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ANALISA ISYARAT FREKUENSI TINGGI ANTARA LALUAN 

PAKEJ CIP UNTUK PAKEJ BERBILANG CIP 

 

ABSTRAK 

Pakej berbilang cip telah menjadi satu bentuk adat integrasi dalam banyak 

alat elektronik yang canggih dan berprestasi tinggi. Penggunaan luas teknologi ini 

disumbangkan terutamanya oleh kelebihan penggunaan kuasa lebih rendah, integrasi 

heterogen bagi berbilang teknologi proses silikon dan penghasilan, masa-ke-pasaran 

yang lebih pendek dan kos yang lebih rendah. Walau bagaimanapun, ketumpatan 

tinggi halaan cip dalam pakej akan mendatangkan isyarat cabaran unik apabila 

digandingkan dengan kadar data beroperasi tinggi. Menangani isu yang betul pada 

peringkat awal rekabentuk adalah penting untuk mengelakkan keperluan untuk 

merekabentuk semula. Oleh itu, dengan tujuan untuk mewujudkan garis panduan 

rekabentuk untuk membolehkan saluran pakej berbilang cip berprestasi tinggi, kajian 

ini memberi tumpuan kepada analisis isyarat pakej laluan cip antara peranti silikon 

dalam pakej berbilang cip. Dalam kajian ini, kualiti isyarat dan sensitiviti margin 

mata dinilai dari 2.5 GHz ke 7.5 GHz. Kesan gelombang mikro didapati 

mendominasi komponen talian penghantaran yang mengakibatkan kemerosotan 

kualiti isyarat. Faktor limit utama seperti kesan cakap silang gandingan, pantulan 

isyarat dan kehilangan bergantung frekuensi yang menyebabkan kemerosatan kualiti 

isyarat telah dikenal pasti dan dikategorikan mengikut frekuensi operasi (2.5 GHz – 

7.5 GHz) dan panjang saluran (3 mm – 30 mm) untuk pertimbangan rekabentuk 

masa depan pakej berbilang cip. Selain itu, pelbagai teknik pasif yang berkuasa 

rendah, iaitu persamaan dan penamatan, telahpun dikaji untuk memulihkan isyarat 



xv 
 

kelajuan tinggi dalam pakej berbilang cip. Tambahan pula, keberkesanan teknik 

pemulihan isyarat kelajuan tinggi juga dikaji dan dibandingkan dari segi prestasi 

terlajak. Keputusan simulasi menunjukkan topologi yang dicadangkan mampu 

mencapai isyarat kualiti yang bagus, iaitu 300mV/40ps pada kelajuan 15Gbps. 

Gabungan siri sumber penamatan dan penamatan selari beban didapati adalah satu 

pendekatan yang baik dan kriteria yang penting (dari segi keseimbangan antara 

prestasi dan kos silikon) untuk merealisasikan isyarat kelajuan tinggi dalam pakej 

berbilang cip.  
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HIGH FREQUENCY SIGNALING ANALYSIS OF INTER-CHIP 

PACKAGE ROUTING FOR MULTI-CHIP PACKAGE 

 

ABSTRACT 

Multi-Chip Package (MCP) is becoming a customary form of integration in 

many high performance and advanced electronic devices. The vast adoptions of this 

technology are mainly contributed by the advantages for instance lower power 

consumption, heterogeneous integration of multiple silicon process technologies and 

manufacturers, shorter time-to-market and lower costs. However, the high density 

inter-chip I/O routing within package will presents unique signaling challenges when 

coupled with high operating data rate. Tackling the right issue at early design stage is 

essential to avoid the pitfall of redesign. Thus, with the aim to establish the design 

guideline to enable high performance MCP channel, this research focuses on the 

signaling analysis of the inter-chip I/O package routing between silicon devices in 

MCP. In this study, signal quality and eye margin sensitivity were evaluated from 2.5 

GHz up-to 7.5 GHz. The microwave effect is found dominating the transmission line 

component that resulted in signal quality deteriorations. Key limiting factors such as 

crosstalk coupling effects, signal reflections and frequency dependent losses that 

caused signal quality degradations were identified and categorized from 2.5 GHz to 

7.5 GHz with channel length of 3 mm to 30 mm for future MCP design 

considerations. Moreover, various low power passive signaling enhancement 

techniques i.e. equalization and termination to mitigate the signal integrity challenges 

of the high speed on-package inter-chip channels has been analyzed. The 

effectiveness of various signaling enhancement techniques and topologies were 
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studied and compared in terms of eye opening and overshoot performance. 

Simulation results show the recommended topology is able to achieve 300mV/40ps 

eye opening at 15 Gbps. The combination of series-source termination and parallel-

load termination was found to be a good approach in view of optimum trade-off 

between performance and silicon area or cost.  
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  CHAPTER 1

INTRODUCTION 

 

1.1 Background  

Microelectronic packaging technology has advanced rapidly over the past 

twenty years to keep pace with the demands of emerging business market segments 

driven by mobility applications such as smart-phones, tablets, ultra-small form factor 

laptops and personal computers (Kong et al., 2011). Market forces such as declining 

computer prices, increased user experience via miniaturized devices with increased 

functionality, wireless connectivity bandwidth, and longer battery life will continues 

to be the important trend in mobile computing (Ang, 2012). These trends result in the 

pressure on component and platform-level solutions to provide smaller packages, 

denser, and higher-bandwidth interconnect solutions. High density and small form-

factor requirements push package level transmission lines to a very small cross 

section and the insertion loss becomes a dominant part of the whole system loss 

budget. Enabling high data rate turns package interconnect into transmission line 

with higher ISI that distort the transmitting signal with noises.  

Multi-chip package (MCP) is regards as the alternative solution to meet the 

next generation mobility application requirements. In (Ang, 2012), the state-of-the-

art of MCP has been discussed. In general, MCP is the preferred solution from total 

die cost ownership compare to single chip solution. In addition, MCP finds its niche 

in packaging as transitory stage between product needs and chip integration through 

insertion of several dies into the same package that allows much faster introduction 
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of the product into the market compared to integrating all the desired functions on a 

new single chip. Timely introduction is essential since the highest profit margins are 

always achieved in the early stages of the product life cycle.  

1.2 Motivation and Problem Statement 

MCP provides solution for miniaturization (high-density package-routing) yet 

high computing performance requirement (increased data rate, increased IO count), 

by shortening the inter-chip distance to suppress the impacts of delay and high-speed 

effects. Nonetheless, increase core frequency and routing density will continue to be 

the trend in digital design. The increased in processing speed in MCP has brought the 

challenges of power delivery and thermal management due to multiple heat sources. 

The package design challenges and thermal management on MCP and the potential 

solutions to meet all design constraints have been addressed in (Boon Howe Oh et 

al., 2006). In addition, high density routing is unavoidable due to the confined 

package gap (typically in the range of millimeters) between the silicon devices. Due 

to the physical limitation of inter-chip spacing, imposed by technology and finite 

form-factor of a chip, combination of high density inter-chip package routing and 

increased operating frequency presents unique signaling challenges. In fact, our 

simulation shows that closed eye was obtained as MCP was transitioned from 1 GHz 

to 2.5 GHz.  The transmission lines suffer from the inter-symbol interference (ISI) 

when frequency goes higher, which can be a limiting factor for pushing ultra-high 

on-package communication bandwidth. Thus, this leads to a finite maximum 

achievable data rate offered by the MCP solution. Owing to this, a systematic 

analysis that allows identifying the maximum bandwidth per interconnection density 

for different types of transmission lines has been presented in (Víctor H. Vega-

Gonzalez et .al, 2009) (G. Katopis et al., 2004) . Besides, the maximum system 
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frequency as a function of line length, type of driver and noise in MCP has also been 

developed in (Claudio Truzzi et al., 1997).  

Their analysis, however, considers only the uniform transmission channel 

which comprise of striplines or microstrip lines in single ended or differential 

configurations. Element such as discontinuity and crosstalk due to non-ideal 

characteristic of the transmission channel such as bump break out/break in region are 

not being considered. In fact, overall system performance is largely depends on the 

interaction between various component that comprises the I/O channel (driver, bump 

break out, main route, bump break in, and receiver). In addition, identify the 

underlying root cause of the overall system failure and solving these problems before 

they occur will eliminate having to deal with them further into the project cycle, and 

will in turn cut down the development cycle and reduce the cost (Ang, 2012) 

Therefore, with the aim to establish a design guideline that extend and ensure 

robust high performance for next generation MCP implementation, this scenario 

necessitates a comprehensive signaling analysis of the inter-chip I/O package 

interconnection that addresses the electrical performance challenges and the 

underlying root cause of the system failure in MCP by taking into consideration of 

the full I/O transmission channel effects. 
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1.3 Objectives 

The main aim of this research is to enable next generation high-speed MCP 

channel. Figure 1.1 shows the topology of the MCP channel assessed in this thesis.  

 

Figure 1.1: MCP Channel 
 

The following research objectives have been identified to achieve the aim:  

o To analyze the signal integrity of the inter-chip I/O routing in MCP as 

frequency surged. 

o To examine the key challenges and limiting factors that constraint the 

enabling of high-speed inter-chip I/O routing in MCP.  

o To investigate the dominant factors in accordance to operating frequency and 

package channel length for future MCP design references. 

o To establish a design guidelines to extend the system bandwidth functions 

favorably under the next generation MCP operating frequency (>2.5 GHz). 

1.4 Contribution 

This research addressed the challenges posed by the effort to enable multi-

gigahertz-MCP channel. Comprehensive SI analysis of MCP channel has been 

performed and published in ASQED 2012.  

Key challenges and root causes were identified and discussed. The 

knowledge of the root causes were translated into an effective signal enhancement 
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strategy that extend the bandwidth of the MCP channel. Hence, significant time can 

be saved by concentrating on the potential solution instead of trial-and-error search, 

and turns complex signal integrity problems into a practical design solution.  

Furthermore, a new design criterion for gigahertz highly-coupled inter-chip 

I/O routing in MCP has also been established. Both source and load termination is 

another essential criteria to extend the bandwidth of the MCP channel, besides the 

standard high-speed design criteria reported in (Víctor H. Vega-Gonzalez et al., 

2009) (Bogatin, 2003), for instance: Type of topology (point-to-point), interconnect 

(stripline), bus architecture (single-ended, unidirectional), and termination scheme 

(source-series termination).  

In addition, the findings in this research could be leveraged as the technology 

readiness analysis for the next generation MCP design implement in Broadwell Intel 

Processor (Mark Bohr, 2011). Thus, shorten the overall design cycle and allow faster 

time-to-market in order to achieved highest profit margins in the early stages of the 

product life cycle. 
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1.5 Scope of Research 

In this research, the industrial designed MCP channel was leveraged as the 

reference to examine the design guideline that enable higher data-rate MCP channel. 

The examined MCP channel is a single-ended-unidirectional bus with point-to-point 

stripline routing. Besides, the bus was source on-die termination, and no equalization 

scheme was adopted. Likewise, this architecture was examined to take advantage of 

higher maximum achievable data-rate per unit area as reported in (Víctor H. Vega-

Gonzalez et al., 2009).  

In addition, this research focuses on the signal qualities analysis from the 

perspectives of eye opening margins and the reliability consideration indicated by the 

amount of signal overshoot/undershoot. This research was only focus on signal 

quality of one net (reflection), including bandwidth limitation (by driver, 

interconnect losses, and the receiver), and cross talk between multiple nets. Other SI 

issues such as rail collapse in the power and ground distribution, and electromagnetic 

interference (EMI) and radiation from the entire system will be consider in the future 

work. 

Furthermore, the range of operating frequency and inter-chip length 

enveloped in the analysis were confined to 2.5 GHz, 5 GHz, 7.5 GHz with three 

inter-chip length ranging from 3 mm, 15 mm, 30 mm - sufficient for a typical MCP 

design – and only focus on data bus. Driver and receiver models which are 

specifically compatible with the next generation MCP speeds were not readily 

available. Therefore, both driver and receiver were assumed CMOS, and the 

operation remains as source synchronous to take advantage of low-power high-speed 

design (Bogatin, 2003). Besides, signaling enhancement scheme such as termination 
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scheme and equalization was assessed. We focus on the passive signaling 

enhancement techniques instead of active to take advantage of lower power overhead 

but with the trade-off of chip area. Nonetheless, package design/stack up was not 

being analyzed in this research. This is due to the growth of package technology is 

much slower compare to the advancement of silicon technology. Therefore, similar 

package stack up will usually be leveraged for few generations until new package 

technology is mature to be deployed. Besides, information of the package stack-up 

contains sensitive propriety information about the current technology adopted by the 

Intel that is not allowed to be disclosed.  

1.6 Thesis Organization 

An overview of the examined MCP channel architecture, together with the 

theoretical knowledge that was required for this thesis work was first presented in 

Chapter 2.  The methodology to realize this research towards achieving the 

research’s aim was highlighted in Chapter 3. Chapter 4 presented the SI analysis to 

determine the origin of signal distortion mechanisms (reflection, crosstalk, 3-db BW) 

associate to the MCP channel.  In Chapter 5, sensitivity analysis was performed to 

determine the root cause of signal degradations. Besides, a set of termination and 

equalization schemes were also analyzed and compared. The findings were then 

being compiled and translated into a set of design guideline for the enabling of next 

generation MCP implementation as detailed in the last section of Chapter 5. Chapter 

6 concluded the thesis work and discussed possible future directions. 
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  CHAPTER 2

LITERATURE REVIEW 

 

2.1 Introduction  

This chapter provides the essential theoretical background (based on the 

materials in (Bogatin, 2003) and (Hall, Hall, & Mccall, 2000)), and the related work 

from literature to gain better understanding of this thesis. In section 2.2, the basic 

principle of digital system and the challenge in modern digital design were recap. 

The background of MCP technology and the fundamental of SI were presented in 

section 2.3 and section 2.4. The related work for modeling, signaling analysis, and 

the enhancement techniques were reviewed in section 2.5 and section 2.6.  

2.2 Modern High-Speed Digital Design 

In this section, the basic principle of digital system was first recap. Then, the 

trend and challenges in digital design were introduced.  

2.2.1 Basic Principle of Digital System 

The basic idea in digital design is to enable the right communication between 

devices with signals representing 1s or 0s (digital symbol). The medium connecting 

the devices and allow the signal to be transferred between devices is known as 

interconnects or sometime refer as transmission channel. This includes the entire 

electrical pathway from the chip sending a signal to the chip receiving the signal.  

Ideally, receiver will switch high as long as the input voltage exceed a 

threshold voltage (Vref), and switch low as long as the input voltage falls below the 
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threshold voltage. This threshold voltage associates to the silicon that makes the 

transistor. However, due to the fact that the characteristic of the silicon varies with 

temperature, supply voltage, silicon process, and other variables, there are usually 

high-and low-voltage thresholds, known as Vih and Vil, associated with the 

receiving silicon, above which and below which a high or low value can be 

guaranteed to be received under all conditions.  

Figure 2.1 illustrates the difference between the actual and ideal case of the 

digital system. Thus, the main objective of digital design is to ensure that the system 

can, under all conditions, deliver high voltages that do not, even briefly, fall below 

Vih, and low voltages that remain below Vil, by controlling the integrity of the data.  

 
Figure 2.1: Ideal versus actual signal threshold 

 
Once the receiver has been switched, it needs to sample the signal in order to 

obtain the binary encoded information. The data sampling process is usually 

triggered by the rising edge or the falling edge of a clock signal. Data must arrive at 

the receiving gate on time and settle down to a non-ambiguous logic state when the 

receiving component starts to latch in, defined by setup and hold time. Any delay of 
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the data or distortion of the data waveform will result in a failure of the data 

transmission. Imagine if the signal exhibits excessive ringback into the logic gray 

zone while the sampling occurs, then the logic level cannot be reliably detected. 

The minimum time required for a signal is limited by the minimum time 

requires performing all the operations in one cycle. Usually, there are three main 

factors that contribute to this minimum time: the intrinsic time for all the gates that 

need to switch in series, the time for the signals to propagate through the system to 

all the gates that need to switch, and the setup and hold times needed for the signals 

at the inputs to be read by the gates (Bogatin, 2003).  

For source synchronous operation and if sources of signal distortion are 

absence, the main factor determine the unit interval (UI) of a symbol (minimum time 

of a symbol) is the setup and hold times needed for the signals at the inputs to be 

read by the gates. In actual case, however, due to imperfection of the system such as 

finite signal rise time, random and deterministic noise in the channel, the UI is 

usually larger to accommodate those impacts. At the same time, to enable lower 

power and higher data rate operation, the voltage level and the minimum time per 

symbol need to be reduced, which means shrink in noise and timing budgets. This 

scenario illustrates the challenges face in modern low-power high-speed digital 

design where magnitude of noises needs to be confined within the reduced timing 

and voltage budget of a system.   

2.2.2 Trend in Digital System  

The dominant factor influencing the minimum cycle time is the switching 

speed of the transistors. If the switching time can be reduced, the minimum total time 

required for one cycle can be reduced. This is achieved by continue reducing the 
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transistor feature size, i.e. shorten the gate channel length of transistors to enable the 

transistor to switch faster. Furthermore, the smaller the chip size, the more chips can 

be fit on a wafer and the lower the cost per chip. Thus, chip-fabrication factory can 

increase the overall yield. Therefore, it is inevitable that as transistor feature size 

continues to reduce, rise time will continue to decrease and clock frequencies will 

continue to increase. The projections from the 2001 Semiconductor Industry 

Association (SIA) International Technology Roadmap for Semiconductors (ITRS) 

for future on-chip clock frequencies, based on projected feature size reductions, 

compared with the Intel processor trend are shown in Figure 2.2. This shows the 

projected trend for clock frequency increasing at a slightly diminishing but still 

growing rate for the next 15 years as well.  

 

Figure 2.2: Trend in the clock frequency processors and the Semiconductor Industry 
Association roadmap expectations (Bogatin, 2003). 

 
 

2.2.3 Design Challenges 

As shown in previous section, core frequency will continue to increase, faster 

data rates will be demanded from the buses that feed the information from/to the 

core. This means only a short time is left for the signal to be in transition, and the 
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rise-times will continue their inevitable march toward shorter values. In most high-

speed digital systems, the time allocated to the rise time (RT) is about 10% of the 

clock cycle time (Bogatin, 2003). Based on this generalization, the RT is roughly 

related to the clock frequency by Equation 2.1: 

                                            
 

           
                                                   (2.1) 

The consequence is, signal integrity (SI) problems will get more severe. It is 

unavoidable that as RT decrease, the noise problems will increase and be more 

difficult to solve. Shrink in timing budget together with increase in SI problems are 

the design challenges need to be overcome in order to continue Moore’s law. SI 

problems may become the bottleneck of the overall system performance. Thus, this 

scenario necessitates the SI analysis to be performed during the early design phase to 

ensure reliable high-speed data transmission.   

2.3 Multi-Chip Package (MCP) 

In this section, the background of MCP technology as well as the type of bus 

architecture was recap. 

2.3.1 MCP Technology 

MCP is an electronic module system where multiple bare die are packaged on 

a single substrate as shown in Figure 2.3. It has emerged as another compelling 

solution to enable high performance and power efficient electronic devices e.g. 

tablets, smart-phones and small form-factor laptops. Besides, it is also driven by the 

product definition, time-to-market, reusability as well as cost as the main driver. The 

advantages of MCP implementation are summarized as follows:  (Ang, 2012) 



13 
 

o Lower Cost: Fewer packages with few numbers of leads, a simplified board 

layout, and the feasibility of mixed technologies in the same package results 

in cost saving. 

o Lower Power Consumption: Lower I/O drive strength configuration is 

required for inter chip transfer within the same package.  

o Higher Integration Density: Allow substitution of several packages for one 

slightly larger but single package, and will either free board real estate for 

other use or help reduce the board size. 

o Time-to-Market: Allows much faster introduction of the product into the 

market compared to integrating all the desired functions on a new single chip 

via insertion of several dies into the same package.  

Figure 2.3: Top and side view of MCP 
 

2.3.2 Overview of Bus Architecture 

In general, there are two type of buses, multi-drop and point-to-point bus. 

Traditional multi-drop buses, such as Peripheral Component Interface (PCI), have 

moved to point-to-point links, such as PCI-express, RapidIO interconnect and 

Redwood parallel interface (Zhang, 2009). The reason is that multi-drop buses suffer 

from impedance mismatches which limit the switching frequencies, and the 

capacitive loading and stub effects which limit the bus scalability. As opposed to 
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multi-drop buses, point-to-point links provide tight control of electrical parameters of 

the bus and therefore enable higher operating frequencies.  

Point-to-point links can be serial links or parallel buses. Parallel buses can 

provide higher bandwidth by increasing clock frequency or the width of the bus, and 

it has lower latency because the drivers and receivers are simple. However, the 

number of pins available limits the bus width, and routing can be challenging since 

signal trace lengths have to precisely match the length of clock trace. Compared with 

parallel buses, serial links use fewer pins and avoid the trace-matching problem by 

embedding clock into data stream. By doing this, the component costs and board 

layout complexity are reduced. One of the disadvantages of serial links is the large 

latency introduced by complex transceivers, serialization/deserialization, 

encoding/decoding and clock recovery. Over the last decade, serial links have all but 

replaced parallel buses for high speed chip-to-chip and backplane communication. 

High-speed serial signaling over transmission lines is a robust, power-efficient 

alternative to global parallel buses. Serial signaling removes the requirement to 

match multiple bus lines. Properly designed PCB traces form low loss transmission 

lines, and offer propagation speeds close to the speed of light. Serial links based on 

transmission lines allow higher data rates, yet generate less noise and are less prone 

to interference than parallel buses. (M. P. Flynn et al., 2005) 

In addition, bus can be common-clock or source synchronous bus. Common-

clock bus is replaced by source synchronous bus to take advantage of significant 

increase in maximum bus speed. Strobe and data signal are sent from the same 

driver. Therefore, internal propagation delay in driver circuit and flight time are 

theoretically no longer a factor in the timing equation for the source synchronous 

bus, therefore it free-up the timing budget. The maximum bus speed is now limited 
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by the receiver setup and hold time, difference between data and strobe signal, and 

the manifestation of the transmission line effects. Figure 2.4 shows the block 

diagram of a source synchronous and common-clock bus.  

 

Figure 2.4: Block diagram of a source synchronous (left) and common-clock (right) 
bus (Hall, Hall, & Mccall, 2000). 

 
 

2.4 Signal Integrity (SI)  

In this section, the understanding of SI, and the theoretical basis of 

transmission line were recap.  

2.4.1 What is Signal Integrity 

SI problems relate to all the problems that arise in high-speed products due to 

the interconnects i.e. how the physical interconnects - interact with the digital 

signal’s voltage and current - screw up pristine signals coming from the integrated 

circuits (Bogatin, 2003). SI addresses two concerns in the electrical design aspects, 

the timing and the quality of the signal. The goal of SI analysis is to ensure reliable 

high-speed data transmission. 
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When SI problems happen and the system noise margin requirements are not 

satisfied then it will cause logic error and results in system failure. These types of 

noise faults are extremely difficult to diagnose and solve after the system is built or 

prototyped. Understanding and solving these problems before they occur will 

eliminate having to deal with them further into the project cycle, and will in turn cut 

down the development cycle and reduce the cost (Chou, 1994). In general, there are 

three ways in which the electrical properties of the interconnect can affect system 

performance: by degrading timing, by introducing excessive noise, and by radiating 

enough to exceed an Electro Magnetic Interference (EMI) compliance test. All of the 

signal integrity problems fall into one of the following categories: timing, noise and 

EMI (Bogatin, 2003). Furthermore, signal-integrity noise problems are related to one 

of the following four unique families of noise sources: 

1. Signal quality of one net, including losses on the line 

2. Cross talk between two or more nets, including ground and power balance 

3. Rail collapse in the power and ground distribution 

4. Electromagnetic interference and radiation from the entire system 

 

2.4.2 What is Transmission Line  

Transmission Line Properties 

A transmission line is a new ideal passive circuit element with very different 

properties compare to other ideal passive element such as resistors, capacitors, and 

inductors. It comprises two conductors, i.e. the signal path and the return path where 

electric field is established (Bogatin, 2003). The basic electrical characteristics that 

define a transmission line are its characteristic impedance and time 

delay(                     

           
 ), whereas other passive circuit elements are characterized 
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by impedance alone. In addition, unlike other passive element, signal will propagate 

in transmission line - it takes time to travel down the line at the propagation velocity 

depends on the surrounding medium – and will reflect when encountered any 

impedance changed during its propagation.  

Transmission Line Structures 

The two most common types of transmission lines used in digital designs are 

microstrips and striplines. A microstrip is typically routed on an outside layer of the 

PCB and has only one reference plane. There are two types of microstrips, buried 

and nonburied. A buried (sometimes called embedded) microstrip is simply a 

transmission line that is embedded into the dielectric but still has only one reference 

plane. A stripline is routed on an inside layer and has two reference planes. Figure 

2.5 represents a PCB with traces routed between the various components on both 

internal (stripline) and external (microstrip) layers. 

 
 

Figure 2.5: Type of transmission line structure (Hall, Hall, & Mccall, 2000) 
 

2.4.3 SI Problem – The Cause of Eye Collapsed 

The theoretical understanding of the sources of eye collapsed such as 

reflection, line losses, crosstalk as well as the intersymbol interference (ISI) 

mechanism were reviewed in this section. 
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2.4.3.1 Reflections 

When the signal leaves the output driver, the voltage and the current, which 

make up the signal, see the interconnect as an electrical impedance. If the impedance 

the signal sees stays the same, the signal continues undistorted. If, however, the 

impedance changes, the signal will reflect from the change and continue through the 

rest of the interconnect with a different amplitude. This can be at the ends of lines or 

wherever the topology of the line changes, such as layer change through a via, 

through a connector, a branch, tee, or stub, corner, a gap in return-path plane, line-

width change, etc. The locations where the instantaneous impedance changed are 

called impedance discontinuities. The amount of signal that reflects depends on the 

magnitude of the change in the instantaneous impedance as illustrated in Figure 2.6.  

 

Figure 2.6: Incident signal, reflected signal, and transmitted signal 

Reflections give rise to degradation in timing and signal quality such as 

ringback, overshoot and undershoot. The overshoot, when the signal level exceeds its 

steady state value, can cause device reliability issue. The undershoot, when the signal 

level drops or ring back, can eat into the noise budget and contribute to false 

triggering. One example of the reflection noise generated from impedance 

discontinuities at the ends of a short-length transmission line is shown in Figure 2.7.  

Z1 Z2 

𝑉𝑖𝑛𝑐𝑖𝑛𝑑𝑒𝑛𝑡 𝑉𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑉𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 

Discontinuity 
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Figure 2.7: (a) Reflection noise and (b) eye diagram at the receiver end of a 5mm 
interconnect created because of impedance mismatches and multiple reflections 

 
 

Two coefficients describe the reflection activity as shown in Equation 2.2 and 

Equation 2.3: 

a) Initial voltage,           launched to the transmission line. 

                                       
  

     
                                           (2.2) 

b) Reflection coefficient,   describes the fraction of the voltage that reflects 

back to the source.  

                   
          

          
   

     

     
                                          (2.3) 

c) Transmission coefficient,   that describes the fraction of the incident 

voltage that is transmitted through the interface into the second region. 

          
            

          
     

  

     
                                    (2.4) 

where: 

          = the reflected voltage 

           = the incident voltage 

             = the transmitted voltage 

   = the instantaneous impedance of the region where the signal is initially 

   = the instantaneous impedance of the section where the signal just enters 

   = the driver source impedance 

  = the reflection coefficient 

  = the transmission coefficient 

(a) (b) 
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To avoid reflection, the goal is to keep the instantaneous impedance the 

signal sees as constant as possible. The important strategy to minimize impedance 

changes and reflection noise are: 1. Keep the instantaneous impedance of the line 

constant. 2. Manage the impedance changes at the ends of the line with a termination 

strategy. 3. Maintain a linear routing topology with no branches or stubs. 4. 

Minimize any geometry discontinuities (Bogatin, 2003). 

2.4.3.2 Line Loss (Component Bandwidth) 

Practical transmission lines have significant losses. If the losses were 

independent of frequency, low-frequency components were attenuated the same as 

high-frequency components. Then, the entire signal waveform would uniformly 

decrease in amplitude, but the rise time would stay the same, and that effect may not 

be a concerned as it could be compensated with some gain at the receiver.  

Nonetheless, the losses associate to the real lossy transmission line is 

frequency dependence. When the signal propagates down the real lossy transmission 

line, frequency dependence loss causes amplitudes of the higher-frequency 

components being reduced and the low-frequency components stay about the same 

(Bogatin, 2003). This results in reduction of the signal bandwidth which means the 

rise time of the signal has increased. The fundamental problem caused by lossy lines 

is rise-time degradation, which appears as deterministic jitter and may results in ISI 

as operating frequency surged. Figure 2.8 shows the collapsed eye diagram, and 

increased jitter (indicated by the widening of the cross-over regions) for the same 30 

mm line operating at 5 GHz waveform, with and without losses.  
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Figure 2.8: Eye diagrams of 30 mm interconnect line at 5 GHz transmission rate. 
Left: Ideal loseless line. Right: Real lossy transmission line.  

 

There are five ways energy can be lost to the receiver while the signal is 

propagating down a transmission line (radiative loss, coupling to adjacent traces, 

impedance mismatches, conductor loss, and dielectric loss) that explicates the origin 

of the line loss. In spite of everything, conductor loss is the primary loss mechanisms 

cause the attenuation in transmission line (Bogatin, 2003). 

The frequency dependence of skin depth,    is account for the frequency 

dependence resistance which account for the conductor loss, not the resistivity of 

copper which is very constant across frequency (Hall, Hall, & Mccall, 2000). At a 

high frequency, the cross section through which current will be flowing in a copper 

conductor is in a thickness approximately equal to the  . At higher frequencies, the 

current in each conductor wants to spread out as far apart as possible to minimize the 

partial self-inductance of each conductor, and simultaneously, the oppositely directed 

current in each conductor will move as close together as possible to maximize the 

partial mutual inductance between the two currents. Therefore, at higher frequencies 

the current will be using a thinner section of the conductor, and this explains the 

resistance of the conductor at high frequency is higher than at low frequency.  
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2.4.3.3 Intersymbol Interference (ISI) 

ISI is a significant contributor to signal distortion in any high-speed design, 

especially so when the period is smaller than two times the delay of the transmission 

line (Hall, Hall, & Mccall, 2000) (Bogatin, 2003). If the rise time were short 

compared to the bit period, there would be no ISI. ISI noise occurs when signal is not 

fully settled before the next transition. For instant, signal is transmitted down a 

transmission line and the noise on the bus due to reflections, crosstalk, or previous 

signal have not stabilized and reached the final value/settled completely, the signal 

launched onto the line will be affected, degrading both the timing and the signal 

integrity margins.  

In addition, the degree of ISI from losses and other effects, such as capacitive 

discontinuities of vias, will collapse the eye diagram. The time for the signal to reach 

the switching threshold will change depending on the previous data pattern. If the 

transmitted signal in displayed in an eye diagram where each bit is overlaid with the 

previous one, synchronized to the clock, a distorted eye with large jitter and 

interference is observed as shown in Figure 2.9. If there is no ISI, the eye pattern will 

be perfectly open. In other words, each bit, no matter what the previous pattern was, 

would look the same and be identical to the previous bit. Its eye diagram would look 

like just one cycle. If the eye collapses more than the noise margin of the receiver, 

the bit error rate will increase and may cause faults.  
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Figure 2.9: ISI occur when a signal is transmitted down a transmission line where 
previous signal have not stabilized and reached the final value/settled completely 

 
2.4.3.4 Crosstalk between Nets 

Crosstalk is an effect where an unwanted signal from one net is transferred to 

an adjacent net. Crosstalk happens between the signal and return paths of one net and 

the signal and return paths of a second net. The entire signal-return path loop 

accounts for the crosstalk, not just the signal path. When one net carries a signal 

(aggressor net), some of this voltage and current can pass over to an adjacent quiet 

net (victim net), and appear as unwanted noise. Crosstalk can cause two detrimental 

effects, and is depends on total coupled length. First, crosstalk will change the 

performance of the transmission lines in a bus by modifying the effective 

characteristic impedance and propagation velocity, which will adversely affect 

system-level timings and the integrity of the signal. Additionally, crosstalk will 

induce noise onto other lines, which may further degrade the signal integrity and 

reduce noise margins. These aspects of crosstalk make system performance heavily 

dependent on data patterns, line-to-line spacing, and switching rates (Hall, Hall, & 

Mccall, 2000). 

Various terminologies have been used to describe crosstalk between 

transmission lines. For the sake of studying the crosstalk mechanism, we define 

forward crosstalk to be the crosstalk coincident with wave propagation. Hence, the 



24 
 

forward crosstalk does not depend on termination conditions. On the other hand, 

backward crosstalk is defined to represent any coupling due to reflection, so it is a 

direct function of line impedance and termination conditions. We reserve NEXT and 

FEXT to be the total coupled or net voltage from the forward and backward crosstalk 

components at the source-end and load-end of the victim line, respectively (Oh et al., 

2011). 

The origin of crosstalk is illustrated as follows. When a signal propagates 

down a transmission line, there are electric-field lines between the signals and return 

paths and rings of magnetic-field lines around the signal and return path conductors. 

These fields are not confined to the immediate space between the signals and return 

paths. Rather, they spread out into the surrounding volume. We call these fields that 

spread out fringe fields. Fringe fields drop off very quickly as we move farther away 

from the conductors. Neighbor quiet transmission lines are being coupled through 

mutual capacitor - between every pair of sections of the transmission lines - and loop 

mutual inductor - between every pair of signal- and return-loop sections - if they are 

at the vicinity of the fridge field. When the signal voltage and current in the active 

line changes or the electric and magnetic fields changes, unwanted signal is coupled 

to the quiet line by the flow of the noise-current through the mutual capacitor, and is 

induced in a mutual inductor (Bogatin, 2003). 

Crosstalk occurs in two different environments: when the interconnects are 

uniform transmission lines, as in most traces in a circuit board, and when they are not 

uniform transmission lines, as in connectors and packages. When the return path is a 

wide, uniform plane, as is the case for most coupled transmission lines in a circuit 

board, the capacitively coupled current and inductively coupled currents are of the 

same. When the return path is not a wide uniform plane, but is a single lead in a 
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