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Risk analysis, ideal observers, and receiver
operating characteristic curves for tasks that
combine detection and estimation

Eric Clarkson*
University of Arizona, College of Optical Sciences, Tucson, Arizona, United States

Abstract. Previously published work on joint estimation/detection tasks has focused on the area under the
estimation receiver operating characteristic (EROC) curve as a figure of merit (FOM) for these tasks in imaging.
Another FOM for these joint tasks is the Bayesian risk, where a cost is assigned to all detection outcomes and to
the estimation errors, and then averaged over all sources of randomness in the object ensemble and the imaging
system. Important elements of the cost function, which are not included in standard EROC analysis, are that the
cost for a false positive depends on the estimate produced for the parameter vector, and the cost for a false
negative depends on the true value of the parameter vector. The ideal observer in this setting, which minimizes
the risk, is derived for two applications. In the first application, a parameter vector is estimated only in the case of
a signal present classification. For the second application, parameter vectors are estimated for either classifi-
cation, and these vectors may have different dimensions. In both applications, a risk-based estimation receiver
operating characteristic curve is defined and an expression for the area under this curve is given. It is also shown
that, for some observers, this area may be estimated from a two alternative forced choice test. Finally, if the
classifier is optimized for a given estimator, then it is shown that the slope of the risk-based estimation receiver
operating characteristic curve at each point is the negative of the ratio of the prior probabilities for the two
classes. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.1.015502]
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1 Introduction
Some imaging tasks involve the detection of a signal combined
with the estimation of parameters. One possibility is that we
want to estimate parameters associated with the signal, such
as its location, shape, size, or composition. This situation is
described in application I below. Another possibility is that
we want to estimate parameters associated with the imaged
object whether a signal is present or not, such as voxel values
for a three-dimensional reconstruction of the object. This situa-
tion is discussed in application II below. We may also want to
perform both estimation tasks. This situation is also covered in
application II.

In order to optimize an imaging system for these joint tasks,
we need a figure of merit (FOM) that takes into account the
value of the data for each component, the detection component
and the estimation component. One such FOM is the area under
the estimation receiver operating characteristic (EROC) curve,
which was introduced by the author in previous papers1,2 as
a generalization of the localization ROC curve. The EROC
curve and generalizations have also been studied by other
researchers as a practical method for quantifying the perfor-
mance of imaging systems on joint tasks.3,4 Another FOM
for this kind of task is the Bayesian risk, where a cost is assigned
to all possible outcomes and then averaged over all possible
objects and noise realizations.

For each application, we derive the Bayesian ideal observer,
which is a mathematical algorithm that performs the task and

minimizes the risk in the process. We also define a risk-
based estimation receiver operating characteristic (RB-EROC)
curve for each application that is a generalization of standard
ROC and EROC curves. We then derive expressions for the
areas under these curves and show how, for certain suboptimal
observers, these areas can be estimated from a two alternative
forced choice (2AFC) test. We also show that, for a class of
suboptimal observers, the slope of the RB-EROC curve at each
point is determined by the prior class probabilities correspond-
ing to that point.

An important aspect of the cost functions used here is that we
allow the dependence of the cost of each decision to depend on
the parameter vector or an estimate of it. For example, in appli-
cation I, the cost of a false positive can depend on the estimated
parameter vector since this vector will affect future actions based
on the misclassification. Similarly, for a false negative, the cost
is allowed to depend on the true parameter vector since the value
of this vector may affect the consequences of this misclassifi-
cation for the patient. The cost for a true positive classification
depends on both the true parameter and its estimate as in the
standard EROC analysis (which uses utility instead of cost).
Finally, the cost for a true negative is a constant since there
is no true parameter vector or estimate in that case, which is
also the case for standard EROC analysis. As we will see
below, similar dependences of the costs on true parameter vec-
tors and their estimates for the various decision outcomes are
also allowed in application II.
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2 Application I: Conditional Estimation
In this task, the observer uses the data vector g to decide
whether this vector was the result of imaging a member of
the signal absent class, which is hypothesis H0, or a member
of the signal present class, which is hypothesis H1. All data
vectors are assumed to be in a data space D, which is a subset
of RM. If the observer decides on signal present then an esti-
mate θ̂ for the parameter vector θ must be computed. Thus, the
estimation task is conditional on the outcome of the detection
task. For the detection component of the joint task, we have a
cost assigned to each outcome: true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). The prob-
ability distribution function (PDF) of the data vector g when
the signal is present is prðgj1Þ. When the signal is absent, the
PDF for the data vector is prðgj0Þ. We then have the elements
of the cost matrix

EQ-TARGET;temp:intralink-;sec2;63;572"
C00 C01½θ�

C10½θ̂� C11½θ̂; θ�

#
;

where C00 is the cost associated with a TN outcome, C10ðθ̂Þ is
the cost for an FP, C11ðθ̂; θÞ the cost for a TP, and C01ðθÞ is the
cost for an FN. We assume that C10ðθ̂Þ > C00. In other words,
it costs less to get a TN classification than to get an FP. Since a
TN outcome will usually lead to no further intervention, and no
harm resulting from this action, whereas an FP outcome will
usually lead to further intervention, this assumption seems rea-
sonable. Later we will see at what point in the calculation this
assumption is used and comment on what the decision pro-
cedure would be without it. For TP outcome, we have a non-
negative cost function C11ðθ̂; θÞ, which assigns a cost to the
estimate θ̂ when the true parameter vector is θ. For FN out-
comes, the cost to the patient for a misdiagnosis depends on
the true parameter vector. The probability that the signal is
present is P1 and the probability that it is absent is P0.
These two numbers are assumed to be positive and to sum
to unity. This cost matrix is discussed in Refs. 5 and 6, and an
equivalent utility formulation is discussed in Ref. 3. Later in
this section, we will indicate where the calculations given here
deviate from those references.

In this application, we assume that the parameters to be esti-
mated are associated with the signal present cases only. In medi-
cal imaging, for example, the parameters contained in θ may
describe the size, shape, location, and other factors associated
with a tumor. For TP cases, the cost depends on how close
the estimate θ̂ is to the true vector θ. For FP cases, the value
of the estimate θ̂ will affect further studies and treatments,
and will therefore affect the cost to the patient. For FN cases,
the true vector θ of an undetected tumor will surely affect future
costs to the patient as the cancer progresses. Finally, for TN
cases, there is no cancer and no further studies or treatments
are performed so the cost in this case is a constant and may
in fact be zero. In medical imaging writing, explicit expressions
for these costs are a difficult task, but these costs do exist.
Therefore, there is an optimal observer that minimizes the aver-
age cost, i.e., the risk. The closer we can come to implementing
this observer, even with approximate or idealized cost expres-
sions, the lower the risk will be. This ideal observer may also
offer insight into strategies for improving observer performance.
For example, as we will see, the ideal observer performs the

estimation task first and then uses the estimate in the classifica-
tion task.

We write the signal-present PDF in terms of a conditional
PDF prðgjθÞ determined by the imaging system and nuisance
parameters in the object, and a prior PDF prðθÞ on the param-
eters of interest:

EQ-TARGET;temp:intralink-;e001;326;686prðgj1Þ ¼
Z
Θ
prðgjθÞprðθÞdLθ: (1)

In this integral, Θ is the domain of the prior PDF prðθÞ and is
assumed to be a subset of RL. Let A be the region in the data
space D that consists of the data vectors that the observer
declares to be in the signal absent class. Similarly, let P be
the region in the data space D that consists of the data vectors
that the observer declares to be in the signal present class. We
make the usual assumptions that A ∩ P ¼ ∅ and A ∪ P ¼ D.
Now we may write the risk in integral form as
EQ-TARGET;temp:intralink-;e002;326;563

C ¼ P0

�Z
A
C00prðgj0ÞdMgþ

Z
P
C10½θ̂ðgÞ�prðgj0ÞdMg

�

þ P1

��Z
A
C01½θ�prðgjθÞdMg

�
θ

þ
�Z

P
C11½θ̂ðgÞ; θ�prðgjθÞdMg

�
θ

�
: (2)

The first two terms correspond to the FP and TN cases, while the
last two terms are from the FN and TP cases. At this point in
Ref. 5, the costs C10 and C01 are assumed to be constant and a
special form for C11½θ̂; θ� is used. We will not be making those
restrictions in what follows.

2.1 Ideal Observer for Application I

To compute the observer that minimizes the risk, the Bayesian
ideal observer, we change the order of expectations in the last
cost term and write
EQ-TARGET;temp:intralink-;e003;326;345

C ¼ P0

�Z
A
C00prðgj0ÞdMgþ

Z
P
C10½θ̂ðgÞ�prðgj0ÞdMg

�

þ P1

�Z
A
hC01½θ�iθjgprðgj1ÞdMg

þ
Z
P
hC11½θ̂ðgÞ; θ�iθjgprðgj1ÞdMg

�
: (3)

The notation θjg indicates that the posterior PDF prðθjgÞ is
being used to compute the expectation. By rearranging terms,
we have the risk reduced to two integrals:
EQ-TARGET;temp:intralink-;e004;326;215

C ¼
Z
A
fP0C00prðgj0Þ þ P1hC01½θ�iθjgprðgj1ÞgdMg

þ
Z
P
fP0C10½θ̂ðgÞ�prðgj0Þ

þ P1hC11½θ̂ðgÞ; θ�iθjgprðgj1ÞgdMg: (4)

We will now proceed with some mathematical manipulations of
this expression that will lead to the ideal classifier for any esti-
mator θ̂ðgÞ. Then, we will find the ideal estimator to complete
the ideal observer for the joint task.

We start by defining a quantity B that does not depend on the
classifier or the estimator:
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EQ-TARGET;temp:intralink-;e005;63;752

Z
D
fP0C00prðgj0Þ þ P1hC01½θ�iθjgprðgj1ÞgdMg

¼ P0C00 þ P1hC01½θ�iθ ¼ B: (5)

We may now write risk as C ¼ C̃þ B with

EQ-TARGET;temp:intralink-;e006;63;690

C̃ ¼ −
Z
P
fP0C00prðgj0Þ þ P1hC01½θ�iθjgprðgj1ÞgdMg

þ
Z
P
fP0C10½θ̂ðgÞ�prðgj0Þ

þ P1hC11½θ̂ðgÞ; θ�iθjgprðgj1ÞgdMg: (6)

Since B does not depend on the classifier, we want to choose
the set P to minimize C̃. This implies that we must choose
the set P to be exactly the set of data vectors that satisfy the
inequality:

EQ-TARGET;temp:intralink-;e007;63;551P0C10½θ̂ðgÞ�prðgj0Þ þ P1hC11½θ̂ðgÞ; θ�iθjgprðgj1Þ
≤ P0C00prðgj0Þ þ P1hC01½θ�iθjgprðgj1Þ: (7)

By using the assumption that C10ðθ̂Þ ≥ C00, we may convert this
inequality to

EQ-TARGET;temp:intralink-;e008;63;475

hC01½θ� − C11½θ̂ðgÞ; θ�iθjg
C10½θ̂ðgÞ� − C00

ΛðgÞ ≥ P0

P1

; (8)

where ΛðgÞ ¼ prðgj1Þ∕prðgj0Þ is the likelihood ratio. This is
the only point where the condition C10ðθ̂Þ ≥ C00 is used. The
likelihood ratio, or any monotonic transformation of it, is the
ideal-observer test statistic for the pure detection task. With
the obvious definitions for βðgÞ and αðgÞ we have, for the
joint task, the test statistic tðgÞ and threshold τ such that

EQ-TARGET;temp:intralink-;e009;63;359tðgÞ ¼ βðgÞ
αðgÞΛðgÞ ≥

P0

P1

¼ τ (9)

is required for the signal to be declared present. Note that it is
very unlikely that tðgÞ is the result of a monotonic transforma-
tion of ΛðgÞ. Thus, the ideal observer for the joint task is giving
up some performance on the detection task in order to minimize
the overall risk.

By combining the two terms in the risk expression in Eq. (2)
that depend on the estimator, we find that the ideal estimator is
given by

EQ-TARGET;temp:intralink-;e010;63;227θ̂ðgÞ ¼ arg min
θ 0

fP0C10½θ 0�prðgj0Þ

þ P1hC11½θ 0; θ�iθjgprðgj1Þg; (10)

since this will minimize the combined integral over P in the risk
no matter what P actually is. In the absence of a need to classify
along with estimate, the ideal estimator would have P0 ¼ 0.
Thus, the ideal observer for the joint task is losing some esti-
mation performance compared to the ideal observer for a pure
estimation task. The ideal estimator for the joint task can also be
written as

EQ-TARGET;temp:intralink-;e011;326;752

θ̂ðg; τÞ ¼ arg min
θ 0

�
τC10

Δy
Δx

½θ 0�prðgj0Þ

þ hC11½θ 0; θ�iθjgprðgj1Þ
�
; (11)

where we are now indicating that this estimator depends on the
quantity τ used in the classification task. Since the test statistic
depends on the estimator, we must now write for the signal
present cases

EQ-TARGET;temp:intralink-;e012;326;644tðg; τÞ ¼ βðg; τÞ
αðg; τÞΛðgÞ ≥

P0

P1

¼ τ; (12)

where

EQ-TARGET;temp:intralink-;e013;326;588αðg; τÞ ¼ C10½θ̂ðg; τÞ� − C00 (13)

and

EQ-TARGET;temp:intralink-;e014;326;549βðg; τÞ ¼ hC01½θ� − C11½θ̂ðg; τÞ; θ�iθjg: (14)

This dependence of the test statistic and estimator on τ compli-
cates the definition for a corresponding EROC curve. We will
address this problem in the next section.

The test statistic and estimator derived here are different than
those used by the ideal observer for standard EROC analysis.
We get that observer by making C10½θ 0� and C01½θ� constants
C10 and C01, respectively, and by defining a utility function
for the estimator as

EQ-TARGET;temp:intralink-;e015;326;431U½θ̂ðgÞ; θ� ¼ C01 − C11½θðgÞ; θ�
C10 − C00

: (15)

Thus, standard EROC analysis is equivalent to a special case
of the risk-based EROC analysis described in this paper. Note
that these assumptions also remove the dependence of the esti-
mator, and hence the test statistic, on the threshold. This makes
it relatively easy to define the standard EROC curve in analogy
with the standard ROC curve. In Ref. 3, the EROC curve prob-
lem is generalized using utility instead of cost and an ideal
observer equivalent to the one derived here is presented.
However, at that point, some assumptions are made about
the structure of the utility functions that reduces their general-
ity but permits the definition of EROC-type curves that
coincide with curves used in the literature, such as FROC
and AFROC curves. In particular, one of the assumptions is
that the FN cost or utility does not depend on the true vector
θ. We are taking an alternative approach that leaves the cost
functions completely general and defining an EROC curve
based on them. In Ref. 6, the ideal observer for the cost matrix
we are using here is derived for the FROC and AFROC prob-
lems where constraints are placed on the cost functions. The
resulting ideal observer is equivalent to the one derived here,
although the expressions look more complicated than the ones
above. The cost constraints in Ref. 6 are needed to make sure
the risk minimizing observer also maximizes the FROC and
AFROC curves. In both Refs. 3 and 6, the relation between
the ideal classifier for the joint task and the likelihood ratio
is not as obvious as it is in Eqs. (8) and (9) above because
they do not make use of the posterior distribution on the param-
eter vector. This relationship, in turn, makes it clear, as noted
above, that the ideal observer for the joint task is giving up
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detection performance, compared to the ideal observer on the
pure detection task, in order to improve estimation perfor-
mance. For these reasons, we have provided the derivation
above for the ideal observer on the joint task.

2.2 Risk-Based EROC Curve for Application I

Now we will define the RB-EROC curve for the ideal observer
in application I. Using the fact that stepð−xÞ ¼ 1 − stepðxÞ, we
can write the risk in the form

EQ-TARGET;temp:intralink-;e016;63;645CðτÞ ¼ P0hC00 þ step½tðg; τÞ − τ�αðg; τÞigj0
þ P1hhC11½θ̂ðg; τÞ; θ�iθjg þ step½τ − tðg; τÞ�βðg; τÞigj1:

(16)

The first expectation involves a differential cost for false posi-
tives so we write

EQ-TARGET;temp:intralink-;e017;63;559xðτÞ ¼ hC00 þ step½tðg; τÞ − τ�αðg; τÞigj0: (17)

The second expectation contains a differential cost for false
negatives and we write

EQ-TARGET;temp:intralink-;e018;63;511yðτÞ ¼ hhC11½θ̂ðg; τÞ; θ�iθjg þ step½τ − tðg; τÞ�βðg; τÞigj1:
(18)

The ideal observer RB-EROC curve for application I is a plot of
yðτÞ versus xðτÞ as τ is varied from 0 to∞. As τ → ∞, we have
xðτÞ is decreasing toward C00 and yðτÞ is increasing toward
hC01½θ�iθ. At τ ¼ 0 we have
EQ-TARGET;temp:intralink-;e019;63;421

xð0Þ ¼ hC10½θ̂ðg; 0Þ�igj0 > C00;

yð0Þ ¼ hhC11½θ̂ðg; 0Þ; θ�igjθiθC01½θ�iθ: (19)

Thus, the curve is decreasing from left to right as τ decreases.
Since the function xðτÞ is monotonic, each point on the ideal-

observer RB-EROC curve determines a value for τ ¼ P0∕P1.
Unfortunately, determining τ from the point on the curve is not
straightforward. This is due to the complications introduced by
the dependence of the estimator on τ. Nevertheless we have

EQ-TARGET;temp:intralink-;e020;63;303CðτÞ ¼ P0xðτÞ þ P1yðτÞ; (20)

so the ideal-observer RB-EROC curve determines the minimum
risk for all values of the prior probabilities.

The ideal observer in the previous section minimizes, over all
observers, yðτÞ for any given value of xðτÞ and therefore has the
lowest RB-EROC curve. We can show this as follows. Suppose
some other observer has a smaller y-coordinate y0 at a given
x-coordinate x0 on its RB-EROC curve than the ideal observer.
Since xðτÞ is a monotonic function of τ, the given x-coordinate
determines a value for τ such that xðτÞ ¼ x0. This τ then deter-
mines yðτÞ and P0 and P1. Then, the risk P0x0 þ P1y0 would
be less than P0xðτÞ þ P1yðτÞ, which is a contradiction. Thus
a version of the Newmann–Pearson lemma holds for the RB-
EROC curve. This argument is easily reversed to show that min-
imizing the RB-EROC curve also minimizes the risk.

We can get the standard EROC curve by setting C00 ¼ 0 and
C10 ¼ C01 ¼ 1. Then, the RB-EROC curve for this application
is an upside down EROC curve with the utility function
U½θ̂ðgÞ; θ� ¼ 1 − C11½θ̂ðgÞ; θ�.

2.3 Area Under the RB-EROC Curve
for Application I

The RB-EROC curve can be plotted for any observer on the joint
task that uses a test statistic with a threshold for the detection
component. For most conventional observers, the estimator will
not depend on the prior probabilities for the two classes, and
hence α and β will also be independent of these probabilities.
This is not an optimum strategy in the sense of minimizing
the risk, but it is an understandable one in view of the compli-
cations involved in calculating the ideal observer. In this case,
τ is simply the threshold being used for the classification task
and is not necessarily connected to the prior probabilities on the
classes. We then have, for the risk,

EQ-TARGET;temp:intralink-;e021;326;602

CðτÞ ¼ P0fhC00 þ step½tðgÞ − τ�αðgÞigj0g
þ P1fhhC11½θ̂ðgÞ; θ�iθjg þ step½τ − tðgÞ�βðgÞigj1g;

(21)

where

EQ-TARGET;temp:intralink-;e022;326;522αðgÞ ¼ C10½θ̂ðgÞ� − C00 (22)

and

EQ-TARGET;temp:intralink-;e023;326;483βðgÞ ¼ hC01½θ� − C11½θ̂ðgÞ; θ�iθjg: (23)

For the RB-EROC curve, we define

EQ-TARGET;temp:intralink-;e024;326;441xðτÞ ¼ hC00 þ step½tðgÞ − τ�αðgÞigj0 (24)

and

EQ-TARGET;temp:intralink-;e025;326;403yðτÞ ¼ hhC11½θ̂ðgÞ; θ�iθjg þ step½τ − tðgÞ�βðgÞigj1: (25)

For the derivative of xðτÞ, we then have

EQ-TARGET;temp:intralink-;e026;326;362

dxðτÞ
dτ

¼ −hδ½tðg 0Þ − τ�αðg 0Þig 0 j0: (26)

Note the negative sign here since xðτÞ is a decreasing function of
τ. We take this negative sign into account when we define the
area under the RB-EROC curve as

EQ-TARGET;temp:intralink-;e027;326;287A ¼ −
Z

∞

0

yðτÞdxðτÞ: (27)

Wewill not use the acronym AUC (area under the curve) for this
integral since this is used for standard ROC and EROC curves
that increase from left to right and are maximized by the cor-
responding ideal observers. By using the delta function to per-
form the integration over τ, we arrive at

EQ-TARGET;temp:intralink-;e028;326;191A ¼ hhstep½tðg 0Þ − tðgÞ�αðg 0ÞβðgÞig 0j0igj1: (28)

This can be interpreted as the result of a 2AFC test where the
observer pays the penalty αðg 0ÞβðgÞ when it misclassifies g 0

as coming from the signal present class and g from the signal
absent class. Unfortunately, there is no simple expression like
this for the area under the ideal-observer RB-EROC curve.
This again is due the dependence on τ of the estimator in
this case.
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2.4 Slope of the RB-EROC Curve for Application I

If we examine the derivation of the ideal observer test statistic
given above, we can see that, in a situation where we are using
an estimator that does not depend on τ, there is a test statistic and
threshold that minimizes the risk. The corresponding observer is
suboptimal since it is not using the ideal estimator for the joint
task but is nevertheless of interest since, as we have seen in the
previous section, the area under the RB-EROC curve for such an
observer is easy to estimate from a 2AFC test. Therefore, in this
section, we again use τ ¼ P0∕P1 and we have

EQ-TARGET;temp:intralink-;e029;63;635

dyðτÞ
dxðτÞ ¼

hδ½τ − tðgÞ�βðgÞigj1
−hδ½tðg 0Þ − τ�αðg 0Þig 0j0

: (29)

Now we use the fact that, on the hypersurface defined by
τ − tðgÞ ¼ 0, we have βðgÞprðgj1Þ ¼ ταðgÞprðgj0Þ. This fact
then gives us

EQ-TARGET;temp:intralink-;e030;63;560

dyðτÞ
dxðτÞ ¼ −τ: (30)

For these observers on the joint task, the RB-EROC curve then
provides all of the information we need to compute the corre-
sponding risk for all values of the prior probabilities.

3 Example for Application I
As an example for application I, we consider quadratic cost
functions:
EQ-TARGET;temp:intralink-;e031;63;441"

C00 C01½θ�
C10½θ̂� C11½θ̂; θ�

#
¼

"
0 c01kθk2

c10kθ̂k2 c11kθ̂ − θk2
#
: (31)

We choose these cost functions because they are the simplest
ones to use analytically and will give us some idea of how this
whole scheme works out in practice. Realistic cost functions
would undoubtedly be more complicated in order to take into
account the consequences of each observer outcome.

The estimator used by the ideal observer on the joint task is
now given by

EQ-TARGET;temp:intralink-;e032;63;313θ̂ðg; τÞ ¼ arg min
θ 0

fτc10kθ 0k2prðgj0Þ

þ c11hkθ 0 − θk2iθjgprðgj1Þg: (32)

We define θ̄pðgÞ to be the mean of the posterior PDF prðθjgÞ,
and KpðgÞ to be the covariance matrix for this distribution. We
will only need the trace of this covariance matrix so we define
the total variance of the posterior PDF as σ2pðgÞ ¼ tr½KpðgÞ�.
Now we have

EQ-TARGET;temp:intralink-;e033;63;206hkθ 0 − θk2iθjg ¼ kθ 0k2 − 2θ̄pðgÞ · θ 0 þ σ2pðgÞ þ kθ̄pðgÞk2:
(33)

Suppressing some dependencies on g and τfor the moment, we
can now write the estimate as

EQ-TARGET;temp:intralink-;e034;63;141θ̂ ¼ arg min
θ 0

fAkθ 0k2 − 2Bθ̄p · θ 0 þ Cg; (34)

with A ¼ τc10prðgj0Þ þ c11P1prðgj1Þ, B ¼ c11P1prðgj1Þ, and
C ¼ c11ðσ2p þ kθ̄pk2ÞP1prðgjÞ. Taking the gradient, we have
Aθ̂ − Bθ̄p ¼ 0. Therefore, the ideal estimator we are looking
for is given by

EQ-TARGET;temp:intralink-;e035;326;752θ̂ðg; τÞ ¼
�

c11prðgj1Þ
τc10prðgj0Þ þ c11prðgj1Þ

�
θ̄pðgÞ: (35)

In terms of the likelihood ratio, we may write this estimator as

EQ-TARGET;temp:intralink-;e036;326;706θ̂ðg; τÞ ¼
�

c11ΛðgÞ
τc10 þ c11ΛðgÞ

�
θ̄pðgÞ ¼ γðg; τÞθ̄pðgÞ; (36)

where we are using this equation to define the function γðg; τÞ.
This shows that, for relatively large values of the likelihood
ratio, when the observer is more likely to declare that the signal
is present, the estimator is approximately the same as the pos-
terior mean estimator, which is the ideal estimator for the pure
estimation task with the quadratic penalty function that we have
here. On the other hand, when the likelihood ratio is relatively
small, the observer is more likely to declare that the signal is
absent. In this case, the ideal estimator for the joint tasks multi-
plies the posterior mean estimator by a small scalar, which
reduces the false positive cost function.

The ideal classifier for this example classifies the data as
signal present if

EQ-TARGET;temp:intralink-;e037;326;523

hc01kθk2 − c11kθ̂ðg; τÞ − θk2iθjg
c10kθ̂ðg; τÞk2

ΛðgÞ ≥ P0

P1

¼ τ: (37)

Performing the expectation in the numerator results in the clas-
sifier inequality

EQ-TARGET;temp:intralink-;e038;326;451

βðg; τÞ
αðg; τÞΛðgÞ ≥ τ; (38)

with

EQ-TARGET;temp:intralink-;e039;326;400βðg; τÞ ¼ ðc01 − c11Þ½σ2pðgÞ þ kθ̄pðgÞk2�
þ c11γðg; τÞkθ̄pðgÞk2½2 − γðg; τÞ� (39)

and

EQ-TARGET;temp:intralink-;e040;326;343αðgÞ ¼ c10γ2ðg; τÞkθ̄pðgÞk2: (40)

Thus, the posterior mean and total variance are all that is needed
from the posterior PDF to formulate the ideal observer for this
example.

4 Application II: Unconditional Estimation
In this application, the observer must estimate a parameter vec-
tor for the signal present and the signal absent classifications.
Therefore, the estimation task is not conditional on the outcome
of the detection task. The dimension of the parameter vector θ
for the signal present class may be different than the parameter
vector ϕ for the signal absent class. For example, the two classes
may represent two different signals that are parameterized by
vectors of different dimensions. In medical imaging, the two
classes may represent two different medical conditions that
could give rise to the presented symptoms. We may then want
to estimate different parameter vectors for the two conditions in
order to proceed with treatment. The PDFs for the two classes
are given by

EQ-TARGET;temp:intralink-;e041;326;116prðgj0Þ ¼
Z
Θ
prðgjϕÞprðϕÞdKϕ (41)

and
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EQ-TARGET;temp:intralink-;e042;63;752prðgj1Þ ¼
Z
Θ
prðgjθÞprðθÞdLθ: (42)

The cost functions in the cost matrix will now depend on two
vector variables, the estimate produced for the given classifica-
tion, and the true parameter vector for the object being classi-
fied. The cost matrix is therefore written as

EQ-TARGET;temp:intralink-;sec4;63;678"
C00½ϕ̂;ϕ� C01½ϕ̂;ϕ�
C10½θ̂;ϕ� C11½θ̂; θ�

#
:

We will make the simplifying assumptions

EQ-TARGET;temp:intralink-;e043;63;621C00½ϕ̂;ϕ�10½θ̂; θ� (43)

and

EQ-TARGET;temp:intralink-;e044;63;580C11½θ̂; θ�01½ϕ̂; θ� (44)

In other words, the cost of a misclassification is greater than the
cost for the corresponding correct classification. The average
cost or risk C for the combined task is then given by

EQ-TARGET;temp:intralink-;e045;63;518

C ¼ P0

��Z
A
C00½ϕ̂ðgÞ;ϕ�prðgjϕÞdMg

�
ϕ

þ
�Z

P
C10½θ̂ðgÞ;ϕ�prðgjϕÞdMg

�
ϕ

�

þ P1

��Z
A
C01½ϕ̂ðgÞ; θ�prðgjθÞdMg

�
ϕ

þ
�Z

P
C10½θ̂ðgÞ; θ�prðgjϕÞdMg

�
ϕ

�
: (45)

The notation here is the same as in application I in terms of the
test statistic, threshold, and estimators. The calculations that
follow are very similar to those in application I, they just look
more complex due to the added complexity of the cost matrix.
The conclusions that we arrive at are straightforward generaliza-
tions of those in application I.

4.1 Ideal Observer for Application II

For the ideal observer, we make use of posterior PDFs for both
parameter vectors to write the risk as

EQ-TARGET;temp:intralink-;e046;63;266

C ¼
Z
A
fP0hC00½ϕ̂ðgÞ;ϕ�iϕjgprðgj0Þ

þ P1hC01½ϕ̂ðgÞ; θ�iθjgprðgj1ÞgdMg

þ
Z
P
fP0hC10½θ̂ðgÞ;ϕ�iϕjgprðgj0Þ

þ P1hC11½θ̂ðgÞ; θ�iθjgprðgj1ÞgdMg: (46)

We now define a constant B, which does not depend on the clas-
sifier, as

EQ-TARGET;temp:intralink-;e047;326;752Z
D
fP0hC00½ϕ̂ðgÞ;ϕ�iϕjgprðgj0Þ

þP1hC01½ϕ̂ðgÞ;θ�iθjgprðgj1ÞgdMg
¼P0hhC00½ϕ̂ðgÞ;ϕ�iϕjgigj0þP1hhC01½ϕ̂ðgÞ;θ�iθjgigj1 ¼B:

(47)

This allows us to write C ¼ C̃þ B and choose the classifier to
minimize

EQ-TARGET;temp:intralink-;e048;326;642

C̃ ¼ −
Z
P
fP0hC00½ϕ̂ðgÞ;ϕ�iϕjgprðgj0Þ

þ P1hC01½ϕ̂ðgÞ; θ�iθjgprðgj1ÞgdMg

þ
Z
P
fP0hC10½θ̂ðgÞ;ϕ�iϕjgprðgj0Þ

þ P1hC11½θðgÞ; θ�iθjgprðgj1ÞgdMg: (48)

The decision rule is therefore to classify g as signal present if
and only if

EQ-TARGET;temp:intralink-;e049;326;513

P0hC10½θ̂ðgÞ;ϕ�iϕjgprðgj0ÞþP1hC11½θ̂ðgÞ;θ�iθjgprðgj1Þ
≤P0hC00½ϕ̂ðgÞ;ϕ�iϕjgprðgj0ÞþP1hC01½ϕ̂ðgÞ;θ�iθjgprðgj1Þ;

(49)

and otherwise classify g as signal absent. Using our assumptions
about the cost functions, we can write the decision rule for the
signal present decision as

EQ-TARGET;temp:intralink-;e050;326;409

hC01½ϕ̂ðgÞ;θ�iθjg− hC11½θ̂ðgÞ;θ�iθjg
hC10½θ̂ðgÞ;ϕ�iϕjg− hC00½ϕ̂ðgÞ;ϕ�iϕjg

ΛðgÞ≥P0

P1

: (50)

With the obvious definitions for μðgÞ and λðgÞ, we will write this
inequality as

EQ-TARGET;temp:intralink-;e051;326;335

μðgÞ
λðgÞ ΛðgÞ ≥

P0

P1

: (51)

This decision rule is used by the ideal observer for the joint task
in this application. Note that the notation λðgÞ is often used for
the natural logarithm of the likelihood ratio, but we are not using
the log-likelihood in this work so no confusion should arise.

Isolating those parts of the risk that depend on the respective
estimators, we find that the ideal estimators for the joint task are
given by

EQ-TARGET;temp:intralink-;e052;326;213ϕ̂ðg; τÞ ¼ arg min
ϕ 0

fτhC00½ϕ 0;ϕ�iϕjgprðgj0Þ

þ hC01½ϕ 0; θ�iθjgprðgj1Þg (52)

and

EQ-TARGET;temp:intralink-;e053;326;144θ̂ðg; τÞ ¼ arg min
θ 0

fτhC10½θ 0;ϕ�iϕjgprðgj0Þ

þ hC11½θ 0; θ�iθjgprðgj1Þg: (53)

Once again the estimators depend on the threshold τ. This forces
us to write the classification rule as
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EQ-TARGET;temp:intralink-;e054;63;752

μðg; τÞ
λðg; τÞ ΛðgÞ ≥

P0

P1

¼ τ (54)

with

EQ-TARGET;temp:intralink-;e055;63;706μðg; τÞ ¼ hC01½ϕ̂ðg; τÞ; θ�iθjg − hC11½θ̂ðg; τÞ; θ�iθjg (55)

and

EQ-TARGET;temp:intralink-;e056;63;665λðg; τÞ ¼ hC10½θ̂ðg; τÞ;ϕ�iϕjg − hC00½ϕ̂ðg; τÞ;ϕ�iϕjg: (56)

As in application I, some performance on the pure classification
and estimation tasks is given up by the ideal observer for the
joint task.

4.2 Risk-Based EROC Curve for Application II

As in application I, the risk can be rewritten as follows:

EQ-TARGET;temp:intralink-;e057;63;561

C ¼ P0hhC00½ϕ̂ðgÞ;ϕ�iϕjg þ step½tðg 0Þ − τ�λðg; τÞigj0
þ P1hhC11½θ̂ðgÞ; θ�iθjg þ step½τ − tðgÞ�μðg; τÞigj1: (57)

This leads to a function related to the differential cost of the false
positive outcomes

EQ-TARGET;temp:intralink-;e058;63;485xðτÞ ¼ hhC00½ϕ̂ðgÞ;ϕ�iϕjg þ step½tðg 0Þ − τ�λðg; τÞigj0: (58)

We also have a function related to the differential cost of the
false negative outcomes

EQ-TARGET;temp:intralink-;e059;63;433yðτÞ ¼ hhC11½θ̂ðgÞ; θ�iθjg þ step½τ − tðgÞ�μðg; τÞigj1: (59)

The RB-EROC curve for this application is a plot of yðτÞ versus
xðτÞ as the threshold τ is varied from 0 to ∞. Just as in appli-
cation I, this curve will decrease from left to right. At the left
most point where τ → ∞, we have a maximum with

EQ-TARGET;temp:intralink-;e060;63;359xðτÞ → hC00½ϕ̂ðg;∞Þ;ϕ�iϕjg (60)

and

EQ-TARGET;temp:intralink-;e061;63;314yðτÞ → hC10½θ̂ðg;∞Þ;ϕ�iϕjg: (61)

At the right most point τ ¼ 0, with

EQ-TARGET;temp:intralink-;e062;63;273xð0Þ ¼ hC10½θ̂ðg; 0Þ;ϕ�iϕjg (62)

and

EQ-TARGET;temp:intralink-;e063;63;227yð0Þ ¼ hC11½θ̂ðg; 0Þ; θ�iθjg: (63)

This curve can be plotted for any observer in this application.
The ideal observer in the previous section again minimizes, over
all observers, yðτÞ for any given value of xðτÞ, and therefore has
the lowest RB-EROC curve. This Neymann–Pearson type result
can be proved the same way as for application I, since we still
have

EQ-TARGET;temp:intralink-;e064;63;131CðτÞ ¼ P0xðτÞ þ P1yðτÞ; (64)

for all τ.

4.3 Area Under the RB-EROC Curve for
Application II

There is no simple formula for the area under the ideal-observer
RB-EROC curve for application II. However, if we are using
suboptimal estimators that are independent of the prior class
probabilities then we may proceed as we did in application I.
We start with

EQ-TARGET;temp:intralink-;e065;326;668

dxðτÞ
dτ

¼ hδ½tðg 0Þ − τ�λðg 0Þig 0j0: (65)

Then, we define the area as

EQ-TARGET;temp:intralink-;e066;326;615A ¼ −
Z

∞

0

yðτÞdxðτÞ: (66)

This results in the double expectation

EQ-TARGET;temp:intralink-;e067;326;566A ¼ hhstep½tðg 0Þ − tðgÞ�λðg 0ÞμðgÞig 0 j0igj1: (67)

As with application I, this formula may be interpreted as the
outcome of a 2AFC test with the penalty λðg 0ÞμðgÞ when the
images are misclassified.

4.4 Slope of the RB-EROC Curve for Application II

As in application I, if the estimator is independent of the prior
class probabilities, then the derivation above provides the opti-
mal decision strategy for this estimator. The slope calculation
for the RB-EROC curve in this calculation follows steps similar
to those in application I. The derivatives of the horizontal and
vertical coordinates are

EQ-TARGET;temp:intralink-;e068;326;409

dxðτÞ
dτ

¼ −hδ½tðg 0Þ − τ�λðg 0Þig 0j0 (68)

and

EQ-TARGET;temp:intralink-;e069;326;356

dyðτÞ
dt0

¼ hδ½τ − tðgÞ�μðgÞigj1: (69)

The delta function confines the integration to the hypersurface
defined by τ ¼ tðgÞ. When we use the definition of tðgÞ, we have

EQ-TARGET;temp:intralink-;e070;326;295

dyðτÞ
dτ

¼ τhδ½τ − tðgÞ�λðgÞigj1: (70)

The end result is the same as in application I

EQ-TARGET;temp:intralink-;e071;326;242

dyðτÞ
dxðτÞ ¼ −τ: (71)

For these observers on the joint task, the RB-EROC curve then
provides all of the information we need to compute the corre-
sponding risk for all values of the prior probabilities.

5 Example for Application II
For an example, we will extend the quadratic cost functions in
the application I example to application II. Therefore, we have a
cost matrix
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EQ-TARGET;temp:intralink-;e072;63;752"
C00½ϕ̂;ϕ� C01½ϕ̂; θ�
C10½θ̂;ϕ� C11½θ̂; θ�

#

¼
"

c00kϕ̂ − ϕk2 c01ðkϕ̂k2 þ kθk2Þ
c10ðkθ̂k2 þ kϕk2Þ c11kθ̂ − θk2

#
: (72)

The estimators are then defined by

EQ-TARGET;temp:intralink-;e073;63;660ϕ̂ðg; τÞ ¼ arg min
ϕ 0

fc00τhkϕ 0 − ϕk2iϕjgprðgj0Þ

þ c01hðkϕ 0k2 þ kθk2Þiθjgprðgj1Þg (73)

and

EQ-TARGET;temp:intralink-;e074;63;590θ̂ðg; τÞ ¼ arg min
θ 0

fc10τhkθ 0k2 þ kϕk2iϕjgprðgj0Þ

þ c11hkθ 0 − θk2iθjgprðgj1Þg: (74)

As in application I, the resulting estimators are scalar multiples
of the corresponding posterior mean estimators, which are ideal
estimators if there was no classification involved. The ideal
application II estimators are

EQ-TARGET;temp:intralink-;e075;63;489θ̂ðg; τÞ ¼
�

c11ΛðgÞ
c10τ þ c11ΛðgÞ

�
θ̄pðgÞ ¼ γðg; τÞθ̄pðgÞ (75)

and

EQ-TARGET;temp:intralink-;e076;63;428ϕ̂ðg; τÞ ¼
�

c00τ
c01ΛðgÞ þ c00τ

�
ϕ̄pðgÞ ¼ νðg; τÞϕ̄pðgÞ: (76)

The classifier declares signal present when

EQ-TARGET;temp:intralink-;e077;63;366

hc01ðkϕ̂ðg;τÞk2þkθk2Þiθjg−hc11kθðg;τÞ−θk2iθjg
hc10ðkθ̂ðg;τÞk2þkϕk2Þiϕjg−hc00kϕ̂ðg;τÞ−ϕk2iϕjg

ΛðgÞ≥ τ:

(77)

We can write this inequality as

EQ-TARGET;temp:intralink-;e078;63;280

μðg; τÞ
λðg; τÞ ΛðgÞ ≥ τ; (78)

with

EQ-TARGET;temp:intralink-;e079;63;213μðg; τÞ ¼ ðc01 − c11Þ½σ2pðgÞ þ kθ̄pðgÞk2�
þ c11γðg; τÞkθ̄pðgÞk2½2 − γðg; τÞ�
þ c01ν2ðg; τÞkϕ̄pðgÞk2 (79)

and

EQ-TARGET;temp:intralink-;e080;63;133λðg; τÞ ¼ ðc10 − c00Þ½δ2pðgÞ þ kϕ̂pðgÞk2�
þ c00νðg; τÞkϕ̄pðgÞk2½2 − νðgÞ�
þ c10γ2ðg; τÞkθ̄pðgÞk2: (80)

As in application I, for this cost matrix, we only need the pos-
terior means and total variances from the posterior PDFs in order
to formulate the ideal observer.

6 Conclusion
We have considered a Bayesian risk approach to two types of
tasks that combine detection with estimation. In application I,
the estimation of a parameter vector only occurs for the signal
present classification. In application II, estimation of possibly
different parameter vectors occurs with both signal present
and signal absent classifications. The cost functions are the
most general possible in the sense that all cost functions depend
on the relevant estimated and/or true parameter vectors for each
classification outcome. In both applications, we found analytical
expressions for the estimators and classifiers for the ideal
Bayesian observers.

We went on to define the RB-EROC curve for each applica-
tion, which is minimized by the ideal observer compared to other
observers on the same task. One property of the ideal observer for
both applications is that the estimator depends on the prior prob-
abilities of the two classes. This complicates the task of devel-
oping analytic expressions for the area under RB-EROC curves
and the slope of these curves at each point. However, for subop-
timal observers using estimators that do not depend on the prior
probabilities we developed a 2AFC formula for the area under
their RB-EROC curves. For these estimators, we also showed
that the slope for the RB-EROC curve when the optimal classifier
is used is the negative of the threshold used by the classifier.

The examples for each application used quadratic cost func-
tions since they are the most analytically tractable. The resulting
ideal observers only need the posterior mean and the total vari-
ance of the posterior PDFs for the parameter vectors in order to
perform the classification and estimation tasks. In the Gaussian
case, the posterior mean and total variance have analytical for-
mulas, and therefore computation of the RB-EROC curve and its
area only require Monte Carlo sampling from the signal present
and signal absent distributions. For more general statistics,
MCMC methods would be needed.

The extension of these results to three or more classes should
be possible, but the complexity of the observers will rapidly
increase with the number of classes. This is the subject of
ongoing research.
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