriles on their expression, but further 

research must be done for functional assignment. 

First analysis of the metatranscriptomes highlighted differences between transcriptomes of single 

community members and the combined read counts. Although a nitrilase most likely involved in 

acetonitrile degradation was identified, additional analyses must be done to uncover all enzymes 

involved in nitrile assimilation. Upregulated hypothetical proteins are interesting candidates for novel 

nitrile-degrading enzymes and especially hits found for single bins as well as the combined 

metatranscriptome are of major interest. In addition, binning and metatranscriptome normalization 

could be improved by transition to a metagenomic backbone consisting of the pooled reads of all 

acetonitrile-derived. 

Major limitation of the presented screening approach is the enrichment of microbial communities and 

therefore a loss of diversity. To minimize this effect, complex communities could be grown in 

bioreactors. Due to better aeration and constant nutrient supply, a higher diversity should be 

maintained. In addition, short-term incubation of an environmental sample with a nitrile or the 

respective carboxylic acid and ammonia could be applied. This approach would reduce loss of diversity 

to a minimum but requires a high sequencing depth to gather sufficient information for subsequent 

analysis. 

In conclusion, the here presented method provides a first insight into effects of acetonitrile on 

metabolism of a complex community. Additional analysis of the metatranscriptomes and especially of 

upregulated putative genes and the corresponding proteins would lead to identification of additional 

nitrile-degrading enzymes and effects. In future, this approach might probably be routinely used for 

identification of novel biocatalysts as it does not depend on suitable screening strategies for different 

substrates and can therefore be easily adapted. 
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MATERIAL AND METHODS 

Media. M9 medium (36) was prepared containing 6 g Na2HPO4, 3 g KH2PO4, 1 g NH4Cl, and 0.5 g NaCl 

per liter. After autoclaving, 10 ml ATCC trace mineral supplement, 10 ml ATCC vitamin supplement 

(both LGC Standards, Teddington, UK), 10 ml glucose solution (20%), 1 ml MgSO4 · 7 H2O solution 

(1 M), 1 ml CaCl2 solution (14.7 g/l), and 1 ml thiamine-HCl solution (1 mg/ml) were added. For 

differential transcriptomics, either 25 mM acetonitrile or 25 mM acetic acid and ammonia were used 

as sole carbon and nitrogen sources. 

Enrichment of an environmental sample. 100 g compost (pH 7.5) of the Experimental Botanical 

Garden Göttingen, Germany (51°33'22.6"N 9°57'16.2"E) were solved in 500 ml ddH2O. Subsequently, 

the solution was filtered with a 2.7 µm GF/D glass fiber filter (Whatman, Little Chalfont, UK) and 5 ml 

of it were used to inoculate 45 ml M9 with acetonitrile or acetic acid and ammonia in 300 ml baffled 

flasks. Incubation was performed at 25 °C and 180 rpm (Innova 44 incubator). Two prevent starvation, 

cultures were transferred to fresh medium after reaching approx. an OD600 of 1.0. New cultures were 

inoculated with an OD600 of 0.1 and further incubated. In total, four rounds of incubation were 

performed. 

Growth conditions. For single transcriptome studies, a preculture of R. erythropolis ACN1 (14) was 

grown over night in 5 ml M9 medium. For metatranscriptome studies, a previously enriched 

environmental soil sample was used (see before). Precultures were washed twice with M9 containing 

no carbon or nitrogen sources. The samples were used to inoculate 50 ml M9 with acetonitrile, or 

acetic acid and ammonia in 300 ml baffled flasks to an OD600 of 0.01. Incubation was performed at 

25 °C and 180 rpm using an Innova 44 incubator (New Brunswick Scientific, Nürtingen, Germany). 

Growth of cultures was measured regularly and samples for transcriptome sequencing were harvested 

during logarithmic growth phase at an OD600 of approx. 1.0 (R. erythropolis ACN1) or 0.4 

(metagenomes). For harvesting, samples were centrifuged for 1 min at 10000 × g and supernatant was 

discarded. Afterwards, samples were directly frozen in liquid N2 and subsequently stored at -80 °C. All 

conditions were prepared as triplicates. 

DNA isolation. DNA of the enrichment cultures was isolated using the Lucigen MasterPure Complete 

DNA and RNA Purifcation kit (Lucigen, Middleton, WI, USA) according to the manufacturer’s protocol. 

DNA of the metatranscriptome cultures was isolated with the same kit but with a modified protocol to 

resemble the cell disruption of the RNA isolation procedure. Pellets were dissolved in 300 µl TC buffer 

containing 2 µl proteinase K. Subsequently, samples were transferred to a cell mill (Mikro-

Dismembrator U, B. Braun, Melsungen, Germany) containing liquid N2 and disrupted at 1,600 rpm for 

3 min. The frozen cell powder was dissolved in 1.5 ml TC buffer containing 6 µl proteinase K and DNA 



Results 82 

was isolated as recommended by Lucigen. Final DNA concentration was measured using a Qubit 

fluorometer with dsDNA HS assay kit as recommended by the manufacturer (Invitrogen, Carlsbad, CA, 

USA). 

Metagenome sequencing and analysis. DNA of triplicate cultures was pooled in equal amounts. 

Paired-end sequencing (2 × 300 bp) was performed on an Illumina MiSeq using the Nextera XT DNA 

library prep kit and v3 chemistry as described by the manufacturer (Illumina, San Diego, CA, USA). 

Quality trimming of the paired-end reads was done with Trimmomatic version 0.38 (37) and validated 

with FastQC version 0.11.7 (38). For assembly, SPAdes version 3.12 (39) was used. All contigs >200 bp 

were annotated with Prokka 1.13.3 (40). Coverage was calculated using Bowtie 2 version 2.3.4.2 (41) 

and all contigs were checked with BLASTn (42) against the NCBI non-redundant database for 

taxonomical assignment. 

RNA isolation. Cell pellets were solved in 400 µl RLT buffer from the RNeasy Mini Kit (Qiagen, Hilden, 

Germany) containing 4 µl β-mercaptoethanol. Subsequently, cell disruption was performed in a cell 

mill (Mikro-Dismembrator U, B. Braun) containing liquid N2 for 3 min at 1,600 rpm. Cell powder was 

dissolved in 400 µl RLT buffer containing 4 µl β-mercaptoethanol and 1.2 ml ethanol. Subsequently, 

the RNA isolation was done according to the manufacturer’s protocol, but with RWT instead of RW1 

buffer. Final RNA concentration was measured with a Qubit using the RNA BR assay kit (Invitrogen), 

whereas RNA quality was controlled with a 2100 Bioanalyzer using the RNA 6000 Nano kit (Agilent 

Technologies, Waldbronn, Germany).  

Transcriptome sequencing. Remaining DNA after RNA isolation was degraded with Turbo DNase 

(Thermo Fisher Scientific) and subsequently purified with the RNeasy MinElute Cleanup kit using 350 µl 

RLT buffer with 3.5 µl β-mercaptoethanol and 675 µl ethanol. After total DNA removal, rRNA depletion 

was done with the Ribo-Zero rRNA removal kit for bacteria (Illumina) as recommended by the supplier. 

Non-directed sequencing libraries were built with the NEBNext Ultra II RNA Library Prep kit (New 

England BioLabs) for Illumina sequencers according to the manufacturer’s protocol. Final validation of 

the cDNA library was done using a Qubit with the dsDNA HS assay kit (Invitrogen) and with a 2100 

Bioanalyzer using the DNA High Sensitivity kit (Agilent Technologies). Single-end sequencing was done 

on an Illumina HiSeq 4000 (Illumina) with 1 × 50 bp for R. erythropolis ACN1 transcriptomes and 

1 × 100 bp for metatranscriptomes. 

(Meta-)Transcriptome analysis. Quality trimming of the single-end reads was done with Trimmomatic 

version 0.38 (37) and validated with FastQC version 0.11.7 (38). Normalization of the R. erythropolis 

ACN1 transcriptomes was done with R version 3.5.1 (43) and DESeq2 package version 1.20.0 (15). For 

normalization of the metatranscriptomes, reads were mapped against the preculture metagenome 
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with bowtie2 (version 2.3.4.3) (41). The mappings were used for the coverage profiles and for the 

number of reads assigned to a gene for the differential expression analysis. In order to compare 

proteins from different organisms, the protein features were unified via the KEGG ORTHOLOGY 

database (KO, date: 2018-10-15) (44). All proteins with a KO identifier were stored in a DIAMOND 

(v0.9.22.123) database (45). Proteins identified for the preculture metagenome contigs via Prokka 

were KO annotated using the DIAMOND database. For annotation, a target coverage of at least 90% 

was required and it was possible for a protein to have multiple annotations. To obtain bins of 

organisms, MetaBAT (version 0.32.4) (46) was used with default parameters, but --minSamples with 6 

instead of 10 (Minimum number of sample sizes for considering correlation based recruiting). For the 

DE analysis, the 7 largest bins (bp wise) were selected, ranging from 6.8 to 2.6 Mbp. The features for 

the DE-analysis were obtained by counting the number of transcriptome reads overlapping with 

regions of the annotated KOs for each contig and summing up the KOs from contigs with the same bin 

id. The reads for each bin were normalized separately with DESeq2 (15) and then merged for the 

metatranscriptom analysis (with no further normalization). DESeq2 results with an FDR cutoff of 0.025 

were subsequently filtered by just considering genes with a logarithmic fold-change of ≥2 as 

differentially expressed. 

For graphical analysis, trimmed reads of the R. erythropolis ACN1 transcriptomes obtained after 

acetonitrile treatment were pooled. Number of reads was reduced by random subsampling by factor 

10 and remaining reads were mapped with bowtie2 against the R. erythropolis ACN1 genome. 

Visualization of the results was done with TraV (47). 

For additional ORF prediction, NCBI ORFfinder was used with genetic code 11. ATG and alternative 

initiation codons were used and nested ORFs ignored. ORFs smaller than 300 bp were not displayed. 

Accession numbers. Biosample accession numbers for raw data of (meta)genome and 

(meta)transcriptome sequencing as well as assembled (meta)genomes are the following: 

R. erythropolis ACN1, SAMN05788061; acetonitrile preculture, SAMN10107935; acetonitrile 

preculture further enriched with acetonitrile, SAMN10112108; acetonitrile preculture further enriched 

with acetic acid, SAMN10112109; acetic acid preculture, SAMN10112120; acetic acid preculture 

further enriched with acetonitrile, SAMN10112123; acetic acid preculture further enriched with acetic 

acid, SAMN10112148. 
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4. General discussion 

Nitriles are widespread in nature and important compounds in industry. In natural systems, nitrile 

synthesis should equal nitrile degradation to avoid accumulation of these toxic molecules, but 

industrial leakage or improper disposal lead to contamination of the environment. For reduction of 

nitrile pollution the use of nitrile-converting enzymes and organisms as biocatalysts or in 

bioremediation is a promising approach. Therefore, identification of novel biocatalysts is important to 

expand the toolbox for green chemistry. This task is hindered by limitations of current function- or 

sequence-based screening approaches like (problematic) expression in heterologous hosts or inability 

to identify truly novel enzymes (128, 133). 

In this study, a novel approach for identification of nitrile-degrading enzymes based on reverse omics 

techniques was developed. This approach is based on differential analysis of (meta)transcriptomic 

datasets without necessity of designing a suitable screening system. For this purpose, bacterial cultures 

are grown either with a nitrile or the corresponding products of the nitrilase reaction, carboxylic acids 

and ammonia. Subsequently, (meta)transcriptomes are sequenced and analyzed. Genes upregulated 

in presence of the nitrile could encode e.g. nitrile-degrading enzymes, transporters, or resistance 

mechanisms. The thereby gathered data could finally lead to the identification of novel biocatalysts. 

As nitriles are often toxic, understanding of their influence on microbial growth was necessary for 

establishing the novel screening approach. Therefore, the effect of different nitriles and their 

corresponding carboxylic acids on microbial growth was determined for single strains and complex 

communities (Chapter 3.1). One of the nitriles showed growth-supporting effects, indicating its 

utilization as additional nutrient source. Isolation of respective organisms led to the identification of 

eight novel acetonitrile-degrading bacterial strains (Chapter 3.2). In addition, a novel high-throughput 

nitrilase assay was developed. Subsequent screening of 70 putative nitrilases led to the identification 

and characterization of a new arylacetonitrilase (Chapter 3.3). Finally, a novel (meta)transcriptomic 

screening approach was developed. One of the previously isolated nitrile-degrading organisms was 

used to establish screening conditions and the subsequent bioinformatic workflow. Afterwards, a 

complex microbial community was identically treated and used for the first nitrilase screening 

approach based on differential metatranscriptomics (Chapter 3.4). 

4.1. Nitriles and microbial life 

Microbial communities are key players in most nutrient cycles and important for ecosystem 

functioning (137–143). Consequently, their natural diversity and composition (144–147) as well as 

influence of factors like pH (148), soil moisture (149), humidity (150), temperature (151), or salinity 
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(152) has been studied in detail. In addition to these environmental properties, man-made impact due 

to substances such as fertilizers (153), antibiotics (154), herbicides (155), or heavy metals (156) has 

been determined. In contrast, influence of often toxic nitriles on microbial communities is almost 

unknown. Besides unintended release of industrially used nitriles, they are also actively released in 

form of herbicides with negative impact on microbial biomass (157). Furthermore, many important 

crops contain cyanogenic glycosides (Table 1). For example, approximately 250 million tons of cassava 

with up to 1.5 g cyanide equivalent per kilogram are produced per year (158, 159). Disposed scraps of 

all these crops can rot in the environment and lead to increased nitrile concentrations. In addition, 

carboxylic acids released by nitrile degradation may also influence local biota (160, 161). 

Table 1: Agriculturally important plants containing cyanogenic glycosides. 

Occurrence Common name(s) References 
Anacardium occidentale Cashew (162) 
Bambusa spp. Bamboo (163) 
Cicer arietinum Chickpea (164) 
Eucalyptus spp. Eucalyptus (165) 
Linium spp. Flax (166) 
Malus spp. Apple (167) 
Manihot esculenta Cassava (168) 
Pangium edule Keluak (169) 
Passiflora spp. Passion fruit (170) 
Phaseolus lunatus Lima bean (171) 
Prunus spp. Almond, apricot, cherry, peach, plum (162, 172, 173) 
Sambucus spp. Elderberry (173, 174) 
Simmondsia chinensis Jojoba (175) 
Sorghum spp. Sorghum (176) 
Trifolium repens White clover (177) 
Vicia sativa Common vetch (173) 

For a first insight into possible effects of nitriles and their corresponding carboxylic acids, influence on 

bacterial growth was studied (Chapter 3.1). Previous toxicity experiments on mammals have shown 

diverging effects of structurally different nitriles (63). Consequently, structurally diverse substrates 

were chosen in this study. In total, nine different mononitriles, dinitriles, cyanohydrin derivatives, 

arylacetonitriles, aromatic nitriles, cyclohexane nitriles (Figure 1), and their corresponding carboxylic 

acids were selected. 
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Figure 1: Nitriles used as substrates for toxicity determination. 

After determination of nitrile toxicity on Agrobacterium tumefaciens, Bacillus subtilis, 

Corynebacterium glutamicum, and Escherichia coli using solid media, effect of the nitriles and 

carboxylic acids on a complex microbial community was analyzed. Compost was chosen as starting 

material to increase chance for viable communities due to its higher diversity compared to aquatic 

environments (178). Common methods for extraction of similar communities use serial dilutions (179) 

or sonication and subsequent low-speed centrifugation (180, 181). The first method leads to dilution 

of microorganisms and therefore loss of biomass, whereas the second method can severely damage 

the cells and reduce number of viable organisms (181). Consequently, a different approach was tested. 

For that purpose, compost was solved in H2O and filtered with a 2.7 µm glass fiber filter to remove 

matrix particles. Pore size of the filter was chosen to allow flowthrough of presumably the largest 

bacterium found in German soil, Bacillus megaterium (182). 16S rRNA gene analysis of the unfiltered 

and filtered soil sample revealed very similar community compositions with more than 500 different 

organisms at genus level and identical Simpson indices of diversity (SID) values. Thus, it is indicated 

that the here established method is suitable for removal of compost or soil particles in future studies 

of similar communities. 

During toxicity determination, two important results were retrieved. First is the high toxicity of  

4-hydroxybenzonitrile, leading to suppressed growth and reduced diversity. Structurally similar 

herbicides like bromoxynil and ioxynil show similar impact on microbes (157, 183). Thus, it can be 

assumed that the use of 4-hydroxybenzonitrile-derived herbicides has severe influence on soil 

microbiota. More than 1,300 tons of bromoxynil have been used in the US in 2016 (184) and most 

likely the use of ioxynil is even more widespread as it is also available for private households. Transition 

to less toxic herbicides should be considered to increase quality of soil microbiota and therefore crop 

yield (185). 

The second important result is the lethal effect of acetone cyanohydrin. This cyanohydrin is the 

degradation product of linamarin, a cyanogenic glycoside found in cassava, lima beans, and flax  

(186–188). Due to large-scale cultivation of these crops, release of acetone cyanohydrin by rotting 
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scraps could be a source for environmental contamination and hazardous for local microbiota. 

Nevertheless, further studies must be performed for estimation of the impact of cyanogenic crops on 

the environment. 

In addition to specific levels of toxicity, a higher nitrile susceptibility of Gram-negatives compared to 

Gram-positives was recorded. Research on tolerance or resistance of both bacterial groups to 

antibiotics, hydrocarbons, cold plasma, or special nanoparticles has been performed before (189–194), 

but this is the first time that nitrile-susceptibility has been studied. Due to the small number of tested 

compounds and organisms, these findings can just serve as tendency. Further studies including other 

nitriles and several different communities are necessary. 

4.2. Acetonitrile-degrading bacteria 

Acetonitrile is an industrially important nitrile often employed as solvent. It is used during the 

production of butadiene (195), a key solvent in pharmacy (196), and part of battery electrolytes (197). 

In addition, it is important for the synthesis of oligonucleotides (198) and often used for liquid 

chromatography (199). Nevertheless, it exhibits higher toxicity than other solvents such as methanol 

or acetone and is regarded as problematic waste (199, 200). Conventional treatment of acetonitrile 

waste can be done by addition of large quantities of sodium hydroxide (201), with supercritical water 

and H2O2 (202), by photolysis (203), or via combustion in a hazardous waste plant (201). As most of 

these processes need unfavorable chemicals or conditions, interest in bioremediation of acetonitrile-

containing waste is increasing (204–206). During analysis of nitrile toxicity on microbial communities 

(Chapter 3.1), cultures containing acetonitrile exhibited higher optical density than the control. As 

nitrile-metabolization and therefore presence of nitrile-degrading enzymes could be assumed, 

isolation of respective organisms was performed (Chapter 3.2).  

Eight unique strains belonging to Flavobacterium, Pseudomonas, Rhodococcus, and Variovorax were 

isolated. Four of the eight isolates belonged to Pseudomonas, demonstrating its well-known 

acetonitrile-degrading abilities (207–209). In addition, one Rhodococcus isolate was identified. This 

genus is probably the most prominent bacterial genus for nitrile bioremediation and biocatalysis. It 

can degrade a large number of compounds including acetonitrile (210–212), also reflecting by the 

increasing number of related patents (213). Despite these common nitrile degraders, one isolate of 

Variovorax and two isolates of Flavobacterium were obtained. Nitrile-degrading ability of Variovorax 

was described before (214, 215), but only weak hydrolysis of nicotinonitrile by Flavobacterium has 

previously been observed (216). Due to missing genomes or enzymatic studies, the pathway involved 

in nicotinonitrile degradation remains unknown. Although no nitrilases or nitrile hydratases could be 

annotated in the genomes of the flavobacterial isolates, these results indicate that nitrile degradation 
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is even more widespread than previously known. Further studies are required to unravel the 

underlying mechanism and increase the number of nitrile-degrading biocatalysts. 

4.3. High-throughput nitrilase assays 

In addition to identification of nitrile-degrading bacteria (Chapter 3.2), characterization of putative 

nitrile-degrading enzymes is of increasing importance. To analyze the growing amount of putative 

nitrilases and nitrile hydratases found in databases or hiding in metagenomic libraries, simple and 

efficient high-throughput assays are necessary. For that purpose, several assays based on three 

different principles have been developed (217). The first group uses indicators like bromothymol blue, 

bromocresol purple, or phenol red to measure a pH shift caused by the carboxylic acid or the ammonia 

released during nitrile degradation (122, 218, 219). These methods are easy to perform and the 

respective color shifts can be detected without additional equipment. However, their success depends 

on the strength of the released acid. In case of acids equally strong as the basic ammonia, no pH shift 

will occur and therefore prevent the detection of nitrile-degrading enzymes. The second group of high-

throughput assays focuses on the released carboxylic acids (220, 221). Due to the structural diversity 

of carboxylic acids, these methods are often limited to specific molecules, making the screening of 

broad substrate libraries impossible. The third group of assays detects the ammonia released by 

nitrilase reactions. Besides screenings based on the established Berthelot reaction (217), a fast and 

simple assay using CoCl2 as indicator is published (222). Drawback of the first is the use of highly toxic 

phenol hypochlorite mixtures, whereas the second is not sensitive enough for detection of low 

amounts of ammonia. 

To assist functional screening of large amounts of putative nitrile-degrading enzymes, a novel nitrilase 

high-throughput assays was developed during the here presented work (Chapter 3.3). It is based on 

well-established NAD(P)H-coupled systems, which monitor the conversion of NAD(P)H to NAD(P)+ or 

vice versa (223–226). In case of nitrilases, the released ammonia is converted by a glutamate 

dehydrogenase (GDH) to glutamate (Figure 2). This reaction involves the oxidation of NADH to NAD+ 

and is used to determine nitrile degradation. 

 
Figure 2: Reactions of a NADH-coupled nitrilase assay. 
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In contrast to a previously published NADH-coupled nitrilase assay (132), the novel approach does not 

depend on long incubation times. For that purpose, nitrile degradation and NADH conversion were 

coupled in a single mixture. By using a plate reader, real-time conversion of the cofactor is monitored 

in 96-well plates, providing direct insights into nitrilase efficiency for different substrates. 

Furthermore, the assay was performed with crude extract containing the overexpressed putative 

enzymes, allowing the simple and fast screening of large (meta)genomic libraries. 

Unspecific NADH conversion was observed during first tests of the assay with an already characterized 

nitrilase. Most likely, unintended NADH oxidation by other proteins of the crude extract caused NAD+ 

formation. For example, members of the tricarboxylic acid (TCA) cycle like malate dehydrogenases can 

also convert NADH to NAD+ and therefore influence the obtained signal (227). Consequently, a sharp 

threshold is recommended to reduce number of false positives. In addition, every reaction exhibited a 

turning point after which the optical density was increasing. This observation was independent of the 

used substrate and most likely caused by the reverse reaction of NAD+ to NADH. In consequence, this 

assay can lead to wrong conclusions when performed with single measurements. It is not possible to 

differentiate between nitrilase activity, side reactions of the crude extract, and regeneration of the 

cofactor for a single data point. Only the full reaction curve obtained by continuous measurements 

with a fast plate reader allows assessments of nitrile degradation. 

Overall, the here presented workflow allows the simple and fast verification of putative nitrilases 

identified during sequence-based screenings. Optimization of the bioinformatic analyses could further 

improve the outcome of nitrilase screenings and advance identification of novel biocatalysts. During 

in silico analyses of the 70 putative nitrilases used as input, almost 50% of the enzymes were excluded 

from further analysis due to their low quality. Still, only putative enzymes clustering with characterized 

nitrilases obtained from SWISS-Prot showed enzymatic activity. Therefore, it can be recommended to 

discard all “unique” putative enzymes when time restrictions apply or the number of putative nitrilases 

is too large for handling. Nonetheless, it has to be considered that this additional filtering will also 

reduce the chance for identification of truly novel enzymes. Furthermore, prediction of substrate 

specificity based on sequence homology could help to identify possible genes of interest before wet 

lab work even starts. Such an approach was already published with focus on dinitriles and led to 

promising results (228). In combination with the novel high-throughput screening, identification of 

nitrilases of interest could be significantly improved and support the increasing industrial demand for 

these biocatalysts. 
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4.4. Characterization of a novel arylacetonitrilase 

Although nitrilases are an important class of enzymes for various industrial processes, only a small 

number has been characterized. Curated enzyme databases like SWISS-Prot contain thousands of 

phosphatases, esterases, or lipases, but less than 100 nitrilases. Relationship between sequence, 

structure, and function is nearly unknown because of the low number of characterized nitrilases (75). 

Consequently, one of the nitrilases identified with the novel high-throughput assay was characterized 

in detail to support knowledge and understanding of these enzymes. Due to its unique substrate 

specificity, the phenylacetonitrile-degrading nitrilase was chosen for this task (Chapter 3.3). 

Table 3: Properties of characterized bacterial arylacetonitrilases. Mass refers to mass of homomers; 
activity refers to specific activity for phenylacetonitrile. 

Origin pH 
optimum 

Temperature 
optimum [°C] 

Mass 
[kDa] 

Activity 
[U/mg] 

References 

Alcaligenes faecalis JM3 7.5 45 44 85.0 (229) 
Alcaligenes faecalis ATCC 8750 7.5 40-45 32 30.0 (230) 
Alcaligenes faecalis ZJUTB10 7.5 40 44 41.9 (231) 
Alcaligenes sp. MTCC 10675 6.5 50 60 65 (232) 
Bradyrhizobium japonicum USDA110 - - 37 5.3 (233) 
Luminiphilus syltensis NOR5-1B 7.0 40 43 89.2 (234) 
Pseudomonas fluorescens EBC191 6.0-6.5 50-55 38 67.7 (235) 
Pseudomonas putida MTCC 5110 7.0 40 43 11.2 (78) 
Compost metagenome 6.0 50 36 13.9 This study 

Based on its substrate specificity, the novel nitrilase belongs to the class of arylacetonitrilases  

(EC 3.5.5.5). Arylacetonitrilases are probably the industrially most imported group of nitrile-degrading 

enzymes as they allow the conversion of mandelonitrile to mandelic acid (110). With less than 10 

respective entries in databases like SWISS-Prot, they are the smallest subgroup of nitrilases and to the 

best of my knowledge, only Alcaligenes, Bradyrhizobium, Luminiphilus, and Pseudomonas contain 

characterized bacterial arylacetonitrilases (Table 3). Consequently, several studies with focus on 

understanding and optimization of these enzymes have been performed (236–241). Nevertheless, 

identification of novel arylacetonitrilases will provide new opportunities and insights into sequence-

function relationships that cannot be easily obtained by other experiments. For example, based on 

protein size as well as pH and temperature optimum, the here characterized enzyme is closely related 

to the arylacetonitrilases of B. japonicum USDA110 and P. fluorescens EBC191 (Table 4). These results 

are further supported by sequence similarity, as the respective enzymes build a separate branch of 

arylacetonitrilases (Figure 4). In contrast, the overall substrate specificity of the novel arylacetonitrilase 

is similar to that of P. putida MTCC 5110, although their sequences are not closely related. 
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Figure 4: Phylogenetic tree containing all identified novel nitrilases. 500 bootstrap replicates were 
calculated and the tree was condensed at values below 50%. No nitrilase sequence was available for 
Luminiphilus syltensis NOR5-1B. WAG algorithm including gamma sites was chosen for calculation of 
the phylogenetic tree (242).For general parameters and references for R. rhodochrous M8 amidase, 
see material and methods section of chapter 3.1. NCBI accession number for protein sequences are in 
brackets, for references see Table 3. 

Besides its unusual sequence-function relationship, the novel nitrilase exhibits other non-common 

features like optimum activity at high temperatures and over a broad pH range. Furthermore, it 

exhibits a unique long-term stability as more than 80% of initial activity remained after two weeks of 

storage. In contrast, arylacetonitrilases of A. faecalis JM3 and P. fluorescens EBC191 showed only 40% 

and 25% remaining activity after one or two weeks under similar conditions, respectively (229, 235). 

In conclusion, the here identified and characterized nitrilase leads to a better understanding of 

sequence-function relationship of these rare and valuable enzymes and is an interesting candidate for 

industrial applications. 

4.5. A novel (meta)transcriptomic screening approach 

Screening for novel enzymes is nowadays often done by function- or sequence-based metagenomic 

approaches (see Chapter 2.7). Both have their specific drawbacks such as problems due to expression 

in heterologous hosts or inability to identify truly novel enzymes. In addition, they cannot identify 

complex networks sometimes involved in metabolization of a substrate (243). 

Differential transcriptomic approaches are without these inherent limitations. Microbial cultures are 

grown under different conditions and their transcriptomes are isolated and sequenced. Comparison of 

the expression profiles highlights genes up- and downregulated for each treatment, leading to 

identification of genes encoding enzymes or pathways specific for the tested conditions. Although this 

approach seems to be promising for identification of novel biocatalysts, most research focuses on 

clinical aspects like human diseases or different pathogens (244–252). In contrast, only a few studies 

with focus on industrial topics such as increased solvent tolerance of living cells or identification of 

novel biocatalysts have been performed (136, 253–255). 
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Important for differential transcriptomics is proper normalization of the transcriptomes. Without these 

steps during data analysis, obtained results could be misleading or wrong. Consequently, different 

approaches for normalization of transcriptomic data have been developed and were extensively 

reviewed (256–259). Several of these methods depend on count-based normalization, but compensate 

only for differences in sequencing depth (256). When comparing two conditions with equal strength 

in gene expression but double the number of expressed genes in the first condition, these approaches 

will introduce a severe bias. After total count normalization, only half the number of reads per gene 

will be assigned in the first treatment, distorting the outcome of the analysis (260). To account for this 

problem, new statistical models have been proposed. They assume that most genes between two 

samples are not differentially expressed and calculate a correction factor for all read counts to fulfill 

this hypothesis (256). Most prominent implementations of this approach can be found in edgeR (261) 

and DESeq2 (262) and both methods are nowadays recommended for transcriptome analysis  

(256, 257). 

When trying to apply standard transcriptome normalization methods like DESeq2 to 

metatranscriptomes, a major problem occurs. During work with a single strain, abundance of this 

organism in the culture is always 100%. In contrast, abundance of organisms can significantly change 

in complex communities between two treatments (263–265), as also found in the here presented 

study. If an organism would be absent during first treatment and present during second, all its genes 

would appear upregulated under the second treatment during subsequent analysis. To prevent this 

community-based bias, an additional normalization step is necessary (266). For that purpose, the 

metagenomic backbone must be divided into bins consisting of single species. Subsequently, 

transcriptomic reads can be assigned to their biological origin and are individually normalized for each 

bin. Afterwards, the normalized reads can be combined to the final metatranscriptomic dataset and 

analyzed with algorithms like DESeq2. To the best of my knowledge, the here presented 

metatranscriptomic study is the first using this thorough normalization approach. Previous studies 

dealing with differential metatranscriptomics did not normalize their data based on community 

composition and may therefore contain erroneous results or assumptions (266–273). 

To establish the novel transcriptome-based screening approach, acetonitrile was used as substrate of 

choice (Chapter 3.4). During previous toxicity analysis (Chapter 3.1), no growth-suppression was 

observed even at 25 mM concentration. Furthermore, cultures treated with acetonitrile exhibited high 

diversity, indicating no toxic effect on many microorganisms. In conclusion, unintended expression of 

stress response genes should be minimal for this compound when compared to other tested nitriles. 

For a proof of principle, the previously isolated acetonitrile-degrading Rhodococcus erythropolis ACN1 

(Chapter 3.2) was used. When comparing the transcriptomes of R. erythropolis ACN1 after treatment 

with acetonitrile or acetic acid and ammonia, 23 differentially expressed genes were identified. 
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Apparently, acetonitrile has a minor effect on general gene expression and is therefore a promising 

substrate for metatranscriptome-based nitrilase screenings. In addition, only four of the differentially 

expressed genes were upregulated in the acetonitrile-containing sample. Most likely all of them are 

involved in nitrile degradation, demonstrating the potential of the tested setup. 

Analysis of the metatranscriptomes revealed many differentially expressed genes. Comparing the 

R. erythropolis ACN1 transcriptome with the metatranscriptome, number of differentially expressed 

genes per species increased from 23 (4 up- and 19 downregulated) to 113 (72 up- and 41 

downregulated). Presumably, cross-feeding and metabolic networks across different community 

members contribute to these differences (274–277). Although these effects could hinder the fast 

identification of novel biocatalysts, they allow insights into microbial interaction. In addition, the here 

presented approach may increase knowledge on resistance mechanisms. An example can be seen for 

Cupriavidus (species #3) with several upregulated cytochrome c-related genes. Nitrile-induced 

inhibition of cytochrome c oxidases has been proposed for eukaryotes (Chapter 2.3), but mode of 

action in prokaryotes is unknown. The metatranscriptomic data solidify assumptions on similar 

mechanisms in bacteria as overexpression of these essential genes may help to compensate the 

inhibition. In addition to putative resistance mechanisms, a highly upregulated nitrilase-encoding gene 

was identified. It can be assumed that this enzyme acts on acetonitrile, making it the first nitrile-

degrading biocatalyst discovered by a transcriptomic approach. Nevertheless, further characterization 

of the respective enzyme is necessary to confirm this assumption. For that purpose, the previously 

established high-throughput assay can be used (Chapter 3.3), as it would allow the fast and simple 

screening of the putative nitrilase with several substrates. 

In conclusion, the here presented screening demonstrates the potential of differential 

metatranscriptomics. Although first analysis revealed just two enzymes involved in nitrile degradation, 

valuable insights into cross-feeding and putative resistance mechanisms were obtained. In addition, 

analysis of upregulated hypothetical proteins and screening with a high-throughput nitrilase assay 

could lead to identification of novel biocatalysts. Screening of nitrilases was challenging due to toxicity 

of the substrate, but should be simple for other compounds like lipids, alcohols, or esters. Therefore, 

this approach might lead to identification of several novel classes of biocatalysts and is a promising 

method to support the demands and goals of green chemistry. 
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