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REKABENTUK PENGUBAH PLT TANPA TERAS UNTUK APLIKASI 
PENUKAR AT-AT JAMBATAN-PENUH 

   ABSTRAK 

Tesis ini membentangkan sebuah pengubah papan litar tercetak (PLT) tanpa teras 

yang dibangunkan untuk aplikasi penukar arus terus (AT) kepada (AT) jambatan-

penuh. Dalam dekad yang lalu, pengubah PLT tanpa teras telah digunakan dalam 

aplikasi frekuensi tinggi. Telah didapati bahawa pengubah ini mempunyai ciri-ciri 

yang bagus dalam julat frekuensi tinggi dan tidak berguna pada frekuensi yang lebih 

kecil daripada 300-400 kHz. Selepas satu dekad menggunakan pengubah PLT tanpa 

teras disebabkan beberapa masalah seperti faktor gandingan yang rendah, kebocoran 

kearuhan yang tinggi dan gandaan voltan rendah, prestasi pengubah ini merosot. 

Objektif yang paling penting dalam tesis ini adalah pengubahsuaian reka bentuk, 

meningkatkan prestasi dan meningkatkan kecekapan tenaga kedua-dua pengubah 

PLT tanpa teras dan penukar balik AT kepada AT jambatan-penuh. Berdasarkan 

objektif-objektif ini, sebuah pengubah injak turun PLT tiga lapisan tanpa teras telah 

dipilih untuk direkabentuk dan disimulasi dengan menggunakan perisian CST Studio 

3D. Pengubah ini boleh digunakan untuk kedua-dua isyarat dan pemindahan kuasa 

pada tahap kuasa yang rendah. Dalam kes ini, terdapat dua belitan utama dan 

sekunder yang dihubungkan secara siri. Di samping itu, kajian ini juga meningkatkan 

penukar balik AT kepada AT jambatan-penuh frekuensi tinggi dengan menggunakan 

peranti pensuisan kelajuan tinggi. Penukar yang telah direkabentuk beroperasi dalam 

julat frekuensi MHz. Dengan meningkatkan frekuensi pensuisan, komponen magnet 

yang besar dan sebahagian daripada alatan penukar akan dikurangkan. Julat voltan 

masuk bagi penukar telah diubah dari 10 – 30 V DC dengan voltan bekalan namaan 

sebanyak 30 V. Dalam usaha untuk meningkatkan kecekapan tenaga dan 



xvii 
 

mengurangkan kadar kehilangan, pensuisan voltan sifar (PVS) telah digunakan di 

dalam penukar ini. Kecekapan tenaga pengubah maksimum yang direkabentuk telah 

dikenal pasti sebanyak 82% pada frekuensi 1 MHz dan ia juga telah ditunjukkan 

bahawa kecekapan adalah lebih daripada 75% di dalam lingkungan voltan 10-30 V.  
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DESIGN OF CORELESS PCB TRANSFORMER FOR A FULL-BRIDGE DC-
DC CONVERTER APPLICATION 

ABSTRACT 

This thesis present acoreless Printed Circuit Board (PCB) transformer developed for 

a full-bridge direct current (DC) to DC converter application. During the last decade, 

the coreless PCB transformer was used in high frequency applications. It was found 

that these transformers have good features in high frequency range and not useful at 

frequencies smaller than 300-400 kHz.After one decade of utilizing coreless PCB 

transformers due to some problems such as low coupling factor, high leakage 

inductance and low voltage gain, the performance of these transformers reduced. The 

most important objectives of this thesis are modification of the design, improve 

performance and increase energy efficiency of both coreless PCB transformer and 

full-bridge DC-DC converter. Based on these objectives, a three layer coreless PCB 

transformer is chosen to be designed and simulated by using CST Studio 3D 

software. This transformer can be employed for both signal and power transfer at low 

power level. In this case, there are two primary and two secondary windings that they 

are connected in series. In addition, this research also improves a high frequency full-

bridge DC to DC converter using high speed switching devices. The designed 

converter operates in MHz frequency region. By increasing the switching frequency, 

the size of bulky magnetic components and parts of the converter is reduced. The 

input voltage region of converter is varied from 10-30V DC with a nominal supply 

voltage of 30V. In order to improve energy efficiency and reduce losses, the zero 

voltage switching (ZVS) technique was used in this converter. The maximum energy 

efficiency of the designed converter is identified to be 82% at a frequency of 1 MHz 

and it is also shown that the efficiency is more than 75% in the voltage range of 10-

30V. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

In linear traditional power supply design a bulky power transformer typically 

used to provide isolation and to reduce a voltage from AC sources. The operating 

frequency of the power transformer applied in this power supply is at around 50/60 

Hz owing to which it is heavy in weight and bulky in size. The linear power supply is 

regarded as an inefficient ways of transferring the signal/power from the primary 

side to the loads due to the losses caused by series pass elements and bulky 

transformer. In order to decrease losses in the bulky transformer and converter there 

is an increasing demand to propose a high frequency transformer for instance to 

reduce size, cost and weight in the converter. In this research, a coreless PCB 

transformer for a full-bridge DC-DC converter application is designed and 

developed. In this process, in order to operate at high frequency and provide suitable 

isolation between primary and secondary part, a high frequency transformer has been 

applied instead of the low frequency power transformer. In Figure 1.1 the basic block 

diagram which relates to the high frequency DC-DC converter is described. In this 

case, the DC voltage switched on and off by fast power MOSFETs is fed to the high 

frequency transformer as shown in Figure 1.1. 
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Figure 1.1: Schematic of offline switch mode power supply (SMPS) (Kotte, 
2011) 

This high frequency square wave signal is then fed to the primary source of 

the transformer and a suitable voltage magnitude which corresponds to the turn’s 

ratio appears on the secondary side of the high frequency transformer. 

 

1.2 Problem Statement  

The factors such as compactness and high power density in power converter 

cause to increase the operating frequency and the use of PCB transformer. The 

coreless PCB transformers have great potential in applications in which space 

requirement and height have to be met. Moreover, the most advantages of coreless 

PCB transformer are given as follows: (Tang et al., 1998) 

i. It has full automation and simple manufacturing process 

ii. Coreless PCB transformers have good features in high-frequency 

operations 

iii. It does not have any magnetic core, core losses and manual winding 

process. 
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iv. Primary and secondary windings of transformer can be printed on a 

double-sided PCB easily. 

Nonetheless, after one decade of utilizing these transformers due to some 

problems, the performance of coreless PCB transformers reduced. The more apparent 

problems and challenges of coreless printed circuit board (PCB) transformers are 

given as follows: 

i. Low coupling factor 

ii. High leakage inductance  

iii. Low voltage gain 

In addition, challenges like having more layers and being expensive are other 

problems involved in multi-layer coreless PCB transformer. In addition, as frequency 

of the converter is increasing, consumption of the gate drive power and switching 

losses of the power converter are also increased.  

Therefore, in this thesis the effort to improve the performance of both 

coreless PCB transformer and full-bridge DC-DC converter by modification of the 

design of previous transformers and power converters will be carried out. 

1.3 Research Questions  

Based on the research problem, this thesis will attempt to answer some 

questions such as: 

1) How the coupling factor is improved? 

2) How the leakage inductance is reduced? 

3) How the layers of coreless PCB transformer are reduced? 
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4) How the design of high frequency full-bridge DC-DC converter is 

modified? 

 

 

1.4 Research Objectives  

The main objective of this research is modification of the design coreless PCB 

transformer for a full-bridge DC to DC converter application. In addition, the 

specific objectives of this thesis are given as follows: 

1) To modify the design of the coreless PCB transformer for DC to DC 

converter application 

2) To improve the performance of the coreless PCB transformer  

3) To characterize the S-parameters of the coreless PCB transformer 

4) To design the high frequency full-bridge DC-DC converter using 

coreless PCB transformer 
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1.5 Research Methodology 

In order to achieve the objectives of this research, design of a coreless PCB 

transformer which is used for a full-bridge DC-DC converter application is modified 

and developed. At first, a novel three-layer PCB transformer is designed and 

simulated by using Computer Simulation Software (CST) Studio 3D software as a 

simulation tool, in order to characterize Scattering parameters (S-parameters) to 

describe electrical behavior. After the successful assessment of the coreless PCB 

transformer applying the simulation tool, a high speed full-bridge DC-DC converter 

is designed and implemented by using coreless PCB transformer. The results of this 

research are divided into three major parts. The first part is the simulation results of 

coreless PCB transformer. The second part is where the real prototype CLPCB 

transformer and full-bridge converter is experimented and tested for its performance. 

The third part is the analysis results of the proposed power converter. Finally, the 

conclusion Chapter gives a summary of work and also some recommendations for 

future works.  
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Figure 1.2: Flowchart of research methodology 
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1.6 Structure of Thesis  

This thesis includes five chapters. The thesis is planned as follows: 

Chapter 1: In this chapter, a brief introduction about advantages of coreless PCB 

transformer, problem statement of coreless PCB transformer, research questions, 

research objectives and research methodology have been presented. At the end of this 

chapter, research framework is given. 

Chapter 2: This chapter covers literature review which is related to the multi-

layered coreless PCB transformer and also high frequency DC-DC power converter. 

In addition, some techniques to improve energy efficiency power circuit are 

presented. In this chapter also a summary of previously published work is given.  

Chapter 3: In this chapter the theory and design method of coreless PCB 

transformer and full-bridge converter in details are explained. Also, in order to 

develop coreless PCB transformer and full-bridge converter, some techniques are 

employed.  

Chapter 4: This chapter presents simulation, experimental and analysis results for 

coreless PCB transformer and full-bridge converter. Then, all simulation, 

experimental and analysis results are discussed.   

Chapter 5: A summary of this dissertation is given in this chapter and also suggests 

some area which is advantageous in improving the proposed design in the near 

future.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1  Introduction 

This Chapter revolves around the overview of the study that has been done on 

the coreless PCB transformer and its related literatures, which have been reviewed 

and consulted to achieve the objectives of this research. This Chapter will discuss 

about characterization of the multi-layer coreless PCB transformer and high 

frequency DC to DC power converter and also the employed techniques to improve 

energy efficiency and reduce manufacturing cost, size and losses.  

2.2   Introduction Characteristics of Coreless PCB Transformer 

Transformers have been proposed and generally employed over the last 

century; they are employed for energy transfer, signal coupling and electrical 

isolation. Usually, a transformer includes of copper windings wound of magnetic 

cores. In order to provide suitable paths for magnetic flux, ferromagnetic materials 

are used to make magnetic cores. They decrease the leakage inductance and provide 

a large degree of magnetic coupling. The operating frequency, application and power 

to be transferred can be considered to select the type of core in the design process. 

Nowadays the operating frequency of numerous switched mode power supplies has 

been considerably increased some hundreds kilohertz or up to few megahertz. 

Coreless PCB transformer consists of spiral windings which are printed on the PCB 

laminate. By employing printed planar windings as a replacement for twisted coil, it 

is possible to fabricate transformers with precise parameters. 
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The coreless PCB transformer includes of three parts: the primary winding, 

the secondary winding and the dielectric laminate. Transformer can be fabricated on 

the same circuit board with other electronic elements. It can also be built as a stand-

alone component if desired. Coreless PCB transformers do not have limitations 

related with magnetic cores, for instance the frequency limitation, core losses and 

magnetic saturation. (S. Yipeng et al., 2012) 

During the last decade, the use of PCB coils has been treated in some works. 

Most of them examine the planar transformers with core. Several of works study the 

PCB coils from different points of view. Most of the coreless PCB transformer 

applications given in the literature are for low output power, normally driving 

MOSFET transistors.  

The coreless PCB transformers are not useful at frequencies smaller than 300-

400 kHz, and it has good characteristics in the high frequency range from a 500 kHz 

to a few megahertz. Normally, at frequencies less than 300 kHz, the value of 

magnetizing reactance is too low, as a result current of the primary winding is too 

large and the voltage gain is low. 

It is possible to achieve coreless PCB transformers without core with high 

voltage gain, high coupling factor, and low radiated EMI challenges, as will be given 

in this Chapter.  

By using an external capacitor across the secondary winding in the PCB 

transformer, high voltage gain can be obtained. The external capacitor can also be 

achieved the resonant influence of the inductive components of the transformer and 

provide high voltage gain.  
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Exact characterization and modeling of PCB transformers is very significant 

for designing these transformers with electronic circuits. This Section covers features 

related to characterization of PCB transformers and behavior of these transformers 

under operating frequency and different load conditions.     

A set of two different circular spiral step-down transformers which were 

fabricated in the four layered PCB was presented. Moreover, the coreless PCB 

transformers modeled with assistance of high frequency equivalent circuit. Figure 2.1 

shows the high frequency equivalent circuit of transformer. (Ambatipudi., 2010) 

 

Figure 1.1: CLPCB transformer high frequency model (Ambatipudi et al., 2010) 

 

As shown in Figure 2.1, a parallel load across the secondary winding has 

been employed. The electrical and initial parameters of CLPCB (Coreless PCB) 

transformer have been defined as follows:   

PR  :     Primary winding resistance; 

SR  :     Secondary winding resistance; 

lkpL  :    Leakage inductance of primary; 
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lksL  :    Leakage inductance of secondary; 

LR  :    Load resistance; 

Cr  :    Resonant Capacitor; 

mpL  :   Primary Mutual inductance; 

msL  :    Secondary Mutual inductance; 

mL  :     Mutual inductance; 

PSC  :   Inter-winding capacitance; 

According to high frequency equivalent circuit of transformer, parameters 

such as leakage and primary/secondary inductance, AC resistance, coupling 

coefficient, transfer function, input impedance, and resonant frequency can be 

obtained as follows: (Ambatipudi et al., 2010)  

The transformer’s leakage inductance is expressed by Equation (2.1): (Ambatipudi et 

al., 2010) 

                   W

=
502

50
V
V

f
L dut

lk p                                                                 
)1.2(  

Where,                lkL  = Leakage inductance 

 f  = Resonant frequency 

dutV  = Voltage across the device under test  

W50V  = Voltage across the 50 Ω resistor 
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And also, the primary and secondary leakage inductance of the transformer is 

given by (2.2) (2.3): (Hwang, 2001) 

                      lkpmpP LLL +=                                                                  )2.2(  

                      lksmsS LLL +=                                                                )3.2(  

The mutual inductance '' mL  between the transformer’s primary and 

secondary is the geometric mean of the primary and secondary mutual inductances 

'' mpL and '' msL . (Hwang and Ahn, 2001) 

                        msmpm LLL ´=
                                                           

)4.2(  

The AC resistance of the transformer is given by (2.5): (Hsu, 2005) 

                         ))/exp(1( dd h
hRR DC

AC --
=

                                             
)5.2(  

 

Where,   DCR  = DC resistance of the winding 

h  = Height of the conductor 

d  = Skin depth 

The skin depth equation is given by equation (2.6): (Majid, 2011) 

                                    msp
d

f
1

=                                                             (2.6) 

Where, f  = Resonant frequency  

m  = Permeability of the medium 
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s  = Conductivity  

Coupling coefficient: the coupling coefficient is given by (2.7): (Erickson and 

Maksimović, 2001) 

                                Sp

m

LL
LK

´
=

                                                     
)7.2(  

Here, '' mL is the mutual inductance between the primary/secondary windings 

and '' PL / '' SL  the primary/secondary winding self-inductances.  

 

Figure 2.2: PCB transformer high frequency equivalent circuit referred to primary 
(Ambatipudi et al., 2010) 

 

The related parameters such as transfer function of the coreless PCB 

transformer under load condition H (f) and input impedance ( inZ ) of the transformers 

determine the operating frequency of these transformers. According to the high 

frequency equivalent circuit shown in Figure 2.2 these equations are obtained as 

follows: (Tang et al., 2000)(S. Djuric et al., 2012) 
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Here, ''n is the ratio of the transformer’s turn 
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Theoretically the resonant frequency of PCB transformer depends on 

equivalent capacitance and inductance of transformer model and is presented by the 

following equations: (Tang et al., 2000) 

                                    eqeq
r CL

f
´

=
p2

1

                                                      
)21.2(  

Where 

                                    lkpmplkseq LLLL += '
                                                      

)22.2(  

                                    mplks

mplkp
lkseq LL

LL
LL

+
+=

.'

                                                   
)23.2(  

                                    '' PSreq CCC +=                                                             )24.2(  

 

It determines that resonant frequency can be limit by equivalent capacitance 

and inductance of circuit model. The value of resonant capacitors across the 

secondary winding will play an important role in the bandwidth of the transformer. 

The intra-winding capacitances of transformer are very small and can be ignored. 

Energy efficiency: (Sagneri et al., 2010) 
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)26.2(  

Where,        pV    =    Instantaneous primary voltage across the primary winding 
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SV  = Instantaneous secondary voltage across the secondary winding 

pi  = Instantaneous current through the primary winding of the transformer 

Si   = Instantaneous current through the secondary winding of the transformer 

T   = Period of a cycle where fT /1=  

f   = Resonant frequency of the transformer 

Therefore, transformer energy efficiency can be expressed by (2.27): (Sagneri et al., 

2010)  

                                     
%100´=

in

out
meas P

P
h

                                            
)27.2(  

In this research, it was found while the secondary winding is sandwiched 

between two primary windings and also by increasing the transformer’s turn number, 

the coupling coefficient is increased. It was proven that the coreless PCB 

transformers are extremely energy efficiency and can be employed in SMPS for 

signal/power transfer applications in MHz region. (Ambatipudi et al., 2010) (A. 

Bouabana et al., 2012) 

2.3    Characterization of Coreless PCB Transformer 

Tang (2000) presented how to characterize multilayered coreless PCB 

transformers. In addition, different geometrical parameters for a range of coreless 

transformers were evaluated. Based on an analytical process, the inductive 

parameters of multilayered coreless PCB transformers were calculated. It was also 

found that the inductance parameters of printed transformers depend on: 

i. Number of turns (N); 
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ii. Transformer outermost radius (r); 

iii. Laminate thickness (z); 

iv. Conductor width (w);and 

v. Conductor thickness (h).  

The coreless PCB transformer was tested in the frequency range of 100 kHz 

to 30 MHz frequency. As a result, the measured frequency aspects indicate the 

inductive parameters do not varies with frequency extremely.(Tang et al., 2001a) 

2.4      High Frequency DC-DC Power Converter 

DC-DC Power converter is an electronic circuit which convert a source of 

direct current (DC) from one voltage level to another. In modern applications, factors 

such as power density and transient response are significant in operating of DC-DC 

power converters. With the increase of switching frequency of the converter, the size 

of the passive elements such as transformers, inductors and capacitors are reduced. 

These results in the increasing of energy efficiencies of the converter and power 

density (the amount of power) of converter can be obtained. (J. Pejtersen et al., 2012) 

(V. Madhuravasal et al., 2012) 

2.5      Switching Form of Power MOSFET 

The basic form of a switching power MOSFET consisting of a gate driver IC 

is described in Figure 2.3. Figure 2.3 describes the power MOSFET form including 

the parasitic elements for instance the drain-source, gate-source, gate-drain 

capacitances which all have an important effect on the switching behavior regarding 

switching transients.    
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Figure 2.3: Power MOSFET switching model with the gate drive IC (Davis, July 
2004) 

'' SL and '' dL  are the parasitic inductances regarding to the MOSFETs while 

'' gR  is the internal resistance having a significant effect on the dtdv /  of MOSFET 

and the switching transients. The gate-drain capacitance, '' GDC  which is nonlinear 

regarding gate-source and drain voltages, produces the famous Miller Effect by 

which the MOSFET’s switching speed is determined. (Balogh., 2011) 

Generally, due to high capacitance at the MOSFET’s gate including gate-

drain '' GDC  and gate-source '' GSC  capacitances, high current is required to turn the 

device on and off.        

2.6      Benefits of Raising Switching Frequency 

There are different kinds of isolated converters for instance single ended and 

double ended topologies (fly-back and forward), half and full bridge that the main 

common feature of them is that their switching frequency is limited at the range 

between 100 kHz-1 MHz. On the other hand increasing the switching frequency of 

the converter has a direct effect on decreasing the passive elements size e.g. 
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capacitors, inductors and transformers. This increases the converter power density 

which brings the converter higher energy efficiencies. In addition to the mentioned 

benefits, as the switching converter’s frequency increases the converter’s closed loop 

response could be significantly bettered. As discussed earlier, increasing converter’s 

switching frequency could lead to higher efficiency, compact and lightweight of the 

converter.  

The essential switching frequency and the harmonic frequencies 

correspondingly which produce the electromagnetic noise, might interfere with other 

electronic elements in its neighborhood, for this reason the choice of switching 

frequency plays a significant role in this state. For instance in the situation that 

switching frequency is in the 530-1710 KHz range, the interference would suffer the 

AM radio receivers. The interference from the signal can be removed by means of a 

switching frequency which is beyond the frequency range of AM radio receiver. 

(Kotte., 2011) 

2.7     Full-Bridge Converter Operation 

The full bridge converter is shaped employing the four power Switches: Q1, 

Q2, Q3 and Q4. Figure 2.4 displays the basic configuration of a full-bridge power 

converter with four Switches using high frequency model of coreless PCB 

transformer. There are four modes of operation: (1) mode (1) when power Switches 

Q1 and Q4 are on, while Switches Q2 and Q3 are off; (2) mode 2 when all power 

Switches are off; (3) mode 3 when Q1 and Q4 are off, while Switches Q2 and Q3 are 

on; and (4) mode 4 when all power Switches are off. Power Switches are switched on 

and off consequently to provide a square wave ac at the primary side of the 
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transformer.The output voltage is stepped down (or up), rectified and then filtered to 

provide a dc voltage on output. (Muhammad., 2004) 

 

Figure 2.4: Schematic of the full bridge DC-DC converter using high frequency 
coreless transformer model (Saleem et al., 2011) 

Mode 1. In this mode both switches Q1 and Q4 are turned on then the voltage across 

the secondary winding is given by equation (2.28): (Muhammad., 2004) 
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The voltage across the output inductor Lf is given by (2.29): (Muhammad., 2004) 
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The inductor current 1Li increases linearly at a rate of: (Muhammad., 2004) 
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Which gives the peak inductor current )( pkLfI at the end of this mode at t=kT as given 

by (2.31): (Muhammad., 2004) 
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Mode 2. This mode is valid for .2/TtkT £<  In this mode all power switches are 

off, while Df  is forced to conduct the magnetizing current at the end of mode 1.  

Mode 3 and 4. During mode 3, switches Q2 and Q3 are on, while switching devices 

Q1 and Q4 are off. The voltage across the primary PV is SV . The output voltage is 

given by (2.32): (Muhammad., 2004) 
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Which gives OV as 
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The full-bridge converter is designed and used for high power applications ranging 

from several hundred to thousand kilowatts. 

2.8     Resonant Switch: 

A resonant switch is a sub-circuit including resonant elements, rL and rC and 

a semiconductor switch S. The switch S can be employed by bidirectional or 

unidirectional switch, which controlsthe operation mode of the resonant switch. Two 

forms of resonant switches, comprising zero-voltage (ZV) resonant switches and 

zero-current (ZC) resonant switches are displayed in Figures 2.5 and 2.6 

respectively. 
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(a) (b) 

Figure 2.5: Zero-voltage (ZV) resonant switch 

 

(a) (b) 

           Figure 2.6: Zero-current (ZV) resonant switch. 

 

2.8.1    ZV Resonant Switch: 

In a ZV resonant switch for attaining zero voltage switching (ZVS), a 

capacitor rC is connected in parallel with the power switch S. The voltage across the 

capacitor Cr can oscillate easily in both negative and positive and half-cycle if the 

switch S is a unidirectional switch. Therefore, the resonant power switch can operate 

in the mode of full-wave.The resonant capacitor voltage is clamped to zero during 

the negative half-cycle by the diode which is connected in anti-parallel with the 

unidirectional power switch. The resonant power switch will then operate in the 

mode of half-wave. The main objective of a ZV resonant powerswitch is to employ 
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the resonant circuit to shape the power switch voltage waveform during the off time 

to provide a zero-voltage switching condition for the power switch to turn on. 

2.8.2     ZC Resonant Switch 

For achieving zero-current switching (ZCS) in a ZC resonant switch, an 

inductor rL is connected in series with a switch S.The power switch current is 

permitted to resonate in the positive half cycle only if the power switch S is a 

unidirectional switch. The resonant power switch is said to operate in the mode of 

half-wave. The power switch current can flow in both directions by a diode which is 

connected in anti-parallel with the unidirectional power switch. Thus, the resonant 

power switch can operate in the mode of full-wave. The power switch current will 

increase gradually from zero at turn-on. Due to the resonance between Cr and Lr, it 

will then oscillate. Lastly, the power switch can be commutated at the next zero 

current duration. The main objective of this kind of switch is to shape the power 

switch current waveform during conduction time to provide a zero-current condition 

for the power switch to turn off. 

2.9      S-Parameters 

S-parameters (Scattering parameters) define the electrical behavior of linear 

electrical networks. In this Section, an introduction of S-parameters is presented. S-

parameters denote the ratio between incident voltage and reflected voltage. The S-

parameters are measured by sending a signal frequency into a network and detecting 

what waves exit from each port. Figure 2.7 shows a network with just two ports and 

the related s-parameters. The power, voltage, current can be considered to be in the 

form of waves travelling in both directions. (Franz Sischka., 2002) 
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Figure 2.7: Schematic of a network with just two ports (Franz Sischka., 2002) 
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For a wave incident on Port 1, some part of this signal reflects back out of 

that port and some part of the signal exits on the other ports. The parameter S11 refers 

to the power reflected from port 1.  The scattering parameter S11 is the ratio of the 

two wave b1/a1.  The parameter S11 is described is Figure 2.8. (Franz Sischka., 2002) 

 

Figure 2.8: Schematic of S11 parameter 

 

The parameter S12 refers to the power transmitted from port1 to port2. The 

parameter S21is refers to the power transmitted from port2 to port1. The parameter 


	COVER
	Thesis part 1
	thesis part 2
	3.2.2     Full-Bridge Converter


