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The abbreviations used are: 

+TIP Plus-end tracking microtubule-associated protein  

AcK40 -tubulin lysine 40 acetylation 

AGAP3 Arf-GAP with GTPase, ANK repeat, and PH domain-containing protein 3 

ANK ankyrin 

AP-MS affinity purification coupled with mass spectrometry 

BAS basal 

CAP-Gly cytoskeleton-associated protein Gly-rich 

CKAP5 cytoskeleton-associated protein 5 

CLASP1 CLIP-associating protein 1 

CLASP2 CLIP-associating protein 2 

CLIP1/CLIP-170 CAP-Gly domain-containing linker protein 1 

CLIP2/CLIP-115 CAP-Gly domain-containing linker protein 2 

co-IP(s) co-immunoprecipitation(s) 

CTCF corrected total cell fluorescence  

CTRL control 

EB1 end binding protein 1 

EB3 end binding protein 3 

EBH EB homology 

EEY/F EEY/F motif 

FA formic acid 

GAP GTPase-activating protein 

GAR Gas2-related 

GAS2 growth-arrest-specific 2  

GAS2L1/G2L1 GAS2 like protein 1 

GFP green fluorescent protein 
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GLD GTP-binding protein-like domain 

GLUT4 solute carrier family 2, facilitated glucose transporter member 4 

GSK3 glycogen synthase kinase 3 

HA hemagglutinin 

ID identification 

INS insulin 

IP(s) immunoprecipitation(s) 

KA1 kinase associated domain 1 

MAP microtubule associated protein 

MARK2 microtubule affinity-regulating kinase 2 

MK protein ladder marker 

MS/MS tandem mass spectrometry 

NIgG non-immune serum 

NOCO nocodazole 

PH pleckstrin homology 

P-Score probability score 

ROI region of interest 

SAINT significance analysis of interactome 

SB SB216763 

SC spectrum count  

SCP spectrum count profile 

SD standard deviation 

SEM standard error of the mean 

TOG tumor overexpressed gene 

TIRFM total internal reflection fluorescence microscopy 

UBA ubiquitin-associated 
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WCL whole cell lysate 

  



5 
 

SUMMARY 

 Insulin-stimulated glucose uptake is known to involve microtubules, although the function 

of microtubules and the microtubule-regulating proteins involved in insulin action are poorly 

understood. CLASP2, a plus-end tracking microtubule-associated protein (+TIP) that controls 

microtubule dynamics, was recently implicated as the first +TIP associated with insulin-regulated 

glucose uptake. Here, using protein-specific targeted quantitative phosphoproteomics within 3T3-

L1 adipocytes, we discovered that insulin regulates phosphorylation of the CLASP2 network 

members G2L1, MARK2, CLIP2, AGAP3 and CKAP5 as well as EB1, revealing the existence of 

a previously unknown microtubule-associated protein system that responds to insulin. To further 

investigate, G2L1 interactome studies within 3T3-L1 adipocytes revealed that G2L1 co-

immunoprecipitates CLASP2 and CLIP2 as well as the master integrators of +TIP assembly, the 

end binding (EB) proteins. Live-cell total internal reflection fluorescence microscopy in adipocytes 

revealed G2L1 and CLASP2 colocalize on microtubule plus-ends. We found that while insulin 

increases the number of CLASP2-containing plus-ends, insulin treatment simultaneously 

decreases CLASP2-containing plus-end velocity. In addition, we discovered that insulin 

stimulates re-distribution of CLASP2 and G2L1 from exclusive plus-end tracking to “trailing” 

behind the growing tip of the microtubule. Insulin treatment increases -tubulin Lysine 40 

acetylation, a mechanism that was observed to be regulated by a counterbalance between GSK3 

and mTOR, and also led to microtubule stabilization. Our studies introduce insulin-stimulated 

microtubule stabilization and plus-end trailing of +TIPs as new modes of insulin action and reveal 

the likelihood that a network of microtubule-associated proteins synergize to coordinate insulin-

regulated microtubule dynamics. 
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INTRODUCTION 

 Since the initial discovery of insulin-stimulated cytoskeletal remodelling over 25 years ago 

(1), the role of both actin and microtubule reorganization in insulin action and the proteins that 

regulate these processes have been the subject of investigation. Upon insulin stimulation, cell 

models of insulin target tissues including 3T3- L1 adipocytes as well as L6 and C2C12 myotubes 

(2-6) exhibit profound actin reorganization at the plasma membrane as a result of actin branching. 

Rac1 is a master regulator of actin dynamics and inhibiting either Rac1 or Rac1-effector proteins 

severely diminishes trafficking of the insulin responsive glucose transporter (Solute carrier family 

2, facilitated glucose transporter member 4 or “GLUT4”) and subsequent insulin-stimulated 

glucose uptake (7). Therefore, insulin not only relies on signal transduction through protein-protein 

communication, but also requires a specific cytoskeletal environment to properly enhance acute 

glucose uptake. Studies characterizing the proteins involved in insulin-controlled actin regulation 

have been more prevalent than those focused on proteins involved in regulating microtubule 

dynamics upon insulin stimulation. As a result, much more progress has been made on 

elucidating the actin system under insulin control versus that of microtubules. 

Microtubules possess the unique characteristic of “dynamic instability”, their growth and 

shrinkage serve as modes of functional regulation across a multitude of molecular platforms. 

Microtubule assembly and disassembly rates as well as duration of stability are controlled in part 

by “microtubule-associated proteins” (MAPs), a large family of proteins with several notable sub-

groups (reviewed in (8)). While many of the MAPs localize at the base of the microtubule (the 

minus-end) or along the length of the microtubules (the lattice), the plus-end tracking proteins 

(+TIPs) are found at the growing tip of the microtubule (the plus-end). The +TIPs are a functionally 

diverse group of almost 20 proteins, and as such, their regulation and cooperativity have been 

explored at length (reviewed in (9)), although not in the context of insulin action. One exception 

is CLIP-associating protein 2 (CLASP2) (10), a +TIP that was found to be enriched in an unbiased 

proteomics screen for proteins that undergo insulin-stimulated phosphorylation (11). Just like the 
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rest of the +TIPs, CLASP2 tracks the plus-end of microtubules, associates with an assortment of 

other +TIPs, and is involved in a variety of microtubule-regulated cellular events (12). Notably, 

CLASP2 has been linked to the “search and capture” behaviour of microtubules (13), wherein 

microtubule tips are observed to seek out specific landing zones through CLASP2 binding of 

proteins localized at particular subcellular regions (14-18). For example, CLASP2 binding to 

microtubule capture sites on the cell cortex creates a delivery route for acetylcholine receptors to 

neuromuscular junctions (19) as well as exocytotic vesicles traveling to focal adhesions (20). 

These observations revealed that under certain cellular contexts, microtubules adopt specific 

patterns of reorganization which possess both temporal and spatial characteristics that 

synchronize with +TIP function.  

Microtubules and actin routinely cooperate through proteins including the formins (21), the 

spectraplakins (22), and members of the growth-arrest-specific 2 (GAS2) family (23). One of the 

GAS2 family members, G2L1, was recently discovered in the CLASP2 interactome in 3T3-L1 

adipocytes (24). G2L1 interacts with both actin and microtubules to coordinate actin and 

microtubule alignment (23, 25, 26), an event that is of potential interest within insulin action since 

the insulin-responsive GLUT4 storage vesicle has been proposed to switch tracks at an interface 

between microtubules and actin at the plasma membrane (27).  

Early immunofluorescence studies coupled with biochemical techniques first discovered 

that insulin increases tubulin polymerization in 3T3-L1 adipocytes (28). A decade later, using live-

cell total internal reflection fluorescence (TIRF) microscopy, it was demonstrated that insulin 

increases microtubule density and curvature in the 200nm immediately proximal to the plasma 

membrane in 3T3-L1 adipocytes (29). The purpose of these dynamic microtubule events has 

never been established and the mechanisms underlying microtubule regulation in insulin action 

are still unknown. This report presents new findings that significantly expand the number of +TIPs 

affected by insulin, evidence for the existence of an undiscovered microtubule-associated protein 

system under insulin control. We found that insulin stimulation promotes a re-distribution of 
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CLASP2 and G2L1 from exclusive microtubule plus-end localization to “trailing” behind the 

growing tip of the microtubule along the microtubule lattice. We discovered that insulin acutely 

stimulates acetylation of -tubulin at Lysine 40 and promotes microtubule stabilization, a 

phenomenon never before linked to acute insulin action. Our studies introduce a new insulin-

responsive protein system as well as novel insulin-regulated microtubule and microtubule-

associated protein dynamics, findings that significantly expand our understanding of the 

relationship between insulin and the microtubule network. 

   

EXPERIMENTAL PROCEDURES  

Cell Culture, Immunoprecipitation, and Western Blot Analysis. Mouse 3T3-L1 fibroblasts 

were differentiated into adipocytes exactly as previously described (24). For cell treatment 

experiments, cells were starved for four hours in serum free media containing 0.3% BSA and then 

either left untreated or stimulated with 100 nM insulin for 15 min (unless otherwise indicated) at 

37 °C. Cells were lysed with 500 L of lysis buffer containing 40 mM HEPES (pH 7.6), 120 mM 

NaCl, 0.3% CHAPS, 10 mM NaF, 10 mM β-glycerol phosphate, 1 mM EDTA (pH 8.0), 2 mM 

sodium orthovanadate, 17 µg/ml aprotinin, 10 µg/ml leupeptin, and 1 mM PMSF. Cell lysates were 

rotated at 4 °C for 20 min followed by centrifugation (14,000 RPM, 4 °C, 20 min), and the clarified 

supernatants were used for immunoprecipitation (IP). IPs and preparation for SDS-PAGE were 

performed exactly as previously described (24). The eluates were separated by 10% SDS-PAGE 

and the gels were either stained with Bio-Safe Coomassie G-250 Stain (Bio-Rad, Hercules, CA) 

or transferred to a nitrocellulose membrane for subsequent western blotting. Western blots were 

performed exactly as previously described (24). Primary antibodies used: anti-G2L1 (cat. # 

H00010634-B01P, Novus Biologicals, Littleton, CO), anti-mCherry (cat. # NBP2-43720, Novus 

Biologicals), anti-myc (cat. # 2276, Cell Signaling Technologies, Danvers, MA), anti-EB1 (cat # 

E3406, Sigma-Aldrich, St. Louis, MO), anti--tubulin (cat. # T9026, Sigma-Aldrich), anti-

acetylated Lysine 40 of -tubulin (“AcK40”) (cat. # 5335, Cell Signaling Technologies), anti-
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MARK2 (cat. # NBP1-71890, Novus Biologicals), anti-CLIP2 (cat. # SAB1412760, Sigma Aldrich), 

anti-AGAP3 (cat. # SAB2700915, Sigma Aldrich), and anti-CKAP5 (cat. # 620401, Biolegend). 

In-gel Digestion. Proteins were separated by SDS-PAGE and stained with Bio-Safe 

Coomassie G-250 Stain. For the interactome experiments, each lane of the SDS-PAGE gel was 

cut into seven slices. For the specific protein targeted phosphoproteomics experiments, the single 

band corresponding to the location of the individual protein on the SDS-PAGE gel was excised. 

The gel slices were subjected to trypsin digestion and the resulting peptides were purified by C18-

based desalting exactly as previously described (24). The dried peptides were resuspended in 6 

l of 0.1% FA (v/v) followed by sonication for 2 min. 2.5 l of the final sample was then analyzed 

by mass spectrometry. 

Mass Spectrometry and Spectrum Count Data Processing. HPLC-ESI-MS/MS was 

performed in positive ion mode on a Thermo Scientific Orbitrap Fusion Lumos tribrid mass 

spectrometer fitted with an EASY-Spray Source (Thermo Scientific, San Jose, CA). NanoLC was 

performed without a trap column using a Thermo Scientific UltiMate 3000 RSLCnano System with 

an EASY Spray C18 LC column (Thermo Scientific, 50cm x 75 μm inner diameter, packed with 

PepMap RSLC C18 material, 2 µm, cat. # ES803); loading phase for 15 min at 0.300L/min; 

mobile phase, linear gradient of 1–34% Buffer B in 119 min at 0.220 L/min, followed by a step 

to 95% Buffer B over 4 min at 0.220 L/min, hold 5 min at 0.250 L/min, and then a step to 1% 

Buffer B over 5 min at 0.250 L/min and a final hold for 10 min (total run 159 min); Buffer A = 

0.1% FA/H2O; Buffer B = 0.1% FA in 80% ACN. All solvents were liquid chromatography mass 

spectrometry grade. Spectra were acquired using XCalibur, version 2.3 (Thermo Scientific). A 

“top speed” data-dependent MS/MS analysis was performed. Dynamic exclusion was enabled 

with a repeat count of 1, a repeat duration of 30 sec, and an exclusion duration of 60 sec. Tandem 

mass spectra were extracted from Xcalibur ‘RAW’ files and charge states were assigned using 

the ProteoWizard 3.0.1 msConvert script using the default parameters (30). The fragment mass 
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spectra were then searched against the mouse SwissProt_2016_10 database (23,550 entries) 

using Mascot (Matrix Science, London, UK; version 2.4) using the default probability cut-off score. 

The search variables that were used were: 10 ppm mass tolerance for precursor ion masses and 

0.5 Da for product ion masses; digestion with trypsin; a maximum of two missed tryptic cleavages; 

variable modifications of oxidation of methionine and phosphorylation of serine, threonine, and 

tyrosine. Cross-correlation of Mascot search results with X! Tandem was accomplished with 

Scaffold (version Scaffold_4.8.7; Proteome Software, Portland, OR, USA). Probability 

assessment of peptide assignments and protein identifications were made through the use of 

Scaffold. Only peptides with ≥ 95% probability were considered. Reported peptide FDR rates from 

Scaffold ranged from 0.1-0.2%. The mass spectrometry proteomics data have been deposited to 

the ProteomeXchange Consortium via the PRIDE partner repository (31) with the dataset 

identifier PXD011431 and 10.6019/PXD011431. For the Spectrum Count Profiles, the Uniprot IDs 

are listed. 

Label-free Quantitative Proteomics. Progenesis QI for proteomics software (version 2.4, 

Nonlinear Dynamics Ltd., Newcastle upon Tyne, UK) was used to perform ion-intensity based 

label-free quantification. In brief, in an automated format, .raw files were imported and converted 

into two-dimensional maps (y-axis = time, x-axis =m/z) followed by selection of a reference run 

for alignment purposes. An aggregate data set containing all peak information from all samples 

was created from the aligned runs, which was then further narrowed down by selecting only +2, 

+3, and +4 charged ions for further analysis. The samples were then grouped in basal versus 

insulin. A peak list of fragment ion spectra from only the top eight most intense precursors of a 

feature was exported in Mascot generic file (.mgf) format and searched against the mouse 

SwissProt_2016_10 (23,550 entries) database using Mascot (Matrix Science, London, UK; 

version 2.4). The search variables that were used were: 10 ppm mass tolerance for precursor ion 

masses and 0.5 Da for product ion masses; digestion with trypsin; a maximum of two missed 

tryptic cleavages; variable modifications of oxidation of methionine and phosphorylation of serine, 
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threonine, and tyrosine; 13C=1. The resulting Mascot .xml file was then imported into Progenesis, 

allowing for peptide/protein assignment, while peptides with a Mascot Ion Score of <25 were not 

considered for further analysis. Precursor ion-abundance values for specific phosphopeptide ions 

were normalized to a selected series of standard peptide ions for the same target protein. The 

selected series of standard peptide ions had to conform to a set of rules previously established 

(32-34), i.e. (1) detected by HPLC-ESI-MS with high intensity among the peptides for the target 

protein; (2) no missed cleavage observed; (3) no methionine in the sequence to avoid variability 

due to methionine oxidization and no N-terminal Gln residues; (4) cannot be a non-

phosphorylated version of a peptide that was detected as being phosphorylated. Each 

phosphopeptide ion’s normalized abundance value was normalized by the mean value of the 

respective basal sample and then expressed as a fold change over basal ±SEM. When multiple 

peptide ions were present for a particular phosphopeptide ion, a representative peptide ion was 

chosen to reflect the effect of insulin. For the proof of principle dose curve test, no normalization 

was performed. 

Generation of Viruses and transduction of 3T3-L1 Adipocytes. Negative control null GFP 

adenovirus as well as N-terminal GFP plus C-terminal HA-tagged mouse CLASP2 adenovirus 

were described before (24). Negative control null mCherry adenovirus as well as N-terminal 

mCherry plus C-terminal myc-tagged mouse G2L1 adenovirus using G2L1 cDNA, cat. # 

MC204613 from Origene (Rockville, MD) were created by VECTOR BIOLABS (Malvern, PA). 

Viral infections were performed on 150 mm plates of 3T3-L1 adipocytes as previously described 

(24). Lentiviral transfer plasmid pCIG3 (Addgene #78264, a gift from Felicia Goodrum) was 

modified to express a puromycin resistance gene in place of GFP. mRuby2-Tubulin-6 (human 

Tubulin alpha 1b; Addgene #55914, a gift from Michael Davidson) was subcloned into this 

backbone by addition of the restriction sites KpnI and BamHI by PCR, to generate pLenti-

mRuby2-Tubulin. To generate pLenti-iRFP670-Tubulin, tubulin was first subcloned out of the 

mRuby2-Tubulin-6 vector and into piRFP670-N1 (Addgene #45457, a gift from Vladislav 



12 
 

Verkhusha). iRFP670-Tubulin was then subcloned out of the piRFP670-Tubulin vector and into 

the pLenti backbone to generate pLenti-iRFP670-Tubulin. Second generation lentiviral particles 

were generated by PEI transfection of 293T cells as previously described (35) with transfer 

plasmid, pMD2.G, and psPAX2 (Addgene #12259, #12260, gifts from Didier Trono). At 48 and 72 

hours post-transfection, 293T media containing lentiviral particles was collected and combined 

followed by centrifugation at 500 x g for 15 minutes. The supernatant was filtered and either 

immediately used or concentrated (Lenti Concentrator, cat. # TR30025, Origene), depending on 

the virus. The virus was added directly to adipocyte cultures with polybrene. The following day, 

cells were split onto Poly-D-Lysine (cat. # A-003-E, Sigma Aldrich) treated glass bottom dishes 

(cat. # P35GCol-1.5-14-C, MatTek Corporation), and the cells were imaged 24 hours later. 

Immunofluorescence and Live-Cell Imaging. For live-cell imaging experiments, cells were 

cultured on No. 1.5 coverslip bottom dishes (Mattek, Ashland, MA). Adipocytes were starved for 

one hour in serum free media containing 0.3% BSA and then either left untreated or stimulated 

with 100 nM insulin for the indicated duration at 37 °C. For immunofluorescence studies, 3T3-L1 

adipocytes were split onto coverslips (cat. # 1254580, Fisher Scientific). The following day, the 

cells were starved for 4 hours in serum free media containing 0.3% BSA followed by the indicated 

cell treatments. Cells were fixed with 100%, -20 °C methanol for 20 minutes followed by 

permeabilization with 1% Tween-20 and 2% PFA. The background signal was quenched with 0.1 

M glycine followed by incubation in 1% BSA. Coverslips were incubated with anti-α-Tubulin and 

anti-AcK40 Tubulin, followed by incubation with 568 anti-mouse (cat. # A10037, Life 

Technologies) and 488 anti-rabbit (cat. # A11034, Life Technologies) secondary antibodies, and 

then mounted onto slides with ProLong Diamond (cat. # p36965, Fisher Scientific). 

Microscopy and Image Analysis. Total Internal Reflection Fluorescence Microcopy was 

performed on a Nikon Eclipse Ti (Nikon Instruments Inc., Melville, NY) inverted microscope 

equipped with multiple laser lines with AOTF control, Nikon Perfect Focus System, and an 

environmental chamber supplying 5% CO2 and 37°C temperature control. Samples were imaged 
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with a 100X Apo TIRF 1.49 NA oil-immersion objective. TIRF excitation angle was determined by 

adjusting for maximum extinction. Image acquisition was performed using a Hamamatsu ORCA-

Flash 4.0 V2 cMOS camera (Hamamatsu Photonics). Live images were acquired on a 2 second 

interval for the indicated total duration. Images were deconvolved in NIS Elements using five 

iterations of Richardson-Lucy deconvolution algorithm. Overall microtubule structure and 

acetylation were imaged using a Zeiss Axio Observer 7- ApoTome.2 inverted microscope with 

63X oil-immersion objective and Axiocam 503 mono camera. Microscopy figures and videos were 

prepared using ImageJ/FIJI (36) and Adobe Photoshop. For the quantification of the time courses 

on the effect of insulin on CLASP2 and G2L1 trailing, the live cell images were analyzed using 

Imaris 9.2.1 with FIJI extension. Specifically, +TIP microtubule decoration lengths were measured 

at different time points at fixed intervals with respect to the length of the time course using a frame 

within the first minute. The manual filament tools of Imaris were used for measurement of +TIP 

trail lengths, which were identified by scrubbing the time slider. Measurement was done visually, 

starting at the moving end of the trail or trail break with the AutoPath feature of Imaris. Once all 

visible trails were measured on frame, a new filament object was created and time was scrubbed 

to the next frame along the fixed interval specified earlier. After image analysis was completed, 

all filament objects were compared to the serum-starved length of the first frame using Imaris 

Vantage. +TIP length data was graphed using RStudio. For quantification of +TIP velocity, 

CLASP2 position was tracked during a 30-second imaging interval using the Manual Tracking 

FIJI plug-in. The density of +TIPs was quantified by manually counting motile CLASP2 signal on 

microtubules, and normalizing to cell area. For quantification of tubulin stabilization after 

nocodazole treatment with or without insulin treatment, the length of the microtubule network was 

measured using Simple Neurite Tracer FIJI plug-in (37), and normalized to cell area. 

Quantification for microtubule acetylation was determined using ImageJ corrected total cell 

fluorescence (CTCF) which calculates the normalized fluorescence based on the formula 

(Integrated density – (Area of selected cell x Mean background fluorescence) (38). 
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Experimental Design and Statistical Rationale. Previous interactome experiments using 

the mean and standard deviations for the spectrum counts of proteins identified by SAINT analysis 

as significantly enriched over the negative control showed a sample size of four biological 

replicates per group provided more than sufficient power to detect differences between groups 

(24). Based on the high degree of reproducibility, we used a sample size of two biological 

replicates for the interactome experiments and followed those experiments with confirmatory 

reciprocal interactomes as well as IP and western blots to further validate potential protein 

partners. The varying statistical analyzes for the remainder of the other types of experiments are 

listed in the Figure Legends and were justifiable based upon the data and basic experiment 

performed. For spectral counting measurements, modified peptides, semi-tryptic peptides, and 

shared peptides were included. Statistical analysis of +TIP density, +TIP velocity, and tubulin 

stabilization experiments was performed by confirming the distribution of the data by Shapiro-Wilk 

normality test, and performing a paired or unpaired t-test as indicated. Statistical analysis of CTCF 

and +TIP microtubule decoration lengths was performed by a paired or unpaired t-test as 

indicated  

 

RESULTS 

Insulin Regulates the Phosphorylation of G2L1, MARK2, CLIP2, EB1, AGAP3, and 

CKAP5 -  We recently reported characterization of a CLASP2 protein network in 3T3-L1 

adipocytes (24), and since we previously detected CLASP2 in an unbiased proteomics screen for 

proteins that undergo insulin-stimulated phosphorylation (11), we hypothesized that the members 

of the CLASP2 network in 3T3-L1 adipocytes (24) also undergo insulin-regulated phosphorylation. 

We adapted our previously reported technique (32-34, 39) of label-free quantification of 

phosphorylation, where extracted ion abundances from parent ion phosphopeptides are 

normalized to parent ion peptides of the same protein, except we now take advantage of 

automated processing of the data using Progenesis (Figure 1A). We validated the quantitative 
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approach via Progenesis using immunoprecipitated CLASP2 digests (Supplemental Figure 1). 

Upon stimulating 3T3-L1 adipocytes with insulin, we discovered that the CLASP2 protein network 

members G2L1, CLIP2, AGAP3, MARK2 and CKAP5 all undergo insulin-regulated 

phosphorylation, as well as EB1, a fundamental +TIP with ties to CLASP2, G2L1, CLIP2 and 

CKAP5 (40) (Figure 1B-C, Supplemental Figure 2, and Supplemental Tables 1-6). These findings 

highlight a completely new series of proteins that are responsive to insulin and reveal the 

existence of a systematic microtubule-regulating protein response to insulin. 

The G2L1 Interactomes -  We previously characterized the CLASP2 protein network in 

3T3-L1 adipocytes and discovered G2L1 was enriched in three alternative, cross-reference 

CLASP2 interactomes  (24). To follow-up on a possible relationship between CLASP2 and G2L1 

in 3T3-L1 adipocytes, we performed multiple G2L1 affinity purification coupled with mass 

spectrometry (AP-MS) experiments using our previously described label-free quantitative 

proteomics approach (24) (Figure 2A). We performed basal versus insulin treatment interactome 

analysis of endogenous G2L1 IPs as well as overexpressed G2L1 immunoprecipitated with two 

alternative antibodies, one to a myc-epitope tag and the other to a mCherry fluorescent protein 

tag (western blots of all G2L1 protein IPs are shown in Figure 2B). The resulting spectrum count 

data for the G2L1 IPs was then scored for enrichment over the various appropriate negative 

control IPs using the established bioinformatic tool Significance Analysis of Interactome (SAINT) 

as previously described (24, 41-43). On the SAINT Probability Score (“P-Score”) scale from 0 to 

1, ≥0.85 was used to signify a protein as “SAINT qualified”. Protein SAINT scores, spectrum 

counts, distinct peptides, and percent protein coverage for the interactomes are included in the 

Supplemental Tables 7-15. We used our Spectrum Count Profile (“SCP”) to hierarchically 

summarize the raw spectral count data of all the SAINT-qualified proteins (Figure 2C) followed by 

Cytoscape-based (44) integration to simultaneously visualize all three G2L1 SAINT-qualified 

interactomes (Figure 2D). All three G2L1 interactomes (Uniprot ID for G2L1 is GA2L1) had SAINT-
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qualified enrichment of CLASP2 and CLIP2, discoveries which serve to reciprocally confirm our 

previous report that both CLASP2 and CLIP2 can co-IP G2L1 (24). G2L1 was identified during a 

proteome-wide screen for EB-binding proteins (26). In our overexpressed G2L1 interactomes, 

EB1 (Uniprot ID: MARE1) and to a lesser extent EB3 (Uniprot ID: MARE3) were both strongly 

enriched, with spectrum count numbers similar to those detected for CLASP2. CLASP2 at a 

predicted mass of ~141kDa has the potential for a larger number of spectrum counts compared 

to EB1 at ~30kDa, so the fact that EB1 and CLASP2 had comparable spectrum counts suggests 

a larger amount of EB1 associates with G2L1 versus CLASP2 (as well as CLIP2). Antibodies 

targeted to endogenous protein can disrupt protein-protein interactions and possess non-specific 

cross-reactivity (45, 46), which may explain why EB1 was undetected in the endogenous G2L1 

interactome. In order to further validate the association between EB1 and G2L1, we performed 

an endogenous EB1 interactome and confirmed the reciprocal co-IP of G2L1 with EB1 

(Supplemental Figure 3). The overexpressed G2L1 interactomes possessed levels of CLASP1 

similar to those detected for CLASP2, EB1, and CLIP2 and contained a lower amount of EB3 as 

compared to EB1. There were other similarities between the two overexpressed G2L1 

interactomes, including the presence of five members (APC1, ANC2/APC2, APC4, APC5, and 

CDC23) of the anaphase promoting complex/cyclosome (APC), an E3 ubiquitin ligase that 

facilitates ubiquitination and degradation of target proteins (47). There were also differences in 

the two overexpressed G2L1 interactomes that may have resulted from steric hindrance caused 

by antibody binding. 

To follow up on the G2L1 interactome findings, we performed traditional co-IP and western 

blot experiments and focused on confirmatory tests for the association of G2L1 together with 

CLASP2, CLIP2, and EB1. We reproduced the interactome data and reciprocally confirmed the 

interactions between G2L1 and CLASP2, CLIP2, and EB1 (Supplemental Figure 4). We also 

found no significant effect of insulin on the reciprocal interactions, findings that are similar to those 
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observed in the interactome studies. Collectively, we have established a new relationship 

between G2L1 and CLASP2, CLIP2, and EB1 in 3T3-L1 adipocytes.   

Colocalization of CLASP2 and G2L1 -   CLASP2 and G2L1 are reciprocally enriched in 

the interactome studies we have performed, evidence that supports potential biological 

cooperation between these two +TIPs. We therefore tested for colocalization of CLASP2 and 

G2L1 in basal state 3T3-L1 adipocytes proximal to the cell membrane using live-cell total internal 

reflection fluorescence microscopy (TIRFM), a powerful tool for visualizing +TIP localization and 

microtubule dynamics. Overexpression of either GFP-CLASP2-HA (Figure 3A) or mCherry-G2L1-

myc (Figure 3B) in 3T3-L1 adipocytes revealed that each protein localizes to the growing plus-

end of microtubules within comet-like structures, which can be observed tracking across the cell 

and leading a newly formed microtubule, per classic +TIP behavior. When co-expressed, CLASP2 

and G2L1 are coincident on dynamic comet-like structures (Video 1). Examination of fixed 

samples of adipocytes co-expressing GFP-CLASP2 and mCherry-G2L1 revealed that 

comparatively, G2L1 occupies a smaller and more proximal area of the +TIP than CLASP2, which 

led a longer comet-like structure on microtubules (Figure 3C). These additional findings validate 

the interactome data and solidify a potential cooperative relationship between CLASP2 and G2L1. 

The Effect of Insulin on CLASP2 and G2L1 +TIP Dynamics -  Upon successfully 

establishing colocalization of CLASP2 and G2L1 with TIRFM in 3T3-L1 adipocytes, as well as 

discovering that both CLASP2 (11) and G2L1 undergo insulin-regulated phosphorylation, we 

profiled the effect of insulin on CLASP2 and G2L1 cellular localization proximal to the inner 

surface of the plasma membrane in a live-cell setting. Microtubule polymerization and density 

have both been shown to increase after insulin treatment in 3T3-L1 adipocytes (28, 29). 

Comparative quantification revealed that insulin increases the number of CLASP2-containing 

+TIPs per unit area (Figure 4A-B), data that aligns with the previous findings that insulin increases 

microtubule density. Conversely, we discovered that insulin treatment reduces the average 
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velocity of CLASP2-containing +TIPs (Figure 4C-D), suggesting that insulin slows the 

polymerization rate of individual microtubules with CLASP2-containing +TIPs. Taken together our 

data aligns with pre-existing findings that insulin increases the population of microtubules. While 

this implicates insulin increases gross microtubule polymerization, we propose that while insulin 

may create more microtubules, microtubules that possess CLASP2-containing +TIPs polymerize 

slower in the presence of insulin. 

Prior to insulin treatment, CLASP2 moves in short, rapid bursts with a comet-like 

appearance per classic +TIP presentation (Video 2). After insulin stimulation, we discovered that 

CLASP2 shifts from being exclusively enriched at the plus-end microtubule tip to “trailing”, in 

which CLASP2 decorates the trailing length of the microtubule proximal to the growing plus-end 

(Video 2, Figure 4E-G, Supplemental Figure 5). Since we observed G2L1 co-localizes with 

CLASP2 in adipocytes, we hypothesized that G2L1 behavior might also respond to insulin 

stimulation. In the basal state G2L1 displays classic +TIP activity (Video 3) whereas insulin 

stimulates G2L1 trailing on microtubules (Video 3, Figure 5A-C, Supplemental Figure 5). Insulin 

is known to stimulate membrane ruffling in adipocytes (4). Since G2L1 is known to localize to 

actin in addition to microtubules, it is of particular interest that upon insulin stimulation, G2L1 

strongly enriches to lamellipodial protrusions (Video 3). Upon testing the effect of insulin on 

adipocytes co-expressing both GFP-CLASP2 and mCherry-G2L1, the insulin-stimulated trailing 

phenotype was definitively captured (Video 4, Figure 6A-C). Quantification of the +TIP trail length 

captured the trailing phenotype induced by insulin within each of the representative adipocytes 

(Figure 4G, Figure 5C and Figure 6C). In order to rule out insulin-stimulated +TIP trailing resulting 

from a phototoxic effect associated with continual exposure to laser light during live cell imaging, 

we have reproduced the findings in cells visualized for only thirty seconds at a time at five-minute 

intervals pre- and post-insulin stimulation (data not shown). The insulin-induced +TIP trailing 

response observed was not universal across all cells, perhaps due to the reported heterogeneous 
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nature of adipocyte differentiation (48). We present here, for the first time, that insulin affects 

CLASP2 and G2L1 +TIP dynamics (modelled in Figure 6D), direct evidence that supports the 

hypothesis that the +TIP network represents a new signaling system associated with insulin 

action. 

Insulin Stimulates -Tubulin Acetylation at Lysine 40 and Microtubule Stabilization -  

Results from the live cell experiments revealed that insulin stimulates CLASP2 and G2L1 to shift 

from predominant localization at the microtubule plus-end to trailing along varied lengths of the 

microtubule lattice proximal to the growing plus-end. Dynamic short-lived microtubules are 

characterized by transient periods of growth and shrinkage (49), although a subset of the 

microtubule population are stabilized and persist for much longer times as a means for long-range 

transport. These long-lived microtubules can possess -tubulin acetylation at lysine 40 (“AcK40”), 

a post-translational modification that protects microtubules from mechanical stress (50, 51). Since 

the microtubules with insulin-stimulated CLASP2 and G2L1 trails visually presented as “brace-

like” across the microtubule lattice, we first tested the hypothesis that insulin stimulates a marker 

for stabilized microtubules, AcK40. Western blot analysis of whole cell lysates from serum-starved 

3T3-L1 adipocytes either left untreated or subjected to an insulin time course confirmed that 

insulin stimulates -tubulin acetylation at lysine 40 (“AcK40”) (Figure 7A), results that were 

reproduced with AcK40 immunofluorescence imaging (Figure 7B-C). Since an insulin-stimulated 

increase in AcK40 is not direct evidence of microtubule stabilization, we tested whether insulin 

treatment results in increased resistance to the microtubule depolymerizing agent, nocodazole. 

Treatment of serum-starved adipocytes with nocodazole induced a loss of microtubules, while 

pre-treatment of cells with insulin reduced the severity of nocodazole-stimulated microtubule 

depolymerization (Figure 7D-E), therefore, we conclude insulin increases the stability of 

microtubules in 3T3-L1 adipocytes. 
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To test for specificity of the AcK40 western blot signal and also to search for the 

pathway(s) involved in regulating insulin-controlled AcK40, we discovered we could inhibit the 

insulin-stimulated increase of AcK40 by treating the adipocytes with the mTOR inhibitor 

rapamycin (32% average decrease, n=7, p ≤ 0.01), implicating mTOR in insulin-stimulated 

microtubule stabilization (Figure 7F). The kinase GSK3 has been linked to suppressing AcK40 in 

the context of cell polarization (10). Since GSK3 is active in the basal state and deactivated by 

insulin, we hypothesized that GSK3 regulates basal levels of microtubule stabilization through 

suppression of AcK40. Treatment of 3T3-L1 adipocytes with the GSK3 inhibitor SB216763 

reversed the decreased levels of AcK40 observed in the basal state, indicating that insulin 

suppresses GSK3 activity in part to encourage an increase in AcK40 (Figure 7G and H). These 

discoveries reveal a whole new property of insulin, namely increased microtubule stabilization as 

well as the stimulation of -tubulin acetylation at lysine 40, a generally accepted marker for 

microtubule stabilization, a mechanism that is regulated at least in part by a counterbalance 

between GSK3 and rapamycin-sensitive mTOR-controlled signaling elements (modelled in Figure 

7I).       

 

DISCUSSION 

We followed up on our recent CLASP2 interactome study by characterizing the G2L1 

interactome within 3T3-L1 adipocytes. The +TIPs have been an encouraging fit for interactome 

studies, as known positive control interaction partners have been routinely detected and 

reciprocal interactomes have been largely confirmatory. We reproduced results from other cell 

lines (23, 26) that G2L1 co-IPs EB1 and discovered that G2L1 also co-IPs both CLASP2 and 

CLIP2 in 3T3-L1 adipocytes, data which reciprocally confirms our previous CLASP2 and CLIP2 

interactome findings (24). We performed an EB1 interactome and confirmed the reciprocal 

presence of G2L1, although, we did not detect significant enrichment of CLASP2 in the EB1 
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interactome. Prior experiments on EB1 and CLASP2 have supported the concept that these two 

proteins may track along growing microtubule plus-ends individually from each other, as was 

observed in PtK1 epithelial cells (52). The lack of a detectable strong co-IP between EB1 and 

CLASP2 in adipocytes is consistent with our previous CLASP2 interactome work (24) although 

discordant from a study in COS-1 cells which proved an interaction can occur between EB1 and 

CLASP2 (17). There have been repeated published links between CLASP2 and the EB proteins, 

including a dependence of EB1 proper microtubule localization on CLASP2 within a multitude of 

cell types (53). All of these observed differences in the relationship between EB1 and CLASP2 

could be explained by cell-line specificity, a transient nature of association as previously proposed 

(17), a difference in the expression levels of other +TIPs necessary for assembling specific protein 

complexes (9, 40, 49, 54-56), a lack of detectable interactions resulting from technical limitations, 

or issues with the immunoprecipitating antibodies (45, 46). Future studies will investigate whether 

the lack of a detectable association between CLASP2 and EB1 indicates that G2L1 and EB1 may 

operate independently of CLASP2 in adipocytes and whether the G2L1/EB1 relationship is 

affected by insulin in a spatio-temporal manner. The link between G2L1 and CLASP2 discovered 

during the interactome studies was solidified by the live-cell TIRFM-based discovery that G2L1 

and CLASP2 co-localize at growing microtubule plus-ends.  In addition to localizing to microtubule 

plus-ends, G2L1 also possesses binding capacity for filamentous actin (F-actin) (23, 57, 58). We 

have unpublished findings indicating that in addition to the insulin-regulated +TIP characteristics 

observed for G2L1 reported here, G2L1 also colocalizes with insulin-stimulated actin 

reorganization and membrane ruffling. In addition, we have now established that both CLASP2 

(11) and G2L1 undergo insulin-stimulated phosphorylation. Since insulin-stimulated actin 

reorganization is paramount for proper insulin action (7), future studies will elucidate whether a 

functional association exists between insulin-stimulated actin dynamics and G2L1.   
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The effect of insulin on both CLASP2 and G2L1 on microtubules proximal to the interior 

surface of the cell (“the TIRFM zone”) represent a new mode of +TIP regulation in the context of 

insulin action. Live-cell TIRFM captured CLASP2 and G2L1 shifting from predominant plus-end 

localization to insulin-stimulated immobilization along the length of the microtubule lattice, 

proximal to the growing plus-end (modelled in Figure 6D). CLASP2 has repeatedly been linked to 

the stabilization of microtubules through participating in microtubule rescue events and preventing 

microtubule depolymerization, across multiple organisms (17, 56, 59-72). These effects are 

imparted through the various domains in CLASP2, for example, the tumor overexpressed gene 2 

(TOG2) domain was recently shown to maintain the integrity of the stabilizing cap localized at the 

growing microtubule tip (70). While this is the first time CLASP2 and G2L1 have been observed 

to shift in real-time after insulin stimulation from predominant plus-end localization to trailing along 

the growing length of the microtubule, it is not the first time an alteration in the spatial relationship 

between CLASP2 and microtubules has been captured. In live migrating Ptk1 epithelial cells, 

within the cell body, CLASP2 displayed typical +TIP action, whereas lamella and lamellipodium-

based CLASP2 lacked +TIP behaviour and instead exhibited trailing via binding along the length 

of the growing microtubule lattice (52), very reminiscent of the effect of insulin we observed. As 

Wittmann and Waterman-Storer stated (52), CLASP2 shifts from true +TIP behaviour to full lattice 

decoration, a style of microtubule association more reminiscent of classic MAP family members 

(8). Hypothetically, these newly created microtubules populated with lattice dispersion of CLASP2 

and G2L1 trails may serve as a signal to assemble or initiate an as-of-yet undetermined molecular 

event, in this case, a signalling signature associated with insulin action. There is noticeable 

heterogeneity in the literature with regards to findings on CLASP2 movement, which can be 

explained in part by the fact that different cell types possess alternative proteomes, and these 

differences probably influence the cooperative nature (49) and resulting behaviour of +TIPs. For 

example, the spatio-temporal changes in CLASP2 reported for wound healing experiments in 

Ptk1 epithelial cells (52) and HaCat keratinocytes (16) were not observed in motile 3T3 fibroblasts, 
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although, when the 3T3 fibroblasts underwent serum stimulation, CLASP2 accumulated and 

immobilized at the leading edge of the cell in yet another pattern of localization (10, 14, 72). These 

different phenotypes are distinct from the population of CLASP2 that has been observed at the 

Golgi (73, 74). So, overall, there is support for a diverse range of CLASP2 regulation and function 

that can be dictated by multiple aspects, including cell-specific needs and intracellular localization.    

This insulin-stimulated +TIP trailing along newly created microtubules possessed what we 

viewed as a “brace-like” appearance, and since prior studies support a microtubule-stabilizing 

role for CLASP2 (10, 69, 70), we hypothesized that insulin stimulates the stabilization of selective 

microtubules. Follow-up studies discovered that insulin stimulates -tubulin Lysine 40 acetylation 

(“AcK40”), a post-translational modification within the 15-nm-wide lumen of the microtubule that 

is associated with stabilization of both long-lived and curved microtubules (50, 51, 75). AcK40 

only occurs on polymerized microtubules (76-79) and is catalysed by the tubulin acetyltransferase 

aTAT1 (80, 81) whereas the exclusively cytoplasmic (82) histone deacetylase 6 (HDAC6) 

deacetylates tubulin (83). AcK40 takes place on polymerized microtubules to reduce structural 

strain by increasing microtubule flexibility (50, 51). These stabilized microtubules, by becoming 

protected against breaking and shrinkage, exist for prolonged periods of time (77, 78, 84). Insulin-

stimulated CLASP2/G2L1 trailing occurred acutely, within minutes of insulin treatment, whereas 

the effect of insulin on microtubule stabilization via AcK40 was gradual, indicating that trailing 

events precede stabilization, although whether a causal relationship exists between +TIP trailing 

and microtubule stabilization is unknown and whether trailing and AcK40 occur on the same 

microtubules will be the subject of future studies. Since the effect of insulin on AcK40 was not 

rapid (as seen with Akt substrates (85)) but was instead delayed and profiled more like the effects 

of insulin observed for mTOR substrates (85), we tested and confirmed that inhibition of mTOR 

with rapamycin blocks insulin-stimulated AcK40. The control of insulin-stimulated AcK40 by 

mTOR was found to be counterbalanced by GSK3-mediated suppression of AcK40 in the basal 
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state. Future studies will be aimed at testing the hypothesis that, through insulin-mediated 

suppression of GSK3 activity and activation of mTOR, insulin influences HDAC6 and aTAT1 

activity to control -tubulin AcK40 (modelled in Figure 7I).  

 Of all of the microtubule-regulating protein interactome studies we have completed thus 

far using the label-free spectrum counting technique we have devised, none of the validated 

network proteins analyzed have exhibited measureable protein abundance changes after insulin-

stimulation. In this report, our traditional co-IP and western blot confirmatory follow-up 

experiments led to findings that agreed with the quantitative proteomics data, the proteins did in 

fact co-IP although the abundance of the co-immunoprecipitated proteins was not reproducibly 

affected by insulin. As an alternative to changes in protein association, we hypothesized that since 

CLASP2 undergoes robust insulin-stimulated phosphorylation (11), perhaps the 3T3-L1 adipocyte 

CLASP2 protein network proteins serve as potential candidates for insulin-regulated 

phosphorylation. We developed a straight-forward approach to quantifying changes in protein 

phosphorylation that incorporated basic immunoprecipitation and in-gel protein digestion 

techniques together with automated label-free quantification of extracted ion abundance 

performed in the software program Progenesis QI for Proteomics. This protein-specific 

quantitative phosphoproteomics approach expanded the number of +TIPs known to undergo 

insulin-regulated phosphorylation from just CLASP2 to a list that now includes CLIP2, G2L1, EB1 

and CKAP5, while we also discovered that the CLASP2 network members MARK2 and AGAP3 

undergo insulin-regulated phosphorylation as well (hypothetically modelled in Figure 1C). Of all 

the sites analyzed, the phosphorylation of CLIP2 (also known as CLIP-115) at Ser552 underwent 

the strongest increase upon insulin treatment. Phosphorylation of CLIP1 (also known as CLIP-

170) at Thr287 and Ser195/Ser1318 has been linked to centrosome duplication and kinetochore-

microtubule attachments (86, 87), respectively, although Ser1318 of CLIP1 is not found in the 

shorter CLIP2 isoform, while Ser552, the insulin-stimulated phosphorylation site of CLIP2, is not 
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conserved in CLIP1. Ser552 lies approximately 300 amino acids past the second microtubule-

binding Cytoskeleton-associated protein Gly-rich (“CAP-Gly”) domain (88) and the surrounding 

serine-rich basic regions within the N-terminus of CLIP2 and is positioned along the extensive 

coiled-coil region of CLIP2 known to mediate CLIP2 dimerization (89). CLIP1 and CLIP2 

association with microtubules has been shown to be regulated by phosphorylation in a negative 

manner (89-91). Phosphorylation also regulates CLIP1 intramolecular association and 

accompanying CLIP1 conformational changes (92). Each of these phospho-regulated events has 

been linked to phosphorylation sites near the CAP-GLY domains and the surrounding serine-rich 

basic regions within the N-terminus of the CLIPs, rendering the insulin-stimulated Ser552 CLIP2 

phosphorylation site with the potential to be functionally distinct. The CLASP2 interactome project 

revealed a novel association between the +TIP CLIP2 and the GTPase-activating proteins 

AGAP1 and AGAP3 (24).  There is a key difference between the CLASP2/G2L1 interaction and 

the proposed complex between CLIP2 and the AGAPs, in that the AGAPs are the lone protein 

members of the CLASP2 network in 3T3-L1 adipocytes that act as both a GTPase (93, 94) and a 

GTPase activating protein (95, 96). In addition, the AGAPs also contain a Pleckstrin Homology 

(“PH”) domain, whose known functions include mediating protein-protein interactions as well as 

membrane localization through the binding of phosphoinositides (97). Of the insulin-stimulated 

AGAP3 phosphorylation sites we have discovered, one is within the GTPase domain (pSer300) 

while the other is located within the PH domain (pSer478). CLIP2 was the most enriched protein 

in the AGAP3 interactome (24), supportive of the hypothesis that functional cooperativity exists 

between CLIP2 and AGAP3 in the context of insulin action. 

EB1, known as “the master integrator of +TIP networks” (49) as well as CKAP5 

(alternatively referred to as ch‐TOG) (56, 98), also undergo insulin-regulated phosphorylation. 

EB1, like CLASP2, G2L1, and CLIP2, tracks growing microtubule plus-ends and acts as an 

integrating scaffold protein that promotes a wide variety of +TIP localization to the growing 
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microtubule plus-end (99). Phosphorylation of EB proteins is known to regulate microtubule 

dynamics and EB function in a variety of organisms and biological systems (100-109). The insulin-

stimulated EB1 phosphorylation site we detected, Ser155, lies in the coiled-coil linker region of 

EB1 that bridges the N-terminal Calponin-homology (CH) domain to the C-terminal EB homology 

(EBH) domain and adjacent EEY/F motif.  Ser155 of EB1 already has a possible connection with 

major players in insulin action, as AKT and GSK3 regulate levels of Ser155 phosphorylation to 

control EB1 localization to microtubule plus-ends (110).  CKAP5 is a member of the XMAP215 

family of microtubule polymerases that catalyzes the addition of tubulin dimers to elongating 

microtubule plus-ends. CKAP5 localizes to the extreme tip of the growing microtubule plus end 

whereas EB1 is further down the microtubule (111), so in an in vitro model for example, EB1 is 

located tens of nanometers further down the microtubule from CKAP5 (112). CKAP5 consists of 

five successive TOG domains that span across the majority of this 225kDa protein while a 

microtubule lattice binding domain is located between the fourth and fifth TOG domains, all of 

which participate in the processive addition of tubulin dimers to the growing microtubule plus end 

(113, 114). Within the CKAP5 C-terminus lies both a cryptic TOG domain as well as a shorter four 

-helix-based domain (with no known identity) that mediates protein-protein interactions (115, 

116). It is within this terminal multi--helix-containing domain where insulin significantly affects 

the phosphorylation of CKAP5 at Ser1861 in a suppressive manner. We discovered a stretch of 

CKAP5 phosphorylation sites spanning amino acids 1800-1870 that also trend towards insulin-

mediated suppression of phosphorylation (Supplemental Figure 2F), although the four biological 

replicates analysed did not achieve statistical significance. With CKAP5 playing such a vital role 

in cytoskeletal management, it is of future interest to elucidate the significance of insulin-mediated 

changes in CKAP5 phosphorylation within the context of insulin-controlled microtubule dynamics.  

Another protein we discovered to undergo insulin-regulated phosphorylation was the only 

kinase of the group, MARK2 (also known as Par-1b). Classical MAPs bind and release along the 
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microtubule lattice as a mode of microtubule regulation, a process that is controlled in part by 

transient MAP phosphorylation by the MARK family kinases (reviewed in (8)). MARK2-mediated 

release of the various MAPs from the microtubule lattice affects the stabilization of microtubules, 

microtubule polymerization, microtubule bundling, the association between microtubules and 

actin, and microtubule mediated motor transport of intracellular cargo (8). Insulin stimulates an 

increase in the phosphorylation of MARK2 at Ser40, Thr42 and Ser43, a short stretch of residues 

that lies adjacent to the MARK2 kinase domain, while phosphorylation within the spacer region of 

MARK2 at Ser568 undergoes insulin-mediated suppression. MARK2 makes an intriguing 

hypothetical candidate kinase for insulin regulation since so many MAPs are under MARK2 

control and MAPs are a critical component for fine-tuning microtubule dynamics.     

The novel findings we present significantly expand the number of known +TIPs affected 

by insulin form a new hypothesis that a network of proteins linked to microtubule regulation 

synergize to coordinate insulin-regulated MT dynamics. Upon initial investigation of the effect of 

insulin on two of these network proteins, CLASP2 and G2L1, we discovered +TIP trailing, a new 

mode of insulin-regulated protein behaviour. Follow-up studies determined that insulin stimulates 

-tubulin Lysine 40 acetylation, a discovery that led to the finding that insulin increases 

microtubule stabilization. Taken together, we have expanded the protein systems and cytoskeletal 

elements involved in insulin action, information that is paramount for developing future studies 

aimed at understanding and identifying underlying mechanisms of insulin resistance, a hallmark 

of type 2 diabetes. 
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Figure Legends 

Figure 1. G2L1, MARK2, CLIP2, EB1, AGAP3, and CKAP5 undergo insulin-regulated 

phosphorylation. A, Serum-starved 3T3-L1 adipocytes were either left untreated or treated with 

insulin, lysed, and target proteins were immunoprecipitated as described in Experimental 

Procedures. The IPs were separated by SDS-PAGE and the gel slice corresponding to the protein 

of interest was excised and subjected to trypsin digestion. The resulting tryptic digest was purified 

and subsequently analyzed by tandem mass spectrometry. Raw data processing for quantification 

was executed in Progeneis QI for Proteomics and peptide/protein identification was performed by 

database searching with Mascot. The resulting Mascot peptide and protein identifications were 

imported into Progenesis QI for Proteomics and quantification of changes in phosphopeptide 

abundance was performed via extracted ion abundance in Progenesis QI for Proteomics. MS/MS, 

tandem mass spectrometry. B, G2L1, MARK2, CLIP2, EB1, AGAP3, and CKAP5 phosphorylation 

was analyzed as described above and in Experimental Procedures (n=4 per protein). 

Phosphopeptides are labeled with both the starting and final amino acid position of the 

phosphopeptide within the protein, along with the phospho-site (in red). The basal versus insulin 

data is separated by the vertical dashed black line. The horizontal red dashed line represents a 

50% decrease in phosphorylation while the horizontal green dashed line represents a 2-fold 

increase in phosphorylation. *p≤0.05; **p≤0.01 insulin compared to basal; T-test. BAS, basal. INS, 

insulin. C, The illustration depicts all identified phosphorylation sites affected by insulin, the 

location of the phosphorylation sites within each protein, the effect of insulin on phosphorylation 

(increased = green, suppressed = red), as well as the hypothetical localization of the microtubule-

regulating proteins respective to the microtubule. TOG, tumor overexpressed gene; UBA, 

ubiquitin-associated; GAR, Gas2-related; GAP, GTPase-activating protein; KA1, kinase 

associated domain 1; ANK, ankyrin; EEY/F, EEY/F motif; GLD, GTP-binding protein-like domain; 

EBH, EB homology; PH, pleckstrin homology. 
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Figure 2. The G2L1 interactomes. A, To identify new interacting partners for G2L1 in 3T3-L1 

adipocytes, different G2L1 IPs were compared against negative control IPs either in the absence 

or presence of insulin treatment. The IPs were separated by SDS-PAGE, fractionated into gel 

slices, subjected to trypsin digestion, and analyzed by tandem mass spectrometry. Peptide and 

protein identification was performed by Mascot database searching, and the resulting spectral 

count data was assembled with Scaffold. The spectrum count data was then scored for 

enrichment using SAINT and the resulting SAINT-qualified protein spectral count data was 

visualized with a Spectrum Count Profile “SCP”. The SAINT-qualified proteins from the three 

alternative G2L1 interactomes performed were then integrated and visualized with Cytoscape. B, 

150mm plates of differentiated 3T3-L1 adipocytes either left untreated or infected with mCherry-

G2L1-myc overexpressing adenovirus and were lysed in an isotonic CHAPS lysis buffer. IPs were 

performed as described in Experimental Procedures. The IPs or whole cell lysates were resolved 

by 10% SDS-PAGE and transferred to nitrocellulose membranes. The membranes containing the 

immunoprecipitated proteins were subjected to western blot with the antibodies indicated. The 

labels on the right side of the blot indicate where the various proteins migrate on the gel. MK, 

protein ladder marker; WB, western blot; WCL, whole cell lysates; MS/MS tandem mass 

spectrometry. C, For the various G2L1 interactomes (from top to bottom, endogenous G2L1, 

mCherry-G2L1-myc, and mCherry-G2L1-myc), the “SAINT-qualified” proteins were ordered in a 

hierarchical manner, from lowest spectrum counts identified to highest, and results from two 

experiments were individually plotted in a SCP. Basal NIgG IPs (green), insulin NIgG IPs 

(magenta), basal G2L1 IPs (red), and insulin G2L1 IPs (turquoise). D, Cytoscape-based 

integrated visual representation of the anti-G2L1, anti-myc mCherry-G2L1-myc, and anti-mCherry 

mCherry-G2L1-myc SAINT-qualified proteins. The proteins listed in turquoise were identified in 

all three G2L1 interactomes, while the proteins listed in green were shared between the anti-

mCherry and anti-myc antibody mCherry-G2L1-myc interactomes. 
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Figure 3. CLASP2 and G2L1 colocalize in 3T3-L1 adipocytes. A-B, Live-cell imaging of 

adipocytes cultured in complete media co-expressing mRuby2-Tubulin (magenta) and GFP-

CLASP2-HA (A, green) or mCherry-G2L1-myc (B, green). Live cells were imaged using TIRFM 

on a 2-second acquisition interval. Time series images to the right of the whole cell image are 

used to highlight +TIP dynamics within the indicated ROI. C, Immunofluorescence images of 

adipocytes cultured in complete media co-overexpressing GFP-CLASP2-HA (green) and 

mCherry-G2L1-myc (magenta). Cells were fixed and immunolabeled for tubulin (inverted white). 

Bottom row is magnified ROI. ROI, region of interest. Scale bar = 20m. 

Figure 4. The effect of insulin on CLASP2 +TIP dynamics. Live-cell imaging of adipocytes 

serum-starved for one hour and subsequently stimulated with 100nM insulin. Live cells were 

imaged using TIRFM on a two-second acquisition interval. A, Single frame of live-cell imaging of 

adipocytes co-expressing GFP-CLASP2 (green) and mRuby2-Tubulin (magenta) at basal state 

(top row) or ten minutes (bottom row) following insulin stimulation. CLASP2 is displayed in 

inverted white to highlight +TIP density. B, Quantification of CLASP2-containing +TIP density per 

unit area (m2) in adipocytes at basal state or ten minutes following insulin stimulation. Percent 

increase in CLASP2-containing +TIP density is indicated to the right. Statistical comparison made 

by paired parametric t-test, n = 5 cells. C, Temporally color-coded projection of GFP-CLASP2 

localization during a 30 second live-cell imaging interval. The length and extent of color overlap 

of time-projected CLASP2 localization indicates reduced displacement and hence lower velocity 

of CLASP2-containing +TIPs during the imaging interval in adipocytes after ten minutes of insulin 

stimulation. D, Quantification of CLASP2-containing +TIP velocity in adipocytes at basal state or 

ten minutes following insulin stimulation indicates reduced velocity of CLASP2-containing +TIPS 

after insulin treatment. Statistical comparison made by unpaired parametric t-test, n = 123-125 

CLASP2-containing +TIPS from five cells. Scale bars = 5m. E, Image of entire cells in the basal 

state (left panel) or eight minutes post insulin treatment (right panel) extracted from Video 2. Time 
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series images under the whole cell image are used to highlight insulin-stimulated +TIP dynamics 

within the indicated ROI. F, Time series extracted from Video 2 of the indicated ROIs at either the 

basal state or at four minutes post insulin treatment to present an example of changing CLASP2 

microtubule plus-end dynamics with insulin stimulation. G, Live cell CLASP2-containing +TIP 

dynamics of the ROI extracted from Video 2 were captured in the basal state followed by 

stimulation with insulin. Each insulin-stimulated CLASP2-containing +TIP trail length time point 

was compared against the basal CLASP2-containing +TIP trail length to test for significant 

differences. T-test; *p≤0.05, **p≤0.01. Red circles represent outlier data points. ROI, region of 

interest. BAS, basal. INS, insulin. Scale bar = 10m. 

Figure 5. Insulin stimulates G2L1 plus-end trailing. Live-cell imaging of adipocytes 

overexpressing mCherry-G2L1-myc (magenta). Adipocytes were serum starved for one hour and 

subsequently stimulated with 100nM insulin. Live cells were imaged using TIRFM on a two-

second acquisition interval and the displayed time series were extracted from Video 3. A, Image 

of entire cell in the basal state (left panel) or twelve minutes post insulin treatment (right panel). 

Time series images under the whole cell image are used to highlight insulin-stimulated G2L1-

containing +TIP dynamics within the indicated ROI. B, Time series of the indicated ROIs at either 

the basal state or at four minutes post insulin treatment to present an example of changing G2L1 

plus-end dynamics with insulin stimulation. C, Live cell G2L1-containing +TIP dynamics of the 

ROI were captured in the basal state followed by stimulation with insulin. Each insulin-stimulated 

G2L1-containing +TIP trail length time point was compared against the basal G2L1-containing 

+TIP trail length to test for significant differences. T-test; *p≤0.05, **p≤0.01. Red circles represent 

outlier data points. ROI, region of interest. BAS, basal. INS, insulin. Scale bar = 10m.  

Figure 6. Insulin stimulates CLASP2 and G2L1 microtubule plus-end co-trailing. Live-cell 

imaging of adipocytes co-overexpressing GFP-CLASP2-HA (green) and mCherry-G2L1-myc 

(magenta). Adipocytes were serum starved for one hour and subsequently stimulated with 100nM 
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insulin. Live cells were imaged using TIRFM on a two-second acquisition interval and the 

displayed time series were extracted from Video 4. A, Image of entire cell in the basal state (left 

panel) or eight minutes post insulin treatment (right panel). Time series images under the whole 

cell image are used to highlight insulin-stimulated +TIP dynamics within the indicated ROI. B, 

Time series of the indicated ROIs at either the basal state or at three minutes post insulin 

treatment to present an example of changing CLASP2 and G2L1 plus-end dynamics with insulin 

stimulation. C, Live cell +TIP dynamics of the ROI were captured in the basal state followed by 

stimulation with insulin. Each insulin-stimulated +TIP trail length time point was compared against 

the basal +TIP trail length to test for significant differences. T-test; *p≤0.05, **p≤0.01. Red circles 

represent outlier data points. ROI, region of interest. BAS, basal. INS, insulin. Scale bar = 10m. 

D, A model depicting the insulin-stimulated shift of CLASP2 and G2L1 from growing plus-end 

microtubule localization to “trailing”, a behavior characterized by CLASP2 and G2L1 decorating 

the trailing microtubule lattice behind the growing microtubule plus-end. 

Figure 7. Insulin stimulates acetylation of -tubulin at Lysine 40 and microtubule 

stabilization. A, Serum-starved 3T3-L1 adipocytes were either left untreated or treated with an 

insulin time course for the times indicated. Adipocyte lysis was performed as described in 

Experimental Procedures. The whole cell lysates were resolved by 10% SDS-PAGE and 

transferred to nitrocellulose membranes. The membranes were subjected to western blot with the 

antibodies indicated. Representative blot, n=3. MK, protein ladder marker. AcK40, -tubulin 

acetylation at lysine 40. B, Immunofluorescence images of the effect of insulin (30min, 100nM) 

on serum-starved adipocytes. Cells were fixed and immunolabeled for -tubulin (white) and 

AcK40 (inverted white). Scale bar = 10m. C, Quantification of AcK40 in adipocytes at basal state 

or ten minutes following insulin stimulation indicates increased AcK40 after insulin treatment. The 

images were quantified for corrected total cell fluorescence (CTCF) as described in Experimental 

Procedures. Quantification was based on data collected from 25-40 cells per condition. The 
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images are representative of five independent experiments. Error bars represent ±SEM and 

statistical comparison was made by unpaired parametric t-test. D, Immunofluorescence images 

of the effect of insulin (30min) on nocodazole-induced microtubule depolymerization in serum-

starved adipocytes. Cells were left untreated or treated with either 2M nocodazole alone for 

15min or 100nM insulin for 30 min followed by 2M nocodazole for 15min, fixed and 

immunolabeled for -tubulin (inverted white). CTRL, control, NOCO, nocodazole. INS, insulin. 

Scale bar = 10m. E, Quantification of microtubule density in adipocytes indicates insulin 

treatment results in resistance to nocodazole-induced microtubule depolymerization. 

Quantification was based on data collected from 8-11 cells per condition. The images are 

representative of two independent experiments. Error bars represent ±SEM and statistical 

comparison was made by unpaired parametric t-test. F, Serum-starved 3T3-L1 adipocytes were 

either left untreated or treated with either insulin alone or insulin together with rapamycin 

pretreatment to inhibit mTOR. Evaluation of AcK40 was performed as described above in A. G, 

Serum-starved 3T3-L1 adipocytes were either left untreated, treated with SB216763 alone (a 

GSK3 inhibitor), treated with insulin alone, or treated with insulin together with SB216763 

pretreatment. Evaluation of AcK40 was performed as described above in A. H, Six experiments 

as performed in G were quantified by densitometry to evaluate the effects of SB216763-mediated 

inhibition of GSK3 on AcK40. The AcK40 signal was normalized to the total -tubulin signal on 

the western blots. These values were then normalized by the mean value of the basal sample 

and then expressed as a fold change over basal ±SEM; T-test. SB, SB216763. I, In this proposed 

hypothetical model, GSK3 suppresses the acetylation of -tubulin at lysine 40 (“AcK40”) in the 

basal state. Insulin deactivates GSK3 and stimulates AcK40 through rapamycin-sensitive mTOR. 
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