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PENGHASILAN DAN PENCIRIAN RNA APTAMER TERHADAP rHuEPO-

α MENGGUNAKAN TEKNOLOGI SELEX 

 

ABSTRAK 

 

'Systematic Evolution of Ligands by Exponential Enrichment (SELEX)' merupakan 

kaedah penghasilan aptamer, iaitu jujukan DNA atau RNA tunggal yang mampu 

bergabung dengan pelbagai molekul sasaran. Dalam kajian ini, RNA aptamer telah 

dijana terhadap rekombinasi EPO manusia alfa (rHuEPO-α) melalui kaedah 

'SELEX'. Selepas 11 kitaran SELEX, pengklonan dan analisa jujukan telah 

mengenalpasti satu jujukan yang merupakan RNA aptamer, dinamakan sebagai 

REPORA-6, dengan nilai penceraian berterusan sebanyak 25±1 nM. Nilai penceraian 

berterusan REPORA-6 terhadap 'deglycosylated' rHuEPO-α ialah 24.6±2 nM dan 

aptamer ini mampu menjadi 'universal probe' terhadap pelbagai rekombinasi EPO 

manusia. RNA aptamer REPORA-6 dan antibodi monoklonal anti-EPO mengikat 

pada tempat yang berbeza di permukaan rHuEPO-α, membolehkan perkembangan 

'Sandwich Enzyme-Linked Aptamer Assay (ELAA)'. Had pengesanan ELAA ialah 

0.29 nM dan ini menunjukkan bahawa REPORA-6 mampu diaplikasikan untuk ujian 

diagnostik rHuEPO. Aptamer REPORA-6 diaplikasikan dalam satu ujian mengikat 

HuEPO, satu kaedah yang mempunyai potensi yang baik berbanding kaedah pH 

yang memberi kesan kepada sasaran. RNA aptamer REPORA-6 didapati berpotensi 

untuk menggantikan fungsi antibodi pertama/kedua di dalam 'isoelectric-focusing 

(IEF)-double immunoblotting'. Analisis 'gel shift' menunjukkan aptamer REPORA-6 

mempunyai potensi terapeutik kerana ia dapat mengekang interaksi antara EPO dan 

EPO-R, salah satu pemangkin angiogenesis sel kanser. RNA aptamer REPORA-6 

stabil terhadap tindakan nuclease dan dapat dipangkas hingga ke 58-nt melalui 
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pemangkasan rasional dan analisa pemetaan. RNA aptamer yang dipangkas, 

(REPORA-6b) mampu memiliki kecekapan transfeksi yang tinggi dan tidak mudah 

terdedah kepada sistem imuniti serta mengekalkan nilai penceraian berterusan 

terhadap rHuEPO-α (22±2 nM). 
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GENERATION AND CHARACTERIZATION OF RNA APTAMER 

AGAINST rHuEPO-α BY SELEX TECHNOLOGY 

 

ABSTRACT 

 

Systematic Evolution of Ligands by Exponential Enrichment (SELEX) enables the 

isolation of aptamer (ssDNA or RNA that possesses high binding affinity and 

specificity against virtually any target molecules). In this study, a RNA aptamer 

against recombinant human EPO-alpha (rHuEPO-α) was successfully isolated by 

SELEX technology. After 11 cycles of SELEX, cloning and sequence analysis 

showed an appearance of a single major clone constituting the putative RNA 

aptamer, termed REPORA-6, with a dissociation constant of 25±1 nM. Dissociation 

constant of REPORA-6 against deglycosylated rHuEPO-α was 24.6±2 nM. 

REPORA-6 could possibly act as 'universal probe' against all rHuEPOs. REPORA-6 

and anti-EPO monoclonal antibody bind at different binding sites on the surface of 

rHuEPO-α, facilitating the design of Sandwich Enzyme-Linked Aptamer Assay 

(ELAA). The detection limit achieved was 0.29 nM, suggesting that this assay has 

the potential to be an aptamer-based diagnostic (aptanostic) test for detection of 

rHuEPO. REPORA-6 was used in aptamer-based capture assay, which is a better 

method than pH-based elution of the target protein that can incur irreversible 

degradation on the protein. REPORA-6 could be also be used as a potential agent for 

replacing both primary/secondary antibodies in isoelectric-focusing (IEF)-double 

immunoblotting. Gel shift assay revealed that REPORA-6 has therapeutic potential 

through its ability to block the interaction between EPO and EPO receptor (EPO-R); 

one of the interactions of which mediates tumor growth/angiogenesis. REPORA-6 is 

resistant against nuclease degradation action and can be truncated via rational 



 

 xx 

truncation approach (aided by mapping analyses) down to 58-nt. This miniaturized 

aptamer (REPORA-6b) has better transfection efficiency and is less susceptible to 

the immune system, maintaining its binding affinity against the target (22±2 nM). 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Discovery of Aptamer 

 

A functional RNA molecule must possess the genotype and phenotype that enables 

the survival of the molecule within its population when genetic selection is applied. 

The genotype in this case indicates the sequence of the RNA while the phenotype 

represents the functional property associated with the RNA motif (Gilbert, 1986). In 

early investigations by Sol Spiegelman and colleagues, Darwinian evolution 

experiment in the test tube was performed using RNA bacteriophage Qβ that 

produces copies of the viral genome (Spiegelman et al., 1965). Several generations 

of the Qβ replicase-mediated RNA replication was carried out, in which serial 

dilution was done in each generation. In the end, superior variants were isolated from 

the initial huge population of sequences. The variants produced were the sequences 

retained following survival of selective pressure, which is the speed of the Qβ 

replicase‟s replication complexed with mutation rate of the Qβ replicase. Termed 

'evolution in the test tube', the variants produced are devoid of the sequences 

unnecessary for binding against the Qβ polymerase. This was the first ever 

experiment that attested the self-replicating property of the RNA that have the 

phenotype and genotype to „reproduce‟ and to evolve in vitro in the presence of the 

selective pressure. This groundbreaking work pioneered the effort to look further into 

the other phenotypic capability of the RNA sequence, such as the ability in 

recognizing target with high binding affinity and specificity. Furthermore, the 

discovery of nucleic acid-binding protein that plays important roles in cellular 

processes (such as transcription) infers the ability of these nucleic acids to bind 
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virtually any target molecules to perform specific functions and roles (Dignam et al., 

1983, Murti et al., 1988). These wide ranges of DNA/RNA-protein interactions 

inspired the effort to develop artificial functional nucleic acids that can bind target 

molecules. Later in the 1990s, RNA motif that can bind to specific target was 'fished 

out' from a huge initial pool of nucleic acids. In 1990, Ellington and Szostak isolated 

RNA motifs that can bind to various organic dyes (Ellington and Szostak, 1990). In 

another independent work, Craig Tuerk and Larry Gold (1990) generated a RNA 

motif of 8-nucleotides long that was able to bind T4 DNA polymerase. The resulting 

high-affinity molecules obtained were termed aptamers (Ellington and Szostak, 

1990). 

 

1.1.1 Aptamer-the potential rival to antibody 

 

Aptamers are single-stranded DNA (ssDNA) or RNA oligonucleotides, which rely 

on hydrogen bonding and hydrophobic interactions rather than Watson–Crick base 

pairing for high affinity, specific recognition of their target (Jayasena, 1999). 

Between 2009-2010, there were more than 2000 publications on aptamers as reported 

through “SciFinder”, suggesting that aptamer research is experiencing burgeoning 

growth (Iliuk et al., 2011). The upsurge in the number of aptamers being generated is 

due to the astounding features of aptamers, which are comparable to that of 

antibodies (Smuc et al., 2013, Wang et al., 2011a). Aptamers are analogues of 

antibodies, binding target with high specificity and having dissociation constant in 

the low nanomolar to picomolar level (Stoltenburg et al., 2007). The smaller sizes of 

aptamers (usually 10,000 daltons) compared to antibodies (150,000 daltons) have 

made aptamers the object of intense interest in many target detection systems. The 

low molecular weight of aptamer has the advantages of fast tissue and tumor 



 

 3 

penetration as well as rapid blood clearance (White et al., 2000). In comparison, 

antibodies can only be raised against immunogenic targets in animals, while 

aptamers can be generated against virtually any target molecules. Aptamers have 

exceptional discriminating ability; able to distinguish between closely related 

molecules such as caffeine and theophylline that differs by a single methyl group 

(Zimmermann et al., 2000). Moreover, the production of aptamer is not influenced 

by physiological conditions whereas antibody generation relies on in vivo parameters 

in the animal body. Aptamers can also be easily modified by additional sequences for 

subsequent aptamer-based applications (Yang et al., 2013). They are very stable, 

despite being subjected to repetitive denaturation and renaturation during the process 

of SELEX (Mascini, 2008). Furthermore, labeling of the aptamers with reporter 

groups do not alter their conformation and binding affinity (Willner and Zayats, 

2007). As an alternative to antibody-based methods, aptamers can be applied to both 

labelled (Citartan et al., 2012a, Sassolas et al., 2011) and label-free target detection 

reporting methodologies (Citartan et al., 2013). The absence of hazardous side-

effects and high binding specificities associated with aptamers has earned them the 

reputation as 'excellent candidates' for diagnostics and therapeutics (McKeague and 

Derosa, 2012, Rahimi et al., 2009).  

 

1.1.2 Aptamers in Diagnostics 

 

The intrinsic properties of aptamer suggest that it can be an excellent candidate in 

diagnostic applications (Germer et al., 2013, Hong and Zu, 2013). DNA aptamer was 

generated against the whole cell of Francisella tularensis, a pathogenic species of 

Gram-negative bacteria and the causative agent of tularemia or rabbit fever. This 

DNA aptamer that specifically binds F. tularensis sub-species japonica was used in 
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the sandwich Aptamer-Linked Immobilized Sorbent Assay towards detecting the 

Tularaemia causative agent (Vivekananda and Kiel, 2006). The detection limit 

achieved was 250 ng of antigen. 

 Three RNA aptamers specific against lipopolysaccharide from Eschericia 

coli O157:H7, teichoic acid from Staphylococcus aureus and a cell membrane 

protein of outer membrane protein C from Salmonella typhimurium were utilized in a 

rapid detection of the food pathogens. These aptamers functionalized with thiols 

were immobilized on a silver surface. Using fluorescence microscope, fluorescence 

emission following the formation of the bacteria-aptamer complex can rapidly 

monitor individual food pathogens (Maeng et al., 2010). RNA aptamer raised against 

core antigens of HCV was immobilized on a 96-well plate using printing technology. 

This aptamer-based chip assay can specifically detect the core antigens from sera of 

HCV infected patients (Lee et al., 2007). DNA aptamer was generated for the 

detection of Campylobacter jejuni, a causative agent of human campylobacteriosis 

(Dwivedi et al., 2010). The authors have proposed that this aptamer can potentially 

be applied in aptamer-linked immobilized sorbent assay, colorimetric analysis, dot 

blot assay and proximal ligation assays towards specific detection of Campylobacter 

jejuni.  

 

1.1.3 Aptamers in Therapeutics Applications 

 

The non-immunogenic nature and high binding affinity of aptamer suggests that they 

can be effective therapeutic agents (Keefe et al., 2010, Que-Gewirth and Sullenger, 

2007). One way aptamer can result in this effect is by binding to the target and 

inhibiting the binding of other protein molecules such as receptors. For example, 

RNA aptamer generated against Prion proteins PrPC (normal cell-surface 
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glycoprotein), blocks its conversion into infectious cell-surface glycoprotein, PrPSc. 

This prevents the pathogenesis of prion-associated diseases, such as bovine 

spongiform encephalopathy (Mashima et al., 2013). Another RNA aptamer targets 

type IVB pilus of Salmonella enterica serovar Typhi (the point of entry into human 

cells) and reduces cell invasion (Pan et al., 2005). Two RNA aptamers, P-58 and P-

78 were reported to interfere with the replication of Hepatitis C virus (HCV) by 

specifically targeting 5BSL3.2 domain residing within cis-acting replication element. 

Binding of this aptamer blocks the region at the 3‟-end of the replication element, 

which is the coding region for viral RNA-dependent RNA polymerase (Marton et al., 

2013).  

Reverse transcriptase inhibition by aptamer can be a wise therapeutic strategy 

for the treatment of HIV, which can suppress viral replication (Whatley et al., 2013). 

The aptamer having the motif UCAA binds to the reverse transcriptase of HIV and 

inhibit its enzymatic activity in vitro. This impedes access of natural primer or 

template to reverse transcriptase, thereby halting the DNA polymerization and 

RNaseH activities of the enzyme. This aptamer was speculated to perform similar 

inhibitory reaction in vivo. 

 Some of the aptamers designed for therapeutic applications have entered 

clinical trials. The RNA aptamer, Pegaptanib, is undergoing testing to treat age-

related macular degeneration (AMD) (Zhou and Wang, 2006). This 2′-

fluoropyrimidine modified RNA aptamer reduces angiogenesis by inhibiting the 

activity of vascular endothelial growth factor (VEGF), a protein responsible for 

AMD. Pegaptanib represent the first aptamer approved by Food and Drug 

Administration for therapeutic application. An anti-thrombin DNA aptamer, which 

can prolong blood clotting time has passed Phase I clinical trial. Compared to 
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Heparin, this aptamer is more effective at similar clinically relevant concentrations in 

reducing the platelet deposition (Lee et al., 2006).  

 Another aptamer, that functions against nucleolin (cell surface receptor for 

survival and proliferation of cells) for the treatment of cancer has entered Phase I 

trial (Vorhies and Nemunaitis, 2007). Nimjee and co-workers generated an RNA 

aptamer that can block catalytic activity of factor IXa (that catalyzes the conversion 

of factor X to factor Xa in the blood coagulation cascade) (Nimjee et al., 2005). This 

aptamer is part of the anti-coagulant system known as REG1, which underwent three 

Phase I clinical trials (Dyke et al., 2006).  RNA aptamer isolated against the C-X-C 

motif of chemokine 12 (CXCL12) (chemokine that binds receptor C-X-C chemokine 

receptor type 4 (CXCR4) for vasculogenesis, tumor growth, and metastasis) was also 

evaluated for clinical application. This aptamer can act as antagonist against 

CXCL12 by blocking its interaction with its receptor CXCR4 (Duda et al., 2011). 

Known as NOX-A12, the RNA aptamer has entered Phase I trial conducted on 48 

healthy patients (de Nigris et al., 2012). The high potentiality of the aptamer for 

therapeutic purpose is the absence of side effects in treatment as was reported with 

nucleolin and the VEGF aptamer (Borbas et al., 2007). Other vital applications 

mediated by aptamers are listed in Table 1.1. 
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Table 1.1 Aptamer-Based Applications 

 

TARGET FOR APTAMER APPLICATIONS REFERENCES 

 Aptamer-Based In Vivo Imaging  

Ramos cell In vivo imaging of temporal distribution of Cyanine 5 (fluorophore)-tagged TD05 

aptamer in Ramos tumor bearing mouse. 

Shi et al., 2010 

Nucleolin transmembrane 

protein in cancer cells 

In vivo cancer cell imaging. Lee et al., 2010 

Prostate-specific membrane 

antigen (PSMA) 

In vivo imaging of prostate cancer cells. Min et al., 2010 

Small cell lung cancer 

(SCLC) cells and tumors 

containing p68 

In vivo imaging of SCLC cells and tumors containing p68. Bagalkot et al., 

2007, Kunii et al., 

2011, Mi et al., 

2010 

 Aptamer-Based Drug-Delivery System  

PSMA 

 

Anti-PSMA aptamer was conjugated to Gelonin, which is a ribosomal toxin that 

inhibits the process of protein synthesis, killing the cancer cells upon 

internalization by binding to PSMA on the cancer cells. 

Chu et al., 2006a 

Tenascin-C In vivo tumor targeting by using fluorescently labelled aptamer that is specific for 

tenascin-C, an extracellular matrix protein up-regulated in glioblastoma cancer 

xenografts. 

Hicke et al., 2006 
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Table 1.1 Continued 

 

TARGET FOR APTAMER APPLICATIONS REFERENCES 

 Aptamer-Based Drug-Delivery System  

mAb20, specific autoimmune 

antibody 

Binding of the aptamer to the antibody averts the interaction with human insulin 

receptor, preventing antibody-mediated receptor internalization. Useful in the 

treatment of insulin resistance. 

Doudna et al., 1995 

PSMA Conjugation with nanoparticle known as poly (lactic acid)-block-polyethylene 

glycol copolymer with a terminal carboxylic acid functional group (PLA-PEG-

COOH) to mediate the uptake by cells expressing PSMA. 

Farokhzad et al., 

2004 

 Aptamers in Microarray  

IgE and thrombin RNA aptamers specific for lysozyme and ricin were conjugated with biotin and 

spotted onto streptavidin coated microarray slides for RNA aptamer-based 

microarray. 

Cho et al., 2006 

Interleukin-16, VEGF, and 

endostatin 

17-plex photoaptamer array, whereby the target protein was fixed onto the 

aptamer in a permanent manner via irreversible cross-linking covalent bonds. 

Quantification of the protein bound was executed by labeling with fluorophore 

N-hydroxysuccinimide (NHS)-Alexa555 that targeted exposed primary amines 

of the protein, subsequently detected by fluorescence measurement. 

Bock et al., 2004 
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Table 1.1 Continued 

 

TARGET FOR APTAMER APPLICATIONS REFERENCES 

 Aptamers-Based Ribozyme  

ATP Fusion of the hammerhead self-cleaving ribozyme to the aptamer domain. 

Decrease in the catalytic activity of the ribozyme by up to 180-fold in the 

presence of ATP. 

Tang and Breaker, 

1998 

Theophylline Conjugation of the aptamer to hammerhead ribozyme. 

Cleavage activity of the ribozyme was increased by up to 110-fold in the 

presence of theophylline. 

Soukup and 

Breaker, 1999a 
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1.2 Method of Aptamer Generation-Systematic Evolution of Ligands by 

Exponential Enrichment (SELEX) 

 

One of the main criteria that attributes to the 'fame' of aptamer lies in the method of 

aptamer generation known as Systematic Evolution of Ligands by Exponential 

Enrichment (SELEX). The high reproducibility of SELEX is evident with the 

myriads of aptamers generated against various targets, such as dyes (Ellington and 

Szostak, 1990), ATP (Lato et al., 2002), metal ions (Kawakami et al., 2000), proteins 

(Calik et al., 2009, Niazi et al., 2008, Schurer et al., 2001, Sekiya et al., 2005, 

Stevenson et al., 2008, Wochner et al., 2008, Yoshida et al., 2008), toxin (Tang et al., 

2007), whole organism (Boiziau et al., 1999, Cheng et al., 2008) and tumor initiating 

cell (Kim et al., 2013). In general, SELEX is a combinatorial process that comprises 

of four important steps: (1) preparation of random oligonucleotide library and target-

nucleic acid complex formation (2) separation of the target-bound from unbound 

molecules (partitioning) (3) the amplification of the target-bound molecules (4) 

cloning and sequence analysis (Figure 1.1). 

 

1.2.1 Preparation of Random Oligonucleotide Library and Target-Nucleic acid 

Complex Formation 

 

The basic important criterion of the SELEX is the design of the random DNA 

oligonucleotide library (Gold et al., 1995). A typical random DNA oligonucleotide 

library comprises of central randomized region (25-100 nucleotides long) flanked by 

a constant primer binding regions of about 18-40 nucleotides long. The library is 

prepared by phosphoramidite-based chemical synthesis using phosphoramidite 

containing all the 4 bases (A, G, C and T). To ensure the production of the 'neutral'  
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Figure 1.1 Basic Steps of SELEX (this study)  

 

One complete step of SELEX comprise of complex formation, partitioning, and 

amplification. Starting with incubation with the chemically synthesized initial 

random nucleic acid library, partitioning is carried out to separate the target-bound 

molecules from the unbound molecules. The target bound molecules are eluted and 

amplified by PCR. After 8-15 iterative rounds, the selected molecules were cloned 

and sequenced for the identification of potential aptamer candidates.   
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library with equal representation of all the four nucleotides, the ratio of delivered 

phosphoramidites containing the nucleotides is adjusted according to the coupling 

efficiencies of these phosphoramidites (Lato et al., 1995). As each of the nucleotide 

positions in the central randomized region can be occupied by either of the 

nucleotides (dATP, dGTP, dCTP or dTTP), this leads to the different sequences of 

the ssDNA. For example, library with the randomized region of 35 nt will have 

approximately 4
35

 or 10
21 

number of different ssDNAs (Gold et al., 1995). This 

'synthesized library' can be directly used for the first step of DNA SELEX. The 

advantage of an initial PCR amplication step is the ability to eliminate the aberrantly 

synthesized DNA in the library (Marshall and Ellington, 2000). However, an 

additional step is required to convert the PCR-amplified double-stranded DNA 

(dsDNA) into ssDNA by several strategies (Marimuthu et al., 2012). In contrast, for 

the RNA SELEX, ssDNA library is converted to dsDNA by PCR amplification 

before they are subjected to in vitro transcription to produce the RNA library (Figure 

1.2). Following the oligonucleotide library preparation, binding is performed with 

the target of choice. Binding is carried out by incubation of the library with the target 

under optimum buffer conditions. The most common incubation parameter is 

incubation at room temperature (RT), for 10-20 min (Gopinath et al., 2012). 
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Figure 1.2 Starting random ssDNA oligonucleotide library for DNA and RNA 

SELEX (this study) 

 

The random ssDNA oligonucleotide contains a central randomized region with two 

constant primer-binding sites. For the DNA SELEX, the ssDNA library can be used 

directly. PCR amplification can also be carried out followed by the conversion of 

dsDNA to ssDNA. However, for RNA SELEX, the ssDNA library has to be 

converted to dsDNA library, which is used to generate the RNA library. T7 promoter 

region is incorporated at the 5'-end of the sense primer to facilitate in vitro 

transcription. 
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1.2.2 Partitioning 

 

One of the most crucial steps in any SELEX experiment is to separate the target-

bound oligonucleotides from unbound oligonucleotides after the nucleic acid-target 

complex formation (Stoltenburg et al., 2007). Numerous methods have been adopted 

to enable the separation of these bound from unbound species. One of the most 

common methods of separation is the usage of nitrocellulose filter membrane (Zhou 

et al., 2011). Nitrocellulose filter allows the retention of target protein that bind to 

the nucleic acid sequences with high affinity. By virtue of vacuum suction, the 

unbound nucleic acid sequences will pass through the filter. The retained nucleic 

acid sequences can then be eluted and amplified (Rahimi et al., 2009). Using this 

partitioning method, several aptamers were selected against a wide range of targets 

including T4 DNA Polymerase (Tuerk and Gold, 1990), bovine factor IX (Gopinath 

et al., 2006a) and human influenza virus (Gopinath et al., 2006b).  

Another method involves the usage of affinity tags that facilitate 

immobilization of proteins in the affinity chromatography column (Gopinath, 2007). 

Affinity tags include cyanogen bromide sepharose, N-hydroxysuccinimide (NHS), 

glutathione S-transferase tagged at the N-terminal or C-terminal of the target protein 

facilitate protein immobilization (Nilsson et al., 1997). Nucleic acid ligands that have 

affinity against the target protein remain bound despite washing with excess washing 

buffer (Figure 1.3 [A]). The retained nucleic acids (of the nucleic acid-protein 

complex) is then eluted by strong denaturant such as 7 M urea (Moore et al., 2011). 

Another simple separation technique is by microtiter plate-based partitioning 

method. The input nucleic acid molecules are incubated in wells coated with target 

protein for a certain period of time. Following washing steps, the bound molecules 

are eluted (Wochner and Glokler, 2007, Zhang et al., 2003).  
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Surface plasmon resonance-based Biacore system has made vital contribution 

in SELEX by providing an efficient platform for partitioning (Misono and Kumar, 

2005). In this method, the randomized RNA library was injected to the target 

molecule immobilized on the surface of biacore chip. After the removal of the 

unbound molecules, target-bound nucleic acids are collected into a fraction tray. 

Using Biacore-mediated partitioning, the amount of non-specific binders and the 

number of SELEX cycles were drastically minimized (Figure 1.3 [B]). Misono and 

Kumar (2000) have generated RNA aptamer against human influenza 

A/Panama/2007/1999 (H3N2) virus using Biacore-sensing plate as the platform to 

separate target-bound nucleic acids from unbound nucleic acids.  

Missailidis et al. (2005) performed SELEX by passive absorption of the 

target protein (antibodies) on the walls of the PCR tubes. Separation of the target-

bound from unbound nucleic acids was performed by simple pipetting of the solution 

out of the tubes following incubation of the nucleic acid library with the target 

protein. PCR amplification was carried out directly inside the PCR tubes without any 

prior elution step as the denaturation during the PCR amplification releases the 

antibody-bound sequences (single-pot strategy) (Missailidis et al., 2005).  

Recently, Capillary Electrophoresis (CE) is another favourite scheme of 

partitioning in SELEX (Ashley and Li, 2013). The high resolving capacity is 

accounted for by the differential migration of the target-bound sequences and the 

unbound sequences in the capillary. This method greatly reduces the time spent on 

SELEX cycles, from several days to only a few hours. Using CE, DNA aptamer was  
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(A) 

 

(B) 

 

Figure 1.3 Partitioning Step of SELEX (this study) 

 

(A) The application of the affinity tag enables immobilization of the target protein in 

affinity column chromatography. Following incubation of the target-bound resin 

with the nucleic acid library, unbound sequences are removed from the column 

by washing steps. The target-bound molecules are eluted and amplified (this 

study).  

(B) Biacore-assisted partitioning involves the use of the Biacore chip (such as 

carboxymethyl-dextran (CM5) chip) for the immobilization of the target. 

Similarly, after the removal of the unbound nucleic acids, the target-bound 

nucleic acids are collected inside the fraction tray during the dissociation step 

and is then PCR amplified (this study). 
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generated against Neuropeptide Y within 2-4 cycles of SELEX (Mendonsa and 

Bowser, 2004).  

 

1.2.3 Amplification 

 

Subsequent to the partitioning step, the target-bound sequences are eluted using 

denaturants such as urea (Gopinath et al., 2012). Elution with urea or any other 

denaturants has the probability of eluting not only nucleic acids that form complexes 

with the target protein, but also those molecules that bind to the matrix non-

specifically. Since the interaction between the target and the bound sequences are 

non-covalent, the use of other elution methods including affinity elution with excess 

amount of target (Geiger et al., 1996) or excess amount of competitor (Bridonneau et 

al., 1999) is possible. This method assures the elution of only target-bound 

molecules. As the resulting eluted target-bound sequences are present in very minute 

amount, PCR amplification is necessary to increase the copy number of these 

sequences to a sufficient amount applicable in the consequent cycles of SELEX 

(Duan et al., 2013, Han and Lee, 2013). This particular step of SELEX (after the 

PCR amplification) is different for RNA and DNA SELEX, which will be delineated 

in the next section.  
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1.2.3.1 DNA SELEX 

 

 Following optimal PCR amplification, efficient generation of ssDNA from 

dsDNA PCR product is the key point of a successful DNA aptamer generation 

(Svobodova et al., 2012). This is because ssDNA can form diverse structural 

conformations to enable binding to target molecules as opposed to dsDNA that 

adopts only double-helix conformation. Structural conformations of ssDNA 

comprises of unpaired nucleotide and regions that form stable secondary structures 

such as hairpin structures, pseudo-knots (Schneider et al., 1995) and quadruplex 

structures (formed by planes of two neighboring G-quartets) (Jing et al., 1997).  

 As described below, there are different methods of converting dsDNA into 

ssDNA, before utilizing these molecules as the input in the subsequent cycle of 

SELEX. These methods are asymmetric PCR (Citartan et al., 2012d), biotin-

streptavidin separation (Figure 1.4 [A]), lambda exonuclease digestions (Citartan et 

al., 2011) (Figure 1.4 [B]) and size separations on denaturing polyacrylamide gel 

electrophoresis (Marimuthu et al., 2012) (Figure 1.4 [C]).  

 ssDNA preparation in DNA SELEX is slightly cumbersome as 'scaling up' is 

necessary for maximum production of the ssDNA (Marimuthu et al., 2012). 

Moreover, the residual amount of dsDNA in the reaction mixture can be „fatal‟ to the 

SELEX process, which otherwise requires careful optimization. 
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(A) 

 

(B) 

 

(C) 

 

 

Figure 1.4 Methods of converting dsDNA into ssDNA 

 

(A) ssDNA generation from biotinylated PCR product using streptavidin (adopted 

from Marimuthu et al., 2012). 

(B) Lambda exonuclease digestion on the phosphorylated PCR product (adopted 

from Citartan et al., 2011). 

(C) Separation of the amplicons-derived-modified primers on PAGE (adopted from 

Marimuthu et al., 2012) . 
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1.2.3.2 RNA SELEX 

 

The difference between DNA and RNA SELEX lies in the process of generating the 

input nucleic acid molecules to be applied in the subsequent cycle of SELEX. As 

explained in the previous section, in DNA SELEX, the dsDNA must be converted to 

ssDNA before the next cycle of SELEX. However, in RNA SELEX, the eluted 

target-bound RNA molecules must be converted to first strand cDNA by reverse 

transcription before subjecting to PCR amplification (RT-PCR). The resulting PCR 

product is used to generate RNA molecules by in-vitro transcription before subjected 

to the next round of SELEX. Compared to the preparation of ssDNA from dsDNA in 

DNA SELEX, in vitro transcription in RNA SELEX can produce microgram amount 

of RNA directly from the dsDNA template without any scaling-up. This template 

DNA can be removed by DNase treatment to prevent carry-over of the DNA into the 

subsequent SELEX cycles.  

 Upon generation of sufficient amount of ssDNA or RNA, subsequent cycles 

of SELEX can be carried out. The initial few rounds of SELEX are performed in 

such a way that the condition is not so stringent This prevents the loss of potential 

high affinity binders that are usually present at very minute amount (Nieuwlandt, 

2000). The binding stringency is subsequently increased in the next cycles to allow 

for the isolation of high affinity binders (Zimmermann et al., 2010). This is achieved 

by using different target/competitor (yeast tRNA/salmon sperm DNA) ratios (Liu et 

al., 2012) or by a stringent washing step (Lauridsen et al., 2012). 
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1.2.4 Cloning and Sequence Analysis 

 

After approximately 8-15 cycles of SELEX, the resulting nucleic acid pool is cloned 

and subjected to sequencing. Sequence analysis is imperative to identify individual 

sequences that have the highest binding affinity against the target (Ditzler et al., 

2013, Latulippe et al., 2013, Wang et al., 2013). Prediction of binding motif can be 

realized by alignment of the sequences (usually 50-100 sequences). Sequences that 

have homologous and common motif(s) are classified into similar groups. Each 

group of the sequences is then checked for its binding against the target. The 

sequence that exhibits the most prominent binding is the potential aptamer candidate. 

The number of different aptamer candidates obtained is usually influenced by the 

complexity of the target (Conrad et al., 1995). 

 

 1.2.5 The 'Tweaking' of SELEX Strategies 

 

With the progress of time, diverse types of SELEX procedures have been designed, 

which involves modification or improvement in the basic steps of SELEX (Hamm et 

al., 2002, Lorenz et al., 2010, Wu and Curran, 1999). Most of these modifications of 

the SELEX strategies result in the minimization of the number of SELEX cycles and 

ensure efficient separation of unbound nucleic acid sequences from target-bound 

sequences. For example, to maximise the separation of target-bound sequences from 

unbound sequences, Capillary Electrophoresis (CE)-based partitioning was 

employed. Also known as CE-SELEX, this enhanced SELEX procedure reduces the 

overall number of SELEX cycles (from 10-15 cycles to 2-4 cycles) (Mosing and 

Bowser, 2009). 
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 In Atomic Force Microscopy (AFM)-SELEX, AFM was applied to measure 

the adhesion between the cantilever and the sample surface. This SELEX 

methodology was proven to isolate high affinity aptamers. As a proof-of-concept, 

aptamer against target protein thrombin was isolated (within 3 cycles), which has 

binding affinity higher (200 pM) than that of the conventional anti-thrombin aptamer 

(200 nM) (Miyachi et al., 2010). 

 Other non-SELEX method was also proposed, in which non-equilibrium 

capillary electrophoresis of equilibrium mixtures (NECEEM) was adopted for the 

purpose of partitioning without amplification of the target-bound molecules (Ashley 

et al., 2012). Similar to CE-SELEX, this modified non-SELEX method also greatly 

reduced the number of SELEX rounds (from the usual 10-15 to 3 rounds), without 

compromising the generation of aptamer with high binding affinity (Berezovski et 

al., 2006).  

 

1.3 Human Erythropoietin (HuEPO)  

 

Human Erythropoietin (HuEPO) or Erythropoietin (EPO), a glycoprotein hormone, 

is the most important erythropoietic growth factor responsible for erythroid 

differentiation, survival and proliferation (Fisher, 2003). It is initially synthesized as 

a polypeptide containing 193 amino acids, whereby the first 27 amino acids is the 

signal peptide. Before secretion, these terminal 27 amino acids are removed, 

resulting in a 166-amino acids polypeptide (Lai et al., 1986). Oligosaccharide side 

chains are added at the N-glycosylation sites of the HuEPO, at the positions 24, 38 

and 83 of the amino acid asparagine. Similar glycosylation takes place at the amino 

acid serine located at the position 126 (Narhi et al., 1991). These oligosaccharide site 

chains are requisite for in vivo activity of the HuEPO, so as to prevent fast 
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degradation of the HuEPO in the liver even before it reaches the target site. The main 

stimulating factor for the production of HuEPO is tissue hypoxia, whereby the 

oxygen capacity in the blood and the artery reduces (Huang et al., 1998, Ivan et al., 

2001, Jaakkola et al., 2001, Jiang et al., 1996, Maiese et al., 2004). 

 

1.3.1 Recombinant Human EPO (rHuEPO) and Doping 

 

With the advent of cloning technology, the gene that encodes HuEPO was cloned 

and expressed in several eukaryotic hosts. This gives rise to different types of 

recombinant human EPO (rHuEPO) including Epoetin alfa (Jelkmann, 2008), 

Epoetin beta (Storring et al., 1998), Epoetin omega (Pascual et al., 2004), Epoetin 

delta (Llop et al., 2008) and Darbepoetin alpha (Egrie and Browne, 2001). The 

availability of these rHuEPOs has tremendously enhanced the lives of patients with 

chronic kidney, which is the key causative agent of anemia due to the inadequate 

production of EPO in kidney. The amino acid sequences of the rHuEPOs and the 

HuEPO are shown in Figure 1.5. 

 The oxygen carrying capacity of the blood to the muscles is the major 

obstacle to the ability to carry out extended physical activity. During this event, 

oxygen is consumed very quickly, which poses a great limitation to muscular 

function. As red blood cells are the main vehicle for carrying oxygen, athletes resort 

to blood doping as a way to increase the oxygen carrying capacity of the blood 

(Lippi and Guidi, 2000). This act of using blood transfusion is termed blood doping 

and was banned in 1987 by the International Olympic Committee (IOC). Many 

athletes have then switched to rHuEPOs as an alternative. Following this, rHuEPO 

was banned by World Anti-Doping Agency (WADA) in the 1990s (Lasne et al., 

2002). 
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 There are several methods to detect the doping of rHuEPO, such as 

measurement of the hematologic parameters as the markers of the erythropoiesis  

level (Bressolle et al., 1997), chromatographic (Skibeli et al., 2001) and mass 

spectrometry analyses (Sasaki et al., 1988). Currently, the method accepted by 

WADA for rHuEPO doping is by Isoelectric Focusing (IEF)-Double 

Immunoblotting, which depends on antibodies (Lasne, 2001, Lasne and de Ceaurriz, 

2000, Lasne et al., 2002) (Figure 1.6). 

 

1.3.2 EPO-EPO-R interaction in Tumour Growth  

 

Tumor growth is a multi-factorial phenomenon. One of the causative factors is 

mediated by the interaction between EPO and EPO Receptor (EPO-R), which leads 

to the phosphorylation of tyrosine residues on the surface of the EPO-R. Signal 

Transducer and Activator of Transcription 5 (STAT5), a SH2 domain containing 

protein, interacts with these phosphorylated tyrosine residues on the surface of the 

EPO-R, resulting in the phosphorylation of the STAT5 protein itself. STAT5 protein 

forms a dimer, which goes to the nucleus and acts as the transcription factor 

regulating the expression of genes such as bcl-xl, an anti-apoptotic gene (Acs et al., 

2001, Ribatti et al., 2007). Other genes that are also upregulated result in cancer cell 

proliferation, tumor oxygenation and angiogenesis that aids in cancer progression 

(Hardee et al., 2006). 

 

 


