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Abstract

We present numerical simulations of giant planet migration in our solar system and examine how the speed of
planetary migration affects inclinations in the resulting population of small bodies (test particles) scattered outward
and subsequently captured into Neptune’s 3:2 mean motion resonance (the Plutinos), as well as the hot classical
Kuiper Belt population. We do not find a consistent relationship between the degree of test particle inclination
excitation and e-folding planet migration timescales in the range 5–50Myr. Our results present a counterexample
to Nesvornýʼs finding that the Plutino and hot classical inclinations showed a marked increase with increasing e-
folding timescales for Neptune’s migration. We argue that these differing results are likely due to differing secular
architectures of the giant planets during and after migration. Small changes in the planets’ initial conditions and
differences in the numerical implementation of planet migration can result in different amplitudes of the planets’
inclination secular modes, and this can lead to different final inclination distributions for test particles in the
simulations. We conclude that the observed large inclination dispersion of Kuiper Belt objects does not require
Neptune’s migration to be slow; planetary migration with e-folding timescales of 5, 10, 30, and 50Myr can all
yield inclination dispersions similar to the observed Plutino and hot classical populations, with no correlation
between the degree of inclination excitation and migration speed.
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1. Introduction

The orbital planes of Kuiper Belt objects (KBOs) are widely
dispersed, and dynamical subclasses of KBOs have measurably
different inclination distributions(see, e.g., Gulbis et al. 2010;
Petit et al. 2011; Gladman et al. 2012; Petit et al. 2017). The
large inclinations of some observed KBOs have prompted
several theoretical studies of inclination excitation during
planetary migration. Malhotra (1995) suggested that slower
migration of Neptune correlated with higher inclination
excitation due to argument-of-perihelion libration within mean
motion resonances. Gomes (2003) detailed how a high-
inclination population could be produced during migration as
scattered KBOs were temporarily captured into Neptune’s
mean motion resonances, their inclinations excited by the
secular Kozai–Lidov cycles then dropped out of resonance
during the low-eccentricity/high-inclination phase of the
Kozai–Lidov cycle. Inclination excitation of KBOs has also
been examined in the context of a giant planet instability,
during which Neptune may have been scattered out close to its
current semimajor axis but on a somewhat eccentric orbit and
subsequently experienced only a short-distance migration and
eccentricity damping (e.g., Tsiganis et al. 2005). Levison et al.
(2008) found that some simulations of such giant planet
instability produced large inclinations in the resulting Kuiper
Belt population, while others did not.

In a recent numerical study, Nesvorný (2015) found that
slower migration timescales for Neptune led to larger
inclinations in the hot classical and Plutino populations (objects
in Neptune’s 3:2 mean motion resonance), concluding that
models in which Neptune migrated from an initial semimajor
axis of a 25 auN,0 to its current orbit on timescales
τa 10Myr provided the best match to observed inclination
distributions. In this scenario, the present-day hot classical and
resonant populations consist of objects originating in

dynamically cold orbits interior to Neptune’s current semimajor
axis (∼30 au) that were scattered and dispersed by the outward
migration of Neptune. During this outward migration, the
scattered objects have a propensity to stick to Neptune’s
migrating mean motion resonances and undergo secular cycling
of eccentricity and inclination within those resonances, as
described by Gomes (2003); most are lost from the Kuiper Belt
during this process, but some end up being implanted into long-
term stable orbits in the hot classical region or Neptune’s
exterior mean motion resonances. Nesvorný (2015) argued that
slower migration timescales allowed more time for both
encounters with Neptune and secular effects within mean
motion resonances to excite particle inclinations, possibly
accounting for the link between migration timescale and more
widely dispersed final inclinations in those simulations.
In this paper, we describe our effort to understand the

dynamical mechanisms underlying the inclination excitation
that occurs during planetary migration using simulations
broadly similar to those of Nesvorný (2015). To our surprise,
we find that the degree of inclination excitation of the Plutinos
and the hot classical Kuiper Belt is not simply monotonically
dependent on Neptune’s migration timescale but rather appears
to depend sensitively on the strength of the secular inclination
modes of the planets during migration (which, in turn, depends
sensitively on the orbital evolution of the planets). While the
simplified migration simulations presented here are not meant
to mimic the full dynamical history of the outer solar system,
they are useful for demonstrating that the long-timescale
inclination excitation mechanisms associated with scattering
and mean motion resonance sticking are not always the
dominant source of inclination excitation during Neptune’s
migration. We instead find that significant secular inclination
excitation is possible on timescales that are short compared to
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typical migration timescales, especially in the vicinity of the
ν18 secular inclination resonance.

This means that the widely dispersed inclinations in the
Kuiper Belt cannot be used to definitively argue for slow
Neptune migration. An improved, more detailed understanding
of how inclinations are excited during planetary migration is
necessary in order to use the inclinations to constrain the
history of the outer solar system. This is particularly important
because inclination distributions are often better observation-
ally constrained than other orbital parameters.

The rest of this paper is organized as follows. In Section 2,
we describe our simulations and results for planet migration
timescales spanning an order of magnitude in e-folding
timescales (τa=5–50 Myr) for the planets’ semimajor axis
evolution. In Section 3, we offer an analysis of the
discrepancies between our results and those of Nesvorný
(2015). We summarize and conclude in Section 4.

2. Numerical Simulations of Planetary Migration

In order for planetary migration simulations to contain
enough particles to sufficiently explore the orbital architecture
of the resulting Kuiper Belt populations, many simplifying
assumptions must be made. In Section 2.1 we describe some of
the challenges of simulating planetary migration, outlining our
approach to the problem and comparing that to those used in
the literature. Section 2.2 provides a detailed description of our
numerical simulations and initial conditions.

2.1. Background and Choice of Migration Scheme

In the absence of computational limitations, one would
simulate the planetesimal-driven outward migration of Neptune
to its current orbit by modeling the full gravitational interaction
between the planets and an initial population of massive proto-
KBOs in an N-body simulation. In such a simulation, the
semimajor axis, eccentricity, and inclination evolution for
Neptune (and the other planets) would occur self-consistently
as the planets interact with a large number of self-gravitating
objects with a realistic mass distribution. However, this
approach is not currently feasible. Full N-body simulations of
the planet migration process are typically limited to interactions
between the planets and a moderate population of non-self-
interacting planetesimals. The planetesimal population is
usually much fewer in number and thus comprised of objects
that are individually more massive than expected in the
conditions in the real early solar system; see, for example, the
N-body work in the original Nice model papers, where the
proto–Kuiper Belt is represented by ∼1000 objects with
individual masses ranging from a few Pluto masses to a few
lunar masses (Tsiganis et al. 2005). The neglect of self-gravity
between the planetesimals in such populations has, at least,
been shown to not have a significant impact on the final orbits
of the planets (Fan & Batygin 2017). However, the planets in
these simulations experience a smaller number of stronger
interactions with the planetesimals to arrive at their final orbits
rather than a large number of weaker interactions, which will
impact the time evolution of their orbits. The computational
challenges of such simulations are further compounded by their
chaotic nature (although we note below that even simplified
simulations suffer from this problem); a large number of sets of
initial conditions must be tried before an acceptable outcome
(where the giant planets end on orbits similar to their current

ones) can be found (as discussed in, e.g., Nesvorný 2011;
Nesvorný & Morbidelli 2012; Gomes et al. 2018). Even when
successful simulation initial conditions are found, there are
often too few of the planetesimals surviving to the end in the
simulation to have a statistically useful sample for comparison
with observations of KBOs, especially for comparisons to the
dynamical subclasses of the Kuiper Belt (though for large
suites of simulations, comparisons are sometimes possible; see,
e.g., Gomes et al. 2018).
These computational limitations mean that in simulations

intended to explore the origins of the Kuiper Belt dynamical
structures, the planetesimal-driven migration of the planets is
often instead modeled by using prescribed extra forces on the
planets to cause their orbital migration, allowing the dynamical
evolution of the Kuiper Belt to be tracked with large numbers
of massless test particles (see, e.g., Hahn & Malhotra 2005;
Levison et al. 2008; Nesvorný 2015; Kaib & Sheppard 2016).
This “short cut” allows better statistics for the orbital
distribution of a final Kuiper Belt model. The drawback of
this approach is that different choices can be made as to how
migration is numerically implemented, including whether and
how the planets’ orbital inclinations and eccentricities are
damped during their migration. For example, smooth planet
migration can be modeled most simply by applying a smoothly
declining torque to each planet such that its semimajor axis
approaches its current observed value with the desired e-
folding migration timescale; this is the approach taken in many
studies (e.g., Malhotra 1993; Gomes 2000; Chiang &
Jordan 2002; Hahn & Malhotra 2005; Brasser et al. 2009;
Dawson & Murray-Clay 2012; Nesvorný 2015). For suitable
initial conditions, the planets in such simulations can maintain
eccentricities and inclinations similar to their currently
observed ones throughout the duration of the simulation. In
contrast, works such as Levison et al. (2008) include
eccentricity-damping forces in order to model a post-instability
giant planet system such as that proposed in Tsiganis et al.
(2005), wherein Neptune starts with a large eccentricity that
damps down as it migrates several au to approximately its
current orbit. Other works, such as Dawson & Murray-Clay
(2012) and Wolff et al. (2012), also choose to include
eccentricity damping but use a different numerical implemen-
tation. Whereas Levison et al. (2008) implemented an extra
force based on expected friction in nebular gas, Wolff et al.
(2012) used analytical orbit perturbation equations to construct
an extra force that yields the desired eccentricity-damping
behavior. Nesvorný (2015) implemented both eccentricity and
inclination damping parameterized by e-folding timescales to
evolve to the planets’ desired final orbits. As we discuss further
in Section 3, it is unclear how these different choices about
whether and how to implement planetary eccentricity/inclina-
tion damping affect the simulation outcomes for the test
particles.
In order to limit the number of free parameters in our

migration simulations, we chose to find initial conditions that
avoid overly exciting the planets’ eccentricities and inclina-
tions, eliminating the need for eccentricity and inclination
damping. As described in more detail in Section 2.2, we assign
the planets’ initial eccentricities and inclinations to be similar to
their current observed values, run a large set of trial
simulations, and then choose the planetary initial conditions
that result in satisfactory final planetary orbits. (We do not
directly simulate scenarios in which Neptune’s initial
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eccentricity and inclination are excited to large values by close
encounters with other planets.) This is sufficient for the
purposes of our study because the correlation between
migration timescale and inclination dispersion found by
Nesvorný (2015) did not depend on the initial assumed
eccentricity or inclination for Neptune. For simplicity, we also
do not consider additional complications, such as the smooth-
ness or graininess of Neptune’s migration (as investigated by,
e.g., Kaib & Sheppard 2016; Nesvorný & Vokrouhlický 2016),
which would depend on the mass distribution of the
planetesimals driving the planets’ migration; we simply
implement smooth semimajor axis migration in the same way
as Hahn & Malhotra (2005). Our conclusion that the secular
architecture of the planetary system can strongly affect the
inclination distributions in the final Kuiper Belt populations
should hold even for grainy migration, although the efficiency
of trapping test particles into the Plutino and hot classical
populations could differ.

2.2. Our Numerical Simulations

We performed our suite of planetary migration simulations
using the HERMES integrator within the REBOUND software
package (the initial release of which is described in Rein &
Liu 2012). This integrator utilizes a Wisdom–Holman scheme
(Wisdom & Holman 1991) referred to as the WHFAST routine
(described in Rein & Tamayo 2015) for the majority of the
simulation’s time steps and switches to the IAS15 adaptive step-
size routine (based on Everhart 1985) to resolve close
encounters between objects in the simulation (described in
Rein & Spiegel 2015). At each time step, we implement a user-
defined force that causes the planets’ semimajor axes to
approach their current values with a prescribed e-folding
timescale (Hahn & Malhotra 2005). As described below, we
chose initial conditions for which no close encounters occur
between the planets, so their evolution is entirely calculated
with WHFAST. We chose to use REBOUND (instead of one of
the other hybrid numerical integration schemes in common use
for solar system dynamics, such as Mercury (Chambers 1999)
or SWIFT (Duncan & Levison 1997)) because REBOUND
uniquely allows for bitwise reproducible results regardless of
the choice of compiler or the operating system of the computer
on which the simulations are run when the same initial inputs
are used (as described in Rein & Tamayo 2017). To correct the
unphysical situation of the planets’ evolution being affected by
close encounters with massless test particles, we made a slight
modification to the HERMES routine to allow bitwise
reproducible histories of the planets’ orbits: after a call to the
adaptive step-size routine to resolve a close encounter between
a planet and a test particle, the integration for the massive
bodies (in our case, the giant planets) resumes from the
previous primary time step rather than from the endpoint of the
close encounter; this modification amounts to discarding the
planetary positions and velocities calculated during the close
encounter and instead smoothly continues the integration with
the values calculated from WHFAST. This modification ensures
that the planets’ orbital histories are calculated entirely with the
widely used and tested Wisdom–Holman routine and are thus
unaffected by the presence or absence of test particles in the
simulation. We note that the rmvs3 routine in SWIFT requires a
similar modification to ensure that interactions with massless
test particles do not result in different planet outcomes.

The fully bitwise reproducible planetary histories that result
from this modified version of REBOUND significantly simplify
the problem of simulating planetary migration. As noted in
Section 2.1, it can be challenging to find initial conditions for
the planets that result in post-migration orbits similar to their
present ones; this is true in both full N-body migration
simulations and simplified parameterized migration simula-
tions. We find that, especially for slow migration, the planets
often cross mutual mean motion resonances slowly enough for
eccentricities to be significantly excited; this can sometimes
lead to close encounters between Uranus and Saturn or Uranus
and Neptune, which further excite the system. Because the
exact excitation that results from resonances depends on the
phases of the planets when they encounter them, even tiny
changes in the initial conditions can lead to wildly different
outcomes. With integrators such as SWIFT, we have even
found that running identical initial conditions on machines with
different processors can produce different results, even if the
same compiler is used. This presents a challenge when running
simulations on computer clusters with multiple node architec-
tures; it also means that numerical experiments cannot be tested
with additional test particles or for extended integration lengths
if the original machine is no longer available. The ability to
remove machine- and compiler-dependent round-off error as a
source of chaos in the numerical integrator (as done by Rein &
Tamayo 2017) is particularly helpful for planet migration
simulations.
We investigated four migration e-folding timescales: τa=5,

10, 30, and 50Myr. For each timescale, we ran a test suite of
∼500 simulations of just the four migrating giant planets.
Jupiter and Saturn were initialized on orbits with their current
eccentricities and inclinations but semimajor axes of 5.4 and
8.8au, respectively. Uranus and Neptune were initialized on
orbits of semimajor axes randomly chosen from the ranges
16.4±0.035 and 24±0.035 au, respectively; their inclina-
tions were set to their current values, and their eccentricities
were set randomly in the range e=0.005±0.002. We
integrated each set of initial conditions to t=700Myr and
calculated the average semimajor axis value and the eccen-
tricity ranges of all four planets over the last 100Myr of the
simulation. For each migration timescale, we then selected a set
of initial conditions that resulted in a planetary system that best
matched the current solar system in terms of semimajor axis
ratios and eccentricity ranges. The final eccentricity and
inclination ranges of the planets in these simulations (taken
over the last 100Myr of the simulations) are shown in the top
panels of Figure 1.
For each combination of migration timescale and planet

initial conditions, we re-integrated the planets along with
3.5×105 massless test particles. The test particles were given
initial semimajor axes in the range 24.5–30 au (from just
outside Neptune’s initial orbit to just inside its current orbit);
their eccentricities and inclinations were randomly drawn from
a Raleigh distribution of width 0.025 (where the units are in
radians for the inclinations). These test particle initial
conditions are very similar to those used in Nesvorný (2015).
The planets and test particles were integrated to t=700Myr.
This 700Myr integration length was chosen as a compromise
between conserving computational time and reaching a post-
migration final orbital distribution of test particles that are
stable on ∼gigayear timescales for comparison with the
present-day observed Kuiper Belt. (Our simulations required
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∼2.5×104 CPU hours per migration timescale; a total of
∼105 CPU hours were used in this study on the Ocelote cluster
maintained by UA Research Computing High Performance
Computing at the University of Arizona.) It is pertinent to note
that 15% of the Plutino population is expected to have leaked
out of Neptune’s 3:2 resonance in the past ∼3.5Gyr, and that
this loss is not strongly inclination-dependent(Nesvorný &
Roig 2000; Tiscareno & Malhotra 2009). Therefore, our
simulation length is sufficient to test how the planet migration
rate affects the final Plutino inclination distribution, the
dynamical class of KBOs for which Nesvorný (2015) found
the strongest dependence on migration rate. The 700Myr
timescale is also sufficient to investigate the inclination
distribution of the hot classical population because the
inclination distribution of this population does not evolve
significantly on long timescales (e.g., Volk & Malhotra 2011).
The only region of the classical belt that has strongly
inclination-dependent stability is the inner region near the ν18
secular resonance (e.g., Kuchner et al. 2002); in this region, the
instability timescale is much shorter than 700Myr.

As discussed in Section 3, our simulations suggest that the
strengths of the giant planets’ inclination secular modes during
and after migration have a significant influence on the
inclination distribution of the post-migration Kuiper Belt.
When selecting the planets’ initial conditions for the set of
simulations described above, we had focused on matching the
final eccentricities of the planets rather than the inclinations. At
the end of the four simulations described above, Neptune’s
inclination is in the range 1°.3–2°.0, slightly larger than in the
real solar system (top panels in Figure 1). This results in more
power being associated with Neptune’s dominant inclination
secular frequency than in the real solar system. This realization
led us to perform an additional set of migration simulations for
each migration timescale. The initial conditions for the planets

in this new set of simulations were chosen the same way as
described above, except that we reduced the initial mutual
inclinations of the giant planets to try to reduce Neptune’s final
inclination to more closely match the real solar system. After
running a suite of ∼500 planets-only migration simulations, we
selected initial conditions that resulted in a better match for
Neptune’s final inclination; this also resulted in slightly smaller
inclinations for other planets compared to the real solar system.
The final eccentricity and inclination ranges of the planets in
these simulations (taken over the last 100Myr of the
simulations) are shown in the bottom panels of Figure 1.
These planetary initial conditions were then rerun with
1.5–2.5×105 massless test particles with initial conditions
as described above. The second set of simulations are labeled
“B,” while the first set of simulations are labeled “A.”

2.3. Simulation Results

At the end of each migration simulation, we identified the
test particles representative of the Plutino population by
comparing their time-averaged semimajor axes for the last
50Myr of the simulation to the expected semimajor axis for the
resonance. We also identified the population of test particles in
the “hot classical” region, defined as those with semimajor axes
40au <a<48 au and perihelion distances above 35au and
not obviously in resonance with Neptune (consistent with
Nesvorný 2015); we discarded test particles with average
semimajor axes indicative of libration within the 8:5, 5:3, 7:4,
and 2:1 mean motion resonances from this hot classical
population. The capture efficiencies and median inclinations for
the resulting Plutino and hot classical populations from each
simulation are given in Table 1.

Figure 1. Eccentricity and inclination ranges of the giant planets over the last 100Myr in our migration simulations (green bars, labeled by planet) compared to those
for the current solar system over the same timescale (black bars, labeled by planet). The top row shows the ranges for our “A” simulations (in which Neptune’s
inclination is slightly larger than in the real solar system); the bottom row shows the “B” simulations (in which the planets’ inclinations are slightly lower than in the
real solar system). All inclinations are measured relative to the plane defined by the planets’ total angular momentum vector (i.e., the invariable plane).
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2.3.1. Capture Efficiencies for the Hot Classical and Plutino
Populations

We find rather small capture efficiencies for the hot classical
region, similar to those found by Nesvorný (2015). For
example, with a τa=30Myr migration timescale and a similar
initial Neptune orbit, Nesvorný (2015) found a hot classical
capture efficiency of ∼2×10−4, compared to our efficiencies
of ∼6×10−4 and ∼2.5×10−4 for our two τa=30Myr
simulations. Note, however, that the Nesvorný (2015) capture
efficiencies reflect 4Gyr of evolution rather than our 700Myr.
The results of our two sets of simulations (“A” and “B” in
Table 1) show that the capture efficiency in the hot classical
region varies significantly for the same migration timescale
with different initial conditions. For fixed migration timescales,
the efficiencies vary by a factor of 1.5–5, while across all
simulations (and migration timescales), the efficiency only
varies by a factor of 8. This shows that capture efficiencies
depend on more than just the migration timescale and that the
timescale dependence is weak, or at least not so strong as to
overwhelm these other dependencies.

The Plutino capture efficiencies in our simulation are also
broadly similar to those of Nesvorný (2015), although ours are
slightly lower when accounting for the shorter total integration
time. For τa=10 and 30Myr, Nesvorný (2015) described
capture efficiencies in the range ∼0.5–1×10−3, compared to
efficiencies in the range ∼0.5–1.5×10−3 in our similar
simulations. While Nesvorný (2015) found that slower
migration timescales decreased the efficiency of capture into
the 3:2 resonance (for simulations with Neptune starting near
∼24 au, like in our simulations), we find a weak trend in the
opposite direction; for both our “A” and “B” simulations, the
τa=5Myr simulations resulted in capture efficiencies two to
five times lower than for the longer migration timescales.

We note that the capture efficiencies into the Plutino and hot
classical regions depend on many factors, including some not
explicitly investigated here. Resonant capture efficiencies
depend on not only Neptune’s migration speed but also the
eccentricities of the test particles (e.g., Hahn & Malhotra 2005)
and the smoothness of migration (e.g., Kaib & Sheppard 2016;
Nesvorný & Vokrouhlický 2016); the smoothness of migration
can also affect the capture efficiency into the hot classical
population. For the hot classical population, Dawson &
Murray-Clay (2012) found that Neptune’s apsidal precession
rate also affects the probability of capturing scattered test
particles onto stable orbits. All of these factors mean that the

capture efficiency can vary widely, even for a single planetary
migration timescale, as seen in Table 1. The relative capture
efficiency between the Plutinos and hot classical population
also vary widely; our two different τa=30Myr simulations
produce ratios of Plutinos to hot classical KBOs of 6 and 1.
Thus, outcomes from single sets of initial conditions, such as
capture efficiency, population ratios, and orbital parameters,
can be difficult to generalize.
Our simulations do confirm that a scattering origin for the

resonant populations is much less efficient than sweep up from
a dynamically cold source considered in classical resonance
sweeping scenarios (e.g., Malhotra 1995; Hahn & Malho-
tra 2005). We list our capture efficiencies in Table 1 as both a
check for consistency with similar migration simulations in the
literature and to emphasize the large number of test particles
needed in simulations to capture even moderate numbers in the
hot classical and Plutino populations.

2.3.2. Inclination Distributions in the Hot Classical and Plutino
Populations

Figure 2 shows the inclination distributions of the final
Plutino populations for our four migration timescales; the
distributions from the “A” simulations (in which Neptune’s
inclination is slightly larger than in the real solar system) are
shown in the left panels, and the distributions from the “B”
simulations (in which the planets have slightly smaller
inclinations) are shown in the right panels. For each simulation,
we have measured the inclinations of the test particles relative
to the plane defined by the total angular momentum of the
planets. As noted above, the resonance capture efficiency is
quite low, resulting in a somewhat noisy inclination distribu-
tion for each individual simulation despite the large initial
number of test particles. In the τa=5Myr simulations, at the
end (t= 700Myr), we had only ∼70 Plutinos in both the “A”
and “B” simulations; each of the longer migration timescale
simulations ended with ∼140–500 Plutinos. While the
inclination distributions are slightly noisy, our results are
sufficient to observe a counterexample to Nesvornýʼs (2015)
result that the peak in the Plutino inclination distribution
increased markedly with increasing migration timescale,
shifting from ∼10° for τa=10Myr to ∼20° for
τa=30Myr (see his Figure 9). We find no such trend in our
simulations. Our “A” and “B” simulations with migration
timescale τa=10Myr yield both the highest median Plutino
inclination and a near tie for lowest median inclination. Our

Table 1
Summary of Simulation Results

τa Simulation Median iHC fHC Median i3:2 f3:2

50 Myr A 26° ∼5×10−4 13° ∼1×10−3

50 Myr B 17° ∼1×10−4 10° ∼1.5×10−3

30 Myr A 27° ∼6×10−4 13° ∼6×10−4

30 Myr B 18° ∼2.5×10−4 9° ∼1.5×10−3

10 Myr A 20° ∼8×10−4 18° ∼5×10−4

10 Myr B 13° ∼5.5×10−4 8° ∼1×10−3

5 Myr A 21° ∼7×10−4 10° ∼2×10−4

5 Myr B 18° ∼3×10−4 7° ∼2.5×10−4

Note. Median inclination and fraction of initial test particles in the 3:2 and hot classical populations ( f3:2 and fHC) at the end of the 700 Myr simulations. All
inclinations are measured relative to the plane defined by the planets’ total angular momentum. As described in Section 2, the simulations labeled “A” resulted in
Neptune having an inclination slightly larger than in the current solar system; the planet inclinations in the simulations labeled “B” are slightly lower than in the
current solar system (see also Figure 1).
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“B” simulations have a slight trend of increasing median
Plutino inclinations with increasing migration timescale, but it
is very weak, with median inclinations only increasing from 7◦

to 10◦ over an order of magnitude in τa; additionally, the
difference between the inclination distributions for τa=10 and
30Myr “B” simulations is not statistically significant. Overall,
our simulations show that there is as much variation in the
particle inclination distributions when comparing multiple runs
with the same migration timescale but slightly different initial
conditions of the planets as when comparing runs with different
migration timescales.

In the bottom panels of Figure 2, we plot smoothed
inclination distributions using a normalized kernel density
estimate for each simulated set of Plutinos. (Note that any
physical inclination distribution should go to zero at i= 0,
which is not the case for these smoothed distributions; these
smoothed distributions are shown primarily to more easily
compare the simulations.) We also plot observationally derived
estimates of the intrinsic inclination distribution of the Plutinos
(black dotted lines in Figure 2) for comparison to our
simulation results; these are from Volk et al. (2016), who
modeled the observed set of Plutinos discovered in the first
quarter of the Outer Solar System Origins Survey (Bannister
et al. 2016) and determined that their intrinsic inclination
distribution could be acceptably modeled by a function,

( ) ( ) ( )sµf i i isin exp 2 i
2 2 , with parameter σi≈9°–13° (con-

sistent with previous estimates, e.g., Gulbis et al. 2010;

Gladman et al. 2012). We see that the results of our “A”
simulations are generally similar to the estimated intrinsic
inclination distributions, while our “B” simulations result in
Plutinos with typical inclinations slightly smaller than the
observations suggest.
Figure 3 shows the inclination distribution for the test

particles in the hot classical region at the end of the simulations
for each simulated migration timescale. Our hot classical test
particles have inclination distributions that are slightly broader
and extend to higher inclinations than our Plutino distributions.
We again note that there is no clear trend between peak
inclination and migration timescale. The inclination distribu-
tion for our τa=30Myr migration timescale simulation “A”
peaks in the range ∼20°–30°, which is consistent with
Nesvornýʼs (2015) result (his Figure 9); our τa=30Myr
migration timescale simulation “B” peaks at slightly lower
inclination but is of similar width. For comparison, we show
Petit et al.ʼs (2017) estimate for the intrinsic inclination
distribution of the hot population in the bottom panels of
Figure 3. All of our simulations produce fairly broad
inclination distributions of the hot classical population, similar
to the estimated intrinsic distribution.

Figure 2. Top panels: histograms of the final inclinations (at t = 700 Myr) of the test particles captured in Neptune’s 3:2 resonance for our four different migration
timescales in simulation sets “A” (top left) and “B” (top right). Bottom panels: normalized and smoothed kernel density estimates for the same inclination
distributions; also plotted with black dotted lines are the 95% confidence limits on the Plutino population’s intrinsic inclination distribution, assuming it has the form

( ) ( )µ
s

-f i isin exp i

2 i

2

2 (Volk et al. 2016). These smoothed distributions are shown to better illustrate the differences between the simulations.
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We compared our simulated inclination distributions to each
other using the Anderson–Darling test.1 For the Plutinos shown
in Figure 2, most of the distributions are statistically
distinguishable at 95% confidence, except when comparing the
τa=5Myr “A” simulation to either the “A” or “B”
τa=30Myr simulations and when comparing the
τa=10Myr “B” and τa=30Myr “B” simulations. For the
hot classical inclination distributions shown in Figure 3, the
“A” simulations are distinct from each other, with the exception
of the τa=30 and 50Myr distributions. There are fewer
captured hot classical test particles in the “B” simulations (due
partly to lower capture efficiencies and partly to smaller
numbers of initial test particles), so these distributions are not
as distinct. The τa=10Myr “B” simulation is statistically
distinguishable from the other “B” simulations, but the other
timescales are not distinguishable from each other at 95%
confidence. The τa=5Myr “B” and τa=10Myr “B” hot
classical inclination distributions are statistically different from
all of the “A” hot classical distributions; the τa=30Myr “B”
and τa=50Myr “B” inclination distributions are not distin-
guishable from the “A” simulations because few test particles
were captured into the hot classical region. Considering that
most of our simulations produced statistically distinct inclina-
tion distributions, particularly in the final Plutino populations,
we should have easily identified the strong trend seen in

Nesvornýʼs (2015) simulations if that trend were present in our
simulations.

3. Discussion

Our simulation results are in some conflict with Nesvornýʼs
(2015). To identify the cause(s) of the discrepancies, we first
note some important differences between the simulated
migration scenarios. Nesvorný (2015) forced only Neptune to
migrate in the simulations (keeping the orbits of the other giant
planets fixed), while we have all four giant planets migrating.
Another major difference is that Nesvorný (2015) employed an
eccentricity- and inclination-damping scheme for Neptune (in
addition to the torque to migrate its semimajor axis), while we
include only the torque required to migrate the planets in
semimajor axis. These two differences lead to some differences
in the secular architecture of the simulated planetary system,
both during and after migration, which are likely to be
important for shaping the inclination distributions of the hot
classical and Plutino populations.
In the current solar system, the evolution of the four giant

planets’ orbital planes (i.e., their orbital inclinations, i, and
longitudes of ascending node, Ω) can be described fairly
accurately using linear secular theory (see, e.g., Murray &
Dermott 1999). Briefly, the premise of linear secular theory is
that the planets’ mutual gravitational perturbations can be
modeled as though the mass of each planet were spread out in a
ring along its eccentric, inclined orbit; this amounts to
assuming that the perturbations between the planets can be

Figure 3. Top panels: histograms of the final inclinations (at t = 700 Myr) of test particles in the hot classical region for our four different migration timescales in
simulation sets “A” (top left) and “B” (top right); note that the top panels have different y-axis ranges. Bottom panels: normalized and smoothed kernel density
estimates for the same inclination distributions; also plotted with black dotted lines are observationally derived best-fit functions (sin i times a Gaussian) for the
dynamically hot population (Petit et al. 2017).

1 We use the version of this test described by NIST, https://www.itl.nist.
gov/div898/handbook/eda/section3/eda35e.htm, also described in Appendix
1 of Volk et al. (2016).
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averaged over orbital timescales. The rings representing each
planet perturb each other, causing quasi-periodic variation of
the planets’ eccentricity and inclination vectors while the
planets’ semimajor axes remain fixed. To linear order, the
evolution of the planets’ orbital planes and their orbital
eccentricities are independent. Since we are investigating the
inclination distributions of the Plutino and hot classical
populations, we focus here on the linear secular theory of the
planets’ inclinations. Each planet’s orbital plane is described by
an inclination vector ( Wisin sin , Wisin cos ). The equations of
motion for the linear secular perturbations of the planets allow
a solution in which the time evolution of the planets’
inclination vectors can be described by a sum over the
system’s inclination eigenvectors and eigenfrequencies. The
solution for our four giant planets yields three nonzero
eigenmodes called the secular inclination modes. In the
notation of Murray & Dermott (1999), these are the f6, f7, and
f8 modes; in the current solar system, they correspond to nodal
regression periods of ∼0.05, ∼0.45, and ∼1.9 Myr, respec-
tively. The frequency of each of these modes (to lowest order)
depends only on the masses and semimajor axes of the planets.
Because our simulations are designed to have the planets end
very near their current semimajor axes, the mode frequencies at
the end of each simulation are nearly identical and match the
mode frequencies of the current solar system quite well. For
each giant planet, the relative contribution of these three modes
to the time evolution of its inclination vector (i.e., the mode
amplitudes calculated from the system’s eigenvectors) is
determined by initial conditions. We can calculate the mode
amplitudes in the current solar system using the observed
planetary inclinations. The combination of mode frequencies
and amplitudes is what we refer to as the secular architecture of
the giant planets.

Linear secular theory can also be used to describe how the
inclinations of massless test particles are affected by the
planets. A test particle’s inclination vector can be described as
the sum of two components, a free inclination and a forced
inclination, determined by initial conditions and the secular
architecture of the giant planets. The amplitude of the forced
inclination depends on the precession rate of the test particle’s
free inclination and the planets’ secular modes and mode
amplitudes. The free precession rate is determined by the
averaged perturbations from the giant planets and depends only
on the planets’ masses and semimajor axes combined with the
test particle’s semimajor axis. The amplitude of the test
particle’s forced inclination is determined by a weighted sum
over each of the planetary secular modes; the contribution from
each mode is proportional to the mode amplitudes (calculated
from the perturbations among the planets) and inversely
proportional to the difference between the test particle’s free
precession rate and the mode frequencies. Very large forced
inclinations occur where the free precession frequency matches
one of the secular mode frequencies. The locations in test
particle semimajor axes where this occurs are referred to as
secular resonances (see Knezevic et al. 1991 for a map of
secular resonances in the solar system).

In the current solar system, the free precession periods of test
particles in the outer solar system range from ∼0.25Myr at
20au (just outside Uranus’s orbit) to ∼5Myr at 50au (the
outer edge of the classical Kuiper Belt). Thus, only the f7 and f8
modes contribute significantly to the forced inclination of a test
particle in the Kuiper Belt region. The influence of the f8 mode

is particularly apparent in the current Kuiper Belt; the secular
resonance associated with the f8 mode, referred to as the ν18
secular resonance, is located in the a=40–42 au range (see,
e.g., Chiang & Choi 2008), helping to define the inner edge of
the classical Kuiper Belt.
We can use a linear secular analysis of our migration

simulations to help understand how the secular architecture of
our simulated planetary systems might be affecting the test
particle inclinations in our simulations. We can use the theory
to calculate the modes and mode amplitudes of the planets in
our simulations to see how they vary between simulations and
compare to the current solar system. However, there are several
caveats that we need to acknowledge before discussing this
analysis. First is that a linear secular description of the planets’
interactions does not include the effects of the extra migration
forces in the simulation. At each time point being considered,
we are effectively treating the system as having “frozen”
semimajor axes at each point in time. In our slower migration
cases, the planets’ orbits are changing in semimajor axis on
timescales longer than the outer planets’ secular timescales,
which are 2Myr; for the shorter migration timescales, the
evolution toward the end of migration is slow enough to be
much slower than these secular timescales, but this separation
of migration timescale and secular timescale is not so large at
the beginning of the simulations. We also recognize that linear
secular theory is not a good approximation of the planets’
evolution if they approach and/or cross mutual mean motion
resonances as they migrate. In such cases, the assumption that
we can average over orbital timescales breaks down.
The evolution of test particles in the simulations is not

expected to be dominated by secular perturbations, especially at
the beginning of migration. The orbit-averaging assumption is
not valid when test particles are on planet-crossing orbits.
Because all of the test particles must be scattered outward to
end up in the Plutino or hot classical regions, they are clearly
subject to perturbations that are not secular in nature. However,
their orbital inclinations between or after scattering events will
still be influenced by secular forcing. In particular, the
semimajor axis of the 3:2 resonance is close to the semimajor
axis of the ν18 inclination secular resonance, where significant
secular forcing can occur on timescales comparable to the
mode period, so the inclinations of the Plutino population could
be particularly sensitive to variations in the secular architecture
of the planets. For example, Figure 4 shows the inclination and
semimajor axis evolution of a test particle at the beginning of
the τa=50Myr “A” simulation. In the first million yr, the
particle experiences a few degrees of inclination excitation as it
scatters with Neptune. Then the particle is scattered to a
semimajor axis just beyond the 3:2 resonance, which is near the
estimated location of the ν18; this results in the test particle’s
inclination increasing by ∼10° over a period of ∼1Myr.
Neptune’s continued migration then results in the 3:2 resonance
catching up with the test particle and capturing it into
resonance, locking it into its higher inclination orbit. Thus,
despite the limitations, a linear secular analysis of the
simulations can yield useful insights into the resulting test
particle distributions and illustrate the potential for secular
forcing to be an important source of inclination excitation.
We use linear secular theory to estimate the amplitudes of

the three secular modes in our simulations and compare them to
the mode amplitudes in the real solar system. We do this by
taking snapshots of our simulated systems at various points.
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These points in time define the semimajor axes of the planets
(the masses of the planets are fixed to their observed values
throughout the simulations) from which the mode frequencies
can be calculated. Then, just as the observed inclinations of the
planets are used to calculate the mode amplitudes in the real
solar system, we use the instantaneous inclination vectors of
the planets at these times in the simulation to determine the
appropriate mode amplitudes. For comparison, we performed
the same calculations for a 700Myr simulation of the current
solar system’s giant planets. The black lines in Figure 5 show
the calculated amplitudes of the f6, f7, and f8 modes in
Neptune’s inclination evolution in this simulation of the current
solar system. The fact that the calculated mode amplitudes are
relatively flat shows that linear secular theory provides a good
description of Neptune’s inclination evolution; if Neptune’s
simulated inclination vector had additional frequencies with
significant amplitudes besides the three predicted by the
simplified theory, the mode amplitudes recalculated at each
time point in the simulation would not match. Figure 5 shows,
in green, the same mode amplitudes for Neptune from two of
our migration simulations. The larger variations of these mode
amplitudes in the migration simulations compared to the
simulation of the nonmigrating current solar system reflects the
fact that linear secular theory (as described above) does not
account for mean motion resonances that can produce
significant perturbations as the planets migrate. Nevertheless,
for each simulation, the dominant mode in Neptune’s
inclination evolution (the f8 mode) is relatively stable,
especially at the end of the simulations, when migration has
finished.

As Figure 5 demonstrates, our simulations lead to a final
secular architecture of the giant planets that is not a perfect
simile of the real solar system. In our “A” simulations, the
amplitude of the f8 mode is typically larger than in the current
solar system, even when the power associated with the other
modes is fairly well matched (as in the left panel of Figure 5).

Because f8 is the primary mode associated with Neptune’s
inclination, this results in the simulated Neptune having an
inclination slightly too large compared to the real solar system
(see Figure 1). The power associated with the f8 mode in our
“B” simulations better matches that of the real solar system
(corresponding to a better match with Neptune’s real inclina-
tion), although the other mode amplitudes are typically slightly
smaller (as in the right panel of Figure 5).
This very simple analysis of the f8 mode amplitudes in our

simulations hints at a plausible explanation for the trends in the
inclination distributions in Figure 2. For each simulation, we
calculate the average amplitude of the f8 mode in Neptune’s
orbit at the end of the simulation and ratio it to the same
amplitude for the current solar system. We plot these mode
amplitude ratios and the inclinations of the Plutino and hot
classical populations in Figure 6, observing the following
points. First, the “A” simulations have mode amplitudes that
are about two to four times larger than the “B” simulations.
Second, the “A” simulation Plutino populations (left panel of
Figure 6) also have higher inclinations than the Plutinos in the
“B” simulations. The inclination widths, defined as the middle
50% of the inclination distribution, in the “A” simulation
Plutinos are about two times larger than for the “B” simulation
Plutinos; the median inclinations in the “A” simulations are
also up to about three times larger than in the “B” simulations.
These trends are much weaker in the hot classical population

(right panel of Figure 6). This could be partly due to the smaller
number statistics in the “B” simulations. It is also possible that
the effects of the secular modes are less pronounced because
the hot classical test particles have higher inclinations than the
Plutino test particles; perhaps because these test particles have
to be scattered out further than the Plutino test particles, their
inclinations are more affected by these random scattering
events than by secular effects.
For the Plutino population at least, the correlation between

the f8 mode amplitude and median inclinations (as well as
inclination distribution width) in our simulations is much
clearer than any trend with migration timescale. We checked
for similar trends with the f7 mode amplitude, but none were
apparent.
A link between the f8 mode amplitude and inclination

excitation in the Plutino population provides a plausible
explanation for the discrepancy between our simulation results
and those of Nesvorný (2015). If Neptune’s inclination is
damped during planetary migration, as was done in Nesvornýʼs
(2015) simulations, this would also damp the amplitude of the
f8 secular mode, reducing the secularly forced inclinations of
test particles in the outer solar system. This could be
particularly important for test particles passing through the
ν18 secular resonance, where maximum forced inclinations due
to the f8 mode occur. In the current solar system, the location of
the ν18 resonance is just beyond the 3:2 resonance, and based
on the linear secular calculations, this is also the case during all
but the very beginning of our migration simulations. So it is
likely that many test particles that are scattered out past the 3:2
and then picked up in the resonance as Neptune migrates
experience some inclination excitation due to this resonance
with the f8 mode, as shown in Figure 4. Even particles that
more directly stick to the 3:2 are likely to have spent some time
at nearby semimajor axes and could thus be influenced. We
visually inspected the semimajor axis and inclination evolution
of 50 test particles from each simulation that ended up in our

Figure 4. Example of secular inclination excitation for a test particle in the
τa=50 Myr “A” simulation. The top panel shows the semimajor axis of the
test particle (black dots) compared to the location of Neptune (gray line) and
the 3:2 resonance (green line); the bottom panel shows the test particle’s
inclination. The gray shaded region indicates the time period where the test
particle’s evolution is dominated by scattering events with Neptune. The red
shaded region indicates the time period where a marked secular increase in the
test particle’s inclination occurs. The vertical dashed line indicates the time
when the particle is captured in the 3:2 resonance.
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final Plutino populations to estimate the relative frequency of
secular inclination excitation associated with the ν18 resonance.
In all but the τa=5Myr “B” simulation, approximately 50%–

70% of the test particles showed significant changes in
inclination while at constant semimajor axes just beyond the
3:2 resonance; in the τa=5Myr “B” simulation, which
resulted in the fewest high-inclination Plutinos, this fraction
was ∼30%. For comparison, the percentage of test particles
showing evidence of inclination excitation due to close
encounters with Neptune (i.e., discrete changes in inclination
correlated with discrete changes in semimajor axis) was also
∼50%–70%. The changes in inclination at constant semimajor
axes near the estimated location of the ν18 resonance were
smooth and, in many cases, roughly sinusoidal, which is
consistent with the change being driven by secular forcing;
some test particles exhibited very rapid inclination increases,
consistent with being close to the center of the secular
resonance. We note that for test particles undergoing sinusoidal
inclination changes, the net change in average inclination
depends on the phase of the inclination cycle upon being
captured into the 3:2 resonance, and some test particles had a
net decrease in final inclination. It is clear that the f8 mode can
contribute significantly to inclination excitation, and the
relative importance of scattering events and secular evolution
in the excitation of inclinations depends on the mode strength.
A strong or weak f8 mode during migration could either
enhance or reduce the inclination excitation these test particles
experience before ending up in the final Plutino population. We
also note that the mode amplitudes could affect the so-called
“Kozai” resonance within the 3:2 mean motion resonance. This
resonance is characterized by the libration of a Plutino’s
argument of perihelion and causes coupled opposite-phase
variations in eccentricity and inclination (e.g., Milani et al.
1989). Kozai libration is likely to be affected by changes in the
secular architecture of the planets because stationary values of
the argument of perihelion correspond to a match between the
precession rate of the longitude of perihelion and the regression
rate of the longitude of ascending node. We leave an
assessment of how the mode amplitudes affect the Kozai
resonance and its corresponding inclination and eccentricity
variations within the Plutino population for future work.

The particular implementation of Neptune’s inclination
damping in the migration simulations could have different

effects on Neptune’s nodal rates in addition to influencing the
mode amplitudes. (Nesvorný 2015 did not describe the specific
scheme used in his simulations.) In addition to affecting the
amplitude of the f8 mode by damping Neptune’s inclination, the
frequency of the mode itself could change, changing the
locations of secular resonances that have a strong influence on
particle inclinations. Fixing the other giant planets’ semimajor
axes and migrating only Neptune would also affect the
frequency and amplitude of the f8 mode (and also secular
resonance locations) in Nesvornýʼs (2015) simulations com-
pared to ours. Nesvorný (2015) did perform some integrations
where all four giant planets migrated and did not find evidence
that this affected the correlation between inclinations and
migration timescale in those simulations. However, these
additional simulations are not discussed in detail; it is possible
that the initial and final conditions for these simulations differ
from our simulations, resulting in different secular architec-
tures. Thus, we find that a significant difference in the f8 mode
amplitude and frequency is the most plausible explanation for
the dramatically different trends in our simulated Plutino
populations compared to those in Nesvorný (2015).
The giant planets’ secular architecture should also affect the

inclination distribution of the hot classical population; how-
ever, it is possible that they are more influenced by encounters
with Neptune than by secular inclination forcing. Nesvorný
(2015) found that it took of order a few tens of Myr for the
inclinations of the population of Neptune-crossing test particles
with semimajor axes in the classical belt range (the source
population for the final implanted hot classical orbits) to
become significantly dispersed as a result of encounters with
Neptune (see his Figure 12); this led to the finding that hot
classicals implanted late during the migration process would
have higher inclinations and that slower migration would lead
to higher inclinations in the final hot classical population. In
our simulations, we find a nearly identical trend to that found
by Nesvorný (2015) in the inclination distribution of the hot
classical source region with time, but we do not find a strong
trend between the final hot classical inclinations and migration
speed. The two longest migration timescale “A” simulations do
have the broadest hot classical inclination distributions, but the
τa=5Myr “B” simulation had the highest median inclination
hot classical population of the “B” simulations. Additionally, in
the τa=5Myr “A” simulation, the final hot classical

Figure 5. Estimated amplitudes for the three inclination secular modes in Neptune’s orbital inclination for the τa=10 Myr “A” simulation (green, left panel) and the
τa=5 Myr “B” simulation (green, right panel) compared to the same mode strengths for the current solar system (black).
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inclination distribution is broader than that of the source region
after ∼3 e-folding timescales, after which very little migration
occurs. This implies that while longer migration timescales can
allow for more inclination excitation of the source population
(due to more Neptune encounters, as suggested by Nes-
vorný 2015), there are additional mechanisms for exciting
inclinations even with shorter migration timescales. It seems
plausible that secular excitation of inclinations can contribute to
creating a broad hot classical inclination distribution.

In this work, we have only investigated the inclination
distributions that result from different migration scenarios in
order to explain why strong trends between inclinations and
migration speed seen in one set of simulations (Nesvorný 2015)
can be absent in others. As discussed by Nesvorný (2015), the
observational estimates of inclination distributions for different
Kuiper Belt populations are often easier to obtain than other
orbital parameter distributions or estimates of their total
populations; thus, understanding how inclination distributions
can be used to constrain the history of the outer solar system is
of particular importance. However, many of the same points
made above about the secular architecture of the planetary
system also apply to the eccentricity distribution of Kuiper Belt
subpopulations. Works such as Batygin et al. (2011) and
Dawson & Murray-Clay (2012) have shown that the low
eccentricities of the cold classical KBOs can be used to place
constraints on Neptune’s eccentricity and apsidal precession
rate because these affect the amplitude of the secular variations
in eccentricity experienced by small bodies in the Kuiper Belt.
We have not investigated the evolution of the cold classical
Kuiper Belt in our simulations because there are a number of
structures in their orbital distribution (such as the overdensity
of objects in the cold classical “kernel” at 44.5 au; Petit et al.
2011) that are not reproduced by the kind of simplified
migration scenarios investigated here and in Nesvorný (2015).
However, we note that our simulations are consistent with
preserving the low eccentricities of the classical belt because
we chose initial conditions such that Neptune’s eccentricity
remained small throughout migration. The low inclinations of
the cold classical belt are also likely to be preserved in our
migration simulations, including those with enhanced f8 mode
strengths, because the location of the Kuiper Belt’s inclination
secular resonance remains close to the 3:2 resonance

throughout the simulation; we repeated our τa=50Myr “A”
simulation with a disk of test particles representing the cold
classical belt and found that they did not experience significant
inclination or eccentricity excitation.
For the Plutino and hot classical populations, the location

and strength of the ν8 eccentricity secular resonance associated
with Neptune’s dominant eccentricity secular mode will likely
affect eccentricities similarly to how the f8 mode and its ν18
secular resonance appears to affect inclinations. Just as with
inclination secular modes and amplitudes, the initial relative
positions of the planets, as well as the presence or absence of
eccentricity damping, will likely affect simulation outcomes
and final secular architectures. Previous studies have noted that
the final giant planet secular architecture in planetary migration
simulations is very sensitive to the planets’ initial conditions
and whether planets encounter mean motion resonances or
undergo mutual scattering events; this makes it difficult to
perfectly reproduce the solar system’s observed secular
architecture in migration simulations (e.g., Morbidelli et al.
2009; Batygin & Brown 2010; Nesvorný & Morbidelli 2012).
Many previous investigations have focused on the eccentricity
secular modes of Jupiter and Saturn because these modes have
a strong influence on the stability of the terrestrial planets
during giant planet migration (e.g., Brasser et al. 2009; Agnor
& Lin 2012). For the Kuiper Belt, both Neptune’s eccentricity
and inclination secular modes are important in sculpting the
final orbital distributions. Given how difficult it is to reproduce
the current secular structure of the solar system at the end of
migration simulations, the origin of Neptune’s secular modes
should be investigated in more detail in future work.
Finally, we note that the simplifying assumption of a

massless test particle disk also affects the secular evolution of
objects in these simulations. The eccentricities and inclinations
of the massive pre-migration Kuiper Belt could differ
depending on how their self-gravity affects the evolution of
both the planets and the KBOs (see, e.g., Hahn 2003; Reyes-
Ruiz et al. 2015). While recent work by Fan & Batygin (2017)
shows that including self-gravity between the massive
planetesimals in Nice model–like simulations does not appear
to change the simulation outcomes for the planets or the overall
inclination distribution for the resulting Kuiper Belt particles,
the details of the secular architecture and the locations of

Figure 6. Ratio of the estimated amplitude of the f8 inclination mode in Neptune’s orbit at the end of the simulations to its amplitude in the current solar system vs.
median inclination in the final Plutino (left panel) and hot classical (right panel) populations in the simulations. The horizontal bars represent the 25%–75% inclination
range in each population’s cumulative inclination distribution. The “A” simulations are shown in purple, and the “B” simulations are shown in black (labeled by τa).
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secular resonances could be affected; thus, the inclinations of
specific dynamical populations, such as the Plutino and hot
classical populations, could be affected by the massive pre-
migration planetesimal disk.

4. Summary and Conclusions

We have performed simplified simulations of giant planet
migration to investigate the relationship between migration
speed and inclination excitation in the Plutino and hot classical
Kuiper Belt populations. As with all such investigations, these
simulations do not represent the full, detailed dynamical history
of the outer solar system but instead allow us to better
understand the relationship between migration speed and the
inclination distributions of the Plutino and hot classical Kuiper
Belt populations. We do not reproduce Nesvornýʼs (2015)
finding that slower migration speeds lead to more widely
dispersed inclinations in these populations, instead finding no
clear relationship between planet migration speed and inclina-
tion excitation for e-folding migration timescales of τa=5, 10,
30, and 50Myr. All of these migration timescales can yield
inclination distributions of these populations that are broadly
consistent with current observations. For the Plutinos, we find
that the degree of inclination excitation in our simulated
populations is correlated with the amplitude of the f8 inclination
secular mode of the giant planets; this mode amplitude is
sensitive to the simulated planets’ initial conditions. Our
simulated hot classical population shows only a very weak
correlation between inclination excitation and mode amplitude,
perhaps indicating that scattering events are more important
than secular effects for this population. Our simulations are
broadly similar to those of Nesvorný (2015), but differences in
the numerical implementation of planetary migration, as well as
small differences in planetary initial conditions, have a
significant impact on the secular architecture of the simulated
systems. This plausibly leads to the different results regarding
whether planet migration speed significantly controls inclina-
tion excitation in these Kuiper Belt populations. The choice to
migrate only Neptune or all four giant planets, or to damp or
not damp planetary inclinations, affects the amplitudes of the
inclination secular modes, as well as the locations of secular
resonances and their corresponding large forced inclinations in
the Kuiper Belt; the numerically simulated Kuiper Belt orbital
distributions can thus be very sensitive to the simplifications in
numerical implementation of planet migration. Our simulations
indicate that planetary migration with e-folding timescales of 5,
10, 30, and 50Myr can all yield inclination dispersions similar
to the observed Plutino and hot classical populations, with no
correlation between the degree of inclination excitation and
migration speed. Slow planetary migration is not necessarily
required to explain the large inclinations.

We therefore conclude that constraints on the speed of planet
migration must be sought in features other than the Kuiper Belt
inclination distribution. Some examples of potentially useful
features have already been discussed in the literature. These
include Kaib & Sheppardʼs (2016) suggestion that the orbital
distribution of high-perihelion objects dropped from Neptune’s
3:1 resonance could be strongly dependent on Neptune’s
migration speed. The population ratios of objects captured in
the different libration islands of Neptune’s 2:1 mean motion
resonance have also been found to potentially depend on
migration speed (Murray-Clay & Chiang 2005). Murray-Clay
& Schlichting (2011) suggested that the fraction of binaries in

different subpopulations of the Kuiper Belt might relate to
migration speed. While the speed of migration might not be
imprinted in the inclination distributions, other aspects of
migration might be. This work suggests that even small
changes in the secular architecture of the planets can lead to
significant changes in the inclination distributions of the
Plutino population. Future studies to better understand how
the planets’ secular modes change during migration and how
this affects Kuiper Belt populations could lead to new
constraints on the migration history of the outer solar system.
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