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ABSTRACT 

 

In the present study, a microextraction method termed ultrasound-assisted surfactant enhanced 

emulsification microextraction (UASEME) has been developed for the determination of 

phenanthrene (PHE) and fluoranthene (FLU) in sugarcane samples. Optimised extractions 

were obtained using the following conditions: extraction solvent, toluene; volume of extraction 

solvent, 30 µL; surfactant, Tween 20; volume of surfactant, 15 µL; extraction time; 2 min and  

with no salt addition. Under the optimized conditions, the method demonstrated good linearity 

(r2 ≥ 0.9932) over a concentration range of 1 to 1000 µg L- 1. The method showed limit of 

detections (LODs) and limit of quantification (LOQs) for both analytes were 0.30µg L- 1 and 

1.0 µg L- 1, respectively. Good reproducibility with relative standard deviations (RSDs) in the 

range of 1.62 – 10.32 % (n = 3) and satisfactory recoveries (91.75 - 104.1%) was obtained for 

spiked polycyclic aromatic hydrocarbons compounds in sugarcane juice samples. The 

proposed method has been successfully applied to nine sugarcane samples and the blank 

extraction samples indicated that all samples were free from FLU but the samples were 

contaminated with PHE at below the LOQ concentration. The proposed UASEME method 

proved to be simple, rapid, environmentally friendly and suitable for the determination of PHE 

and FLU in sugarcane samples.  
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ABSTRAK 

 

Dalam kajian ini, kaedah pengekstrakan yang diistilahkan sebagai pengekstrakan mikro 

ultrabunyi dibantu pengemulsi (UASEME) telah dibangunkan bagi penentuan fenantherena 

(PHE) dan fluoranthena (FLU) di dalam sampel air tebu. Pengekstrakan optimum diperoleh 

menggunakan keadaan seperti berikut: pelarut pengekstrakan, toluene; isipadu pelarut 

pengekstrakan, 30 µL; pengemulsi, Tween 20; isipadu pengemulsi, 15 µL; masa 

pengekstrakan, 2 min dan tiada penambahan garam. Dalam keadaan optimum, kaedah ini 

menunjukkan kelinearan yang baik (r2> 0.9932) dalam julat kepekatan 1 hingga 1000 µg L- 1. 

Kaedah ini menunjukkan had pengesanan (LODs) dan had kuantifikasi (LOQs) bagi kedua-

dua analit ialah 0.3µg L- 1 dan 1.0 µg L- 1, masing-masing.  Kebolehulangan yang baik dengan 

nilai sisihan piawai relatif dalam julat 1.62 – 10.32 % (n = 3) dan pengembalian (91.75 - 

104.1%) yang memuaskan diperoleh bagi sebatian hidrokarbon aromatik polisiklik yang 

ditambah di dalam sampel air tebu. Kaedah UASEME yang dicadangkan ini telah berjaya 

diaplikasikan kepada sembilan sampel air tebu dan pengekstrakan sampel kosong 

menunjukkan semua sampel tidak mengandungi FLU, tetapi semua sampel mengandungi PHE 

pada kepekatan di bawah nilai LOQ. Kaedeh UASEME yang dicadangkan ini terbukti sebagai 

kaedah yang ringkas, cepat, mesra alam dan sesuai digunakan bagi penentuan PHE dan FLU 

di dalam sampel air tebu.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Research Background 

Incomplete combustion of organic materials is the primary source of polycyclic aromatic 

hydrocarbons (PAHs).Concentration of this particular compound may increase tremendously due to 

unvented heating sources, while tobacco smoking also be one of the contributors to ambient air level 

arise. However, the main sources of PAHs exposure to human are from food and drinking water. This 

is because, this compounds were formed during cooking or atmospheric deposition on vegetables, 

grains and also fruits (WHO, 2000). The presence of these compounds in food has been proved to 

trigger the growth of cancer cell in human. Therefore, US Environmental Protection Agency (EPA) 

had included these compounds in carcinogenic and mutagenic group. Several studies conducted using 

animal as a subject indicated that, some of the compounds in PAHs group are able to trigger a number 

of adverse effect such as toxicity of reproductive system, toxicity to immune system and induce 

cancer cells (WHO, 2000).  

Air, water, soil and food sources are the contributors to the exposure of PAHs to human 

living. The exposure of this compound could be through ingestion, inhalation and skin contact either 

during occupational setting or non-occupational setting. Although human can expose to PAHs 

through inhalation, the volatility characteristic may influence the mobility of PAHs in environment 

(European Commission, 2002). If the source of PAHs for a smoker is from ciggarate smoke, then the 

non-smoking person are exposed through diet. Many studies have shown that carcinogenic PAHs are 

present in food (Farhadian et al., 2010; Chen & Chen, 2005; Mottier et al., 2000). Aaslyng et al. 

(2013) also stated that food is the main source for human exposure to PAHs compound. However, 

the concentrations of PAHs vary according to types of foodstuffs. Usually, contamination of food by 
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PAHs is from processing procedure and cooking method such as grilling, and barbequing. Therefore, 

it is vital to develop a new method that is easy, precise, efficient and reliable for detection of PAHs 

compounds in food and beverages such as sugarcane products. This method can be applied in 

detecting that particular compound in order to avoid negative health effect to the consumer.  

 Numerous established analytical methods have been reported for the detection of PAHs 

including the application of fluorescence spectrophotometry (Krupadam et al., 2009), capillary 

electrophoretic method (Terabe et al., 1984), gas chromatography (Zhang et al., 2014) and high 

performance liquid chromatography (Mao et al., 2012). Gas chromatography and high performance 

liquid chromatography combined with spectrofluorometric detector are the most widespread 

techniques that were used for PAHs analysis (Purcaro et al., 2007). Although the chromatography 

method is the most popular technique, the analysis of trace compound like PAHs need extensive 

sample pretreatment due to very low concentration in sample and also the matrix effect of the sample. 

With the main objectives to preconcentrate the target anaytes and to reduce the interference caused 

from the complicated matrix sample, a new sample pretreatment techniques are required before 

proceeding to final analysis (Mao et la., 2012). 

 Liquid-liquid extraction (LLE) (Caruso and Alaburda, 2009), and solid phase extraction 

(SPE) (Caruso and Alaburda, 2009; Da Porto and Moret, 2007) are example of conventional sample 

preparations that have been carried out for determination of PAHs. However, these classical pre-

concentration method involved several phase operations with consumption of large volume of toxic 

organic solvent that lead to environment-unfriendly (Hosseini et al., 2012). Researchers have been 

devoted to the development of microextraction method to solve these problems as it is environmental 

friendly and reduced usage of organic solvent. Several microextraction mehods have been developed 

for the determination of PAHs compounds include liquid phase microextraction (LPME) (Zanjani et 

al., 2007), static- liquid phase microextraction (S-LPME) (He and Lee, 1997), dispersive liquid-liquid 

microextraction (DLLME) (Rezaee et al., 2006), and ultrasound assisted emulsification 
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microextraction (UAME) (Cacho et al., 2016). Although there are various established analytical 

methods nowadays, there is still limited access of microextraction method for the analysis PAHs from 

sugarcane samples.  

 Development of Ultrasonic-Assisted Emulsification Microextraction (UAEM) was done by 

Rugeiro and his group in 2008 (Rugueiro et al., 2008). In this method, extraction solvent will disperse 

into an aqueous solution with the aid of ultrasound –assisted emulsification without the use of 

dispersive solvent (Cheng et al., 2011). Ultrasound radiation was proved to be an efficient tool in the 

formation of emulsification phase and accelerate the process of mass transfer between two immiscible 

(Fontana et al., 2009). The improvement of the above method was successfully done by Wu et al. 

(2010). They introduce surfactants as emulsifier in the UAEM method for detection of selected 

carbamate compounds in water samples. This new method was greatly shortened the time of 

extraction needed due to the effective combination of surfactant and ultrasound radiation (Cheng et 

al., 2011). Surfactants also known as surface active agent that having both hydrophobic head and 

hydrophilic tail. This special characteristic give extra advantages to react both in water and 

immiscible phase. Other than that, it also can act as emulsifier which is having the ability to catalyse 

the dispersion of water-immiscible phase into the aqueous phase. Therefore, this Ultrasound-Assisted 

Surfactant Enhanced Microextraction (UASEME) methods was successfully integrate the advantages 

of DLLME and UAME methods.   

In this study, a new microextraction method termed UASEME incorporated with Tween 20 

has been carried out prior to GC-MS determination of selected PAHs from sugarcane samples. Six 

parameters have been optimised include types of extraction solvents, types of surfactants, volume of 

extraction solvents, volume of surfactants, salt addition and extraction time. Based on the result, the 

purposed method is highly recommended the analysis of selected PAHs in sugarcane matrices.  
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1.2 Background of the Problem 

In Malaysia, agriculture sector covers up to 11.1% of the work force (World Fact Book, 2014). It was 

estimated that the gross domestic product from agriculture sector is 11.4% (World Fact Book, 2014). 

Although sugarcane was not the largest agriculture industry in Malaysia, but it has been listed in top 

ten of crop production in Malaysia by Agriculture and Agri-food Canada (2014). 

 Sugarcane is a giant grass (Poacae) from species Saccharum officinarum L. Most of the 

sugarcane plantation owners prefer to burn their plantation area during harvesting season. Protection 

of workers from sharp leaves, insect bites, poisonous snakes, and also facilitate manual harvest are 

among the reason behind this action (Godoi et al., 2004; Zamperlini et al., 2000). Other than that, 

burning their sugarcane plantation is one of the strategies to rise up the sugar content by weight due 

to evaporation of water (Zamperlini et al., 2000). However, there is an adverse side effect from the 

burning process. The burned sugarcane contained PAHs compound and the presence of this 

compound fromed the burning process (Azevedo et al., 2002; Godoi et al., 2004; Serra et al., 1995). 

Studies conducted by Bosso (2004) shows that excretion of PAHs through urine during harvesting 

season are nine times higher compared to the rural workers and the control group (Bosso, 2004). 

Due to the major drawbacks of conventional extraction methods for detection of the PAHs in 

very low concentration levels, new development of sample preparation methods were focusing on 

simplicity, time saving, environmental friendly and efficient. In this study, new approach of the 

sample preparation method known as UASEME incorporated with Tween 20 as surfactant was 

established for the analysis of selected PAHs compounds in sugarcane drink samples combined with 

GC-MS determination. The proposed UASEME method can be used as an alternative approach for 

environmental- friendly microextraction of PAHs in sugarcane samples as it requires small amounts 

of organic solvent and surfactant in each analysis. 
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1.3 Research Objectives  

The general objective of this research is to develop a simple, efficient, fast and environmental friendly 

ultrasound assisted surfactant enhance emulsification microextraction (UASEME) combined with gas 

chromatography-mass spectrometry (GC-MS) for detection of selected polycyclic aromatic 

hydrocarbon (PAHs) in sugarcane samples. 

Specific objectives: 

 To optimize GC-MS conditions for separation of selected PAHs compounds, namely, 

phenanthrene and fluoranthene. 

 To develop and validate UASEME method using Tween 20 as the selected surfactant. 

 To explore the application of the developed UASEME method to the analysis of selected 

PAHs in several sugarcane samples collected from local store in Kedah and Penang, 

Malaysia.  

1.4 Scopes of the Study 

This study specialise on the application of UASEME method using Tween 20 as surfactant.  The 

determination of selected PAHs compounds in sugarcane samples were done by using GC-MS. 

Optimisation of six parameters were conducted and these optimisation conditions were applied during 

the extraction testing. HP-5MS capillary column GC-MS had been used throughout this experiment 

for separation and quantification of selected PAHs compounds.  

1.5 Significance of the Study 

The main advantage of UASEME is the extraction time is shorten as compare to other methods such 

as USAEME and DLLME (Cheng et al., 2011). This method also offers high efficiency when 

comparing with USAEME and DLLME for detection of fungicides in water samples (Cheng et al., 

2011). Aside from the stated advantages, this method applied the usage of surfactant that is more 
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environmental friendly as compare to disperser solvent that widely used in conventional DLLME. 

Surfactant has a few similarities with the disperser solvent such as, it has ability to dissolve in both 

aqueous and organic phases, and reducing the interfacial tension between two immiscible phases. 

This surfactant may help in term of decreasing the surface tension of water by adsorbing at the liquid-

gas interface (Moradi et al., 2010). Other than that, enrichment factor may increase the yield of 

analyte in low volume of solvent. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Polycyclic Aromatic Hydrocarbons 

One of the large groups of organic compounds that made up of one to six benzene rings fused together 

is polycyclic aromatic hydrocarbon. Basically, PAHs are divided into two groups which is small and 

large. Small PAHs composed up to six fused aromatic rings and large PAHs composed of more than 

six aromatic rings. They are highly lipophilic and relatively low solubility in water (hydrophobic). 

Most of these compounds are absorbable by environmental particles aided by their low vapour 

characteristic can be adsorbed on particles in environment due to their low vapour pressure 

characteristic in the air. Pyrolytic process including incomplete combustion of organic substances and 

human activities such as smoking, and cooking are a few generator for the formation of PAHs (Lee 

et al., 1981; WHO, 2000). 

2.1.1 Routes of Exposure 

Human can be exposed to PAHs through air, water, soil and food sources. There are two ways of 

human exposure to PAHs which are during occupational setting or non-occupational setting. 

Ingestion, inhalation and skin contact are three routes that exist in both setting.  

2.1.1.1 Air 

The concentrations of PAHs in air varies from 5 to 200,000 nanograms/ cubic meter (ng/m3) 

(Georgiadis and Kyrtopoulos, 1999). The exposure of human through environmental air level are 

lower as compared to those involved with specific occupational exposures. However, when it spreads 

over large urban population, it is considered as public health concern (Zmirou et al., 2000). Smoking 
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and environmental smoke are considered as the common source of human exposure of PAHs through 

air. A previous study revealed that one cigarette can produce almost 20-40 ng of benzo (a) pyrene 

(ATSDR, 2000). Other study also compared unfiltered cigarettes and filtered cigarettes. A pack of 

unfiltered cigarettes yield 0.7 µg/ day of benzo (a) pyrene which is higher than filtered cigarettes;  0.4 

µg/ day  (Sullivan and Krieger, 2001). 

2.1.1.2 Water and Soil 

PAHs can enter the aquatic environment through leaching from soil into water. Sewage discharge 

from industrial and accidental spills during transportation of oil at sea can lead to contamination of 

aquatic ecosystem. The concentration of one of the PAHs compound in drinking water is extremely 

lower when comparing with those in untreated water (U.S Environmental Protection Agency’s 

(EPA)).  However the levels of PAHs will tremendously increase when asphalt or coal tar was applied 

in storage tank coating and water distribution pipes (European Commission, 2002). 

 The presence of PAHs in groundwater due to leaching process is limited although this 

compound is adsorbed strongly to the organic fraction of soils. This is because, the compound cannot 

penetrate deeply into most of the soils. Many plants would not have easy access of PAHs from soil.  

However, measurable amounts of PAHs were found in soil, primarily from airborne fallout. As stated 

by IARC, the level of PAHs compound in samples taken from cities and congested areas were 

commonly below than 2,000 µg/ kg (IARC, 1973). 

2.1.1.3 Foodstuffs 

Exposure of non-smoking individuals to PAHs is through the diet. A study carried out in 2004 showed 

that up to 70% of PAHs exposure for non-smokers were from diet (Skupinska et al., 2004). Aaslyng 

et al. (2013) also stated that food is one of the main sources of exposure to PAHs. The concentration 

of PAHs is dependent on foodstuffs. Processing procedures and cooking are the primary sources of 
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contamination by PAH. Several parameters such as duration of cooking, uses of fuel, heat source 

distance, drainage of fat, and cooking type may give various concentration levels of PAHs (European 

Commission, 2002).  

A comparison study for the levels of PAHs in duck breast steaks, which go through several 

type of processing and cooking treatments for selected duration of cooking time (0.5 hour to 1.5 

hours) showed that, the highest total amount of PAHs were reported from a samples without skin and 

undergoing charcoal grilled cooking treatment. The least amount of PAHs were from the liquid smoke 

flavouring sample (Chen and Lin, 1997). Lorenzo et al., (2010) and Lorenzo (2011) have scientifically 

proved that many carcinogenic PAHs in food were formed through the smoking of foods. Other than, 

PAHs also exists in natural food such as vegetables oil that undergo refining treatment, tea, cereals, 

coffee and roasted peanuts. Some of foodstuffs also have the ability of synthesising PAHs compound 

or adsorb this compound from water, soil or air (Menzie et al., 1992). As mentioned before, this 

compound has been shown to be an active contributor to human cancer. Therefore, US EPA had 

classified them as carcinogenic and mutagenic compounds. 

2.1.2 Mechanism of Action 

The principal routes of exposure of PAHs to human are through ingestion, inhalation or skin contact 

(Munoz and Albores, 2011). PAHs can readily invade cellular membrane due to its lipophilic 

characteristic (Yu, 2005). Once PAHs enter the body, they are metabolised in a number of organs 

such as liver, kidney and lungs. Afterward, this compound may be excreted through either urine or 

breast milk. Small amount of PAHs could be stored in adipose tissue. Metabolic action in our body 

may change the hydrophobic characteristic of PAHs to become more hydrophilic. This hydrophilic 

characteristic helps to excrete it from our body. PAHs compound capable in triggering the expression 

of phase 1 and phase 2 metabolising enzymes (Shimada, 2006). These metabolising enzymes include 
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ado-ketone reductases, cytochrome P-450s, epoxide hydrolase, peroxidases, and sulfotransferase 

(Williams and Philips, 2000). 

PAHs can be activated in three major pathways. The first pathway is the metabolic oxidation 

process that produced a PAH radical cation. This process connected with the cytochrome P450 

peroxidase enzyme activity. The second pathway for PAHs activation is the catalysed oxidation 

process of dihydrodiol dehydrogenase which can produced PAH-o-quinones. The final pathway is 

the dihydrodiol epoxides formation, catalysed by cytrochrome P450 enzymes (Guengerich, 2000). 

Although there are three main pathways, the creation of dihydrodiol epoxides is the most common 

mechanism, which bind covalently to DNA. Oxidative stress was triggered by PAHs through the 

process from metabolic activation to diol-epoxides. The inducement of oxidative stress may cause 

mutagenic reaction in body system. Other than that, the oxidative stress formation rate may give 

negative impact to the mechanism of DNA repair. The accumulation of DNA mutations may cause 

carcinogenesis to occur. 
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Table 2.1: Chemical structure, characteristics, and health hazards of selected polycyclic aromatic hydrocarbon compounds. 

PAHs Chemical structure Characteristics Health hazards 

Phenanthrene (PHE)  

 

  

Molecular weight: 178.23 

g/mol 

Log P: 4.55 

Solubility: Soluble in 

organic solvent 

Skin sensitization, dermatitis, 

cough, dyspnea, and 

respiratory  neoplasm 

Fluoranthene (FLU) 

 

 

 

Molecular weight: 202.25 

g/mol 

Log P: 5.16 

Solubility: Soluble in 

organic solvent (benzene, 

ethyl alcohol) 

Contact burns to skin and 

eyes, nausea, cardiac 

arrhythmias, and liver injury. 

Source: ‘Open Chemistry Database’ http://www.pubchem.ncbi.nlm.nih.gov (Accessed on 24 November 2015) 

http://www.pubchem.ncbi.nlm.nih.gov/
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2.2 Analytical Methods for Analysis of Polycyclic Aromatic Hydrocarbons  

2.2.1 Spectrophotometric Method 

Spectrophotometric method is an analytical method used to quantify the concentration of solutes in 

solution. In spectrophotometer, a cuvette read is used to place the solution. Then, the solution will 

absorb light emitted and the amount of light that is absorbed will be measured. The availability of the 

instrument, speed, simplicity of procedure, precise and accurate technique are among the reason for 

selecting spectrophotometric methods (Abdel- Aziz et al., 2014). When compare with other methods 

such as chromatography and electrophoresis, this method is more economic and simple (Rojas et al., 

2009). However, the primary drawback of spectrophotometric multi-component analysis is 

concurrent determination of two or more active compounds in the same mixture without initial 

separation (Abdel-Aziz et al., 2014). Analysis of PAHs compound in environmental samples by using 

fluorescence spectrophotometer has been successfully done by Krupadam et al. in 2009. The 

recoveries of eight PAH compounds between 85-96% within the limit of detection varied from 10-30 

ng/L in industrial effluent and from 0.1 to 2.9 ng/kg in solid samples. Thus, they concluded that the 

method is significantly sensitive for environmental analytical method when comparing with common 

methods such as gas chromatography-mass spectrometry (GCMS) and liquid chromatography-mass 

spectrometry (LCMS) (Krupadam et al., 2009).  
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2.2.2 Electrophoretic Method 

Capillary electrophoresis (CE) is the common name used for describing electrophoretic method. It 

appeared to be one of the most productive methods for separating charged components especially in 

mixture compounds (Sepaniak et al., 1992). Although CE are the most efficient in separating charge 

components, modified CE was available for separating molecules that are hydrophobic and uncharged 

such as PAHs.The most familiar modified CE are micellar electrokinetic capillary chromatography 

(Terabe et al., 1984), and cyclodextrin modified CE. The cyclodextrin type is the one that apply a 

mixture of neutral and charged CDs (Szolar et al., 1995; Brown et al., 1996). As mentioned before, 

CE has powerful and efficient separating ability with other advantages such as high resolution (Terabe 

et al., 1984). Also, this method require less samples and solvents (Chiari et al., 1996). Despite its 

powerful separating, there are a few drawbacks of CE when comparing with chromatography method. 

The injection of CE is not precise, it also have problem with capillary regeneration and adverse effect 

on reproducibility due to imbalance ratio of organic to solvent (Fifield and Kealey, 2000). Other than 

that, the detection of CE is not sensitive due to the small path length when applying the on-line 

absorbance detectors (Nguyen and Luong, 1997). Although the use of UV/ visible laser-induced 

fluorescence detection can successfully improve the sensitivity, but unreasonably high cost of UV 

lasers and stability of the laser still become a problem (Nguyen and Luong, 1997).  

2.2.3 Chromatographic Method 

There are two main phases involved in chromatographic method, namely mobile ad stationary phase. 

Liquid or gas may be applied as the mobile phase while solid or solid substrate coated with liquid 

film can be used as stationary phase. Basically, the sample that was injected into the mobile phase 

will pass through stationary phase. The partitioning process occurs during the movement of the 

component along the stationary phase. A component that requires longer time to pass through the 

system is normally attach with the stationary phase instead of mobile phase. This is due to the effect 
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of distribution ratio favours the stationary phase. As a result, it would be among the last component 

eluted to the detector. In 2010, a new method was introduced for the analysis of PAH compounds in 

ambient air dust through GCMS. This method adopting the conventional method solid- phase 

extraction with applying the use of a molecular imprinted polymer. They found that the limit of 

detection using GCMS is 0.15 ng/L for benzo[a] pyrene, a marker molecule of air pollution 

(Krupadam et al., 2010). Another research related with the same compound using chromatography 

method was reported in the year 2014. In this research, they used solid phase microextraction method 

for the extraction of PAHs compounds from water samples before analyse it using GCMS. The limit 

of detection were less than 4.0 ng/L and the correlation coefficients (r) value is between 0.9940-

0.9986 (Zhang et al., 2014).  

2.3 Sample Preparation  

In analytical chemistry, the most crucial step is preparation of sample. It is needed because of the 

complexity and extremely low concentration of the target analytes present in most samples. Missed 

step in sample preparation may lead to inaccurate result. It is the most challenging step as stated by 

Major (1991), where a researcher had to spend approximately 60% of the time on sample preparation 

itself (Biparva and Martin, 2012). The main objective of this step is to pre-purify, concentrate and 

make it in the compatible form with the selected analytical system (Ulrich, 2000). 

Over the years, several extraction methods have been developed. They can be divided into 

two major groups; conventional and new extraction method. Basically, the new extraction method is 

from conventional method, modified in certain aspects such as substitution of solvent, usage of 

emulsification and microwave.   
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2.3.1 Conventional Sample Preparation 

The conventional sample preparation techniques is the earliest method that was developed by 

scientists for analysis. Below are the three conventional sample preparation techniques related to 

analysis of PAHs. 

2.3.1.1  Liquid-Liquid Extraction 

Solvent extraction (SE) was the first method introduced in sample preparation. This method was also 

known as liquid-liquid extraction (LLE). Several works have reported the extraction of PAHs 

compounds in water by LLE technique (Doong et al., 2000; Popp et al., 2003; Popp et al., 2000). 

This method was performed by the used of buffer, hot water and organic solvents. The commonly 

used organic solvents were chloroform, acetonitrile, methanol and ethyl acetate. During trace 

analysis, this method requires too much sample and toxic solvents which may result to 

environmentally unfriendly. LLE method is labour intensive and the process is time consuming (He 

and Lee, 1997; Hosseini et al., 2012). Several other techniques have been developed to replace LLE 

due to its disadvantages. 

2.3.1.2  Solid Phase Extraction 

Solid support was introduced for concentrating and isolating target analytes and this method was 

known as solid phase extraction (SPE). It had been used widely in various areas of chemistry 

including clinical, environmental and applications of pharmaceuticals (Hennion, 1999). The 

development of SPE is a complimentary to liquid-liquid extraction (LLE). This is due to several 

drawbacks related to LLE such as it required labour intensive, difficult to operate and required high 

volume of toxic organic solvent (He and Lee, 1997). Thus, SPE has successful in optimising the 

amount of solvent used. When conducting SPE method, the solvent used is less, and the duration of 

experiment also shorter as compare to LLE technique. Although SPE was successfully decreased the 
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consumption of organic solvent and shortened the experimental duration, it required column 

conditioning and this was relatively expensive (Junk and Richard, 1988). 

2.3.1.3  Cloud Point Extraction 

This technique uses surfactants for extraction of target analytes. Surfactants for extraction have been 

known for their capability to enhance the solubility of hydrophobic materials (Bai et al., 2001).The 

benefit of cloud point extraction (CPE) is that the solvent used in the micellar solution is water. 

However, difference among surfactants poses a challenge to the analysis of analyte when using gas 

chromatography and high performance liquid chromatography (Carabias-Martinez et al., 2000). In 

addition, the use of anionic surfactants as a prodcutive extractant during separation phase often 

require salts and pH alteration (Casero et al., 1999).  

 

2.3.2  Microextraction Method 

Current aims of analytical techniques is to overcome all limitations presence in conventional 

extraction techniques, and to simplify and miniaturize the analytical procedure (Cunha and 

Fernandes, 2013). Thus, microextraction technique was introduced.  Microextraction is a non-

exhaustive sample preparation. The word micro describing that, it require a minute amounts of 

extracting phase (microliter range or smaller) relative to the sample volume. This method is a simple, 

clean and quick technique which requires low quantities solvent (Cacho et al., 2016). 

2.3.2.1  Liquid Phase Microextraction  

A novel technique for sample preparation is the Liquid phase microextraction (LPME) (Jeannot and 

Cantwell, 1996). There are many method in LPME technique and one of them is single drop 

microextraction method. Those two researchers introduced LPME technique with the use of Teflon 
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rod. A minute amount of organic solvent that is immiscible in water was held on a hold at the end of 

the Teflon rod. Then the rod will be immersed in the stirred aqueous sample solution. After a year, 

they made an improvement to the original method by replacing the solvent holder which is from 

Teflon rod to microsyringe. Therefore, LPME was carried out using a 1µL solvent drop at the tip of 

a microsyringe needle (Jeannot and Cantwell, 1997). The advantages of this technique is, it is cheap, 

required a simple equipment, the operation system is easy and it is environmentally friendly due to 

the use of less amount of solvents (Biparva and Martin, 2012). There are also disadvantages of this 

technique include slow movement of extraction, drop instability and small surface of the drop 

(Biparva and Martin, 2012).  

 The liquid phase microextraction technique was further modified by Lee and his group 

between the years 1997 to 2001. They hypothesized the concept of static (S-LPME) and dynamic 

microextraction (D-LPME) (He and Lee (1997); Wang et al., (1998); Zhao and Lee (2001)). The 

technique that was introduced is cheap and requires minimal exposure to hazardous solvents (Zanjani 

et al., 2007). However, a major drawback is that it is not suitable when applying for dirty samples. 

The reason is, the particles that present in most of the dirty samples may affect the solvent droplet 

stability during extraction process. Dirty samples also harmful to the analytical instrument (Zhao and 

Lee, 2000). Furthermore, another setback is the microdrop that suspended on the microsyringe needle 

during stirring of the aqueous sample may remove easily (Zanjani et al., 2007).  

 In order to solve the drawback that present in the static liquid phase microextraction 

technique, a porous hollow-fiber membrane was introduce. The main objective of this particular 

substitution is to solve the problem of unstable solvent drop and improve static-LPME sensitivity 

(Rasmussen and Pedersen-Bjergaard, 2004; Shen and Lee, 2002). Organic solvent was then injected 

to the system. In the lumen of the porous hollow fiber, there is also organic solvent that function as 

an interface between the sample solution and the extracting phase. The harzadous and harmful level 

of this technique is low due to low requirement for toxic organic solvent, In addition, this techniques 
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is very special because it combines extraction, concentration and sample introduction into one step 

(Eshagi, 2010). As reported previously by many researcher, this technique has been successfully 

applied for detection of insecticides (Chen et al., 2009), dichlorophenol isomers (Ziagova et al., 2009) 

and polycyclic aromatic hydrocarbons (De La Torre-Roche et al., 2009).  

2.3.2.2  Dispersive Liquid-Liquid Microextraction (DLLME) 

            A new microextraction method namely dispersive liquid-liquid microextraction was 

introduced by Assadi et al. in 2006.  (Rezaee et al., 2006). The injection of extraction solvent and 

disperser solvent into an aqueous sample will cause the formation of fine droplets emulsion that lead 

to cloudy solution. The formation of cloudy solution fine droplets is occurs after undergo 

centrifugation process. This may lead to form sediments at the bottom of a conical flask. (Miri and 

Jalali, 2013). This technique give us many benefit includes simplicity, rapidity, low cost, high 

recovery and enrichment factor (Miri and Jalali, 2013; Rezaee et al., 2006). Although there are many 

benefit from this technique, but it is not environmentally friendly due to the consumption of very 

toxic extraction solvents and also require large amount of dispersive solvent.  (Xu et al., 2009). A 

conventional DLLME was used solvents that is denser than water. This solvents commonly 

chlorinated solvents which is environmentally unfriendly. However, the uses of an extraction solvents 

that is lighter than water were reported (Farajzadeh et al., 2009). A combination of two methods, 

DLLME and LLME-SFO was successfully formed a new microextration method named dispersive 

liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO). This 

method was development by Leong and Huang in 2008 (Wang et al., 2010). In this method, it is not 

required the use of microsyringe, or hollow fiber as a holder because they used low density of organic 

solvent with suitable melting point (Xu et al., 2009). Extraction solvents which have low densities 

below than 1g mL-1 and low toxicity can be used to this method (Wang et al., 2010). Then, the 

solidification process required the help of an ice bath. Advantage of using this method is the mass 

transfer from the aqueous phase to the organic phase become fast as the contact area between the 
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organic droplets and sample solution is large (Xu et al., 2009). Other than that, this method can easily 

transfer solidified phase from aqueous phase (Xu et al., 2009).  

2.3.2.3  Ultrasound Assisted Surfactant-Enhanced Emulsification Microextraction 

(UASEME) 

Ultrasound assisted surfactant- enhanced emulsification microextraction is the new method that 

previously adopted from a novel microextraction technique namely ultrasonic-assisted emulsification 

microextraction. This technique was developed by Rugueiro et al., in 2008 (Rugueiro et al., 2008). 

Ultrasound- assisted emulsification microextraction is the technique that not require any dispersive 

solvent. The microvolume of the extraction solvent is dispersed into aqueous sample solution by 

ultrasound– assisted emulsification (Cheng et al., 2011). This is one of the efficient technique used 

to facilitate the emulsification phases and increase the rate of mass-transfer process between two 

immiscible phase (Fontana et al., 2009). Ultrasonic radiation have been shown to be an efficient tool 

for solid and liquid samples. However, a new method was developed by adopting the previous novel 

technique. Wang et al. were introduced the uses of   surfactant as an emulsifier. The first experiment 

using this method is the detection of certain carbamates in water samples. Combination of both 

surfactant and ultrasound greatly shortened the time of extraction (Cheng et al., 2011). Surfactants 

also known as surface active agent are amphiphilic molecules. They have both hydrophilic and 

hydrophobic areas which is advantageous for water and immiscible phase reaction.  As mentioned 

before, surfactant act as emulsifier in order to enhance the dispersion process of water-immiscible 

phase into the aqueous phase. Therefore, the application of a surfactant as an emulsifier in UASEME 

combines the advantages of both DLLME and UAME technique.  
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2.4 Sample Preparation of Polycyclic Aromatic Hydrocarbons 

As mentioned earlier, several sample preparation techniques have been developed for detection of 

polycyclic aromatic hydrocarbon in samples such as water, spirits, vegetables oil, milk sample, and 

soil sample examples are flotation-assisted homogenous liquid-liquid microextraction (FA-HLLME) 

(Hosseini  et al., 2012), agarose film liquid phase microextraction (AF-LPME) (Sanagi et al., 2012), 

Solvent-impregnated agarose gel liquid microextraction of polycyclic aromatic hydrocarbon in water 

(Lohet al., 2013) and Polydimethylsiloxane/ metal-organic frameworks coated fiber for solid-phase 

microextraction (Zhanget al., 2014). Summary of sample preparation techniques and GC 

determination of polycyclic aromatic hydrocarbon is shown in Table 2.2. 
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Table 2.2: Summary of sample preparation methods and GC determination of polycyclic aromatic hydrocarbon. 

 

Instrument Analyte(s) Matrices Sample preparation Linear 

range 

(µg/L) 

LOD/LOQ 

(µg L-1)/ (ng g-

1) 

Precision 

(%RSD) 

Recovery 

(%) 

References 

GC-FID 4 PAHs Soil 

sample 

Flotation-assisted 

homogenous liquid-liquid 

microextraction (FA-

HLLME)  

40-1000 24-30  7.4-11.2 - Hosseini  et 

al., 2012 

GC-MS 4 PAHs Water 

sample 

Agarose film liquid phase 

microextraction (AF-

LPME) 

0.1-200 0.01-0.04 6.1-9.2 92.9-104.7 Sanagi et 

al., 2012 

GC-MS 4 PAHs Water 

sample 

Solvent-impregnated 

agarose gel liquid 

microextraction  

- 9-14 ng L-1 3.4-9.4 93.3-108.2 Loh et al., 

2013 

GC-MS 5 PAHs River and 

lake water 

sample 

Polydimethylsiloxane/ 

metal-organic frameworks 

coated fiber for solid-phase 

microextraction  

0.01-2.0  40ng L-1 9.3-13.8 78.2-110.3 Zhang et al., 

2014 
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CHAPTER 3 

 

MATERIALS AND METHODS 

 

33.1 Chemicals and Reagents 

Polycyclic aromatic hydrocarbons (PAHs), phenanthrene (PHE) and fluoranthene (FLU) were 

obtained from Toronto Research Chemicals INC (Toronto, Canada).  Toluene, n-hexane, iso-octane, 

and 1-octanol were HPLC grade and purchased from QReC Asia Sdn. Bhd. (Selangor, Malaysia). 

Analytical grade surfactants (Tween 80, Tween 20 and DC193) were purchased in chemically pure 

form from Fisher Scientific (Selangor, Malaysia). Ultrapure water of 18.2 MΩ was purified by a 

Sartorious system, model Arium 611 D1 (Stedim Biotech, Gottingen, Germany).   

3.2 Preparation of Standard Solutions 

Standard stock solution (1000 µg L-1) was prepared by weighing 0.01g PHE and FLU into separate 

amber vial. Each standard was dissolved in solvent mixture of methanol and acetonitrile (50:50). 

Then, the stocks were stored in amber vial for less than a week in fridge at temperature 4˚C. Working 

solutions of PAHs were prepared in ultrapure water daily prior to extraction and analysis.  

3.3 Sample Collection and Pre-treatment 

Tap water was collected from Integrative Medicine Lab, AMDI, USM. Sugarcane juice samples were 

purchased and collected from street vendors and local stores in Kedah and Penang, Malaysia.  

Samples were stored at 4˚C before use and defrosted at room temperature before analysis. The 

sugarcane juice samples were centrifuged for 15 minutes at 3500 rpm prior to extraction. The pellet 

layer was discarded before microextraction procedure. 
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3.4 UASEME Procedure 

Several simple steps were involved in UASEME procedure. Firstly, 15 µL of Tween 20 was injected 

into 10mL volumetric flask. Then followed by addition of 30 µL toluene. Then, immediately the 

sample solution was added into the volumetric flask. The upper part of the volumetric flask was 

covered with cap and turned up-side down. Then, the sample was ultrasonicated for 2 min and the 

solution turned into cloudy mixture. After extraction process, two immiscible phases were formed 

and 20 µL of the upper layer was taken out using microsyringe. Finally the clean extract was diluted 

with 80 µL of methanol prior to GC-MS analysis.  

 

Figure 3.1: Schematic of UASEME procedure. 
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3.5 Chromatographic Conditions 

All analyses were performed on Agilent GC system Model 7890A with mass spectrometry analyser 

Model 5975C (Palto Alto, USA). Helium gas was used with a constant flow rate of 1mL min-1. 

Splitless injections were performed at 250 ̊ C and volume of injection was 1µL. The chromatographic 

condition was carried out on an Agilent HP 5MS column (30 m x 0.25 mm ID, 0.25 µm film 

thickness). The oven temperature applied was initially programmed from 150 ˚C for 3 minutes. After 

that, the temperature rose up to 250 ˚C at 10 ˚C per minute. The transfer line and the ion source 

temperature were fixed at 280 ˚C respectively. Data were collected and quantified in the scan of mass 

spectrometer analyser. The retention times of PHE and FLU recorded under the optimised 

chromatographic conditions were 8.90 and 11.75 min, respectively. Electron impact mass spectra 

were recorded at 70 eV and the detector voltage was set at 1.0 kV. Chromatographic data were 

processed using MSD Chem Station E.01.01 Agilent Technology software. 

3.6 Optimisation of UASEME Method 

The goal of optimisation in analytical chemistry is to obtain the best response, such 

as signal of detector, enrichment factor and chromatographic resolution. The common 

practice for optimisation is changing one parameter and at the same time keeping all other 

parameters at a constant level then the response was monitored by an appropriate detector. 

This procedure is used in UASEME method. Six UASEME parameters were optimised in 

this study including type of extraction solvent, type of surfactant, volume of toluene, volume 

of tween 20, extraction time and salt addition. Optimisation was carried out in triplicate 

using ultrapure water spike with concentration of 1000 µg L-1. 


