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Abstract 

 

This research explores the idea that the processes and rate of bone decomposition are 

affected by differential temperatures after death. Previous research supports changes in the 

molecular structure of bone due to different weather conditions, in addition to gross macroscopic 

changes, but there remain issues in understanding how these possible changes affect 

decomposition overall. In this research, I will explore how the freeze-thaw cycle affects 

decomposition, and what the relationship between weathering on bone and the natural 

decomposition process is. My hypothesis is that the freeze-thaw cycle will induce further decay, 

steady higher temperatures will speed up decomposition, and freezing will slow decomposition. 

My control sample will act as a measure to evaluate the role that weather (temperature) plays in 

decomposition. 
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Introduction 

 

 The post-mortem interval (PMI) is one of the most important features of a death 

investigation. The time passed since a person’s death can shape the direction of how an 

investigation will be conducted. Conversely, many factors can affect the PMI of an individual. 

One of the many factors that will be addressed in this study are the effects that different weather 

patterns have on bone decomposition. Bone decomposition is one characteristic of overall decay, 

like the decomposition of flesh and other parts of the body. The rate at which bones begin to 

decay can inform the forensic scientist about the possible time of death. If the PMI has been 

affected by outside factors, that do not occur naturally within the human body, that can affect the 

accurate estimate of time since death (PMI). This study is an extension of my earlier study done 

on weathering and trauma (“The Effects of Sharp and Blunt Trauma on Bone in Summer and 

Winter Weathering Patterns”). This study further explores the macroscopic and microscopic 

changes that occur in decomposition in bone. 

There is a plethora of literature out there addressing the effects that warm temperatures 

have on the decompositional process of bone and soft tissue. This is, in part, due to the person 

who first began to collect data on human decomposition, Dr. William M. Bass, who created the 

“body farm” at the Anthropological Research Facility at UT-Knoxville. When he started to 

publish on his findings concerning the human decomposition process, other researchers began to 

investigate different aspects of decomposition in warmer climates (Hiller et al. 2003; Janjua et al. 

2008; Keough et al. 2015; Hiller et al. 2003; Fernandez et al. 2013; and Ross et al. 2011). As this 

topic grew in popularity, other researchers began to explore the changes that may occur in other 

climates and in different environmental conditions (Hale and Ross 2016; Turnip 2017; Tersigni 

2007; Calce et al. 2007; Boaks et al.2014; Cross et al. 2010; and Bartlett 2015). Even though the 
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literature has expanded immensely on this topic, there are still areas of this research that have 

lacunae where new findings can have a positive impact on how forensic scientists can assess 

changes that occur when bone begins to decompose. 

This research utilizes a laboratory-controlled environment to simulate weather 

temperatures that can be found in the natural environment. The femoral samples used in this 

study all come from swine (Sus scrofa) carcasses that were collected from a local butcher shop 

(Clancy’s Meat & Fish, 4307 S. Upton Ave., Minneapolis, MN). This was a six-week study that 

observed the macroscopic and microscopic changes that occurred throughout the study. This 

study and its findings are important for articulating the in-depth comparative differences that 

occur in bone when exposed to freezing, heat, and freeze-thaw cycles in an experiment 

simulating weather-related effects on decomposition in bone 
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Theoretical Framework 

 

 My study follows the theoretical framework of the scientific method. I will formulate a 

hypothesis that I then plan to test in a laboratory setting. The scientific method is as follows: 

making an observation, thinking of questions, creating a hypothesis, developing testable 

predictions, gathering data, and developing a theory. My observations come from my previous 

study and the examination of research articles by those who have done similar research on the 

topic. There is not much research out there on the freeze-thaw cycle itself, but researchers have 

found that bone decomposition speeds up in warmer weather and slows down in colder weather. 

It is still widely unknown how bone reacts when it has been frozen and thawed in a cycle, which 

is what I plan to clarify. If I can get a clear understanding of how bone decomposes and reacts to 

the freeze-thaw method, then this research can perhaps help with the estimation of postmortem 

interval when studying remains that have been subject to these conditions.  
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Background and History 

 

This research will help provide a better understanding of how bone reacts to different 

weather conditions (hot/warm, cold, freeze-thaw), which in turn can give a more accurate 

determination of the postmortem interval of bodies recovered in these conditions. My study will 

follow the theoretical framework of the scientific method and the foundation of research done 

within the topic of human decomposition.   

 

Background Information 

The background information provided here is to show, very broadly, details concerning 

the structure of bone, the identification of skeletal trauma, taphonomy, and other variables that 

affect decomposition. This background will provide a much clearer understanding of the inner 

workings of bone, as well as the environmental variables that play a part in this research. 

Bone is a very complex material and can show significant variation between species and 

individuals. White and colleagues (2012) state that bone is one of the strongest biological 

materials in existence, in terms of bearing weight and overall imperviousness. This is illustrated 

by the fact that even after cremation at high and prolonged temperatures bone fragments are still 

very much present after the procedure, as it takes a great deal of heat before bones become ash. 

Bone is composed of a protein called collagen and a mineral known as hydroxyapatite. This 

composition allows bone to be able to reshape and react to any stress, as does any living tissue. 

Bone is a part of the musculoskeletal system, so it routinely resists compression, tension, shear, 

and bending (Klein 2014, White et al. 2012, DiGangi and Moore 2013, Clines et al. 2014). When 

looking at the gross level of bone in an adult skeleton, there are two different types of bone 

present-cortical and trabecular bone. Cortical bone is found on the inside of the bone’s inner 

surface near the medullary cavity, wherein lies the marrow, as well as on the external surfaces of 
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bone. Trabecular or spongy bone is located on the inside of the bone; in long bones, it is found 

closer to the epiphyseal ends of the bone. The differences in the compositions of bone are their 

density; cortical bone is much denser and more compact than trabecular bone, which is very thin 

and web-like in texture.  

Numerous studies detail the inner structure of the bone (Jowsey 1966; Currey 2002; 

White et al. 2012; DiGangi and Moore 2013, among others). Additionally, DiGangi and Moore 

(2013) in their section on histology go into further detail when discussing the structure and 

modeling of bone. They note the different forms of bone and how they perform in the body. 

They discuss the three primary types of bone that can be deposited during the remodeling 

process. Primary lamellar bone is organized in a circumferential pattern between the periosteal 

and endosteal layers of bone (DiGangi and Moore 2013, 365). The next is plexiform bone, which 

is a significant focus of this study; it is often seen in larger, faster-growing mammals than 

humans, including cows, sheep, or deer. It is very rarely seen in humans, and if present, it occurs 

in younger individuals. It is characterized by having a rectangular, brick-like shape as it stems 

from mineral beds that grow perpendicular and then parallel to the outer edge of the bone surface 

(DiGangi and Moore 2013, 365). The third type is primary osteonal bone, which is comprised of 

circular or concentric layers of lamellae bone surrounding a vascular canal. DiGangi and Moore 

(2013) and Tersigni-Tarrant (2012) both note that much of the information about histology in 

anthropology is used in terms of aging and sexing individuals at their time of death. 

Currey (2002), Jowsey (1966), and DiGangi & Moore (2013) all discuss the Haversian 

structure. Even more, Currey (2002) specifically notes that lamellar bone exists in a separate 

form as Haversian systems or secondary osteons (15). Haversian systems (Haversian bone) form 

when “bone-destroying cells, called osteoclasts, move forward in a concerted attack on the bone 

tissue” (Curry 2002; 14). He describes their shape as a “cutting cone,”, noting that “osteoclasts 
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are not derived from cells that occur locally, but instead come from cells circulating in the blood. 

As the cutting cone advances, it leaves a cylindrical cavity of diameter about 200 µ m behind” 

(Curry 2002; 14). The Haversian bone is created as a result of remodeling; the end result is bone 

that has cylindrical layers and a central cavity where one or two blood vessels or nerves run. 

Haversian systems are secondary, and they replace bone that has already previously existed; this 

is why Haversian bone is only found in older remains rather than younger individuals. 

Bell (1990) addressed the issue of diagenetic change in human skeletal materials. She 

used a qualitative assessment of bone density changes using a scanning electron microscope 

(SEM), while Tersigni-Tarrant (2012) analyzed bone changes using light microscopic analysis. 

Both researchers looked at both standard and pathological changes that may cause 

misinterpretation. Bell (1990) explained that there needs to be extensive research into osteonal 

canals and osteocyte lacunae to fully understand how these different networks of bone play a role 

in the changes that occur in human bone after death. She does not directly state which type of 

bone she is working with, but she does note that the samples were taken from adult human 

femora and tibiae. She is most likely working with both cortical and trabecular bone. The results 

indicate that the changes are not random and correlate to the natural structure of lamellar bone, 

which confirms the view of other authors cited in her study. Moreover, her research recognizes 

that dismissing structural changes due to diagenesis can affect the perception of pathologies. 

Another study conducted by Bell et al. (1996) evaluated the potential speed of 

postmortem changes in the microstructure of skeletal remains by examining human material that 

was drawn from different environmental contexts. The environments that the remains were 

derived from were wet coastal, dry/cold, dry, mild/wet/coastal, and the intertidal zone of salt 

water. Their results found that post mortem alterations occur very soon after death; however, 

how quickly this happens still needs to be investigated. Whereas, Keough et al. (2017) show that 
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early stages of decomposition in pigs and humans vary, so the rate at which these alterations 

occur needs to be taken into account. 

Although my study does not involve any form of trauma, understanding temperature 

changes in bone and their resulting damage will provide helpful information for cases that 

involve trauma. Kroman and colleagues (2013), Forensic Anthropology (2013), and Boer et al. 

(2016) provide information on the biometrical properties of bone, as well as the basic concepts of 

bone trauma. Trauma can be inflicted by external forces such as blows or projectiles, but also 

occurs more naturally through falls or sudden compression. It can occur earlier in life 

(antemortem), at or around the time of death (perimortem), or after death (postmortem). Another 

study by Bell and colleagues (1996) evaluated the potential speed of post mortem changes in the 

microstructure of skeletal remains by examining human material that was drawn from different 

environmental contexts. Their results found that post mortem alterations occur very soon after 

death with remains in wet coastal areas, with dry/cold mild/wet/coastal environments exhibiting 

surface decomposition of soft tissue, while in dry environments the decomposition was turned to 

skeletalization, and the intertidal zone of salt water showed complete defleshing of remains. 

However, how quickly this happens still needs to be investigated.  

Other studies conducted by Mann and colleagues (1990), Rodriguez and Bass (1985), and 

Megyesi (2001) provide insight into the many different variables that play a part in 

decomposition. The key variables they note are temperature, humidity/aridity, rainfall, soil PH, 

trauma to the body, access of the body to insects, burial and depth, carnivore and rodent activity, 

size and weight of the body, surface the body is on, clothing, and embalming. Overall, they show 

that the rate of bodily decay is variable and that temperature plays a large role in that variation. 

The current study hopes to elucidate the varying role played by temperature in the process of 

decomposition. In many forensic cases, bone may display both weathering damage and trauma. 
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Depending on the type of damage that is present, it can be difficult to discern the two. So, 

understanding how bone changes in differing weather conditions can bring about a better 

understanding of the differences between trauma and postmortem damage. Ubelaker (1997) also 

discusses the importance of the applications of taphonomy in forensic anthropology. Taphonomy 

is the study of what happens to organisms after death. This discipline works hand in hand with 

forensic anthropology and has direct application to this study of bone decomposition and 

temperature. Ubelaker (1997) states, “In the taphonomic process, weathering represents the 

response of bone to its immediate environment, e.g., soil, sun, etc. as opposed to carnivore 

modifications, trampling, fluvial transport, and geochemical changes” (79). Damann and 

colleagues (2015) further discuss this importance, especially in the case of bacterial development 

associated with dead bodies. It was observed that “partially skeletonized samples maintained a 

presence of bacteria often associated with the human gut, whereas the bacterial composition of 

dry skeletal remains maintained a community profile similar to soil communities” (849). The 

study of taphonomy applies to forensic areas of interest concerning the estimation of the 

postmortem interval, environmental reconstruction, reconstruction of postmortem events, and 

distinguishing evidence of alterations caused by other taphonomic factors. The ability to separate 

these factors is vital during criminal investigations. 

Although there are many biological aspects of bone that I will touch on that may play a 

part in the decompositional process of bone, I will also briefly mention the biological effects of 

soft tissue on bone decomposition in this study. Since soft tissue is present in this study, it is a 

factor that may or may not affect the decomposition of bone. This study looks at the effects of 

drying, decay, freezing, and thawing on tissue. The presence of soft tissue may invite bacteria to 

the sample that may or may not have a significant impact on the study results.  
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Early Studies 

One of the first researchers to study decomposition was Dr. William M. Bass, who in 

1971 created the Anthropological Research Facility at UT-Knoxville (the first “body farm”) to 

allow anthropologists to assess how different variables, such as body weight, burial vs. surface 

disposal, sun/shade, clothing types, and many more, affected the decomposition process 

(Sharanowski et al. 2019). Researchers like Mann & Meadows (1990) continued with further 

research on body decomposition. Heynes’ (1991) review shows that using animal and human 

remains in comparison for study can be used to show postmortem changes; it also highlighted the 

importance of the taphonomic processes in creating further changes in human and animal bone. 

As this research gained more popularity and different environmental circumstances in criminal 

cases emerged, understanding how bodies decompose in different weather conditions became 

essential in identifying an accurate time-since-death. Much of the earlier literature was 

concerned with decomposition in warmer climates, with Galloway and colleagues (1989), Shean 

and colleagues (1993), Mann and Bass (1990), Mann and colleagues (1990), and Tappen (1994) 

being some of the first to conduct research in this area. Komar (1998) was, arguably, the first to 

begin looking at bone decomposition in natural cold weather climates. It is only recently that 

freeze-thaw has been studied in much more depth (Pokines 2016), but there have been other 

attempts in the past, including research by Micozzi (1986) on the effects of colder temperature 

on decomposition in bone. 
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Cold Weather Studies 

 Cold weather studies did not gain popularity until much more recently. Although there 

are studies that appear as early as Micozzi (1986), around the time when studying decomposition 

in bones first began, much of the bulk of the research on this topic occurred in the 2000s. One of 

the first modern studies of frozen human bone comes from Tersigni (2007) who provides 

information about how bone reacts in cold weather and what that can tell a researcher about the 

rate of decomposition in cold weather conditions. This study led to further work in the field, and 

more studies are attempting to gain further information on how this process exactly works. The 

effects of freezing on bone have been studied by a number of researchers (Tersigni 2007; Hale 

and Ross 2016; Turnip 2017; Pokines et al. 2016; Meyer et al. 2013; Roberts et al. 2015; and 

Micozzi 1986). Most have reached similar conclusions, including that there are changes in bone 

density and that breaks or cracks appear in bone that severely damage the surface, and potentially 

the internal composition when these surface cracks are present.  

Additionally, there has been new information presented when looking at freeze-thaw 

cycles. The observation of the freeze-thaw cycle is a much more recent area of forensic 

anthropological research in areas where freezing temperatures coexist with increases in 

temperature to above freezing. One common finding in much of the literature (e.g., Pokines et al. 

2016) is that the damage exhibited in remains is a speedy process that usually happens within the 

first few weeks of the freeze-thaw cycle. Much later, there aren’t many changes that occur to the 

bones as the cycle continues. Further, Pokines and colleagues (2016) found that freeze-thaw 

samples exhibited macroscopic penetrative cracks that pierced through to the bone marrow 

cavity and that also caused damage to the internal bone composition. There is still little literature 

on this topic, but the findings that have been presented to date indicate notable differences can 
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occur in the freeze-thaw condition versus changes in remains subjected only to freezing 

conditions.  

The observation of changes that occur microscopically is an essential piece of this study 

Tersigni (2007) discusses microscopic changes of bone following freezing. She examined her 

materials at various levels of magnification. Statistical analysis of the histomorphometric values 

indicated there were no significant differences in the size of the Haversian canals following 

freezing. Tersigni (2007) notes that the changes she found were not statistically substantial 

enough to suggest that freezing causes these damages, but she did stress that the damages found 

should be taken into account. There needs to be further research to determine the exact cause of 

these damages and what effects freezing actually has on bone.  

Moreover, studies by Micozzi (1986) and Pokines and colleagues (2016) on the freeze-

thaw phenomena both show accelerated rates of decay. Micozzi (1986) especially saw, in the 

microscopic examination, that extensive decay was present. Additionally, these remains were 

more susceptible to invasion by microorganisms from the outside, which can also accelerate the 

decaying process. Micozzi (1986) points out that the freeze-thaw cycle in postmortem 

decomposition occurs from the "outside-in" (predominantly decay), meaning that decomposition 

starts on the outside and works its way to the inner surface. This is different from other remains 

where postmortem decomposition occurs from the “inside-out,” indicating a different process in 

decomposition. 
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Warm Weather Studies 

There is much more research done on the decomposition of remains in warmer weather; 

part of this has to do with the fact that significantly more remains have been found in warmer 

weather climates. Standard features that are common in most research on remains in a warm 

climate are drying of soft tissue and discoloration of bone and soft tissue (Dautartas et al. 2018; 

Parks 2011; Suckling et al. 2016; Mann et al. 1990; Tappen 1994; Hiller et al. 2003; Janjua et al. 

2008; Keough et al. 2015; and Fernandez et al. 2013); all note visible macroscopic changes in 

warm weather samples. 

The macroscopic changes that these authors collectively observed occur soon after 

exposure to warm or hot temperatures; specifically, they may include discoloration, skin 

slippage, appearance of greasiness, cracking and flaking of cortical bone, color change, charring 

(black in color), calcine (grey/white/blue/ash-brown color), brown burn (brown discoloration), 

heat border (off-white yellowish border located between charred and unaltered bone), heat line (a 

thin, whitish line directly adjacent to the heat border), delineation, greasy bone, joint shielding, 

predictable cracking (small heat fractures parallel to heat border), minimal cracking, 

delamination, heat-induced fractures, and drying of soft tissue (mummification); all are 

dependent upon the amount of heat to which the bone is exposed. Hiller et al. (2003) and 

Fernandez et al. (2013) recorded microscopic changes that occur in extreme heating instances. 

Although my study has a maximum temperature of 36 degrees Celsius (96.8 degrees Fahrenheit), 

the changes exhibited in these maximum heating situations is important to note to see if they 

occur in any other forms of weathering. Their findings show that the crystalline structure of bone 

changes (hydroxyapatite). In Fernandez et al. (2013) the hydroxyapatite can withstand 

temperatures up to 800°C before the large crystalline structures are no longer identifiable. Hiller 

et al. (2003) explain this phenomenon as having to do with the sintering process when heating 
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that causes the hydroxyapatite crystals to form a specific shape and size. On the other hand, 

Fernandez et al. (2013) describes this phenomenon as happening due to the compounds derived 

from the hydroxyapatite thermal hydrolysis, which results in retraction, fracture, Haversian 

canals bursting, and cluster formation. Overall, extreme heat has a diminishing effect on the 

microscopic structure of bone, to the point where the structure is no longer recognizable. In 

conclusion, high temperatures can be severely damaging to bone.  

Parks (2011) provides an outline for the different stages of decomposition that can be 

expected to result from temperatures occurring in the southwestern United States. She identifies 

the fresh stage, early decomposition stage, advanced decomposition stage, mummification stage, 

skeletalization stage, skeletal bleaching stage, and skeletal exfoliation stage. She identified time 

frames associated with each stage, giving a detailed description of each. Many of the 

macroscopic changes listed above were identical to the changes listed by Parks (2011) in her 

research. The outline provided by Park (2011) assists with the determination of the PMI and 

identifying the changes that can be found within a certain period of time for each stage of 

decomposition. 

In addition to the heat-related changes that Janjua and colleagues (2008) noted as 

occuring in bone, they also support the notion of using femora as a reliable source for clearly 

exhibiting patterns of weathering. This is especially important and significant to note in the case 

of this research because all samples used were femora. This suggests that the use of this bone 

will provide accurate information pertaining to warm-temperature weathering, as well as other 

forms of weathering on the bone. 
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Other Decompositional Studies 

There are many other studies out there that are concerned with the effects of both warm 

and cold weather studies, but are very specialized. Many of these studies would be much harder 

to replicate and cannot be broadly applied to any one area of warm or cold weather studies. 

Although, these studies do provide valuable information for understanding decompositional 

patterns in different circumstances that may help explicate the patterns that I see in my samples.  

Boaks and colleagues (2014) investigated the process of decomposition. They found that 

following soft tissue decomposition collagen was lost at the periosteal and endosteal surfaces. 

They further note that bacterial activity could have led to further destruction of the bone, leading 

to significant changes over a 2 to 12-month period. Much of their research was not directed 

towards PMI estimation, but was useful for detecting changes in the concentration of protein in 

bone. A study by Walden and colleagues (2018) showed that barium, calcium, iron, potassium, 

magnesium, zinc and phosphorus demonstrate elemental changes during the early stages of 

decomposition. Even though they did not note any changes affected by temperature this study 

does speak to changes in bone at the microscopic level. 

A number of additional specific studies focus on buried bodies and the rate of 

decomposition in warm weather climates (Kelly et al. 2009; Rodriguez & Bass 1985; Eline et al. 

2011). Although these studies are not specifically relevant to my research, they do suggest that 

buried bodies show similar decompositional patterns to that of non-buried remains (albeit at a 

much slower rate); this then affects the determination of time since death. These patterns include 

maggot activity, decomposition of soft tissue, bloating, etc. Megyesi and colleagues (2005) 

further discuss the importance of PMI in the case of human remains and how it can be disrupted 

due to temperature. Ceciliasona and colleagues (2017) studied postmortem changes within a 

closed environment; they found that estimating PMI in outdoor and indoor conditions is 
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different, but overall yields similar results. Humidity can, however, play as significant a role as 

temperature in the process of decomposition. Sharanowski and colleagues (2019) found that 

more moisture in the air indicates a higher probability of rotting, while aridity often leads to 

mummification. Additional specific studies focus on buried bodies and the rate of decomposition 

in warmer weather patterns (Kelly et al. 2009, Rodriguez & Bass 1985, Eline et al. 2011). 

Sharanowski et al. (2019) show that there are specific reasons for why we may see 

mummification of remains and rotting of others; humidity is a significant factor in why we see 

these differences occur, as more moisture in the air means a higher probability of rotting than in 

a much more arid environmental condition. 

These specific studies may not have any direct link to the research in this study but do 

provide further information about different factors that can play a part in decomposition, as well 

as how the process of decomposition advances. They also illustrate situations that are commonly 

encountered within forensic anthropological research and practice.  
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 Methodology 

 

 This study followed methodology inspired by Tersini (2007), Ross (2011), and Turpin 

(2017). These researchers help set a foundation for the type of research I conducted and what 

elements to use to achieve desired results. Four swine (Sus scrofa) femora were collected from 

Clancy’s Meat & Fish, 4307 S. Upton Ave., Minneapolis, MN and transported to Mankato, MN 

on June 28th, 2018 at 10:30am. The femora were then placed in a controlled lab setting at three 

different temperatures for study for a period of six weeks. One bone was placed in an incubator 

at 36 degrees Celsius, one in a freezer at -1.1 degrees Celsius, and one in a standard lab setting 

temperature of 21 degrees Celsius. The fourth bone alternated between the freezer (-1.1 degrees 

Celsius) and sitting out in the lab at a temperature of 21 degrees Celsius on a weekly basis. This 

six-week study was undertaken to observe the microscopic and macroscopic changes in the bone 

brought about by the decompositional process. To understand and document the microscopic 

changes, thin sections of the bone were taken from the proximal end on the day the bone entered 

the lab, and then again after the six-week experiment had concluded. The purpose of this will be 

to have before and after microscopic photos of the bone, prior to environmental destruction.  

The bones were examined for four different types of damage: freeze-thaw cycle damage 

(alternating freezer and lab setting), warm weather (incubator) damage, freezing weather 

(freezer) damage, and lab setting damage (for control). The freeze-thaw cycle involved the bone 

being frozen for a week and thawed out for a week; altogether, the bone was frozen for three 

weeks of the time, while the other three weeks the bone was in a state of thawing. Although this 

was a short period of time, this is appropriate for the assessing the initial differences in 

decompositional changes. Moreover, the incubated femur remained in the incubator for the full 

six weeks, and the same goes for the lab temperature and freezer femora. 
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Over the six-week study, the bones were examined macroscopically before microscopic 

examination began. Once a week for six weeks, the bones were examined on all sides (left, right, 

proximal, and distal), while also looking exceptionally close at the articular ends of the femora. 

Observations were recorded starting June 2nd and persisted through to August 6th. Thin sections 

were collected the following week of August the 14th. The observations were recorded during 

the early afternoon. Photos were taken on July 24th, July 30th, and August 6th of 2018 of all 

examined sides of bone. Approximately 25 photos were taken during the last three weeks of the 

experiment of the macroscopic changes. The bones were then taken to processing for thin 

sections. 

After the bones had undergone their various treatments for the full six-week study, the 

samples were transported to lab space in the Department of Geology for cross-sectioning and 

preparation for thin sectioning. The bones were cut on the proximal ends of the femora, to ensure 

that I was collecting both compact and cancellous bone. A tile saw was used to take bigger 

sections from the shaft of the femora to use for collecting thin sections. There were two cross-

sectioned samples collected from each category of bone treatment (i.e., heat, cold, freeze-thaw, 

control), leaving me with eight half-inch samples. After the samples were cut, they were polished 

down on a potter's wheel facing their cross-sectional surfaces. The wheel was prepared with 

water and by sprinkling a 600-level granite (a very finely grained granite similar to sandpaper) 

on the wheel’s surface. There was no set amount of granite used during this process since the 

process comes down to getting a flat surface on either side of the cross-sections. Depending on 

how well the sections were cut with the tile saw, one sample might need more or less processing 

than another. The sections were held with light pressure against the wheel for sanding while 

being moved back and forth at a 90-degree angle. The wheel was sprayed down with water, and 

more granite was added as needed. This was done until the bone’s surface appeared smooth and 
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glass-like. The samples were then taken to be cleaned and placed in an incubator at 34 degrees 

Celsius.  

After processing, the samples were cleaned with Alconox, a powerful cleanser, and a 

toothbrush. This cleanser was mixed with water to remove any granite that remained on the 

surface or in the crevices of the bone. I had to be sure that no granite particles were remaining in 

or on the surface of the bone. The samples were also placed under a microscope and tweezers 

were used to pick out any remaining particles the Alconox treatment may have missed. There 

was still a fair amount of soft tissue in and around the bone; the bone marrow was left in place, 

while the soft tissue around the bone was removed with pinching pliers. The samples were then 

dried in a 34 degrees Celsius oven on aluminum trays (aluminum foil). After 36 hours, the 

impregnation process began. 

The impregnation process draws epoxy into the spaces on the inside of the bone through 

a vacuum. A makeshift vacuum was made out of rubber tubing and a large glass jar. There are 

tiny pebbles (desiccant, which acts to suck moisture out) at the bottom of the jar and a large 

plastic tray inside the jar. Moreover, a high vacuum sealant (shin-etsu silicone) was used on the 

rim of the glass jar to help keep a solid seal. The glass jar was attached to a pressure valve to 

monitor the pressure being added. Before the samples were added to the vacuum, the epoxy was 

spread over the surface and around the edges of each sample. The epoxy used was Hysol Loctite; 

this epoxy contains one-part hardener and one-part resin. In order to create the right amount of 

epoxy to bone ratio, there needs to be enough epoxy created to fill up the tray or “work” area that 

the bones are placed in. There was no measurable amount added; there was only enough resin 

added to cover the surface area of the sample (approximately 3-5 millimeters in height). After the 

epoxy was added to the samples, they were placed back in the 34 degrees Celsius oven for 48+ 

hours to allow the epoxy to dry.  
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Once the epoxy was completely dried, the samples were taken back to the wheel to be 

polished down with 600 granite grit. The desired effect is to have the epoxy fill all the openings 

within and on the bone for the smooth surface to stick onto the glass slides. For many of the 

samples that were treated with epoxy, there was an abundance of epoxy on the surface that had to 

be removed before placing them on the glass slides. For many of the samples that had been 

weather treated, #61 and #200 granite was implemented in order to remove the large amount of 

epoxy that covered the surface. This was in an effort to speed up the processing time of removing 

the epoxy. Once the epoxy was polished down close enough to the surface of the bone, tin oxide 

and rapid polish granite was used to polish the surface of the bone. After all the samples were 

treated, they were placed to dry in a 36 degrees Celsius oven for 24hrs.  

After the samples were dry, more epoxy was mixed and used to place the samples on the 

glass slides, and they were put into a 34 degrees Celsius oven to dry for 48+ hours. When the 

samples were dry on the glass slides, they were taken to the thin sectioning machine to cut thin 

sections on the glass slides. This was the procedure prior to the breaking of the thin sectioning 

machine in the Geology Department. After the loss of this machine, the remainder of the samples 

were shipped to National Petrographic Service, for further epoxy and thin sectioning processing. 

When the samples were shipped back, they were then analyzed on a Meiji microscope and 

photos were taken using a Canon EOS Rebel T2i. The Scanning Electron Microscope (SEM) 

was also used to take photos for a more in-depth analysis. 
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Results 

When the experiment concluded, over 50 photos were taken of the microscopic changes 

that occurred over the six-week period. The parts of bone that will be discussed are cortical bone, 

trabecular bone, and plexiform bone. It is important to note here that plexiform bone is not found 

in humans and is exclusive to animals such as cow or sheep. The Haversian structure is a feature 

of cortical bone that can be viewed at a microscopic level. Since there were two different sets of 

data collected for the samples, the results section will be split into addressing the macroscopic 

and microscopic results. It should be noted that the bones were not placed into their simulated 

weather conditions until three days after I received them; however, this did not seem to affect the 

bones much at all, at least not macroscopically. Prior to taking them into the lab, they were kept 

in a refrigerator unit set to 37℉. At the time the bones were placed in their simulated weather 

conditions, they still had a fresh appearance to them (pearly white and bloody). There was still a 

layer of muscle and some tendon on the bone at the time of placement, but the bone surface was 

visible. 

 

(Figure 1: Example of different forms of bone) 
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There were two samples taken from each weather simulation category (control, heat, 

freeze, and free-thaw) as can be seen in Figure 2. Each of these samples seen below is 

approximately 2 ½ to 3 millimeters in width, which varies from sample to sample. As shown in 

Figure 2, the medullar cavity varies in size depending on the sample. Measurements in the table 

below were taken from samples in order from upper left to lower right. All measurements are of 

the maximum diameters in each direction in millimeters. In the photo, the thin sections are 

oriented with their anterior aspect towards the top of the photo and their posterior section to the 

bottom. 

  

 

(Figure 2: From upper left to lower right: Frozen sample, Pre-control sample 1, Freeze-thaw 

sample, Control sample, Pre-control sample 2, Heat-simulated sample) 
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 Frozen Pre-Control 1 Freeze-

thaw 

Control Pre-

Control 2 

Heat-

simulated 

Sample 1 Height: 4.3 

Width: 3  

Height: 4.3 

Width: 3.2 

 

Height: 3.9 

Width: 3 

 

Height: 

4.1 Width: 

3.1 

These 

samples are 

duplicates of 

Pre-control 1 

Height: 4 

Width: 3 

Sample 2 At the end of 

study, the 

second 

sample was 

not available 

Height: 4.6 

Width: 3 

 

Height: 4 

Width: 2.6 

Height: 

4.5 Width: 

3 

 

These 

samples are 

duplicates of 

Pre-control 1 

Height: 4.6 

Width: 2.9 

(Figure 3: Sizes of samples listed in order from top left to bottom right) 

 

The samples were oriented in the fashion presented in Figure 2; the photos were taken 

with the area with the smallest surface area orientated in the north position, and the area with the 

largest surface area orientated in the south position. The photos were taken of each sample 

around the entire available surface of the bone, including the anterior, posterior, medial, and 

lateral sides, as well as those areas of the cross-section in between. Depending on the sample and 

side, this did affect how many photos I was able to take of the samples. One photo was taken of 

all the sides listed above. The purpose of taking photos of all sides was to see the distribution of 

changes throughout the bone and the different kinds of changes that can be observed throughout 

the bone. For the most part, the majority of the changes exhibited were consistent through all 

samples.  
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Macroscopic 

Pre-Experiment Control 

These samples were not subjected to weather treatment and did not show any discernible 

signs of decomposition or damage prior to the start of the experiment. The samples were 

immediately taken to be sectioned for microscopic examination and were then disposed of. These 

samples appeared as any bone would immediately following death, having a pearly white 

appearance with fresh tissue on the surface of the bone. These samples were removed at the very 

start of the experiment and were not used for the rest of the experiment. 

 

Control 

After the first week, the control samples that were kept at the laboratory temperature of 

21 degrees Celsius were observed to have started to decay; the soft tissue had become oily. 

Although these samples exhibited changes each week, it should be taken into consideration that 

the lack of insect activity would have a great effect on the rate and manner of decomposition.  

The bone and tissue started to turn a brown color, and a strong odor began to emanate 

from them. Moreover, the blood vessels appeared to have dried up. After the second week, I 

observed that not much had changed with the soft tissue. The odor was still quite potent. The 

bone started to turn a greyish-white color and began to look very dry in texture. On the 

epiphyseal ends of the bone, the marrow seemed to start showing signs of decomposition.  

After the third week of processing, the decomposition of both the soft tissue and bone 

began to look more extreme. The bone was now a grey/ashy color and the soft tissue started to 

look very discolored (brown/black/white in color). Further, an indentation began to form on the 

surface of the marrow at the cross-section at the end of the femur. The bone marrow was dark in 

color and looked granular in texture; it looked as if the bone marrow tissue wanted to escape its 

orifice. At weeks four, five and six, few additional changes were observed in the bone; instead 
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there was a progression of the changes observed in earlier weeks at this temperature. The marrow 

was a brownish color, and the internal surface began looking wider (larger) as the weeks 

progressed. This may be attributed to the bone marrow receding from the medullary cavity. 
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Warm Weather Simulation 

Once the warm weather simulation samples were placed into the incubator at 36 degrees 

Celsius, these samples began to react very quickly. After the first week of being put into the 

incubator, the soft tissue began to gain an oily appearance and started to loosen from the bone. 

The smell immediately became quite pungent and could be smelled outside of the laboratory. 

Moreover, the bone began to turn brown. Following the second week, the strong odor persisted. 

The tissue went from an oily and wet texture to very stiff. Small brown/black dots started 

forming over the surface of the soft tissue. The bone itself did not appear to have changed much. 

In the third week, the bone began turning a dark brown/black color. The marrow during this 

stage still appeared to be more intact than that in the control samples. In the fourth week, the 

bone marrow and surrounding bone began to turn a black color and overall had a darker brown 

color to it than previously. In the fifth and sixth weeks, few changes were noted in the 

surrounding soft tissue. When thin sections were prepared for microscopic observation, the bone 

marrow was soft and fragmented in consistency. The medullary cavity of the bone where the 

marrow resides was now much more open in comparison to the other samples; i.e. the marrow 

had shrunk in size significantly. The marrow was also so soft that much of it fell out the 

medullary cavity during processing.  
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Frozen 

The frozen bone showed minimal changes in terms of the decomposition of the bone and 

tissue itself during the entire six-week process, but there seem to be some notable changes that 

occurred in the bone during the freezing process. After the first week in the freezer (set to -1.1 

degrees Celsius), crystals or frost had formed on the surface of the bone, on the bone marrow, 

and on the surface of the soft tissue. The bone still retained its pearly white appearance, and the 

blood vessels were frozen. Following the second week, the bone itself appeared to be completely 

frozen; as did all the blood and tissue. There was no distinct smell. The bone still retained its 

pearly white appearance, but an indentation began to appear on the surface of the bone marrow at 

the cross-section. This indentation may have been due to the bone marrow decomposing and 

collapsing away from the medullary cavity. After the third week, flaking of the soft tissue was 

present, as was a slight odor. The bone marrow indentation seemed to grow progressively a bit 

deeper and the marrow itself began to separate from the inner surface of the bone. 

Moreover, after the fourth week, the bone marrow started changing in color, becoming 

darker. The soft tissue over the bone had taken on a very red appearance, but there were not 

many extreme changes to the bone. In the fifth week the bone showed a significant amount of 

frost collection; otherwise, minimal changes were noted from the previous weeks. The sixth 

week showed very few differences. When cutting into the bone, the marrow was very malleable 

as it started to thaw, similar to the fresh marrow seen originally in the bones immediately 

following death. The medullary cavity where the marrow resides was a small and tightly closed 

space. It looked as if the soft tissue inside had been undisturbed and was not subjected to 

putrefaction as seen in the warmer weather samples.   
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Freeze-thaw 

In the first week after the samples were brought to the lab, they were first placed in the 

freezer at -1.1 degrees Celsius. After the first week of freezing, the bone mimicked the same 

results as the other frozen bone, with crystals forming on the soft tissue and bone, but with the 

bone retaining its prior pearly white appearance. After the first week of being placed under the 

fume hood at 21 degrees Celsius (week 2), changes quickly became apparent. Both the bone and 

soft tissue appear to have thawed and turned slightly brown in coloration. The soft tissue looked 

slightly oily and tough in texture. The bone began to become a white-greyish color; the color was 

unevenly distributed over the surface of the bone. This could be attributed to the freeze-thaw 

cycle causing some form of moisture and bacterial build up, which could lead to a mold or 

fungus growing on and within the bone. Further, the marrow started to show an indentation on 

the surface.  

  

(Figure 4: Freeze-thaw Bone Sample) 
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The bone was placed back into the freezer for the third week, with the bone continuing to 

retain its whitish-grey color. A slight odor started to emanate from the samples, but the soft 

tissue had not changed in appearance much since being put back into the freezer, although the 

cross-sections of the bone showed the bone marrow to have turned brown/black in coloration, 

and an accumulation of frost/ice crystals had formed around the inside surface of the medullary 

cavity. There also seemed to be a clear line of demarcation between the cancellous bone, cortical 

bone, and the marrow (Figure 4). The photo gives a representation that shows darkening and 

frost separating these different parts of the bone. During the fourth week, the bone was left out 

again under the fume hood, and the following changes were observed. The bone itself was black 

near the medullary cavity of the bone but much lighter on the surface, which was in contrast a 

grey color. The odor was much more pronounced. The bone marrow had turned a much lighter 

color from that of the previous week and frost was apparent on both the marrow and the surfaces 

of the bone. The fifth week in the freezer did not yield many changes from the previous week, 

but there was a lot more frost build-up on the cross-sections and much more discoloration of the 

bone and soft tissue. After the sixth week under the fume hood the bone did not show any further 

changes, but when the thin-sections were made the bone marrow was transparent and had a firm 

consistency. 
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Microscopic 

Pre-Experiment Control 

These samples were not exposed to any simulated weather treatment and were removed 

prior to the start of the experiment. The samples show little to no damage to the internal 

structure. These samples serve as an example of how the plexiform and Haversian bone look 

prior to the commencement of decomposition. They provide a comparison for any changes that 

appear in the temperature-treated samples of the experiment.  

 

 

 

(Figure 5: Pre-Control Bone, cross-section, posterior aspect – Plexiform Structure) 

 

Control 

Two samples were taken from the laboratory control samples for examination under a 

standard microscope and the Scanning Electron Microscope (SEM). In both samples, the 

plexiform structure of the bone was still present. Also present were tiny lacunae or openings a 

within the bone. These small openings covered the surface of the bone and appeared in clusters 

rather than being evenly spread out. There was significant spacing between the openings within 

the bone. In some areas, like the middle portions of the samples, the spacing in between the 
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parallel brick plexiform structures seemed to have increased relative to those of the pre-

experimental control samples. These samples looked very similar to the pre-experimental 

samples with these minimal changes. 

 

 

(Figure 6: Control Bone Sample 2 – cross-section, mediolateral aspect) 

 

In the SEM photos taken at 1000x magnification, some fragmented areas on the surface 

of the bone are revealed, as well as some penetrative lacunae. The surface appears very textured. 

Preparation marks are present, but discernible as such. The lacunae on the surface are very short 

in length and do not appear very wide. These lacunae did not cover the entire surface of the bone. 

The openings were mostly to be seen on the posterior aspect of the cross-sectional samples 

(where there is much more surface area); however, there are some images of the posterior section 

where lacunae are not present.  
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Warm Weather Simulation 

Few changes were noted in these samples, relative to the laboratory control samples, but 

there appears to be slightly more damage. These samples were exposed to warmer temperature 

levels (approximately 20-degrees Fahrenheit warmer) than the laboratory control samples. The 

same small openings appear in these two samples of bone as seen in the laboratory control 

samples, but are much more clustered and greater in number than the laboratory control samples. 

Also, the plexiform structure seems to have diminished within these samples; the structure is not 

as pronounced as it was in the laboratory control samples. The lines of demarcation (that express 

its brick-like structure) of the plexiform structure are still present, but they have become more 

difficult to identify because the structure has started to dissipate (Figure 7). 

  

(Figure 7: Heat-simulated Bone, proximal/mediolateral aspect of Sample 1 – Plexiform 

Structure) 

 

In addition to the small openings present in the bone, there are some definite areas of 

separation that have appeared in irregular regions of the bone. They seem to appear as a 

recession, areas of opening or missing areas of the bone that is small, but noticeable. They take 
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different shapes and sizes, but are not large to the point where they take up a significant amount 

of surface area.  

 

Freeze 

The results for the frozen bone come from only a single sample, but there are some 

differences associated with the frozen sample. Similar to the heated samples, the plexiform 

structure has been damaged and is almost unrecognizable. Even more noticeably, the plexiform 

structure looks almost as if it has been distorted; this seems to be more prevalent in the bottom 

portion of the sample, where there is more surface area of the bone present. The straight brick 

lines of the plexiform structure appear to take a different shape, and instead of coming out in 

straight lines they appear twisted (Figure 6). Further, the small dark openings are much more 

prevalent here and cover much more surface area than in the control and warm weather samples. 

There are some small regions in the anterior and the mediolateral aspects of the bone cross-

section where the small dark openings do not cover as much surface area as they do in the 

posterior region. Also, the clear separations or recessions of bone (i.e. the lacunae within the 

bone) appear much larger in the frozen bone sample, especially in the areas where there is much 

more surface area (i.e. the posterior aspect of the cross-section sample). 
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(Figure 8: Frozen Bone, posterior/mediolateral aspect, Sample 1 – Haversian Structure) 

 

 

Freeze-thaw 

In the samples from this simulated weather treatment category, there are two different 

types of bone present: cortical, the type of bone that contains Haversian systems; and plexiform, 

the quickly-forming bone found only in nonhuman animals, in both of the samples. I think it 

would be more appropriate to discuss the different bone structures separately since the patterns 

are very different and the changes are expressed differently.  

In sample one, the plexiform bone structure is very much distorted, much more so than in 

any other sample, including the sample that remained frozen for the duration of the experiment. 

Many of the lines of demarcation are either not present, with those remaining being very warped. 

The lines of demarcation that cover the internal surface in the second sample seem much larger. 

Additionally, the small dark lacunae and elongated openings are densely clustered throughout all 

the inner surfaces of the bone that show a larger surface area; however, in areas where there is 

only a small surface area of bone (the anterior and mediolateral regions of the sample), the 

openings are spread around much more evenly. 
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(Figure 9: Freeze-thaw Bone Sample – medial/lateral aspect) 

 

  

(Figure 10: Freeze-thaw Bone, posterior/mediolateral aspect, Sample 2– Haversian Structure) 

 

The Haversian bone structure in both samples also appeared damaged, as did the 

plexiform bone structures, but not to an almost unidentifiable state. On the other hand, the 

circular shape of the Haversian canals is still visible. One significant difference that can 

immediately be noted, not just in the Haversian canals, but also in other areas of the bone, is the 

increase in separation in the bone; there appear to be areas in which moisture is trapped inside 
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the bone or large openings have been created on the internal structure. It is difficult to note the 

difference due to the transparent appearance of these areas of separation. These lacunae appear in 

the middle of some of the Haversian canals. There are also many other areas where circular 

pockets and lacunae (especially in sample one) appear over the surface of the bone.  

 

(Figure 11: SEM Freeze-thaw Bone Sample) 

 

The SEM photos that were taken at 1000x magnification reveal a very dense surface 

surrounding the areas of separation on the samples. There were enormous breaks over the surface 

area of the bone. Many of the pits were gaping and cover a significant amount of the surface area 

of the bone, which presents much less texture overall. There is a significant number of marks 

indicative of the preparation of the samples, but are they are distinguishable as such. The photos 

give an overall detailed image of the amount of damage seen in the bone.  
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Discussion 

 

                     The samples in this research provide a variety of inferences that can be drawn from 

the resulting changes that occurred within the bones, both macroscopically and microscopically. 

The decomposition rates, as well as the specific form the decomposition took, varied relative to 

the temperature to which they were exposed. These differences were seen both macroscopically 

and microscopically.  

 

Macroscopic 

The control samples here, both pre-experiment and those present during the experiment, 

were to serve as an example of how bone looks at the time of death and how bone decomposes 

under non-extreme temperatures. The control samples were observed for the duration of the 

experiment. These bones exhibited the characteristics of decomposing soft tissue and bone 

(drying of soft tissue, darkening of bone and tissue, strong odor, oily soft tissue, bone turning a 

grey color); these replicate the results in many similar studies (Dautartas et al. 2018; Parks 2011;, 

Suckling et al. 2016; Mann et al. 1990; Tappen 1994; Hiller et al. 2003; Janjua et al. 2008; 

Keough et al. 2015; and Fernandez et al. 2013). These results appeared to be a gradual process 

over the six-week period of the study, where changes could be carefully identified and recorded. 

The macroscopic results are similar to those found in the studies mentioned above. There 

are many more studies on warmer weather samples in the literature for comparing and 

contrasting results mentioned in my literature review that can be applied. In the warmer weather 

decomposition research, the characteristics that authors (Hiller et al 2003, Janjua et al 2008, 

Keough et al 2015) note are similar to the findings in this research. There is drying of soft tissue, 

discoloration of bone and soft tissue, and the oily appearance of the soft tissue. These are 

characteristics of an acceleration of decomposition that can be observed in warmer temperatures. 
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In addition, there are evident changes in the way that the bone marrow in each of these samples 

has either decomposed or changed throughout the experiment (e.g. changes in texture and 

consistency). There does not appear to be any literature that focuses specifically on bone marrow 

decomposition in either the forensic science or medical research literature, but it is important to 

note because in this experiment there were significant changes to the bone marrow that may be 

indicative of bony remains subjected to certain types of weathering. 

Bone marrow is a solid soft tissue found in the medullary cavity of bone; it is also found 

in the cancellous portions of bone (DiGangi and Moore 2013; White et al. 2012; and Currey 

2002). There are two different types of bone marrow, yellow and red bone marrow. Yellow bone 

marrow contains a higher amount of fat than red bone marrow and is responsible for the partial 

development of white blood cells. Red bone marrow obtains its color from the red and white 

blood cells that arise in this region.  Red bone marrow is found in the adult bones of the torso 

(vertebrae, hips, breastbone, ribs, and skull), while yellow bone marrow is located in the long 

bones (DiGangi and Moore 2013; White et al. 2012; and Currey 2002). Due to the fact that the 

samples for this experiment were long bones, it is safe to say that it is the yellow marrow that 

was encountered in these samples. 

My results also indicate how the bone marrow starts to decay over time, which was 

further seen during thin sectioning of the samples. In the warm weather simulated samples, the 

bone marrow was very soft and malleable in texture; it practically fell out of its orifices as the 

samples were made into sections (and eventually was removed for further processing of the 

samples). This could most definitely be due to the acceleration of decomposition that occurs in 

warmer weather conditions. These samples were exposed to 36 degrees Celsius (~96.8 degrees 

Fahrenheit) for an extended period of time, so in extremely warm conditions it appears that this 

is how bone marrow decays. Studies by Bell and colleagues (1996), as well as Keough and 
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colleagues (2017) investigated the rate of decompositional changes in pig and human bone, 

respectively, noting that they happen very soon after death, especially in warmer conditions. This 

aligns with results from my own six-week study. They also positively correlate to Parks (2011) 

assessment of decompositional stages, showing signs by the end of the experiment of advanced 

decay-mummification. This stage is characterized by a leathery appearance of the skin as well as 

the growth of mold on the body (Parks 2011). This appears to correlate with the dark spots that 

are seen in my samples, but as Park (2011) does not provide any photographic evidence of the 

mold found in their study, I cannot accurately say whether the characteristic mold they 

encountered was identical to the mold within my study. 

By the way of contrast, in areas where temperatures are usually 10 to 20 degrees lower on 

average, decomposition would be a much more gradual process. The same can be said for all of 

the characteristics that are shown in the heat-simulated samples; given the temperature and the 

number of changes that have occurred over these six weeks for these samples indicates how 

temperature can have an expedited effect on decomposition. In addition, the effects that this had 

on yellow bone marrow are also dramatic. Bone marrow is a solid tissue, and in these samples, 

the tissue has turned into soft round fragments. The heating of solid fats usually turns them into a 

liquid (Ruth et al. 2010), but what seems to be happening here is solid soft pieces of tissue are 

present. It may be that the fat has liquified and escaped the medullary cavity, which is possibly 

why the outer soft tissue has such an oily appearance, leaving the inner soft tissue dry. 

On the other hand, for frozen samples, the opposite can be noted. Here there appears to 

be a reduction in how quickly bones decay on the surface. Studies by Tersigni (2007), Hale and 

Ross (2016), Turnip (2017), Pokines and colleagues (2016), Meyer and colleagues (2013), 

Roberts and colleagues (2015), and Micozzi (1986) have all shown similar results. Although 

there are fewer studies on frozen bone compared to warmer weather studies, the authors noted 
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above describe the changes that occur in frozen bone. Many of the characteristics that they 

discuss appear in my frozen samples; they discuss features of frozen bone such as changes in 

bone density and breaks or cracks on the bone at the surface. As mentioned before, bone is 

composed of collagen and hydroxyapatite, and this protein and mineral, respectively, play a large 

part in the changes that occurred in these samples. The cracks and breaks that are noted in other 

studies and observed in this study may be due to the collagen in the bone freezing.  

Hydroxyapatite is already a hard mineral, while collagen is a much softer protein that 

decays very quickly; collagen is even seen to break down in living individuals (Klein 2014, 

White et al. 2012, DiGangi and Moore 2013, Clines et al. 2014). So, due to the cold 

temperatures, we can presume that the collagen is frozen here (because of it being a living soft 

tissue), which would decrease the amount of elasticity within bone causing it to crack and break. 

When it comes to the discoloration of the soft tissue, there still needs some exploration as to why 

we see the darker discoloration. Another possibility would be the likelihood of freezer “burn”, 

which is the damage of food due to dehydration and oxidation by air reaching the food. The 

samples were not sealed for preservation and were taken out of the freezer for examination every 

week; this exposure to air could have likely caused dehydration and oxidation to occur, causing 

damage to the soft tissue.  

On the other hand, Boaks et al. (2014) and Walden et al. (2018) discuss other measures 

that could result in further decomposition in these remains. They mention bacterial activity and 

elemental changes in barium, calcium, iron, potassium, magnesium, zinc and phosphorus during 

the early stages of decomposition. These elements could have much do with some of the changes 

that are discernable between the control and weather-treated samples. This can especially be true 

for the warm weather samples. Although temperature was not accounted for in their studies, it 

can certainly be applied when observing the rates of change that occurred. Sharanowski and 
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colleagues (2019) also show that humidity is a significant factor in whether more “rotting” or 

mummification occurs; more moisture in the air means a higher probability of rotting than in a 

much more arid environmental condition.  

The one confirmation that can be made about the macroscopic results of this study is that 

they align with what others have found (Tersigni 2007; Hale & Ross 2016; Turnip 2017; Pokines 

et al. 2016; Meyer et al. 2013; Roberts et al. 2015; and Micozzi 1986). That is, in frozen remains, 

damage (penetrative cracks, discoloration, breakage) appears soon after the remains are placed in 

frigid temperatures and changes become less frequent as time continues on, versus damage and 

deterioration happening slowly over time in warmer weather or milder temperatures. The 

damages that are found in week one and two of the frozen remains are changes that would 

typically be found in later weeks (3&4) of remains exposed to warmer weather or milder 

temperatures. This suggests that decomposition in bone is drastically different in colder 

temperatures than in warmer temperatures. 

The freeze-thaw samples were fascinating in their results as they had similar features to 

the frozen and warmer weather samples. The samples, in total, were left under the fume hood for 

the three weeks of the experiment and in the freezer for the other three weeks, alternating 

between the freezer and fume hood each week. The most significant macroscopic difference that 

was apparent in these remains that was not present in the others was the texture of the bone 

marrow. It had a jelly-like consistency, which could be the result of the heating of the yellow 

bone marrow and the limited time given for the liquified fat to escape the medullary cavity due 

to the freezing after the thawing process (Ruth et al. 2010). I presume at some point during the 

thawing process, any of the fat that did liquify during the thawing process may have escaped the 

medullary cavity and created some of the oily appearance that is observed in these samples, as 

well as the oily appearance mentioned in other research (Dautartas et al. 2018; Parks 2011; 
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Suckling et al. 2016; Mann et al. 1990; Tappen 1994; Hiller et al. 2003; Janjua et al. 2008; 

Keough et al. 2015; and Fernandez et al. 2013). However, to fully understand this change, further 

investigation would be needed. 

Further, the discoloration seen in the freeze-thaw remains is another drastic change and 

the time frame is a factor to be taken into consideration. Micozzi (1986) and Pokines and 

colleagues (2016) mention the speed at which changes happen in freeze-thaw remains, and this is 

reflected in these samples. The samples show significant changes occurring on the surface within 

the second week, first trial, of the freeze-thaw cycle. The same discoloration and oily and tough 

texture that was found in the warmer weather remains of week three became readily apparent in 

Wk 2 for the freeze-thaw samples. The bone additionally started to turn a whitish grey color. 

This was not present in the warm weather or the frozen bone samples: this may be due to the 

decomposition of bone that began to speed up when taken out of the fume hood and then was 

preserved in that state of decomposition when put back into the freezer. This preservation of 

damage could have caused further damage to persist, especially with a high moisture content 

present. However, further investigation is needed to understand why these characteristics are 

present. 
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Microscopic 

 The control samples in the experiment served the same purpose for both the macroscopic 

and microscopic analysis. These samples represent what plexiform and Haversian bone look like, 

and how they decompose, without exposure to any temperature extremes. This is in contrast to 

the samples that were exposed to differing maximum and minimum temperatures meant to model 

diverse weather conditions. 

As mentioned by Currey (2002), Jowsey (1966), and DiGangi and Moore (2013), 

plexiform and Haversian bone will be discussed in detail as these are the two types of bone that 

can be seen in these samples. Plexiform bone is a type of bone structure that is not found in 

humans (Figure 1). Plexiform is a rapidly forming type of bone found in the limb bones of 

animals that grow quickly, as opposed to some of the other types of bone found in mammals that 

take much more time to develop. Although this form of bone is not present in humans, it is still 

important to note the effect of differing temperatures/simulated weather on this type of bone as 

exposure to the different temperatures still affected the underlying bone structure. Haversian 

bone structure is commonly found in cortical bone, the dense outermost surface of the bone. 

Cortical bone structure is found in humans and it is important to note these changes as they are 

likely similar to the changes that human bone might also exhibit.  

The microscopic samples exposed to the 36 degrees Celsius temperature (~96.8 degrees 

Fahrenheit) in the incubator for the entirety of the six-week experiment looked very similar to 

the control samples of the fume hood at the conclusion of the experiment. In the cross section, 

the sample’s coloration and cavities look very much the same. The reason why these samples 

may look so similar is likely due to the temperatures to which they were exposed. They were 

both placed in warmer settings, but with a twenty-degree difference. The difference in degrees 

may have played a part in the acceleration of decomposition. The changes seen in the warmer 
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weather samples versus the control samples were much more apparent much sooner. 

Nevertheless, the changes seen in these bone samples indicate only a difference in degree (rate) 

of decomposition, not in kind (type). This was also seen in the macroscopic results. 

There is little research concerning how plexiform bone structure reacts to different 

weather conditions, and this is especially true in the forensic literature. This is partly due to the 

fact that many forensic simulations emulate results that can be seen and replicated in human 

bone. Even though plexiform bone is not explicitly mentioned in the literature, there has been 

some microscopic analysis of bone in warmer weather studies. Even the studies that do involve 

animal bone do not specifically note changes to plexiform bone. Hiller et al. (2003) and 

Fernandez et al. (2013) discuss some of the microscopic changes that occurred in their studies 

involving extremely high heat temperatures. Fernandez and colleagues (2013) specifically found 

retraction, fracture, the bursting of Haversian canals, and cluster formation within the bone. 

Hiller et al. (2003) state that extreme heating of bones causes the hydroxyapatite crystals to form 

into a specific shape and size, which causes cluster formations. Both authors show that high 

temperatures can be severely damaging to bone.  

In these warmer weather samples, the plexiform structure appeared to no longer be 

uniform, as if it was deteriorating. This was the most significant change that could be readily 

seen in these samples and could be characteristic of warm weather decomposition. Bone is made 

up of organic compounds that begin to decompose shortly after the death of the animal or 

human. So, over time, bone is expected to deteriorate (Parks 2011). In fact, in conditions like 

extreme heat, this can change the decomposition process, at least in the rate of decomposition. In 

this case, the samples show an acceleration. In the macroscopic and microscopic analysis of the 

remains, it is not as easy to see the changes happening week by week, as a result of the weather 

simulations. It is not known how or when the plexiform structure began to no longer look 
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uniform, given the samples were collected at the end of the six-week experiment, but a loss of 

definition was the result. The changes in the plexiform structure definition could be due to the 

drying and cracking of the bone that started on the surface and worked its way to the medullary 

cavity. These changes can be correlated to the changes that we see in the macroscopic results 

(the small openings, lacunae, and areas of separation), and supported/explained by the findings 

of Hiller et al. (2003) and Fernandez and associates (2013) that found retraction, fracture, 

Haversian canals bursting, and the cluster formation in high heat samples.  

The control and warmer weather samples show significant drying of the bone that would 

lead the bone to lose its elasticity through the breakdown of the collagen protein (Klein 2014; 

White et al. 2012; DiGangi and Moore 2013; and Clines et al. 2014). This drying of the bone 

marrow in the medullary cavity can give the illusion of deterioration; this can only be said based 

on observation of the initial appearance to the final appearance. Boaks and colleagues (2014) 

confirm that the decomposition of bone marrow is significant enough to further accelerate the 

decomposition of bone (the soft tissue surrounding the bone has an effect on the decomposition 

of the bone). The samples show that the bone marrow is retracting from the medullary cavity 

walls, and during the process of making the thin sections it became apparent the texture of 

marrow was different from sample to sample, as it often fell out of the medullary cavity during 

the process. The decomposition of the bone marrow and its separation from the inner walls of the 

bone creates the illusion that there is an expansion of the medullary cavity. At first glance, it is 

difficult to distinguish between where the bone marrow ends and begins prior to the 

decomposition process. Alternatively, the bone itself could have been collapsing/deteriorating 

along with the bone marrow, thus creating a larger space within the medullary cavity. Though, 

because there was not further examination of the soft tissue, it is uncertain which (or both) 

circumstances were occurring. 
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As for the SEM results, the shadowing seen on the surface of the control sample seems to 

suggest there are raised areas present. The SEM photo provides a very high magnification of the 

inner surface of the bone and, due to the degree of magnification (1000x) not as much of the 

internal structure overall can be seen. The SEM photos were only taken of the control and freeze-

thaw samples. It should be noted that there are preparation markings from the process of 

preparing the samples for microscopic observation present. The shadowing that is exhibited are 

depressions on the surface. These depressions and openings give further support to the bursting 

of the Haversian canals mentioned by Hiller et al. (2003) and Fernandez et al. (2013). 

The samples that were frozen also show the destruction or disorganization of the 

plexiform bone, like the warm weather simulation samples. Based on this study it is unclear why 

there are similar changes occurring between the two temperatures. The disorganization is so 

extreme that the organized, brick-like structure of the plexiform bone is almost undetectable. As 

was noted for the warmer weather studies, it was difficult to find any studies that discuss 

plexiform bone changes associated with freezing temperatures. Hale and Ross (2016) discuss in 

their cold weather study cracking and bone density changes within the bone, as well as state that 

the internal surface changes when these surface cracks begin to become present. Other 

researchers (Pokines et al. 2016; Meyer et al. 2013; Roberts et al. 2015; and Micozzi 1986) also 

acknowledge that there are changes in bone density and the internal surface, but there is no 

mention of observed changes at the microscopic level. Articles by Turnip (2017) and Tersigni 

(2007) report findings that support these changes in the medullary cavity and overall density. 

However, no specifics on why this occurs within frozen bone samples are provided, nor is any 

microscopic evidence presented showing these specific changes. 

Above all, the changes seen in the internal cavity of the bone could be evidence to 

support the damage that they refer to as changes that occur in frozen bone. The dark areas and 
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areas of separation in the sample photos may very well contribute to the overall reduction in the 

weight and density of the bone. Unfortunately, in this experiment, samples were taken for 

microscopic use only, and the samples were not weighed prior to and after the simulated weather 

treatment.  

Due to the fact that the other literature on frozen remains focused on human bone, the 

disorganization of the plexiform structure of the bone cannot be adequately explained by 

referencing the literature. The breakdown of the regular layer structures seen in plexiform bone 

might be due to moisture within the bone freezing and disrupting these structures on a cellular 

level. Unfortunately, no cortical bone with Haversian systems was present in this sample (only 

one sample was prepared for the frozen bone), so, for this project, there is no data concerning the 

effect of freezing on Haversian systems in the type of bone that would be found in humans.  

In the samples from the bone subjected to the freeze-thaw cycle in this experiment, both 

Haversian and plexiform bone was present; SEM photos were also produced to get a closer look 

at the internal surface. The presence of cortical bone with Haversian systems in this sample 

means that the results can be directly correlated to characteristics that we can find in humans. 

The literature on freeze-thaw effects on bone is very sparse. There have not been many 

published, intensive studies on the effects of the freeze-thaw cycle on bone. Pokines and 

colleagues (2016), although they did not report any microscopic findings, did describe 

penetrative cracks piercing through the medullary cavity as a result of subjecting bone to a 

freeze-thaw cycle. Even more, Tersigni (2007) provides SEM microscopic evidence of 

penetrative cracks directly associated with the act of freezing the bone but does not show any 

effects to Haversian bone. Micozzi (1986) notes that the freeze-thaw cycle of postmortem 

decomposition occurs from the "outside-in" (predominantly decay), meaning that decomposition 

starts on the outside and works its way to the inner surface. This is different from other remains 
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where postmortem decomposition occurs from the “inside-out”. I believe my study shows that 

there are changes that have been made to Haversian canals and plexiform structure due to both 

the freezing and freeze-thaw cycle. 

Plexiform and Haversian bone changes will be discussed separately, as these are different 

types of bone that show different types of changes in this study. Plexiform bone is laid down 

very quickly; it is a form of lamellar bone tissue, which is composed of collagen fibers and is 

mechanically weak (White et al. 2012; Currey 2002; Jowsey 1966; DiGangi and Moore 2013). 

Although all bone reacts to pressure or stress, more fragile portions of bone may change much 

more quickly than mechanically stronger areas of bone with more resistance. Consequently, the 

changes seen in the plexiform bone seem quite dramatic compared to the other simulated weather 

treated samples. The structure of the plexiform in these samples was very distorted and appeared 

twisted, very different from its normal parallel line structure resembling a brick wall. Moreover, 

the small dark lacunae or openings are elongated and densely clustered over the surfaces of the 

bone (White et al. 2012; Currey 2002; Jowsey 1966; DiGangi and Moore 2013). The changes 

that are present can be associated with the type of bone and the pressure of being frozen and 

thawed. The bone was being moved from -1.1 degrees Celsius to 21 degrees Celsius every other 

week within a six-week period. During the experiment, once the samples thawed, there would be 

an increase in moisture and bacteria growing on the bone as a result of the increase in 

temperature (Boaks et al. 2014). Freezing the bone again acts to preserve the moisture build-up, 

bacteria, and other processes of active decomposition that may have occurred during the thawing 

process. This phenomenon could be the cause of the acceleration in the decomposition process. 

In the macroscopic results, the changes that are seen in Week 1 in the freeze-thaw remains are 

not seen until Week 3 in the warm weather remains. Unfortunately, given the timing of the bone 
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sampling, the rate of microscopic changes in the bone could not be observed as the samples were 

only collected at the conclusion of this experiment.  

The Haversian bone changes were just as drastic as the plexiform bone changes, but did 

not result in the complete loss of the identifiable bone structures. Haversian bone is found in 

cortical bone, which is the dense outer layer of bone that protects the inner layer of bone. The 

Haversian bone or Haversian canals are the microscopic tubes in the outermost region of the 

bone that allow the blood vessels and nerves to travel through them (White et al. 2012; Currey 

2002; Jowsey 1966; DiGangi and Moore 2013). This bone is composed primarily of 

hydroxyapatite, an inorganic mineral, with small amounts of collagen for elasticity. The 

Haversian bone is a system in the inner portion of cortical bone that can be directly observed in 

the microscopic samples. Due to there being very little literature on microscopic changes to bone 

associated with freeze-thaw cycles, there is little to compare these results to. However, the 

different forms of macroscopic damage mentioned in the previous studies (Dautartas et al. 2018; 

Parks 2011; Suckling et al. 2016; Mann et al. 1990; Tappen 1994; Hiller et al. 2003; Janjua et al. 

2008; Keough et al. 2015; and Fernandez et al. 2013) give some idea of the types of damage that 

may be found.  

The changes in the Haversian bone seen in this experiment include increases in 

separation on the inside of the bone and areas where there appeared to be a build-up of moisture 

(water) that has been frozen or encased within the bone. There are many areas of circular pockets 

and lacunae in the bone that seem to sit on top of the Haversian bone patterns. The Haversian 

bone patterns themselves no longer have their distinguishable circular shape; the circular pattern 

is still present but not as uniform as that seen in Figure 10. The regular Haversian pattern looks to 

be breaking down, becoming very sparse and disorganized, as if the pattern is disappearing. This 

may be due to the decompositional process. There are large cracks or dark lines that cover the 
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surface area of the bone that may be associated with the advanced decomposition that is 

occurring in these samples. The pockets appear clear. This may be the result of moisture being 

trapped in the bone, and then creating the openings as a result of expansion during the freezing 

process. The SEM photos further showcase the large cracks and presence of openings inside the 

bone, providing further evidence of the freeze-thaw cycle on bone. 
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Limitations 

 One thing to keep in mind with this study is that all the different temperatures used in this 

study were under a controlled environment. These temperatures were simulated in a laboratory, 

which does not allow for natural environmental components to affect the decompositional 

process. This is limiting because this study does not entirely mimic the natural environmental 

conditions. Insect activity, wind, soil, scavenging, excess heat or moisture are elements that were 

not present in this study and could have changed the rate or pattern in how these samples would 

have decomposed. Moreover, due to the equipment that I had available at my disposal, humidity 

was a factor that I was unable to control for in this study.  Also, this study does not show the 

changes that would have taken place if samples had been covered in soil or snow. This study 

would not be able to evaluate the changes that could have taken place if remains were buried in 

snow or buried in soil. These factors would change the consistency of temperature and exposure 

to temperature. 

Another limitation that can affect the application of this study is the fact that there is a 

form or type of bone within this study that is not found in humans. Since plexiform bone is not 

found in humans, the patterns that were found in plexiform bone are patterns that cannot be 

replicated in human remains. The only patterns that forensic scientists could use and possibly see 

in practice are those from the Haversian bone. All that can be extrapolated from the findings in 

plexiform bone is that the temperatures the samples were placed in were extreme enough to 

cause damage that created visible changes within the bone structure. Moreover, Keough and 

colleagues (2017) show that early stages of decomposition in pigs and humans varies, so the rate 

at which these alterations occur needs to be taken into account. 

I should also note that the bones are not from the same animal as they are all femora 

(minus the proximal ends) of swine (Sus scrofa). Therefore, at least two different animals were 
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used for this study and the different sides (left and right), were not taken into account when 

While the animals were likely butchered on the same day, it is not known if they were from the 

same facility or farm; this is something that could not be assessed because they were derived 

from a butcher shop that receives animals from many different vendors. So, it is possible that 

there were fundamental differences in the various samples prior to the experiment based on age, 

side, weight, nutritional status, sex or other confounding factors. 

Furthermore, a possible limitation that could give a more detailed analysis, is the 

microscopic collection of samples. In a more extensive study, taking microscopic samples each 

week could assist in showing the gradual changes week by week in how the bone structure is 

changing. This would be helpful to see how drastic the changes are, microscopically, on a 

weekly basis and the results could show what initially begins to happen to the bone structure 

when exposed to extreme conditions. Additionally, the collection of the SEM photos could have 

been much more consistent. The SEM photos were taken to look at the surface of the bone at a 

much higher magnification. The SEM photos were taken of the control and freeze-thaw to show 

the dramatic changes that the freeze-thaw cycle has on bone. The collection of SEM photos for 

all the samples could have shown the differences in between the control, warm weather, freeze, 

and freeze-thaw. This would have shown if there were similar changes or very different ones 

between the samples.  

Lastly, the final element missing from this study that could have solidified the evidence 

provided in the microscopic results is an image analysis. An image analysis of the lacunae and 

other surface features that are found in the microscopic results could have provided more 

evidence for how much damage occurred within each temperature treated sample. This could 

have provided more criteria for a forensic scientist to follow when looking for these changes and 

the extent to which they occur.  
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Conclusion 

 

 This study provides useful information for the continued understanding of the 

decompositional process. The purpose of this study is to show, in comparison, the changes that 

different forms of weather or temperature have on the decomposition of human remains. This 

study’s goal was to simulate temperatures that can be found in a natural environment. Three 

different weathering patterns were tested, which can provide more information and help better 

the practices within forensic science when it comes to the identification of human remains. This 

experiment has gathered data to assess how bone structure changes and attempt to conclude why 

these changes may be happening. This can be extremely important when bodies are found in 

remote areas where the environment has had considerable time possibly to change how the post-

mortem interval of an individual would be assessed.  

The analysis of the freeze-thaw cycle not only provides more information on how this 

cycle works, but it also shows how these changes in temperature can affect the overall conditions 

of bone. The comparison of the frozen, freeze-thaw, and warmer weather remains further 

supports the idea that these temperatures have a different effect on bones and change the way 

they decay over time. They not only change the way bone decays over time but also how quickly 

signs of decomposition begin to show in these different temperatures. When recovering remains, 

it is essential to take into consideration the external forces that may have played a part in the 

remains looking the way that they do at the time of recovery.  

Environmental stressors such as weather can complicate the identification of an accurate 

(or close to accurate) post-mortem interval (PMI). There are many factors, both inside and 

outside of an individual’s body, that can affect the estimation of time since death. This study 

analyzes one of the outside effects that can influence the accuracy of PMI estimation. The results 

of this study can also be used in conjunction with factors to help eliminate possible confusion 
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between the kind of damage that is seen as a result of weather, and what is seen as a result of 

trauma. This study may help to positively impact the estimation of PMI by forensic 

anthropologists. It also adds to the literature to provide a better understanding of bone 

decomposition (Kroman and colleagues 2013; Forensic Anthropology 2013; Boer et al. 2016). 
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Scanning Electron Microscope (SEM) Photos 
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