
DESIGN AND SIMULATION OF AN INTELLIGENT ADAPTIVE

ARBITER FOR MAXIMUM CPU USAGE OF MULTICORE

 PROCESSORS

 MOHAMMAD NISHAT AKHTAR

UNIVERSITI SAINS MALAYSIA

2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/225563358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DESIGN AND SIMULATION OF AN INTELLIGENT ADAPTIVE

ARBITER FOR MAXIMUM CPU USAGE OF MULTICORE

 PROCESSORS

by

 MOHAMMAD NISHAT AKHTAR

Thesis submitted in fulfillment of the requirements

for the degree of

Master of Science

July 2013

 ii

ACKNOWLEDGEMENTS

First and foremost, All Praises be to Allah the Almighty, for delivering me the

patience, the potency and the guidance to conclude this thesis fruitfully.

I owe the greatest debt to my parents and all my relatives for not only their

never-ending affection, love and patience, but also their encouragement and

unconditioned support to me in all my decisions. Their guidance helped me to keep my

motivations high throughout my studies.

I would like to express my sincere gratitude and appreciation to my supervisor,

Professor Othman Bin Sidek for his guidance, supports, and motivations and above all

to offer me opportunity by accepting me as a Master’s student.

I am grateful to Miss. Asmah Mat Taib for translating abstract into bahasa melayu. I

thank all of my lab friends, my housemates Mr. Thaif, Mr. Manjur, Mr. Nazmul and all

staffs of University Sains Malaysia for their supports. I would also like to thank the

Institute of Postgraduate Studies (IPS) for their financial support by awarding me the

USM Research Scholarship.

Finally, I would like to thank all my family members in India, who always

inspired me to do something better and worked as a hidden power in all steps of my life.

Without their speechless indirect inspiration and given concerns from Allah, maybe I

would have diverted from my mission.

 iii

TABLE OF CONTENTS

 ACKNOWLEDGEMENTS...ii

 TABLE OF CONTENTS...iii

 LIST OF TABLES..viii

 LIST OF FIGURES...ix

 LIST OF ABBREVIATIONS.. xi

 ABSTRAK...xiii

 ABSTRACT...xv

CHAPTER 1- INTRODUCTION

1.1 Background 1

1.2 Research Objective 4

1.3 Thesis contribution 5

1.4 Thesis organization 6

CHAPTER 2- LITERATURE REVIEW

 2.1 Introduction 7

2.2 Related works 7

 2.3 Performance comparison of arbiters 14

 2.3.1 Turnaround time 14

 2.3.2 Response time 15

 iv

 2.3.3 Deadlines 15

 2.3.4 Predictability 15

 2.3.5 Processor utilization 15

 2.3.6 Fairness 15

 2.3.7 Average bandwidth utilization 15

 2.4 Arbitration techniques 15

 2.4.1 Static Fixed Priority (SFP) scheme 16

 2.4.2 Time Division Multiple Access (TDMA) arbitration 17

 2.4.3 Round Robin (RR) scheme 18

 2.4.4 Dynamic priority scheme 20

 2.4.5 Programmable priority scheme 20

 2.4.6 Static lottery bus architecture 21

 2.4.7 Lottery based arbitration algorithm 22

 2.4.8 Dynamic lottery bus architecture 24

 2.5 Granularity in multiprocessor scheduling 25

 2.5.1 Independent parallelism 25

 2.5.2 Coarse grained parallelism 26

 2.5.3 Very coarse grained parallelism 26

 2.5.4 Medium grained parallelism 26

 2.5.5 Fine grained parallelism 27

2.6 Design issues concerned with assignment of process to processors 27

 v

 2.6.1 Master/Slave architecture 28

 2.6.2 Peer architecture 28

 2.7 Importance of real-time computing for an arbiter 29

 2.7.1 Characteristic of real time computing 30

 2.7.1.1 Determinism 30

 2.7.1.2 Responsiveness 31

 2.7.1.3 User control 32

 2.7.1.3 Reliability 32

 2.7.1.4 Fail-safe operation 32

2.8 Thread scheduling for parallel implementation of tasks 35

 2.8.1 Gang scheduling 35

 2.8.2 Dynamic scheduling 36

 2.9 Summary 39

CHAPTER 3- METHODOLOGY

3.1 Introduction 40

3.2 Masters designed according to traffic behavior 40

 3.2.1 D_Type master 41

 3.2.2 DR_Type master 41

 3.2.3 NDR_Type master 42

 vi

3.3 Overview of STREAM 43

3.4 Intelligent Adaptive Arbitration (IAA) 45

3.5 Implementation of Masters using Intelligent Adaptive Arbitration 49

 3.5.1 D_Type master 50

 3.5.2 DR_Type master 51

 3.5.3 NDR_Type master 53

3.6 Overview of tools used to implement IAA 55

 3.6.1 SystemC processes 55

 3.2.1.1 Thread process 56

 3.2.1.2 Clocked thread process 56

 3.6.2 OpenMP 58

 3.6.3 Data sharing attributes of OpenMP 60

 3.6.3.1 Shared 60

 3.6.3.2 Private 60

 3.6.3.3 Default 60

 3.6.3.4 Firstprivate 60

 3.6.3.4 Lastprivate 61

 3.6.3.4 Reduction 61

3.7 Summary 61

 vii

CHAPTER 4- RESULTS AND DISCUSSION

4.1 Introduction 62

4.2 Experimental Setup 63

4.3 CPU utilization for stand-alone static fixed priority technique-

 Of stream 63

4.4 CPU utilization for the proposed IAA technique 65

4.5 Bandwidth and latency analysis 67

CHAPTER 5- CONCLUSION AND FUTURE WORKS

5.1 Conclusion 72

5.2 Future works 73

REFERENCES 74

APPENDIX

 viii

LIST OF TABLES

 Page

Table 3.1 Various implemented arbitration technique

38

Table 4.1

Table 4.2

Table 4.3

Table 4.4

CPU utilization for STREAM-standalone mode

CPU utilization for IAA technique

Allotted bandwidth values using RT_Lottery algorithm

Allotted bandwidth values using IAA technique

64

66

68

68

Table 4.5 Allotted bandwidth values using adaptive arbitration

69

 ix

LIST OF FIGURES

Page

Figure 2.1 Time Division Multiple Access

18

Figure 2.2 Simple round robin architecture

20

Figure 2.3 Lottery bus based architecture

21

Figure 2.4 Lottery based arbitration algorithm

23

Figure 2.5

Figure 3.1

Lottery bus architecture

D_Type master

24

41

Figure 3.2 DR_Type master

42

Figure 3.3

Figure 3.4

NDR_Type master

Connectivity of different masters to the arbiter

42

43

Figure 3.5 Arbiter location in a shared memory system

45

Figure 3.6

Figure 3.7

Flowchart of the proposed IAA algorithm

Pseudo code for arbiter

47

49

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Outlook of the architecture

Pseudo code for D_Type master

Pseudo code for DR_Type master

Pseudo code for NDR_Type master

50

51

53

54

Figure 3.12 Bus controller for micro controller application

57

Figure 3.13 Implementation of OpenMP

59

Figure 4.1 CPU utilization (Standalone mode using static fixed priority

technique)

65

Figure 4.2

CPU utilization (IAA technique)

66

 x

Figure 4.3 Bandwidth allotment for conventional arbiter and intelligent

adaptive arbiter

69

Figure 4.4 Bandwidth fluctuation rate 70

Figure 4.5 Bandwidth fluctuation rate 70

Figure 4.6 Variation in Latency

71

 xi

 LIST OF ABBREVIATIONS

 AA Adaptive Arbitration

 ATM Asynchronous Transfer Mode

 CPU Central Processing Unit

 DARPA Defence Advanced Research Projects

 EE Express Edition

 FIFO First in First Out

 FPGA Field Programmable Gate Array

 IAA Intelligent Adaptive Arbitration

 IC Integrated Circuit

 IP Intellectual Property

 LRU Least Recently Used

 MPSoC Multi Processor System on Chip

 MTD Multi Threaded Debug

 NoC Network on Chip

 ISR Interrupt Service Routine

 RAG Round Robin Arbiter Generator

 RR Round Robin

 SFP Static Fixed Priority

 STREAM Sustainable Memory Bandwidth in High Performance Computers

 TDMA Time Division Multiple Access

 xii

 LIST OF PUBLICATIONS

Journals:

1. M. Nishat Akhtar and O. Sidek, “ An Intelligent Adaptive Arbiter for Maximum

CPU Utilization, Fair Bandwidth Allocation and Low Latency”, in IETE Journal of

Research- (in Press,Under issue preparation) (ISI cited publications).

2. M. Nishat Akhtar and O. Sidek, “An Accommodative Adaptive Arbitration

Algorithm for Maximum CPU Utilization, Fair Bandwidth Allocation and Low Latency”

in Journal of Networking Technology. PP 71-80.

Book Chapter

1. M.Nishat Akhtar and O.Sidek, “An Adaptive Arbitration Algorithm for Fair

Bandwidth Allocation, Low Latency and Maximum CPU Utilization”, Part I, CCIS 293,

pp. 330–343, 2012. © Springer-Verlag Berlin Heidelberg 2012.

Conferences:

1. M. Nishat Akhtar and O. Sidek, "An arbiter with fair bandwidth allocation and low

latency for real time computing system," in 3rd International Conference on Computer

Technology and Development, 2011,(Paper Selected for ASME) pp. 189-195.

2. M.Nishat Akhtar and O.Sidek, “An intelligent arbiter for fair bandwidth

allocation,” presented at the 9
th
 IEEE SCORED 2011, pp. 322-327.

3. M.Nishat Akhtar and O.Sidek, “An Intelligent Arbiter for Maximum CPU

Utilization, Fair Bandwidth Allocation and Low Latency:Survey”, in IEEE-CSPA-

2012. PP 266-271

 xiii

 REKABENTUK DAN SIMULASI PENGADIL ADAPTIF CERDIK BAGI

PENGGUNAAN MAKSIMUM CPU PEMPROSES MULTIKOR

ABSTRAK

Teknologi terkini dalam dunia mikro dicampur dengan cip yang kompleks yang

menggabungkan pelbagai pemproses khusus untuk keperluan pengiraan tertentu. Oleh

itu, dalam mana-mana sistem memori yang dikongsi, teknik arbitrasi memainkan

peranan yang penting untuk memperuntukkan akses kepada sumber-sumber yang

dikongsi bersama. Cabaran utama ditangani dalam penyelidikan yang dicadangkan

adalah pencapaian penggunaan CPU maksimum dengan mengeksploitasi teras

berganda dengan bas sederhana peruntukan jalur lebar dan sistem kependaman rendah.

Dalam usaha untuk menangani masalah-masalah yang tersebut di atas, satu teknik

arbitrasi penyesuaian pintar telah dicadangkan untuk unit-unit tuan direka mengikut

tingkah laku trafik aliran data. Cadangan teknik arbitrasi penyesuaian pintar

dilaksanakan menggunakan STREAM, yang merupakan program penanda aras sintetik

yang mengukur kadar pengiraan dan jalur lebar memori mampan. Dari segi analisis

prestasi, teknik arbitrasi yang dicadangkan itu telah dibandingkan dengan teknik

arbitrasi baru-baru ini, seperti teknik penyesuaian arbitrasi, loteri arbitrasi bas dinamik,

pusingan robin arbitrasi dan statik arbitrasi keutamaan tetap. Bagi meningkatkan

penggunaan CPU dan pengoptimuman jalur lebar, teknik arbitrasi yang dicadangkan

itu telah dimodelkan menggunakan benang SystemC dan OpenMP menggunakan

kaedah pengaturcaraan selari bagi membolehkan pengkomputeran pelbagai teras.

Beberapa teknik arbitrasi baru-baru ini mencapai bas adil peruntukan jalur lebar

sehingga sedikit tetapi gagal untuk mencapai penggunaan CPU maksimum, sebagai

 xiv

pemproses menghabiskan 95-96% daripada masa mereka terbiar dan menunggu untuk

cache tersasar akan berpuas hati. Teknik arbitrasi yang dicadangkan adalah kes yang

kuat memihak kepada penggunaan CPU maksimum dan pengoptimuman jalur lebar,

kerana ia menggunakan teras pemproses sehingga 74% dan juga mengurangkan jalur

lebar turun naik serta kependaman.

 xv

DESIGN AND SIMULATION OF AN INTELLIGENT ADAPTIVE ARBITER FOR

MAXIMUM CPU USAGE OF MULTICORE PROCESSORS

ABSTRACT

 The recent technology in the world of microprocessor is blended with complex chips

that incorporate multiple processors dedicated for specific computational needs. Therefore, in

any shared memory system, an arbitration technique plays an important role to allocate access

to the shared resources. The major challenge dealt in the proposed research is the achievement

of maximum CPU utilization by exploiting its multiple cores with moderate bus bandwidth

allocation and low system latency. In order to tackle the aforesaid problems, an intelligent

adaptive arbitration technique has been proposed for the masters designed according to the

traffic behaviour of the data flow. The proposed intelligent adaptive arbitration technique is

implemented using STREAM, which is a synthetic benchmark program that measures

computational rate and sustainable memory bandwidth. In terms of performance analysis, the

proposed arbitration technique has been compared with the recent arbitration technique, such as

adaptive arbitration technique, dynamic lottery bus arbitration, round robin arbitration and static

fixed priority arbitration. To enhance the CPU utilization and bandwidth optimization, the

proposed arbitration technique has been modelled using SystemC and OpenMP threads using

the method of parallel programming to enable multi-core computing. Some recent arbitration

technique achieves fair bus bandwidth allocation up to some extent but fails to achieve

maximum CPU utilization, as the processor spends 95-96 % of their time idle and waits for

cache misses to be satisfied. The proposed arbitration technique is a strong case in favour of

maximum CPU usage and bandwidth optimization, as it consumes the processor cores up to

74% and also reduces the bandwidth fluctuation as well as latency.

CHAPTER 1

INTRODUCTION

1.1 Background

An arbiter is considered to be an electronic device which allocates access to the shared

resources. In an environment of multi-core systems, the common bus of the system-on-

chip (SoC) is the sharing resource which is shared by multiple cores of the master. An

arbiter plays a crucial role when it comes to granting an authority to utilize the shared

resource efficiently. It ensures that at a time, at least one master gets access to the bus by

observing the number of request issued by different number of masters during any cycle.

It samples the multiple requests and decides which master should be given access to the

shared bus.The main aim of an arbitration process is to assign processes to be implemented

by the processor in such a manner that it meets the objectives such as efficient processor

utilization, bandwidth optimization and low latency. As the technology is scaling towards

the deep submicron, the feasibility for the integration of multiple processors on a chip is

becoming possible. Every year, more amount of transistors are made compatible to fit

on a single die, which adverts Moore’s law. The decrement in the dimensional size of

the transistor has led to new views of on chip design. For every new design, the com-

munication policy between different Intellectual Property (IP) plays an important role, as

the communication methodology increases exponentially with decreasing dimensions of

the transistor. In such kind of scenario, arbitration technique becomes complex, as the

smaller feature increases the functionality which can be embedded on a single chip. In

order to avoid scaling problem and to link different functional units of the system, a bus

type structure is required for a chip. However the bus is designed in such a way that it can

handle only finite functional units due to the limiting bandwidth factor and less processor

support but an adept effort is being put in order to find numerous solutions to this prob-

1

lem by optimizing the bus bandwidth and increasing the CPU utilization using parallel

programming.

An arbiter should be designed in such a way that it should be able to exploit the mul-

tiple cores of the processor because the earlier designed arbiters used sequential program-

ming method in a single core environment. With an increasing consumer desire, the single

core products have started showing decrement in the product performance. In order to

tackle this problem, the feature of multi-core processing is recognized as a key component.

In order to meet the users demanding requirements, the industry has taken the challenge

to increase the number of cores. For several years, the technology of dual core, quad and

octa core had been established, which is considered to be the beginning of a massive tech-

nological era which is about to arrive. However this has become a challenge not only for

the semiconductor industry, but also for the software and the system designers who made

them work. Writing applications, that are compatible to the system of parallel execution

is quite arduous but it is the only solution to make the arbitration technique effective. If

the system needs to obtain an optimal performance, then there is a requirement for a com-

plex changes to be made in both system and the software. Before the arrival of multi-core

technology, numerous efforts have been made in enhancing the performance for which

the approach used were brute force on a single core system. For instance, the designers

used to crank up the frequency, but on the other hand, with the increase in frequency, the

whole system used to become incompatible, as the improvement in the frequency penal-

izes power consumption, which in turn generates heat that needs cooling of an advanced

stage due to which the reliability decreases, and shortens the device life. These additional

problems increases the overhead cost of the whole system. Various techniques such as

pipelining and speculative execution does not generally scale up with the frequency of the

processor. On another instance, at certain levels an instruction pipeline possess an internal

clock requirements that cannot become compatible if the frequency of the processor clock

is increased. Therefore, this necessitates the requirement of additional stages of pipeline

2

process which in turn increases the number of cycles, that is required to perform the execu-

tion. On the other hand, it has been proven from Amdahl’s law that, if 90-95% of the task

is parallelized, then increment in the number of processor cores shows no improvement in

system speed [Amdahl, 1967]. Task parallelization in multi-core environment system is of

great need because doubling the core could only benefit the users, if the designers come

up with the program that is compatible to be executed in the multi-core environment by

using its resources to the maximum using an advanced arbitration technique.

An arbiter ensures compatibility between on-core speed with the off-core speed be-

cause a kind of memory wall starts building up if an enhancement in the on-core speed

is not compatible with the off-core and I/O subsystem [Bajrovic and Mehofer, 2009]. A

lower frequency bus matched with the higher frequency core will stall the system fre-

quently as the core waits for the data. These mismatches have been compensated till some

extent by implementing large and fast, on chip caches, but this cannot be a permanent

solution to the problem as by enhancing the size and increasing the on-chip caches, in-

creases both power consumption and the silicon size. The multi-core designs are used

as a standard design across the computing spectrum that consists of high-end systems,

such as huge servers, telecom infrastructure and supercomputers. Multi-core devices have

been in use for many years but in different forms, for instance in the form of uni or the

dual RISC cores inside QUICC Engine communication unit [Dumitrescu et al., 2006]. A

device that has a multiple cores with various types of instruction sets is known as hetero-

geneous device, where as homogenous multi-core devices has multiple identical cores in

it. In today’s scenario, the main focus is to create multi-core homogenous devices, but a

significant amount of advantage can only be gained by using accelerators and specialized

cores to shed the load from the main cores [Ebrahimi et al., 2012]. The central challenge

considered for multi-core environment is the task of parallelization [Singh and Rattan,

2003].In order to attain high degree of task parallelization, an arbitration technique plays

a major role by synchronizing the execution of multiple cores. However the concept of

3

parallel computation is not new for the industry but in order to implement a system which

becomes compatible to run in a parallel computing environment is quite arduous task.

Multi-core emphasizes more on data and task parallelism using fine arbitration technique

as it focuses on the sector where the software and the system design matters a lot.

An efficient implementation and design of an arbiter is considered critical for various

multi-core SoC designs. Usage of an arbiter not only includes the common multi-port

memory modules, communication routers, shared address and data buses but also the ap-

plications which are considered to be less obvious such as schedulers, semaphores, SoC

core allocators and instruction dispatchers. The significant and an essential problem for

the design of an arbiter resides in its efficiency. The difficulty arises to find a feasible

architecture that could optimize the bus bandwidth by the means of fair bandwidth allo-

cation to the requesting modules and by maximizing the CPU utilization, as the processor

spends more than 90% of its time in satisfying the cache misses [Mishra et al., 2004].

Therefore it is necessary to choose a parallel implementation that is able to arbitrate the

requests issued by different modules abruptly using the feature of maximum CPU utiliza-

tion and moderate bandwidth allocation. The design of an arbiter should be kept as simple

as possible but it is most important for an arbiter to ensure that it handles the critical path

in an efficient manner.

1.2 Research Objective

Increasing the number of cores on the processor is of no use to gain the system speed.

An arbiter is required which can exploit the multiple cores of the processor with a moderate

bandwidth allocation. Therefore a new arbitration technique is proposed which is called

an intelligent adaptive arbitration technique.

The performance of the new arbitration design is compared with other well known

arbitration policies for a bus based environment. Various arbitration techniques imple-

mented earlier lacks efficiency in terms of CPU utilization and moderate bus bandwidth

4

allocation, therefore it is essential to come up with an advanced arbitration technique. The

final design is modeled using SystemC and OpenMP tools which makes this arbitration

technique different.

A research study designed to implement the proposed arbitration technique has the

following research objective:

• To develop an arbitration technique which can exploit the multiple cores of the pro-

cessor using the method of multi-threading and parallel programming

• To ensure a moderate bus bandwidth allocation and low latency for the proposed

arbitration technique

1.3 Thesis contribution

The research builds upon previous and ongoing work on the recent arbitration tech-

niques. Earlier implemented arbitration techniques were unable to exploit the multiple

cores of the processor. However some of the arbitration techniques were fair in terms of

bandwidth allocation. The proposed approach differs with other arbitration techniques in

terms of CPU utilization with the use of parallel programming. In order to implement a

smooth arbitration, each master core has been synchronized with other cores. Since there

is a high degree of task parallelization, therefore there is a drastic decrement in the latency

too. To simulate the whole arbitration technique, tools like SystemC and OpenMP has

been used in a single environment.

The dissertation contributes to develop an advanced arbitration technique which en-

ables parallel programming using multiple cores of the processor by allocating each core

with moderate bandwidth. This arbitration technique also maintains low latency. The

proposed arbitration technique is known as intelligent adaptive arbitration.

5

1.4 Thesis organization

Chapter 2 discusses related works, which elaborates earlier implemented arbitration tech-

niques in detail. Chapter 3 introduces the proposed model, which describes the imple-

mentation of multiple master cores with each other by attaining a high degree of synchro-

nization. It also discusses the way systemC and OpenMP threads interact with each other.

Chapter 4 contains a detailed description of the obtained results, which consists of CPU

utilization rate, bandwidth allocation values and latency rate. Finally in Chapter 5, the

conclusions are given and some recommendations are made for future work.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, levels of arbitration techniques are discussed and a comparison is made

between a bus based arbiter and a network-on-chip (NoC) arbiter. General background of

arbitration techniques used by other researchers have been discussed. Performance com-

parison of arbiters and earlier implemented arbitration techniques are discussed in more

detail. Granularity in multiprocessor scheduling environment is elaborated so as to get an

overview of synchronization between multiple master core with each other, so that they

can be arbitrated parallely. Allotment of process to processors are discussed. This ensures

each master/parent process to keep a local copy of its address before execution to enable

smooth arbitration without getting stalled. Finally, the need and importance of real-time

computing and thread scheduling for an arbiter is discussed in which its characteristics

and methods are elaborated.

Section 2.2 discusses related works of various arbitration techniques. Section 2.3 de-

scribes performance comparison of arbiters. Section 2.4 shows earlier implemented arbi-

tration techniques. Section 2.5 discusses granularity in multiprocessor scheduling. Section

2.6 discusses design issues concerned with assignment of processes to processors. Section

2.7 discusses some of the characteristics of real-time computing system and section 2.8

discusses thread scheduling for parallel implementation of task.

2.2 Related works

There are several arbitration schemes that are commonly used in bus based communica-

tion architectures. To reduce the time complexity of the whole operation numerous re-

7

searches has been done in the area of arbitration algorithm. The static priority algorithm,

round robin algorithm and time division multiplexing algorithm can be called as the base

algorithm for any arbitration scheme. A two-level arbitration scheme can be created by

combining two arbitration schemes. In the recent years, arbitration algorithm with varying

degree of sophistication have been developed and applied to the on chip communication

protocols. Sonics Smart Interconnect [Pasricha and Dutt, 2008] makes use of a two-level

Time Division Multiple Access/Round Robin arbitration scheme. In this scheme, a Time

Division Multiple Access (TDMA) arbiter allocates time slots to various masters. If a

master does not have any data to transfer during its time slot, a second level round robin

scheme selects another master to grant the bus access.

In most cases, the bus bandwidth becomes a dominant barrier because of improper

bandwidth allocation. To maintain the bus bandwidth in an efficient manner, the process of

arbitration cannot be neglected as it is one of an essential factor for concurrent-computing.

In an enhanced arbitration environment of SoC, the communication architecture should be

fair enough to offer high performance to the wide range of masters according to their

traffic behavior as the masters on a SoC bus may issue simultaneous requests [Mishra

and Dehuri, 2011]. As, the technology is shrinking below 45nm, therefore there is a

great need for the multi-core applications to be redesigned in such a way that it utilizes

most of the cores to take optimal advantage of high performance processing. Through

numerous challenges and a great effort, the performance race for embedded system and

desktop computing has tackled the issues upto some extent that arises with the increasing

frequency of the processor [Marongiu et al., 2011]. However on the other hand, some

of the most innovative workarounds are about to come to an end. Therefore in order to

continue delivering system with the higher performance and increased efficiency, a new

route should be taken, so that increment in the number of CPU cores does not comes to

be a great challenge for the system designers, the trend which is generally followed in

supercomputers and various other high end sophisticated systems.

8

In a bus based environment, multiple processors can be combined on the same IC,

which leads to the development of Multi Processor SoC (MPSoC) system. MPSoC be-

comes compatible to accommodate sophisticated parallel computing applications, as it

combines embedded systems, operating system and even analog circuits [Lin et al., 2011].

In order to design such a system, certain level of challenges has to be faced by the de-

signers. The speed of the processor does not play a major role in the performance of

the multiprocessor systems as it depends more on efficient communication architecture

among multiple processors and on the computation using balanced distribution among

them [Bowen and Buhr, 1980]. There are multiple communication architectures in which

shared bus architecture is quite popular for system which involves small number of pro-

cessors due to its simplicity and area efficiency. Moreover, An arbiter should have an

ability to adjust the bus bandwidth proportion assigned to multiple processors automati-

cally [Ebrahimi et al., 2012].

Apart from all these techniques, the concept of NoC arbiter has also been introduced.

The core aim of a NoC is to divide the design in different functional units which can be

called either a resource, an intellectual property or a system element, and connects these

functional units through a universal communication network. There are N number of ways

to create any kind of network, but it is quite easier for the designers to handle the system if

they keep the network relatively simple, as the network interface are extremely complex,

or the amount of design effort is being applied more into linking different nodes using

an arbiter [Zitouni and Tourki, 2008]. NoC arbitration architecture also seems to be quite

efficient as it has to be designed once for each new technology. However the communi-

cation bottleneck can be handled using the scalability of the NoC and theoretically it has

got an ability to be extended to infinity. Network-on-Chip has got its own pros and cons.

For smaller structures the bus architecture out weighs NoC in terms of performance. NoC

architecture can overcome the demerits of traditional bus based architecture as there is

tremendous research going on NoC based system architecture [Zitouni and Tourki, 2008].

9

On the other hand, there are several disadvantage of NoC architecture too. First is regard-

ing its physical size as it uses most of the space on the chip. It means it deals with a heavy

design size constraint on the nodes . Second disadvantage is because of its fixed grid, the

communication latency between two functional units becomes bigger due to non-linear

data paths [Zitouni and Tourki, 2008]. In symmetric multiprocessing the major architec-

tural bottleneck is the internal bus which connects the processors and peripherals to the

memory using an arbitrary network of shared channels [Zitouni and Tourki, 2008]. It is

quite difficult to quantify the exact or the actual brake even points between bus and a NoC

[Wang et al., 2009]. In terms of design, the NoC has got endless possibilities.

Any SoC’s main design concern is to partition the system into two modules i.e. hard-

ware and software based on the performance constraints. When the topology of the ar-

chitecture consists of numerous channels, then suitable bridges are deployed to interlink

the necessary channels. In a bus based system, the buses are shared by several masters

which in turn necessitates the bus architecture to require certain arbitration protocols to

manage the bus access, as the growing complexity of sophisticated chip’s necessitates

a fine grained scalable communication infrastructure [Trahay et al., 2009]. Arbitration

protocols generally includes various techniques such as static fixed, round robin, time di-

vision multiplexing and various other dynamic algorithms. It is not possible to understand

a complex design unless or until its underlying information provided in a concise man-

ner [Antonopoulos et al., 2003]. Communication topologies which are based on shared

bus architectures have got several advantages if compared with NoC topologies in which

the various modules performs a remote communication via network nodes because a bus

based architecture can be manipulated by the software or the hardware designers. This is

due to the fact that, the bus system has got an ability to be presented as a simple medium,

which eases the communication between different system modules [Bhuyan, 1987]. More

over in a bus based system the deadlines of data transfer can easily be foreseeable, as the

current systems operates using sequential programming method rather than parallel. There

10

are various factors which can affect the performance of SoC architectures. For instance

an uncontrolled allocation of the communication bandwidth to different modules of the

system may lead to the starvation of lower priority components which may bungle up the

whole system in terms of performance [Bourgade et al., 2010]. Latencies in the system

also plays an important roles the variations in the time-profile of the requesting modules

may lead to large latencies for higher priority modules.

Thus, an arbiter is required to decide which master should be granted the bus access.

Hence an arbiter should be designed in such a way that it suits the system by maximiz-

ing the CPU utilization, keeping high throughput and low starvation among the different

master cores [Dong and Rojas-Cessa, 2012]. The performance of multiprocessors sys-

tems depends more on the efficient communication among processors and on the balanced

distribution of computation among them, rather than on pure speed of processor. Since

arbiters are invoked for every transfer on the bus, they are considered to be in the criti-

cal path of bus based communication architecture and must be designed with a great care

[Poletti et al., 2003]. An efficient contention resolution scheme is required to provide

fine-grained control of the communication bandwidth allocated to individual processor

and avoid starvation of low priority transactions in the system by fair means.

In recent years many researchers focused on developing multi-level arbitration scheme

in order to reduce the system latency and to achieve fair bandwidth allocation. Xu et al.

[Xu et al., 2007] proposed an arbiter called an adaptive dynamic arbiter in which they

proposed a lottery bus algorithm approach where an arbiter can adjust the bandwidth pro-

portion assigned to every processor automatically due to the situations of bus transactions

aiming to reduce total task execution time. Compared with conventional architectures

their architecture reduces the system latency but it does not allocate fair bandwidth to the

processors and neither it maximizes the CPU utilization as it does not gets implemented

using parallel programming method . An arbiter should take a decision in such a way

that it suits the systems specification and requirements like the defense advanced research

11

projects (DARPA) arbiter developed by team Caltech in 2004 selects the best vote among

the different masters according to the system need in automated vehicle [K.Henrik, 2004].

Aravind [Aravind, 2005] presented an algorithm which is a fully distributed software so-

lution to the arbitration problem in multi-port memory systems. His algorithm is purely

based on first in first out (FIFO) and least recently used (LRU) fairness criteria but the

algorithm does not deal with fair bandwidth allotment to the different masters which may

become a barrier to get a better performance. Moreover, their arbitration technique fol-

lows sequential style of programming and therefore does not make use of the multiple

CPU cores. Enrico and Massimo [Macii and Poncino, 1998] proposed a novel method of

automatic synthesis of easily scalable bus arbiters with dynamic priority assignment strate-

gies. They emphasized more on those arbitration mechanisms which can be implemented

on silicon as a digital circuit, rather than getting concerned about how the selected arbi-

tration policies can affect the performance of a multiprocessor system. Their arbitration

technique was fair in terms of bandwidth and latency but were least concerned regarding

CPU utilization as it did not got implemented using parallel programming method. The

major disadvantage of common-bus multiprocessor system is the reduction of throughput

caused by conflict between processors requiring access to the shared memory. Ideally,

throughput should increase directly with the number of processors but the bus contention

diminishes this increase [Lopez et al., 2011]. There is a critical number above which the

processors show no improvement and this critical number depends naturally, on the ex-

tent of bus used by the processors [Bhuyan, 1987]. Abdelkrim and Rached [Zitouni and

Tourki, 2008] proposed an arbiter synthesis approach that allows a high performance Multi

Processor System-on-Chip (MPSoC) communication using Asynchronous Transfer Mode

(ATM) switch for multi-bus and NoC architecture. Their result demonstrates that MPSoC

offers an attractive alternative to conventional communication architectures by providing

low communication latency using sequential style of programming. On the other hand,

there are several disadvantage of NoC which have been discussed earlier.

12

Chen et al. [Chen et al., 2006] designed a real time and bandwidth guaranteed arbi-

tration algorithm for system-on-chip bus communication in which RT_Lottery algorithm

has been used to meet both hard real time and bandwidth requirements but in terms of fair

bandwidth allocation it cannot compete with adaptive arbiter as its bandwidth allocation

is quite diverse. Their work demonstrated a two level arbitration scheme which comprised

of time division multiple access algorithm and lottery based algorithm. They developed

master cores according to the traffic behavior of the data flow which consists of both heavy

traffic masters and light traffic masters. On the other hand, their masters did not show syn-

chronization among them and were implemented using sequential programming method.

Therefore the masters were unable to maximize the CPU utilization. However, in terms

of diverse bandwidth allocation, their arbitration technique was superior and were able to

handle hard real-time bandwidth requirement. A unique algorithm was proposed by Li et

al. [Li et al., 2007], called adaptive arbitration algorithm in which an arbiter can adjust

priority automatically to provide the best bandwidth for different master according to their

real time bus bandwidth needs. They showed that, it is possible to allocate fair bandwidth

to a given set of processors with a very high degree of fairness. In their case, an arbiter

records the number of time each master has requested for the bus and the total time that all

master have requested for the bus access. Using these two values the arbiter can calculate

the bus access probability of the corresponding master by the division operation method.

The priority weight of the master is decided by its probability of getting the bus access.

A master who has the bigger weight owns the higher priority. It is unnecessary for an ar-

biter to recalculate all the probabilities and weights and to reorder the priority of masters

when a new bus access request appears. The solution to this problem is to reduce the fre-

quency of weight calculation and priority reordering [Li et al., 2007]. Their arbiter worked

well in terms of fair bus bandwidth allocation but on the other hand it did not exploit the

multi-core parallelism.

13

2.3 Performance comparison of arbiters

According to Pasricha and Dutt [Pasricha and Dutt, 2008], arbiters are compared on the

basis of user oriented performance and system oriented performance. In order to analyze

the user-oriented issues, the following parameters are taken into consideration.

• Turnaround time

• Response time

• Deadlines

• Predictability

In order to analyze the system oriented issues, the following parameters are taken into

account.

• Processor utilization

• Fairness

• Average bandwidth utilization

2.3.1 Turnaround time

This is considered as the interval of time between the process submission and its com-

pletion which includes the exact execution time and the time spent to get access to the

other resources.

14

2.3.2 Response time

This time is considered as the submission time of requests until the response is re-

ceived. It is quite possible for some process to produce some of the output parallel as

the request is processed. Thus, from user’s point of view, it is considered to be a better

measure than turnaround time.

2.3.3 Deadlines

There is a specific deadline which is set for the process completion. The scheduling

process is supposed to subordinate other goals, so as to maximize the deadlines which is

to be met.

2.3.4 Predictability

The amount of running time of the process should be the same as defined and at the

same cost regardless of the system load.

2.3.5 Processor utilization

The main aim of the scheduling policy should be to maximize the number of process

completion per unit of time. It is a measure of the amount of work done, which clearly

depends on the length of the process. There is a high influence of scheduling policy to

maximize the number of process completion, as it effects the processor utilization.

2.3.6 Fairness

If the does not specify the priority of the process, then each process should be treated

the same by the scheduler and there should not be starvation among the different process.

2.3.7 Average bandwidth utilization

It is the share of bandwidth utilized by different cores of the master or threads. The

bandwidth allotted to different master should be moderate and fair.

2.4 Arbitration techniques

According to Buttazo [Buttazo, 2011], the decision mode of an arbitration algorithm

15

can be generally categorized in two manner.

• Nonpreemptive

• Preemptive

Nonpreemptive

In this case, if the process is in the running state, then it continues to execute until

it terminates or it blocks itself for input/output operation or it requests for some other

operating system service.

Preemptive

In this case, the process which is in the current running state can be interrupted and

moved to the ready state. The decision to preempt any process is made if any new process

arrives with a higher priority. When an interrupt occurs which puts a blocked process in the

ready state. This kind of policy incurs greater overhead if compared with non preemptive

policy. This policy prevents monopolization of processor for a very long time.

There are several arbitration algorithms which have been developed and is mentioned as

follows:

2.4.1 Static Fixed Priority (SFP) scheme

The most commonly used arbitration scheme is the static fixed priority scheme, in

which masters on a bus are assigned fixed priority values. The master with highest prior-

ity always gets access to the bus with a fixed bandwidth. This scheme can be implemented

in a non-preemptive manner. In a preemptive implementation, an ongoing lower priority

data transfer from a master is terminated immediately without being completed if a request

16

for bus access is received from a higher priority master. In a non-preemptive implementa-

tion, the ongoing lower priority data transfer from a master is allowed to complete before

the bus is handed over to the higher priority master. Static Priority scheme is simple to

implement and can provide high performance by ensuring critical data transfers, such as

between processor but this scheme should be implemented carefully as it can lead to star-

vation of lower priority masters, which might never be able to get access to the bus if there

are frequent bus accesses by higher priority masters. Wiseman and Feitelson [Wiseman

and Feitelson, 2003] implemented SFP scheme in terms of strict gang scheduling in a

parpar cluster of 8 computing nodes in parallel and measured CPU utilization rate which

came out to be 20%. However on a single node, SFP scheme cannot be implemented par-

allely. Warathe et al. [Warathe et al., 2009] proposed a static lottery bus communication

architecture which showed efficiency over traditional arbitration algorithms but the only

limitation of this implementation is that the distributions of their resulting random num-

bers were not uniform. SFP has also been implemented by Li et al. [Li et al., 2007] using

four masters for fair bandwidth allocation. However, this technique did not show any sort

of fair bandwidth allocation among the masters. This algorithm is simple to implement as

it requires a small area and cost. In terms of hefty communication traffic, this algorithm

does not hold good as the masters bearing the lower priority suffers starvation.

2.4.2 Time Division Multiple Access (TDMA) arbitration

Time Division Multiple Access (TDMA) arbitration scheme can guarantee a fixed,

higher bus bandwidth to masters with higher data transfer requirements and also ensures

that lower priority masters do not starve. In this scheme, each master is assigned time slots

of varying lengths, depending on the bandwidth requirements of the master. The choice of

number of time slots to assign to each master is extremely important. The slots allocated

to higher priority masters should not be in such a way that the master with lower priority

starts starving. The length of each time frame should be long enough to complete at least

a single data transfer. TDMA scheduling diagram mentioned by Xu et al. [Xu et al., 2007]

17

divides execution time on the bus into time slots and allocates time slots to masters in a

specific way using preemption.

Figure 2.1 Time Division Multiple Access

In figure 2.1 the first level uses a time wheel where each slot is statically reserved for

a unique master. If a master possessing the current time slot does not issue request, the

time slot would be wasted. To overcome this inefficiency the second level arbiter scheme

has to issue the bus to the other master contending for the bus. Moreover, this arbitration

technique cannot implement the requesting masters in parallel as the degree of granularity

between them is very less. Therefore, it is unable to exploit the multiple cores of the

processor.

2.4.3 Round Robin (RR) scheme

Round-robin arbitration scheme ensures there is no starvation in the system. In this

scheme, access to the bus is granted in a circular manner, to every master on the bus and

makes it certain that every master will eventually get access to the bus. A master abandons

control over the bus when it no longer has any data to send and passes the ownership to

18

the next master in queue. The round robin scheme is simple to implement, and can ensure

equal bandwidth distribution on a bus, but suffers from a drawback compared to the static

priority scheme, that critical data transfers may have to wait a long time before they can

proceed. Round robin scheme can be implemented using both preemptive (only appli-

cable for clusters) and non-preemptive manner [Wiseman and Feitelson, 2003]. A mod-

ified version of round robin algorithm has been proposed by Yaashuwanth and Ramesh

[C.Yaashuwanth and Ramesh, 2010] which modifies all the drawbacks of a simple round

robin algorithm by reducing the high context switch rate, large waiting time and larger

response time using non-preemptive method. Shin et al. [Shin et al., 2006] came up with

a new algorithm known as round-robin arbiter generator (RAG) tool. This RAG tool can

generate a design for a bus arbiter which is able to handle the exact number of bus master

for both on-chip and off-chip buses using non-preemptive method. Dong and Rojas [Dong

and Rojas-Cessa, 2012] introduced two arbitration schemes based on round robin arbi-

tration for combined input cross point buffered packet switches. It has been shown that

combined input-cross point buffered switches provide high-performance context switching

and relax arbitration timing for packet switches with high-speed port but their architecture

does not overcome the disadvantage of fixed framework layout. Ramasubramanian et al.

[Ramasubramanian et al., 2009] worked upon the existing algorithms in order to reduce

the latency caused by contention among the processors preemptive method but was un-

able to allocate fair bandwidth among processors. Li et al. [Li et al., 2007] implemented

the round robin scheme using non-preemptive method with four masters and achieved fair

bandwidth allocation for each master using sequential programming. According to Wise-

man and Feitelson [Wiseman and Feitelson, 2003] the CPU utilization rate for round robin

scheme was 45% in the parpar cluster of 8 computing nodes. Figure 2.2 shows a simple

round robin architecture.

19

Figure 2.2 Simple round robin architecture

2.4.4 Dynamic priority scheme

This is another complex, but highly efficient arbitration scheme that can dynamically

vary the priority of the master during the run time [Pasricha and Dutt, 2008]. To analyze

the data traffic at the run time additional logic is used, and the priorities are dynamically

adapted to the changing traffic profiles of an application. This type of scheme is very

useful when the master needs to send large amount of data with low latency. The cost of

implementing such type of scheme can be high as it requires several registers to keep track

of priorities and data traffic profiles at various point of execution.

2.4.5 Programmable priority scheme

This is a simpler variant of the dynamic priority scheme, which allows application

to write into the arbiters programmable registers and set the priority for masters on the

bus dynamically [Pasricha and Dutt, 2008]. Vilas and Shyam [V.Nitnaware, 2010] used

Programmable Priority Encoder in their arbiter and it supposed to be the most time-critical

component of the scheduler design. The programmable priority encoder chosen for their

design is the hybrid design which combines two simple priority encoders. Thermometer

encoding is used to mask the input of one priority encoder based on the programmed

priority level. Their architecture is a combination of round robin and 8X8 switch. As

the context switching of the processors increases using round robin policy, the latency of

the system will increase. Moreover, round robin scheme does not uses parallel method of

20

programming.

The above discussed algorithms comes out to be quite inadequate due to the starvation

of low priority components and latency of high priority components which results in over-

all system degradation. Following are some efficient arbitration techniques which keeps

user oriented as well as system oriented requirements into consideration.

• Static lottery bus architecture

• Dynamic lottery bus architecture

2.4.6 Static lottery bus architecture

Gist of this architecture is the probability based arbitration algorithm which gets im-

plemented in the central lottery manager. This system does not possess a fixed topology,

as a result various on-chip components can be interconnected in a network of shared chan-

nels. Multiple master requests for the ownership of the bus to the lottery manager. Each

master is statically allotted a number of lottery tickets, as shown in figure 2.3.

Figure 2.3 Lottery bus based architecture

21

The lottery manager chooses the winning master by calculating the number of lottery

tickets of each master. The master which possess highest number of lottery tickets gets

access to the bus with a fair bandwidth for certain number of bus cycles. In order to

avoid monopolizing of bus from a master a maximum transfer size has been allocated

to each master to limit the amount of bus cycles which each granted master can utilize

[Chang HP, 2003]. In order to minimize the idle bus cycles, static lottery bus architecture

pipelines lottery manager processes with actual data transfers, thus the latency is reduced.

The lottery manager takes the input in the form of set of requests and the number of lottery

tickets each master has got. The output is in the form of a set of grant lines which indicates

that the selected master is permitted to transfer data across the bus. In order to make sure

regarding any pending request the lottery manager polls the incoming request lines after

every bus cycle.

2.4.7 Lottery based arbitration algorithm

Let M1,M2,M3 and M4 be the set of masters and t1,t2,t3 and t4 be the number of

tickets held by each master. Suppose during any bus cycle, the group of pending bus

access requests be represented by set of boolean variables ri(i=1,2...,n) where ri =1 if

component Mi has got a pending request, otherwise ri =0. Master associated with the

component which bears the largest number of tickets finally gets access to the bus with a

fair bandwidth. Probability of granting component Mi is given by

P(Mi)= ri∗ti
∑

n
j−1 r j∗t j

(2.1)

Figure 2.4 shows an architecture of lottery based arbitration algorithm.

22

Figure 2.4 Lottery based arbitration algorithm

In order to make a decision, the lottery manager analysis the number of active tickets

which the lottery system has got [Jou et al., 2010]. This is given by the formula

∑
n
j=1r j∗t j (2.2)

These tickets are generated sequentially to each master. A pseudo-random number

from the range [0,∑n
j=1r j∗t j] is used to determine the component which is to be granted

the bus. If the number is in the range [0,r1* t1] then the bus is granted to the component

M1, or if it is in the range [r1* t1,r1* t1 +r2* t2] then the component M2 is granted the bus.

In general, if the number lies in the range [∑i
k=1rk* tk ∑

i+1
k=1rk* tk], then the component

M(i+1) is granted the bus. Since there is a sequential process involved in generating tickets

to the masters, therefore this arbitration technique cannot be implemented parallely.

23

2.4.8 Dynamic lottery bus architecture

In this architecture, the inputs are in the form of group of request lines i.e r0, r1, r2, r3

as shown in the figure 2.5. There is a specific ticket generator module, which generates

tickets to the master.

Figure 2.5 Lottery bus architecture

As the range of the ticket values are dynamic, therefore a partial sum needs to be

calculated for each component at every lottery which is given by

∑
n
j=1r j∗t j (2.3)

The above equation is implemented using bit-wise AND and tree of adder. The final

result is obtained using the range (T=r0t0+r1t1+r2t2+r3t3) in which the random number

lies. This design follows the architecture of static lottery manager only with slight modi-

fications. The distribution of random numbers in this architecture is non-uniform which is

a slight limitation of this architecture [Lahiri et al., 2001]. It is advantageous in a way that

24

