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SIFAT-SIFAT MEKANIKAL, TERMA DAN KETAHANAN PENYALAAN 

BAGI ADUNAN POLI(ASID LAKTIK)/POLI(METIL METAKRILAT) 

 

ABSTRAK 

 

Adunan poli(asidlaktik)/poli(metilmetakrilat) (PLA/PMMA) telah disediakan dengan 

menggunakan teknik penyebatian leburan. Perencat nyala berasaskan fosforus telah 

digunakan dengan β-siklodekstrin (CD) untuk meningkatkan sifat-sifat ketahanan 

penyalaan dan terma bagi adunan PLA/PMMA. Pada peringkat pertama, kajian 

bertujuan untuk mengenal pasti tahap keterlarutcampuran bagi pelbagai nisbah 

campuran adunan PLA/PMMA (iaitu 80/20, 60/40, 40/60, dan 20/80). Penilaian 

dijalankan melalui pengukuran sifat haba [iaitu kalorimeter imbasan pembezaan (DSC) 

dan penganalisis mekanikal dinamik (DMA)] dan eksperimen pengambilan pelarut. 

Hanya satu suhu peralihan kaca dikesan pada semua nisbah campuran adunan 

PLA/PMMA semasa pengukuran DSC dan DMA. Eksperimen pengambilan pelarut 

menunjukkan bahawa adunan PLA/PMMA20 mempunyai parameter interaksi yang 

terendah (χ12 = −0.03) menurut pengiraan parameter interaksi Flory-Huggins(χ12). 

Dalam peringkat kedua, perencat nyala fosforus telah ditambah untuk meningkatkan 

sifat-sifat ketahanan penyalaan dan terma bagi adunan PLA/PMMA dengan nisbah 

campuran 80/20 dan 60/40. Ujian nyala tegak UL-94 dan indeks oksigen mengehad 

(LOI) telah dijalankan untuk mengenal pasti sifat ketahanan penyalaan adunan, 

manakala penganalisis termogravimetrik (TGA) telah digunakan untuk menentukan 

kestabilan terma adunan tersebut. Kedua-dua adunan PLA/PMMA20/FR dan 

PLA/PMMA40/FR berjaya mencapai tahap V-0 dalam ujian nyala, tanpa mengira 

nisbah campuran PLA/PMMA adunan. Keputusan TGA menunjukkan penambahan 



xix 
 

FR mempercepatkan penguraian terma adunan PLA/PMMA20/FR dan 

PLA/PMMA40/FR pada suhu rendah, tetapi meningkatkan kestabilan terma adunan 

pada suhu tinggi. LOI yang lebih tinggi diperolehi oleh PLA/PMMA20/FR (iaitu 

31.3%) daripada PLA/PMMA40/FR (iaitu 28.0%), menunjukkan bahawa 

PLA/PMMA20/FR mempunyai sifat ketahanan penyalaan yang lebih tinggi daripada 

PLA/PMMA40/FR. Dalam peringkat ketiga, separuh FR telah diganti dengan CD dan 

kecekapan kombinasi dalam meningkatkan sifat-sifat ketahanan penyalaan dan terma 

adunan PLA/PMMA telah dikaji. Semasa ujian kemudahbakaran, sifat menitis 

PLA/PMMA20/FR/CD telah meningkat dan ketahanan penyalaan masih dikekalkan 

(iaitu UL-94 V-0; LOI = 29.3%). Suhu penguraian terma maximum (Tmax) yang lebih 

tinggi diperolehi oleh PLA/PMMA20/FR/CD semasa pengukuran TGA, disebabkan 

penguraian terma telah dilambatkan dalam kehadiran CD. Mikroskop elektron 

imbasan (SEM) menunjukkan arang yang banyak dan padat terbentuk pada permukaan 

pembakaran PLA/PMMA20/FR/CD, membuktikan bahawa CD adalah berkesan 

dalam membantu FR demi meningkatkan ketahanan penyalaan 

PLA/PMMA20/FR/CD. 
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MECHANICAL, THERMAL AND FLAME RETARDANT PROPERTIES OF  

POLY(LACTIC ACID)/POLY(METHYL METHACRYLATE) BLENDS 

 

ABSTRACT 

 

Poly(lactic acid)/poly(methyl methacrylate) (PLA/PMMA) blends were prepared by 

melt compounding technique. Phosphorus-based flame retardant (FR) was used 

together with β-cyclodextrin (CD) to improve the flame resistant and thermal 

properties of PLA/PMMA blends. In the first stage, study was focus on the evaluation 

on the miscibility of PLA/PMMA blends at various blending ratio (i.e., 80/20, 60/40, 

40/60, and 20/80). The evaluation was performed through thermal properties 

measurement [i.e., differential scanning calorimetry (DSC), dynamic mechanical 

analysis (DMA)] and solvent uptake experiment. Single glass transition temperature 

(Tg) was detected on PLA/PMMA blends over entire composition range during DMA 

measurement. The solvent uptake experiment showed that PLA/PMMA20 blend 

exhibited smallest interaction parameter (χ12 = −0.03) according to the calculation of 

Flory-Huggins interaction parameter (χ12). In the second stage, phosphorus-based 

flame retardant (FR; 20 part per hundred resin) was added to improve the flame 

resistant and thermal properties of PLA/PMMA blends at blending ratio of 80/20 and 

60/40.UL-94 vertical burning test and limiting oxygen index (LOI) were conducted to 

characterize the flame resistant properties of the blends, while thermogravimetric 

analyzer (TGA) was used to determine the thermal stability of the blends. Both of the 

PLA/PMMA20/FR and PLA/PMMA40/FR successfully achieved V-0 rating in the 

burning test, regardless of the PLA/PMMA blending ratio. TGA results showed that 

addition of FR had accelerated the thermal decomposition of PLA/PMMA20/FR and 
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PLA/PMMA40/FR blends at low temperature, but improved the thermal stability of 

blends at high temperature. Higher LOI value was attained by PLA/PMMA20/FR (i.e., 

31.3%) than PLA/PMMA40/FR (i.e., 28.0%), indicating PLA/PMMA20/FR having 

higher flame resistant properties than PLA/PMMA40/FR. In the third stage, half of the 

FR was replaced by CD and the efficiency of the combination in improving flame 

resistant and thermal properties of PLA/PMMA blend was investigated. During 

flammability tests, dripping behavior of the PLA/PMMA20/FR/CD was improved 

while maintaining its flame retardancy (i.e., UL-94 V-0; LOI = 29.3%). Higher 

maximum degradation temperature (Tmax) was obtained for PLA/PMMA20/FR/CD 

during TGA measurement, suggested the thermal degradation was delayed in the 

presence of CD. Scanning electron microscope (SEM) showed an extensive and 

compact char layer was formed on the burning surface of PLA/PMMA20/FR/CD, 

proving that CD could be an effective adjuvant for FR in improving flame retardancy 

of PLA/PMMA20/FR/CD. 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER ONE 

INTRODUCTION 

 

1.1 Background of research 

In recent years, sharp rise in environmental problems including natural resources 

depletion, white pollution, and waste disposal have been of great concern to all. The 

consumption and production of petroleum resource based plastics will become a 

problem if the persistent plastic wastes have not properly managed. Due to the rapid 

rise in the petroleum’s price and limited petroleum resource, extensive researches have 

been done on the biodegradable polymer in order to develop eco-friendly and 

renewable plastics. One of the naturally renewable biodegradable polymer that have 

drawn attraction of academic and industrial interest is poly(lactic acid) (PLA). 

Poly(lactic acid) (PLA) has emerging as a green alternative to petrochemical 

based polymers and successfully reaches commercial scale due to its advantageous 

properties, such as high modulus and strength, good processability, biocompatibility, 

good transparency, and nontoxicity (Vilay et al., 2010; Khankrua et al., 2014; Liang et 

al., 2014). It is derived from lactic acid made from renewable resources such as corn, 

rice, beets, sugarcane, wheat and potatoes (Pang et. al., 2010). Besides, PLA possess 

several environmental advantageous over the conventional petrochemical-based 

polymers, such as biodegradability, less fuel energy consumption, and low greenhouse 

gas emission (Vink et al., 2004; Shukor et al., 2014).  However, it still faces some 

drawbacks such as inherent brittleness (Krishnan et al., 2016), low thermal stability 

(Liu et al., 2012), and ease of ignition (Tao et al., 2011), which limit its application in 

electronic housing and automotive industries. 



 

Modification of PLA through blending is a promising and economic approach 

to overcome its limitations. Polymer blending is a convenient industry process that 

able to improve the properties of existing materials by combining the unique properties 

of available materials. Several biodegradable and conventional synthetic polymers 

have been blended with PLA, such as polyamide 11 (Stoclet et al., 2011), natural 

rubber (Bitinis et al., 2011), ethylene-co-vinyl acetate (Ma et al., 2011), 

poly(hydroxybutyrate-co-hydroxyvalerate) (Gerard & Budtova, 2012), poly(3-

hydroxybutyrate-co-3-hydroxyvalerate) (Zembouai et al., 2013),  poly([R,S]-3-

hydroxy butyrate) (Bartczak et al., 2013), poly(urethane) elastomer (Imre et al., 2013), 

and polycarbonate (Phuong et al., 2014). These PLA blend systems have demonstrated 

significant improvement in ductility and toughness compare to the neat PLA. 

Poly(methyl methacrylate) (PMMA) is a transparent thermoplastic that being 

used in various applications, including automotives, outdoors, and electrical 

appliances. It is valued for several properties, such as good mechanical properties, high 

scratch resistance, outstanding weathering resistance, good surface hardness, and low 

water absorption capacity. Despite of its numerous advantageous, it still poses some 

limitations in toughness, thermal stability, flame resistant, and barrier properties. 

PMMA degrades and generates large amount of monomers during thermal 

decomposition. It is highly combustible material and releases heat, smoke, and toxic 

gas during combustion (Zeng et al., 2002b). 

    Recently reports showed that blending PLA with PMMA had drawn 

significant attention due to the miscibility of these blends. Zhang et al. (2003) had 

successfully prepared miscible blends comprises of amorphous poly(D,L-

lactide)/PMMA and crystalline poly(L-lactide)/PMMA blends by solution and 

precipitation method. Woo and Wang (2012) had demonstrated the formation of a new 


