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Abstract

Planet formation simulations are capable of directly integrating the evolution of hundreds to thousands of planetary
embryos and planetesimals as they accrete pairwise to become planets. In principle, these investigations allow us to
better understand the final configuration and geochemistry of the terrestrial planets, and also to place our solar
system in the context of other exosolar systems. While these simulations classically prescribe collisions to result in
perfect mergers, recent computational advances have begun to allow for more complex outcomes to be
implemented. Here we apply machine learning to a large but sparse database of giant impact studies, which allows
us to streamline the simulations into a classifier of collision outcomes and a regressor of accretion efficiency. The
classifier maps a four-dimensional (4D) parameter space (target mass, projectile-to-target mass ratio, impact
velocity, impact angle) into the four major collision types: merger, graze-and-merge, hit-and-run, and disruption.
The definition of the four regimes and their boundary is fully data-driven. The results do not suffer from any model
assumption in the fitting. The classifier maps the structure of the parameter space and it provides insights into the
outcome regimes. The regressor is a neural network that is trained to closely mimic the functional relationship
between the 4D space of collision parameters, and a real-variable outcome, the mass of the largest remnant. This
work is a prototype of a more complete surrogate model, that will be based on extended sets of simulations (big
data), that will quickly and reliably predict specific collision outcomes for use in realistic N-body dynamical studies
of planetary formation.
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1. Introduction

The idea of giant impacts has gone well beyond the
formation of the Moon (e.g., Hartmann & Davis 1975;
Stevenson 1987; Benz et al. 1989; Canup & Asphaug 2001)
and it is now able to give a new understanding of planet
formation during the late stage, where bodies that are similar in
size collide at one to several times their mutual escape velocity
vesc,
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where MT is the mass of the target, MP is the mass of the
projectile and Rcoll=RT+RP is the separation at initial
contact (e.g., Wetherill 1985; Asphaug 2010). Supported by
increasingly sophisticated models, hypotheses have emerged
for the giant impact formation of planets, including Mercury
(Benz et al. 2007; Asphaug & Reufer 2014; Chau et al. 2018),
Pluto–Charon (e.g., Canup 2005, 2011), Haumea (Leinhardt
et al. 2010), Titan (Asphaug & Reufer 2013), and the Moon. In
a broad sense, giant impact events have had a significant role in
determining the final physical properties of rocky/icy planets.

In N-body dynamical studies, planetary embryos orbit the
Sun and each giant impact is typically assumed to be fully
accretionary, so that N only decreases in time. However, perfect
merging is known (Chambers 2013) to be a problematic
oversimplification of more complex outcomes, which has been
demonstrated by decades of detailed hydrocode simulations

(e.g., Asphaug et al. 2006) using methods such as Smoothed-
Particle Hydrodynamics (SPH)—as described later on. The
most common collision events at the end-stage of terrestrial
planet formation in the solar system involve similar-sized
bodies and vcoll/vesc=1–4 (Agnor et al. 1999). Over this range
of mass ratios and impact velocities, collision outcomes span
all the regimes of accretion, erosion, and hit-and-run (Leinhardt
& Stewart 2012). Some more advanced N-body approaches
have implemented simple rules to limit accretion efficiency
(e.g., Chambers 2013), but approximations such as perfect
mergers are still the norm (e.g., O’Brien et al. 2006; Raymond
et al. 2009).
One ultimate strategy is to model collisions on the fly, such

as by using SPH to model a given impact event while the
N-body evolution is in progress (e.g., Haghighipour et al.
2017). However, in practice this approach has limitations. For a
giant impact simulation to run in less than an hour, which is a
practical limit when the N-body evolution must wait, the
hydrocode resolution is limited to a ∼104 particles, which is
only adequate to classify the most basic outcomes (Agnor &
Asphaug 2004). In addition, data reduction is a concern. Well-
resolved giant impact simulations often generate multiple
debris products (including intact remnants), and these must be
identified and characterized in each output file to be fed back
into the N-body code. These include the projectile runner in the
case of hit-and-run (Asphaug et al. 2006), and other self-
gravitating clumps and debris. Graze-and-merge collisions can
spin off escaping bodies up to a third the size of the progenitors
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(Asphaug & Reufer 2013), and head-on impacts appear to
make fields of sizable clumps (e.g., Sugiura et al. 2018).
Keeping track of all this requires post-processing analysis of
the collision outcome and this increases N, which can stall the
evolution. Ensuring convergence of the debris field requires
larger numbers of particles than a nominal simulation (e.g.,
Genda et al. 2015).

However, a detailed description of the debris field is neither
needed nor desired. Instead, we would prefer a summary
description of the two or three major bodies emerging from the
giant impact, their thermodynamic and orbital dynamic states,
and useful statistics regarding the remaining debris, such as
their characteristic sizes and velocity distributions, and also the
overall mass, momentum and composition. Lastly, knowledge
of the specific impact properties (e.g., angle of impact relative
to spin state of planet) is in fact completely unknown, so that
running a superb 3D simulation of a specified giant impact is a
misplaced effort unless the results can be generalized in some
way. Our approach is to use high-fidelity SPH calculations as a
training dataset, beginning with the impact simulations
published by Reufer (2011), which is also the basis for Gabriel
et al.’s (2019) development of a forward-functional model from
the same dataset.

We use SPH to model giant impacts on planetary bodies
such as the Moon, Mercury and Mars (e.g., Reufer et al. 2012;
Asphaug & Reufer 2014; Asphaug et al. 2015). Each
SPH outcome is a complex N-Dimensional state (consolidated
planets, clumps, unconsolidated ejecta, and their thermody-
namic states and other characteristics) that requires detailed
analysis. Giant impacts cover a large range of input parameters
and they are intrinsically three-dimensional events. For
example, a colliding pair of planets is represented by masses
M1 and M2, their impact velocity and angle, target and impactor
spin rate and orientation, plus some assumptions on their
composition and internal structure. Performing five realizations
of each variable would require nearly 400,000 simulations, just
to produce a coarse mapping of the parameter space. The
necessity of a detailed coverage of the parameter space is
coupled with the requirement for precise (high-resolution)
simulations. Simulations with 106 particles have become
standard (e.g., Canup et al. 2013; Hyodo et al. 2017;
Emsenhuber et al. 2018), and runs are extended to many
gravitational times t p r= G4 3g (Jutzi & Benz 2017).

We apply machine learning (ML) to build an accurate data-
driven model of giant impacts, which does not simply
interpolate the available data but rather generalizes the
underlying functional relationship between impact properties
and collision outcomes. Our aim is to fit the available data, but
not to over-fit it; that is, to be inclusive of the expectation of
new data that is yet to be observed. The data described here is
ideal for an initial study but is being superceded by much
higher fidelity models. One of the advantages of this approach
is that higher fidelity data can be added to lower fidelity data in
a weighted manner as they become available.

We present two distinct machine-learned response functions
for collisions in the gravity regime: a classifier of collision
types and a regressor of accretion efficiency. These functional
models—compact algorithms—map the outcome of a giant
impact (post-collision end state) into a four-dimensional (4D)
parameter space; i.e., mass of target, projectile-to-target mass
ratio, impact velocity and impact angle. The training is
performed on existing giant impact simulations between

similar-size differentiated chondritic bodies. The resulting
surrogate collision models give a reliable result to within a
known degree of confidence and at a highly reduced
computational time (with respect to full giant impact simula-
tions; i.e., on the order of seconds on a single computing
thread). Therefore, they are designed to apply especially well to
N-body evolution calculations and to constrain pre-impact
dynamical conditions from an hypothesized post-collision
scenario (Jackson et al. 2018).
The rest of this paper is organized as follows. In Section 2.1

we describe the available dataset. In Section 2.2 we provide an
introduction to ML, with a focus on the two distinct algorithms
used to train the classifier of collision types and the regressor of
accretion efficiency: Support Vector Machine (SVM)
(Section 2.2.1) and Neural Network (NN) (Section 2.2.2),
respectively. In Sections 3 and 4, we present and discuss the
predictions by the trained algorithms regarding the post-
collision end states and the characterization of the parameter
space. Finally, we discuss the potential of the methodology and
we make several recommendations for future work/application
in Section 5.

2. Materials and Methods

2.1. Dataset

In this study, we use SPH simulations from Reufer (2011).
This dataset is completed at ∼200,000-particle resolution and it
spans a wide range of parameters, such as target mass, mass
ratio (projectile/target), impact angle, and impact velocity. The
bodies are similar in size and they are initially non-rotating.
They are differentiated with a chondritic composition of 30%
iron and 70% silicate. The values for the first two parameters
that are present in the dataset are provided in Table 1. For each
pair, more than 100 runs with different impact velocities and
angles are performed, ranging between 0° and 90°, and 1–4
times the mutual escape velocity, respectively (see the top left-
hand and top right-hand panels of Figure 1). These conditions
are the most relevant to late-stage planet formation (Stewart &
Leinhardt 2012; Chambers 2013). We do not include the initial
spin rates among the impact parameters, which require three
additional variables for each of the bodies (one for the
magnitude and two for the orientation). However, the target and
impactor spin rate have been found to be relevant for the
overall impact outcome (e.g., Canup 2005, 2011) and we
intend to include this parameter in our future ML applications.
The collisions in our dataset are modeled using the

SPH technique. SPH is a physically based hydrodynamical
model that uses a Lagragian description, which is suited for
collision modeling, where a large range of densities is
expected. Furthermore, no grid is required, which is in contrast

Table 1
Pairs of Target Masses and Projectile-to-target Mass Ratio Present in the

Collisions Dataset from Reufer (2011) and Gabriel et al. (2019)

Target mass [M⊕] Mass ratio (projectile/target)

1 0.20, 0.70
10−1 0.10, 0.20, 0.35, 0.70
10−2 0.20, 0.70

Note. For each pair, more than 100 runs with different impact velocity and
angle are performed, ranging between 0° and 90°, and 1–4 times the mutual
escape velocity, respectively (Figure 1).
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to the Eulerian methods. Quantities are obtained by interpolat-
ing over ∼50–100 neighbor particles using a kernel function—
in this case a β-spline (Monaghan & Lattanzio 1985). Spatial
derivatives are retrieved using the derivative of the kernel, so
that no grid is required. Time evolution is provided by Euler’s
equations: mass conservation is used to obtain the density,
energy conservation is used to obtain the internal energy, and
momentum conservation is used to obtain the pressure gradient
and self-gravity. An artificial viscosity is added to resolve
shocks as is common in nearly all SPH implementations in
planetary science (e.g., Monaghan 1992). An equation of state
is required to obtain the pressure from the density and internal
energy. Therefore, we use M-ANEOS for SiO2 and ANEOS for
iron (Thompson & Lauson 1972; Melosh 2007), which is a
common choice for such studies. Self-gravity is based on a
hierarchical spatial tree (Barnes & Hut 1986), where contribu-
tions from distant regions are estimated using a multi-pole
approximation. The same tree is used to walk the nearest-
neighbor search, which is a process that occurs throughout the
simulation.

Each simulation begins with the bodies approaching from
several radii away, which allows for tidal deformation to take
place prior to the collision. The initial conditions are
determined assuming a two-body problem, so that the velocity
and angle at initial contact follow the prescribed values. The
simulations are evolved for 50τcoll past initial contact, with τcoll
being the collision timescale defined as

t = ( )R

v

2
, 2coll

coll

coll

where vcoll is the impact velocity and Rcoll=RT+RP is the
separation at initial contact. The indexes T and P refer to the
target and projectile, respectively. Once the simulation has
finished, the resulting bodies are found using the following
iterative algorithm: particles pairs are iterated over, starting
with the ones that have the lowest gravitational potential
energy, and checked whether the pair is bound. If a pair is
bound, then a new clump is started and the iteration continues
checking particles against the new clump. For each particle
added, the iteration is repeated until no further particle is found
to be bound to the clump. This procedure is also used to
compute the mass of the largest remnant of the collisions.
Details on the simulation database and detailed physical
analysis are provided in Gabriel et al. (2019). Snapshots of
the movie rendering of these simulations are shown in Figure 2.
The simulations in the dataset use SPH in the original, fluid

mode, while the equation of motion is derived only from the
pressure gradient (e.g., Monaghan 1992) and self-gravity. This
is appropriate when the stresses of gravity exceed the possible
mechanical strengths, and for this reason the existing dataset
has its lower limit at 1400 km diameters (the so-called gravity
regime). For bodies 100–1000 km in diameter, it has been
shown that friction (e.g., Jutzi 2015) and strength (Emsenhuber
et al. 2018) are important, and have the potential to challenge
our ideas of the origin of moons and embryos during the late
stage of planet formation. For super-Earth and Neptune-mass
bodies (10,000 km and larger), the dominant variables are
thermodynamic processes, shocks and gravity (Marcus et al.
2009, 2010b; Liu et al. 2015; Kegerreis et al. 2018a). For this
work, we limit ourselves to Earth-sized planets and smaller
because a sufficiently large database for super-Earth and
Neptune-sized collisions is not reported in the literature.

2.2. Machine Learning

ML is a subfield of data analysis that lies at the cornerstone
between statistical methods and computer science, and is also
at the core of artificial intelligence. ML was originally
conceived to address the question of how to build computers
that can autonomously improve through direct experience, and
it enables machines to learn features and trends from the
available data. Encouraged by the advances in parallel
computing technologies (e.g., Graphic Processing Units,
GPUs), the availability of massive labeled data and the
breakthrough in understanding of deep NNs, over the past
few years there has been an explosion of ML algorithms that
can accurately process images for classification and regression
tasks, such as image and video recognition (Krizhevsky et al.
2012), natural language processing (Socher et al. 2012), speech
recognition (Hinton et al. 2012). State-of-the-art ML techniques
have several advantages: first, they can streamline the
generation of datasets to most efficiently explore regions of
interest in a large parameter space; and second, they can
perform accurate mappings of initial conditions and end states,
with associated probabilities, while taking a high-dimensional
parameter space into account. This is in contrast to human
operators, who are often limited to a mostly 2D understanding
of the data. ML schemes can take advantage of this big data
problem to spot new and sometimes unexpected correlations.
ML techniques can be divided into supervised (or predictive)

and unsupervised (or descriptive) methods. Supervised meth-
ods rely on a training set of data, with features/predictors and

Figure 1. Top left-hand and top right-hand panels: frequency distributions of
input impact angle θcoll and velocity vcoll/vesc, respectively; the values for the
other two input parameters that are present in the dataset—target mass and
mass ratio (projectile/target)—are provided in Table 1. Bottom left-hand panel:
frequency distribution of the collision classes as labeled in the classification
task (Sections 2.2.1 and 3.1); on the x-axis, HnR refers to the simulations
labeled as hit-and-run cases, GnM refers to the graze-and-merge cases, and
Disr. refers to the disruption cases. Bottom right-hand panel: frequency
distribution of accretion efficiency values—Equation (11)—which are used in
the regression task (Sections 2.2.2 and 3.2). The simulations come from Reufer
(2011). Further details on the database of simulations and detailed physical
analysis are provided in Gabriel et al. (2019).
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labels, that is known with some level of confidence. For
example, in a giant impact, a set of predictors (e.g., impact
angle, impact velocity, mass of the target) results in a collision

outcome, such as merger or disruption (the label). In supervised
learning, the dataset is split into training samples, validation
samples (data used to measure generalization capability of the
algorithm), and testing samples (data that do not affect training
and are used as an independent measure of performance during
and after training). In contrast, unsupervised methods do not
label the data directly into classes but rather attempt to find
patterns and trends underlying in the data. These algorithms
(e.g., K-mean, Ahmad & Dey 2007) usually require an initial
assumption on the data (e.g., number of clusters) and their
results heavily depend on these initial assumptions.
We divide the algorithms into metric and non-metric,

depending on their specific operating principles. Metric
algorithms employ measures of similarities and distances to
the predictors, whereas non-metric algorithms do not. Among
the metric-based algorithms, we consider: SVMs (Hearst et al.
1998), which use a kernel to compute the inner product of all
pairs of data in the feature space and implicitly projects the data
in a higher-dimensional space where the data are linearly
separable; and K-Nearest Neighbors (KNN, Duda et al. 2012),
which uses a suitable similarity function/distance to evaluate
the closeness of a new sample to samples stored in memory.
Among the non-metric algorithms, we consider: Decision Trees
(DT, Safavian & Landgrebe 1991), which construct a tree
structure and explore nodes and leaves for both classification
and regression; and Random Forest (Breiman 2001), which is
an ensemble of multiple DT, where each tree is constructed by
sampling a random set of attributes from the data. Each tree
performs regression via a mean prediction and classification via
majority voting. Ensemble methods (e.g., Bootstrap Aggrega-
tion or Bagging, Breiman 1996), where an ensemble of weak
learners are combined to produce a stronger learner, are
considered for both regression and classification tasks.

2.2.1. Classification Task: SVM

In SPH, the continuous fluid is represented as a Lagrangian
set of particles that move with the flow. This allows easy
visualization and supports analytical deductions (Asphaug et al.
2015, and references therein). We digest the dataset for the
classifier by defining the qualitative outcome of each giant
impact simulation according to four distinct classes of
responses: merging, disruption, graze-and-merge, hit-and-run
(e.g., Asphaug et al. 2006, 2015; Stewart & Leinhardt 2009),
see Figure 2. In our classification, we distinguish between
merging and graze-and-merge scenarios. The latter is a
transient evolution that would eventually lead the projectile
to merge with the target, but escaping bodies up to a third of the
size of the progenitors can spin off during the collision
(Asphaug & Reufer 2013). The outcome of the simulations
(response, or class) is associated to four impact parameters
(predictors): mass of the target, projectile-to-target mass ratio,
impact angle, and impact velocity. The dataset has entries:

g q{( ) } ( )M v v, , , ; class 3T coll coll esc

where MT is the mass of the target, γ=MP/MT is the
projectile-to-target mass ratio (MP being the mass of the
projectile), θcoll is the impact angle and vcoll is the collision
velocity normalized to the mutual escape velocity vesc
(Equation (1)). Matching between predictors and response is
done during one of our movie days: four co-authors watched

Figure 2. Different combinations of the four impact properties (predictors:
mass of the target, projectile-to-target mass ratio, impact angle, impact
velocity), which lead to different collision outcomes (responses). The
SPH code allows easy visualization of the results in the form of short clips.
For example, the top panel of the figure shows the initial state of the simulation
(target and impactor before the collision). The other panels show the collision
type for various impact velocities and angles. From top to the bottom: a
merging event, resulting from a head-on collision at low-impact velocity; a
graze-and-merge event, resulting from a collision at the most probable impact
angle (45°, Shoemaker 1962) and low-impact velocity; a hit-and-run event,
resulting from a collision at an impact angle of 45° and moderate impact
velocity; a disruptive event, resulting from a head-on collision at high impact
velocity. The time after the collision (in hours) is reported at the bottom left of
each frame. The simulations come from Reufer (2011). Further details of the
simulation database and detailed physical analysis are provided in Gabriel et al.
(2019).
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short movie clips of the simulations and, based on this
visualization, agreed on the outcome of the simulations (class).
When dealing with a complicated problem, a group of experts
with varied experience in the same area have a higher
probability of reaching a satisfactory solution than a single
expert (Baruque & Corchado 2010). However, labeling error
can still occur, due to subjectivity, data-entry error, or
inadequacy of the information used to label each entry.
Domains in which experts disagree are natural places for
subjective labeling errors (Brodley & Friedl 1999, and
references therein). To mitigate mislabeling and its negative
effect on the performance of the classifier, the labeling of the
dataset is performed by the domain experts with a majority
vote. Taking a majority over many hypotheses, all of which
proposed by different experts, reduces the random variability of
the labels (Baruque & Corchado 2010). More advanced
approaches to labeling (e.g., crowd-sourcing or weighted-
voting, Rodrigues et al. 2013) or to labeling error mitigation
(e.g., ensemble learning, Zhang & Ma 2012) are also possible,
but they are beyond the scope of this pilot study.

An excerpt of the labeled data is reported in Table 2. The
dataset for the classification task is published in its entirety in
the machine-readable format. Among the available schemes,
we selected a multi-class SVM (Hearst et al. 1998) as the
algorithm that achieves the highest validation for the
classification task (see Section 3.1). SVMs were introduced
by Boser, Guyon & Vapnik (Boser et al. 1992), and they have
become very popular because of their success in the hand-
written digit recognition task. SVMs are ML algorithms that
can discriminate between different classes given input data.
They are considered primary examples of the so-called kernel
methods.

Consider a set of given training vectors Î =x i,i
n

¼ l1, ., that belong to two classes, and a class indicator vector
Îy l such that yiä[−1, 1]. The basic SVM algorithm solves

the following primal optimization problem:

å h+h
=

( )w w Cmin
1

2
4w b

T

i

l

i, ,
1

subject to the following constraints:

 f h h+ -( ( ) ) ( )w xy b 1 , 0. 5i
T

i i i

Here, f ( )xi maps the training vectors xi into a higher-
dimensional space. C�0 is the Tikhonov regularization
parameter. Generally, the vector variable w lives in a high-
dimensional space. Thus, one equivalently solves the following
dual problem:

a a a-a ( )eQmin
1

2
6T T

subject to:

 a a= = ¼ ( )y i l0, 0 0, 1, , . 7T
i

Here, e=[1, K. ,1]T is a vector comprising all ones, Q is an
l×l positive semi-definite matrix where Qi,j=yiyjK(xi, xi). The
kernel function K(·, ·) is defined as f f=( ) ( ) ( )x x x xK ,i i i

T
i .

After the optimization problem is solved via the primal-
dual relationship, the optimal vector w satisfies the following
relationship:

å a f=
=

( ) ( )w xy . 8
i

l

i i i
1

Importantly, the decision (discriminative) function for the
binary classification problem is mathematically described as:

åf a+ = +
=

⎛
⎝⎜

⎞
⎠⎟( ( ) ) ( ) ( )w x x xb y K bsgn sgn , . 9T

i

l

i i i
1

This formulation holds when the problem has nonlinear
decision surfaces because the input vector x is substituted by a
properly selected mapping function f that projects the training
data into a suitable feature space (Shashua 2009). The choice of
the function f is done using k-fold cross-validation, which
subdivides the training set in k subsets and trains the classifier
(i.e., solve the primal-dual optimization problem) using only
(k−1) subsets. The validation accuracy (i.e., percentage of
correct classification) is computed—after training—on the kth
subset. The procedure is repeated several times and the average
validation accuracy is used to compare different schemes with
different hyperparameters (i.e., the value of k and the function f).
The model with the highest validation accuracy is adopted.
Once the SVM is trained and validated, its performance is

assessed by means of a confusion matrix computed on a testing
set. The confusion matrix shows the degree to which the
classifier is confused when it makes predictions. Each row
represents the instances in a predicted class while each column

Table 2
Excerpt of the Labeled Data for the Classification Task

Target Mass [M⊕] Mass Ratio (projectile/target) Impact Angle Impact Velocity [vesc] Collision Class

1 0.70 89.5 1.30 hit-and-run (flag: 1)
1 0.70 89.5 1.05 graze-and-merge (flag: 2)
1 0.70 22.5 1.00 merging (flag: 3)
1 0.70 22.5 4.00 disruption (flag: 4)
10−1 0.70 30.0 1.50 hit-and-run (flag: 1)
10−1 0.70 30.0 1.40 graze-and-merge (flag: 2)
10−1 0.70 22.5 1.00 merging (flag: 3)
10−1 0.70 22.5 4.00 disruption (flag: 4)

Note. The elements in columns first to fourth are the predictors (pre-impact conditions): Î -
Å[ ]M 10 , 1 M ;T

2 γ=MP/MTä[0.2, 0.7]; θcollä[0, 90]; vcoll/vescä[1, 4].
The elements in the fifth column are the responses (type of collision outcome). among the responses: hit-and-run cases are coded as#1; graze-and-merge cases are coded
as #2; merging cases are coded as #3; and disruptive cases are coded as #4.

(This table is available in its entirety in machine-readable form.)
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represents the instances in an actual class (Ting 2010). For
example, for the binary subproblem of classification between
graze-and-merge (GnM) and hit-and-run (HnR), the confusion
matrix has the form:

Actual: HnR Actual: GnM

Predicted: HnR a b
Predicted: GnM c d

The diagonal elements are the instances of correct
classifications, while the off-diagonal values account for
misclassifications. In this example, the total number of actual
hit-and-run events is “a+c”; after training, the SVM classifies
correctly “a” events and misclassifies “c” events as graze-and-
merge. The accuracy of the classifier is computed as the
percentage of true positives (correct predictions) over total
number of sample:

=
+

+ + +
´[ ] ( )a d

a b c d
AC % 100. 10

Classification problems with a number of classes greater than
2 are decomposed into multiple binary classification problems,
according to different transformation techniques (e.g., one
versus one and one versus rest strategies, Bishop 2006). The
choice of a specific technique is also part of hyperparameter
optimization.

2.2.2. Regression Task: NNs

Whereas classifiers are able to handle discrete, qualitative
responses, a regressor is a surrogate model that is able to mimic
the parent SPH input-output function to predict continuous
(real-variable) outputs given the input parameters (predictors),
see Figure 3. This scheme provides a synthesis of the collision
outcome in terms of a set of output properties of interests (e.g.,
mass of the largest remnants, their post-collision orbital
elements, etc.) by learning from large planetary formation
datasets of collision. Running the surrogate model drastically
reduces the computational time with respect to full

SPH simulations (from hours to seconds). We design a
surrogate model for the prediction of accretion efficiency
(i.e., the mass of the largest remnant of the collision) at several
times the collision timescale, see Equation (2). After this time,
pressure and temperature gradient forces are no longer acting
and the resulting scenario (largest remnants and their orbital
properties) can be treated using N-body integrator rather than
hydrocodes. We use the definition of accretion efficiency by
Asphaug (2010):

x =
-( ) ( )M M

M
11LR T

P

whereMLR is the mass of the largest remnant,MT is the mass of
the target body and MP is the mass of the projectile. For each
simulation in our dataset, the largest remnants are identified as
discussed in Section 2.1. A summary of the data is reported in
Table 3. The dataset for the regression task is published in its
entirety in machine-readable format.
This effort of the work is entirely independent from the

classification of Section 3.1. For this task, a NN is trained,
validated and tested to replace the more computationally
expensive parent numerical models (e.g., the full SPH
simulation) in the prediction of accretion efficiency. NNs are
able to learn (i.e., improve the performance of a specific tasks)
from data by modeling the functional relationship between
inputs and outputs, which is exemplified by labeled data. NNs
consist of many mathematical units called neurons, which
communicate in a parallel fashion through weights that
represent the strength of the corresponding synapses. Neurons
are the basic processing units for the network and are
characterized by an activation function h(·). Additive nodes
with activation functions have the following structure:

= +( ) ( ) ( )a x a xG b h b, , 12i i i
T

i

where Îai
m and Îbi . The tanh-sigmoid function is a

common activation function for shallow neural networks

=
+ -

-( )
( )

( )h s
s

2

1 exp 2
1. 13

For deeper architectures, such as Convolutional Neural
Network (CNN, Krizhevsky et al. 2012), other activation

Figure 3. A surrogate model (e.g., neural network) is able to generalize the
functional relationship = ( )xy f between real-variable input x (impact
conditions, right column) and outputs y (collision outcomes, left column).
Training occurs on N data of the type: {x; y}i={predictor; label}i, i=1, K,
N. Examples of impact conditions (predictors) and outcomes (labels) are shown
in the right-hand and left-hand columns, respectively. In this pilot study, we
train a neural network to associate four impact conditions (mass of the target,
projectile-to-target mass ratio, impact angle, impact velocity) to accretion
efficiency (or mass of the largest remnant, Equation (11)).

Table 3
Excerpt of the Data for the Regression Task

Target
Mass
[M⊕]

Mass Ratio
(Projectile/
Target)

Impact
Angle

Impact
Velocity
[vesc]

Accretion
Efficiency

(Equation (11))

1 0.70 52.5 1.15 0.02
1 0.70 22.5 3.00 −0.58
1 0.70 45.0 1.30 0.02
10−1 0.70 15.0 1.40 0.90
10−1 0.20 15.0 3.50 −1.52
10−1 0.35 15.0 3.50 −1.25
10−2 0.70 60.0 1.70 0.00

Note. The elements in columns first to fourth are the predictors (pre-impact
conditions): MTä[10−2, 1] M⊕; γ=MP/MTä[0.2, 0.7]; θcollä[0, 90];
vcoll/vescä[1, 4]. The elements in the fifth column are the responses (accretion
efficiency ξ) as post-processed by Gabriel et al. (2019).

(This table is available in its entirety in machine-readable form.)
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functions (e.g., ReLu, Rectified Linear Unit) are more
commonly used. Neurons are organized by layers. For this
application, we adopt a shallow network comprising one input
layer, one hidden layer and an output layer. The hidden layer is
assumed to have a specified number of neurons S. The overall
process begins with a summation of each input with the
correspondent weights (synapses) and then further processing
by an activation function. In regression problems, the overall
NN output function is typically represented as follows:

å åb b= =
= =

( ) ( ) ( ) ( )x x a xf h G b, , 14S
i

S

i i
i

S

i i i
1 1

where Îx d and b Îi
m. The weights ai an biases bi are

determined during the training process which implies mini-
mization of a loss function. For regression problems, the typical
loss function is the Mean Square Error (MSE), i.e.:

å= -
=

( ) ( ( ) ) ( )a xb
N

f yMSE ,
1

15i i
i

N

S i i
1

2

where { }x y, i is the associated training set of size N.
In this paper, the regressor is trained, validated and tested on

data of the type:

g q x{( ) } ( )M v v, , , ; 16T coll coll esc

while the composition is kept as a parameter. The dataset is
subdivided in training, validation and testing subsets, typically
in proportion 70%–15%–15%, respectively. Network training
is performed using the training set and involves the fitting of
the network parameters (weight ai and biases bi) via
minimization of the loss function (Equation (15)). A common
approach to training involves backpropagation or Stochastic
Gradient Descent (Schmidhuber 2015). A training step (or
epoch) consists in a round of predictions for the predictors xi in
the training set, followed by backpropagation of the residuals
between targets and prediction and update of weights ai that
reduce the MSE. At each epoch, the performance of the
network (and progress toward a successful training) is
evaluated in terms of MSE, Equation (15), which is expected
to decrease as the number of epochs increases, thus indicating
progressive improvement in the performance (i.e., learning).

Both the validation and testing sets are employed to protect
against overfitting of the training set (Bishop 1995). The
training process is not a simple interpolation of the training set,
but it rather involves the search for families of parametric
functions (i.e., the neural network) that globally fit the data
(generalization). The validation procedure consists in the
search of those network hyperparameters (e.g., the learning
rate or numbers of hidden neurons, which are not learned
during training) that minimize the MSE on the validation set. In
addition to helping to protect against overfitting, the testing set
is used for an independent assessment of the generalization
capabilities of the network; i.e., the behavior of the MSE on an
unseen ensemble of data. Properly trained networks ensure that
the data in the validation and the testing sets follow the same
probability distribution as the data in the training set. At every
training epoch, the MSE for validation and testing is computed.
The training is completed when the MSE on the validation set
does not further decrease for six consecutive training epochs.

In addition to the MSE, the overall process is also evaluated
also in terms of regression value R, which measures the degree

of correlation between outputs and targets. This quantity is
analogous to the SVM classification accuracy for real-variable
data. The regression value R is a non-dimensional quantity and
it allows us to compare the performance of different approaches
to the problem (e.g., data-driven approach versus data
interpolation) with respect to the data at testing. An optimal
result shows low MSE values (i.e., close to zero) and a high
degree of correlation between predictions and targets (i.e., a R
value close to 100%) on the testing set.

3. Results

The trained response functions (classifier of collision types
and regressor of accretion efficiency) are presented in the
following two sections. We also discuss their prediction
performance with respect to the labels of the entries in the
datasets.

3.1. Classifier of Collision Outcomes

The classifier of collision outcomes maps the four impact
properties (mass of the target, projectile-to-target mass ratio,
impact angle, impact velocity) into one of the following types of
collisions: merging, disruption, hit-and-run, graze-and-merge.
The classifier is trained, cross-validated and tested as discussed
in Section 2.2.1. The ensemble of 769 labeled SPH simulations
in Table 2 is split in a training dataset (90%) and a testing dataset
(10%) via random sampling without replacement. The training
set is used for training the network with 10-fold cross-validation,
which allows us to perform hyperparameter optimization for
what concerns the best kernel feature parametrization. We find
that a quadratic kernel (K= fTf=(kTx+m)2) achieves the
best cross-validation accuracy (91.0%).
The performance of the classifier, in terms of its confusion

matrix, is shown in Figure 4, left-hand panel. The performance
is evaluated on the testing set, corresponding to 77 entries,
which was not used for training and cross-validation. Testing
the algorithm on this separate dataset provides an independent,
additional assessment of the performance of the classifier on
unseen data. We achieve an overall accuracy above 93% at
testing. However, certain regimes are characterized by more
misclassifications (e.g., disruption versus merging) than others
(e.g., hit-and-run). Those classes that are characterized by high
false negative rates prevent the classifier from achieving 100%
accuracy at testing (i.e., a fully diagonal confusion matrix),
which is found to be indicative of confusion along the decision
boundaries between regimes; we will address this point in more
detail in Section 4.2 (Figure 7, left-hand panel).
The classifier is intrinsically a 4D scheme, with as many

dimensions as the number of predictors (impact properties).
The algorithm describes the outcome in parameter space by
means of decision hyper-surfaces, which mark the transition
between different regimes. To better appreciate these features,
the parameter space can be sectioned in 2D slices; an example
of this map is given in Figure 4, right-hand panel, for a mass
of the target MT=0.1M⊕ and similar-mass projectile
(γ=MP/MT=0.7). The collision type is mapped into a
space of collision velocity (in units of mutual escape velocity)
and impact angle. We recognize four distinct collision regimes,
whose decision boundaries are the traces of the decision hyper-
surfaces suggested by the classifier. Each regime is a phase, in
which the collision outcome is qualitative similar; i.e., a scaling
law is expected to apply.
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Figure 4. Left-hand panel: confusion matrix of the 4D classifier, quantifying the degree of accuracy of the classification on the testing set. The elements on the
diagonal of the confusion matrix represent those instances that have been correctly classified by the SVM (true positives). Conversely, each extra-diagonal element
represents the number of misclassifications with respect the SPH data (i.e., the labels). The number of misclassifications is added along each column to compute the
false negative rates. Overall, we achieve a true positive rate of 91.4% on the hit-and-run (HnR) class, 95.5% for the graze-and-merge (GnM) class, 87.5% for the
merge class and 100.0% for the disruption class. The confusion matrix is close to be fully diagonal; the accuracy—which is computed as the mean value of the true
positives over the whole population, Equation (10)—is above 93%. Right-hand panel: decision boundaries for the collision type, as predicted by the classifier for a
mass of the target MT=0.1M⊕ and a mass ratio between the projectile and the target γ=0.7. The impact velocity spans a range between 1 and 4 times the mutual
escape velocity (Equation (1)) while the impact angle ranges from head-on to grazing configurations.

Figure 5. Left-hand panel: evolution of the Mean Square Error (MSE) for training, testing and validation, for increasing epochs of training. When validation is
concluded, the average plateau value of the testing MSE is 0.04. This quantifies the global uncertainty of the surrogate model in mimicking the parent numerical
model; i.e., the SPH simulations. Right-hand panel: correlation between predictions and target, and overall fitting with respect to an expected 1:1 line. The regression
index R is about 96% (average), close to the optimal value of 100%.
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3.2. Regressor of Accretion Efficiency

The neural network has four input neurons (as many as the
impact properties), one hidden layer, and one output layer
which predicts accretion efficiency. The dataset of Table 3 is
composed by 810 simulations, whose predictors (i.e., the
impact properties) are internally scaled in a min–max
procedure. The training is performed using the Levemberg–
Marquardt algorithm (Demuth et al. 2014) on 70% of the
overall dataset. The rest of the data is split between a validation
set (15%) and a testing set (15%). The dataset is split via
random sampling without replacement to assure that the data in
the three sets follow the same probability distribution. Figure 5,
left-hand panel, shows learning dynamics in terms of the
evolution of the MSE for training, validation and testing, at
different epochs of training procedure. For the hidden layer, the
choice of 10 hidden neurons gives the lowest MSE at
validation. The testing MSE converges to an error level of
about 0.04. This value is an estimate of the global accretion
efficiency error, as it quantifies the (squared) residual between
the values predicted by the regressor and the values of accretion
efficiency of the SPH data in the testing set. The training error
is also 0.04, while the validation error is about 0.03. Figure 5,
right-hand panel, shows the correlation index at the end of the
training procedure, whose value is above 95% on testing.

For the classifier of collision outcome, the regressor maps
accretion efficiency in a 4D parameter space. For a mass of
the target MT=0.1M⊕ and similar-mass projectile (γ=
MP/MT=0.7), Figure 6, left-hand panel, shows a 2D map
(slice of the parameter space) of accretion efficiency in a plane

of impact velocity (in units of mutual escape velocity) and
impact angle. The grid has a step of 0°.01 along the impact
angle axis (θcoll) and 0.01 along the velocity axis (vcoll/vesc).
Accretion efficiency is color-coded such that the outcome
varies from perfect merging (dark blue) to partial accretion
(light blue) to partial erosion to disruption (redder colors and
black for ξ�−1). The corner of the face that has the smallest
indices determines the constant color of each mesh face.
Catastrophic disruption is achieved when the mass of the
largest remnant is less or equal to the half of the total mass of
the system (MT+MP). Given that MP=γMT, catastrophic
disruption is characterized by an accretion efficiency equal
or less than ξD=0.5–0.5γ, with disruption threshold
(ξD=−0.21 for γ=0.7).

4. Discussion

High-resolution SPH simulations have been used to train,
validate and test a classifier of collision type (Section 3.1) and
a regressor of accretion efficiency (Section 3.2). Together
with the prediction of the type of collision (e.g., merging
versus disruption), real-variable collision outcomes (e.g.,
mass of the larges remnants, their post-collision orbits) are
needed to realistically simulate collisions in an N-body
dynamical evolution. The regression of these quantities can
be done by means of a neural network that is able to map pre-
impact conditions into outcomes (Figure 3). In this work, we
present a first machine-learned regressor that predicts the
accretion efficiency at many times the collision timescale—
Equation (2).

Figure 6. Left-hand panel: map of accretion efficiency—Equation (11)—as predicted by the neural network (Section 3.2). Right-hand panel: map of collision outcome
and accretion efficiency generated using the scaling laws proposed by Leinhardt & Stewart (2012), for the same combination of mass of the target and mass of the
projectile, using the values cå=1.9 and m =¯ 0.36, which were fit to hydrodynamic planets. Impact velocity (y axis) ranges between 1 to 4 vesc, impact angle (x axis)
ranges from head-on to grazing,MT=0.1 M⊕, and γ=MP/MT=0.7. The grid was sampled in steps of 0°. 01 and 0.01vesc; the color for each mesh face is dictated by
the vertex with the smallest index. Accretion efficiency shows a rich range of outcomes, which includes transitions from accretion (cooler colors) to disruption
(warmer/black colors), to hit-and-run (almost net-zero accretion; white colors).
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The two surrogate collision models (classifier and regressor)
describe a 4D parameter space in terms of mass of the target,
projectile-to-target mass ratio, impact velocity and impact angle.
However, interpretation by the human operator is preferably done
on a 2D section (slice) of the 4D parameter space. For example,
SVM decision boundaries and accretion efficiency are predicted
for MT=0.1M⊕ and γ=MP/MT=0.7 in Figure 4, right-hand
panel, and Figure 6, left-hand panel, respectively. The map of the
accretion efficiency unveils a richer background scenario in
regions were the collision outcome seemed homogeneous
according to the classifier. Graze-and-merge and merging are
somewhat inefficient in delivering mass to the target because a
portion of the projectile as high as 50% can escape accretion.
Because of its typical grazing nature, the hit-and-run regime is
characterized by accretion efficiency close to 0, which is within
the error associated with the training. However, at the most
probable impact angle (i.e., 45°, Shoemaker 1962), lower-energy
hit-and-run cases are indistinguishable from partially accreting
graze-and-merge events, while partial erosion starts to dominate
above vcoll/vesc∼2. Overall, the target is likely to be slightly
eroded in the hit-and-run regime, but the second largest remnant
(i.e., the surviving projectile) underwent the highest collision and
tidal stresses because the energy of the impact is partitioned
equally in the two bodies.

4.1. Comparison with Scaling Laws

Predicting the outcome of a giant impact without performing
a full hydrodynamics simulation has already been the subject of
multiple studies, leading to the formulation of scaling laws
(e.g., Davis & Ryan 1990; Benz & Asphaug 1999; Leinhardt &
Stewart 2012). A scaling law is an analytic relationship
between impact properties (e.g., mass ratio, impact angle, and
impact velocity) and its outcome for any collision in a physical
regime (e.g., between gravity-dominated bodies), assuming
invariance with respect to one property, usually the mass of
the target. Hydrodynamical simulations are used to fit the
parameters of the relationship and, ideally, account for the
transition between the different regimes.

Here, we compare our results with one such law by
Leinhardt & Stewart (2012), who proposed scaling the
collisions according to the ratio between the specific impact
energy and the catastrophic disruption threshold *QRD—which is
the specific energy required to disperse half the total colliding
mass (for non-grazing collision). The reference specific energy
is first computed for head-on collisions between equal-
mass bodies and then corrected for the mass ratio and impact
angle.

The left-hand panel of Figure 6 shows the map of accretion
efficiency (predicted using our regressor), again for MT=
0.1M⊕ and γ=0.7. On the right-hand panel of Figure 6 is
the analogous map generated using the scaling laws for
hydrodynamic bodies proposed by Leinhardt & Stewart (2012)
and Stewart & Leinhardt (2012). The fit parameters in their
model that are most relevant to our results are cå=1.9±0.3
and m = ¯ 0.36 0.01 and were thus used to generate the right-
hand panel of Figure 6. However, our data-driven approach and
the empirical, physics-based energy scaling by Leinhardt &
Stewart (2012) are different in two fundamental aspects: (1) the
underlying dataset of simulations that were used for fitting
procedures; and (2) the fitting methodology. Because of these
differences, we keep the comparison between the two results

shown in Figure 6 qualitative, and we aim to highlight the
similarities and differences between them.
Leinhardt & Stewart (2012) segregate collisions into grazing

and non-grazing according to the critical impact parameter
q= = +( )b R R Rsincrit crit T T P (Asphaug 2010) (see vertical

line in the right-hand panel of Figure 6). However, this
relationship was introduced by Asphaug (2010) as a geome-
trical guideline and it was not intended for the purpose of
accurately predicting hit-and-run events. The description of the
parameter space by our surrogate models does not show a hard
transition between grazing and non-grazing scenarios based on
the critical impact parameter value. We unveil the occurrence
of hit-and-run events at angles lower than the critical value, as
discussed further in Gabriel et al. (2019).
In the grazing domain (on the right-hand side of the critical

impact angle), Leinhardt & Stewart (2012) assume that all
collisions are hit-and-run in nature for sufficiently high impact
velocities and accretion efficiency is assumed to be zero; i.e.,
the largest and second largest remnant masses are equal to the
target and projectile mass respectively. In the hit-and-run
regime, we confirm that the accretion efficiency is consistently
close to zero (within the accuracy of the regressor) in the
majority of the parameter space, but partial accretion or erosion
scenarios are recorded close to transition with other regimes
(Figure 6, left-hand panel).
Our surrogate models show that perfect merging is rare—it

may happen for low-impact velocities and mid-impact angles
(about 15°–50°, again, within the accuracy of the regressor).
Grazing events need to eject some material to release angular
momentum, which would otherwise lead to unphysical spin
(Asphaug & Reufer 2013). Most of the regions categorized by
the classifier as merging or graze-and-merge are actually partial
accretions rather than perfectly merging. The underlying events
were categorized as such because the lost mass is in the form of
debris.
At the boundary between the hit-and-run and graze-and-

merge regimes (low-impact velocity and high impact angle),
the transition curve by our classifier of collision outcome
(decision boundary in Figure 4, right-hand panel) is found to be
similar to that by Stewart & Leinhardt (2012), who use the hit-
and-run velocity criterion from Kokubo & Genda (2010) to
mark the transition. However, across this region we also
observe a rapid decrease in accretion efficiency—from merging
to hit-and-run values—as the impact velocity increases
(Figure 6, left-hand panel).
We also point to the similarity between the transition curves

from our classifier (Figure 4, right-hand panel) and those of
Leinhardt & Stewart (2012) (Figure 6, right-hand panel) at the
boundary between the hit-and-run and the partial erosion
regimes. For non-grazing scenarios, Leinhardt & Stewart
(2012) determine the outcome by specific impact energy and
γ solely. Accretion efficiency ranges from partial accretion
(cool colors in Figure 6) to catastrophic disruption (black
color); catastrophic disruption for this combination of para-
meters is ξ�−0.21. In addition to the differences in the
assumed boundaries between regimes, our simulations are
based on different underlying datasets. Our data-driven model
is based on simulations from Reufer (2011), whereas the
hydrocode simulations used in Leinhardt & Stewart (2012) are
from diverse source models (e.g., Benz et al. 2007; Marcus
et al. 2009, 2010b). Gabriel et al. (2019) demonstrate that the
range of disruption thresholds exhibited by our dataset are close
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to the uncertainty of the disruption threshold of Leinhardt &
Stewart (2012). Thus, we do not consider the difference in
disruptive behavior observed in Figure 6 to be significant.

4.2. A Guide to Parameter Space Exploration

The designed classifier and regressor have high global
accuracies (Figure 4, left-hand panel and Figure 5), but
misclassifications and inaccurate predictions can still occur
locally in the parameter space. For a classifier, the local degree
of confusion is quantified by the SVM classification score,
which is the signed distance to the decision boundary. If the
classifier is asked to predict the class for a labeled data, then a
positive, large score on the correct label means that the
prediction is correct (the data are within the subspace of the
correct class), while a negative score indicates misclassifica-
tion; the more negative the value, the higher the signed distance
from the decision hyper-surface. The decision boundaries—
transition curve from a collision regime to another—are in
regions where the score tends to be negative, as the outcome is
more sensitive to slight variations in the pre-impact conditions
and mislabeling is likely to occur. This is evident in Figure 7,
left-hand panel, which shows the classification scores for
the data with MT=0.1M⊕ and similar-mass projectile
(γ=MP/MT=0.7), in a plane of impact velocity and impact
angle. Correct predictions are represented using small dots,
while misclassified data points are color-coded according to
their score (i.e., signed distance from the true classification
boundary). The larger the absolute value of the score, the more

severe the misclassification. The decision boundaries from the
classifier are also reported (black curves). As expected,
misclassification occurs more often along the boundaries.
A similar trend is observed in Figure 7, right-hand panel,

where the predicted values for accretion efficiency are locally
compared directly to the SPH data, again for MT=0.1M⊕ and
similar-mass projectile (γ=MP/MT=0.7), in a plane of
impact velocity and impact angle. For the regressor, the local
accuracy is quantified in terms of the residuals between
predictions and targets (geometric distance). Inaccurate predic-
tions are more distant with respect to their corresponding
SPH data than accurate predictions. A positive (negative)
residual indicates that the regressor is overestimating (under-
estimating) accretion efficiency with respect to the target value.
In the right-hand panel Figure 7, predictions with positive
residuals are represented using diamonds, while predictions
with negative residuals are represented using dots. For the
whole datasets (810 entries), 49% of the predictions have
positive residuals and the remaining 51% cases have negative
values. Therefore, the regressor is found to not systematically
overestimate or underestimate accretion efficiency. We note
that inaccurate predictions occur near the decision boundaries
(black curves), which is to be expected. Local accuracies are
thus expected to vary depending on location in the parameter
space. The residual distribution is well approximated by a
Gaussian fit centered at zero with 1σ value equal to 0.18. Large
areas are characterized by residuals <0.1, and few cases (less
than 1%) have residuals up to 0.66 near transition regimes
(absolute value, accretion efficiency units).

Figure 7. Left-hand panel: local SVM score of the SPH simulations by the classifier of collision outcomes (small dots: correct predictions; color-coded data points:
misclassifications). Right-hand panel: residuals between the predictions by the regressor and the SPH data, for the same combination of mass of the target and mass of
the projectile (diamonds: positive residuals; dots: negative residuals). Impact velocity ranges between 1 and 4 times the mutual escape velocity, impact angle ranges
from head-on to grazing, MT=0.1 M⊕ and γ=MP/MT=0.7. High uncertainty is recorded along the decision boundaries (black curves), where misclassifications
and inaccurate predictions tend to cluster. In these regions, additional SPH simulations are required to further reduce the confusion of the ML algorithms.
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The distributions of SVM scores (local uncertainties for the
classifier) and residuals (local uncertainties for the regressor)
provide a guideline toward the completeness of the dataset by
indicating those regions of the parameter space that require
additional simulations. The decision boundaries must not be
intended as binary hard boundaries between different regimes
of giant impact outcome, but rather as indicators that the
outcome is gradually transitioning from a regime to another.
Examples are the transition regions between graze-and-merge
and merging (low-impact angle and low-impact velocity, left-
hand bottom corner of the panels in Figure 7), and hit-and-run
and graze-and-merge (high impact angle and low-impact
velocity, right-hand bottom corner of the panels in Figure 7).

The extent of the transition regions is given by the size of the
clusters of inaccurate classifications and predictions (uncer-
tainty band). For the classifier, the uncertainty band quantifies
the degree of confusion of the field experts during the labeling
process. This confusion arises because, near and along the
decision boundaries, the outcomes of collision events seem
alike or are unclear to the experts performing the labeling.
These cases include the distinction between impactor disrup-
tion (e.g., Leinhardt & Stewart 2012) and hit-and-run.
Furthermore, in proximity of certain decision boundaries, the
outcome of a collision is highly sensitive to small changes in
the impact parameters. For this reason, misclassifications
correlate with inaccurate predictions by the regressor in the
transition regions. Accretion efficiency is a real-number
physical quantity and its transitions are smooth due to the
occurrence of runner disruption at the boundary between
erosive and hit-and-run collisions. However, the local gradient
can be large and more simulations may be needed for the
regressor to resolve the region; i.e., to accurately learn the
functional relationship between pre-impact conditions and
accretion efficiency along the decision boundaries.

Meanwhile, in regions where classification is exact and
regression is accurate, one can avoid running a full
SPH simulation to figure out the outcome because the classifier
is certain in the prediction of the type of collision and the
regressor is able to mimic the parent model at high fidelity.

5. Conclusion and Future Work

We have applied machine learning (ML) to explore a large
dataset of SPH simulations for giant impacts (Reufer 2011;
Gabriel et al. 2019). The relationship between beginning state
(e.g., target mass, projectile mass, impact velocity and impact
angle) and end state (impact outcome) has been mapped using
two approaches. The result is a prototype of a full surrogate
model of planet-forming giant impacts, which does not suffer
from assumed physical models and which runs in a fraction of a
second compared to days of simulation effort. This enables a
fine—and fast—mapping of the parameter space to a known
level of accuracy.

First, we train, validate and test a SVM (Hearst et al. 1998)
to predict the type of the collision among four classes: merger,
graze-and-merge, hit-and-run, and disruption. The classifier has
global accuracy above 93% at testing (Figure 4, left-hand
panel), but local misclassifications are found to occur in
proximity of the decision boundaries (Figure 7, left-hand
panel). Second, we train a neural network to predict the
accretion efficiency; i.e., mass of the largest remnant of the
collision. The network has a global error level of 0.04 (MSE
between predictions and the dataset of SPH accretion

efficiencies) and regression index above 95% at testing (left-
hand and right-hand panel in Figure 5, respectively). Locally in
the parameter space, residuals can reach 0.66 in accretion
efficiency units (absolute value) but are generally lower,
depending on the parameter region (Figure 7, right-hand panel).
These functions—classifier of collision outcome and regressor
of accretion efficiency—are called surrogate models because
they provide a synthesis of the collision outcomes without the
need to run a full hydrodynamical simulation. They are derived
by generalizing the functional relationship between impact
properties and outcomes, which are derived from the
SPH simulations, to the whole parameter space within the
ranges of the dataset (Table 1 and Figure 1). The use of
surrogate models avoids the need to perform additional
simulations over the entirety of the parameter space, which
would be computationally inefficient given the large number of
parameters and the requirement for high-resolution simulations
to produce reliable outcomes.
The present training has been done using a dataset that is

sparse in many regions of importance. One feature of ML is
that the surrogate models can be easily updated if the training
landscape is expanded as new simulations become available.
Future collision surrogate models will benefit from the
publication of datasets available to researchers in the commu-
nity. A proposed list of impact conditions and correspondent
collision outcomes for use in realistic N-body dynamical
studies of planetary formation can be found in Figure 3.
Additional interesting outcomes include the thermodynamic
history of the hydro-particles (pressure, temperature, and
density) which provides insights into the composition and size
distribution of the debris field.
For the present work, we have trained on giant impacts in the

gravity regime, where material strength plays a negligible role in
the mass of post-collision remnants. In our future work, we will
extend the parameter space to small giant impacts that involve
bodies hundreds to thousands of kilometers diameter, colliding at
around their mutual escape velocities, at hundreds to thousands of
meters per second. In this regime, friction plays a non-negligible
role (e.g., Jutzi 2015; Elkins-Tanton & Weiss 2017). New inroads
have been made into SPH modeling of friction-governed planetary
collisions (Jutzi 2015; Emsenhuber et al. 2018; Sugiura et al.
2018), which have revealed its importance in thousand-kilometer-
scale (embryo–embryo) collisions.Furthermore, collisions in the
friction regime have also been studied using soft-sphere discrete
element (DEM) contacts in code PKDGRAV (Schwartz et al.
2012), which has been applied to asteroid family formation
(Michel et al. 2001, 2004), ejecta cloud evolution (Schwartz et al.
2016), and comet formation through catastrophic disruption
(Schwartz et al. 2018). The angle of internal friction and material
composition (e.g., icy versus chondritic, Schwartz et al. 2018) are
found to have a significant effect on the mass of the largest
remnant (Ballouz et al. 2014, 2015). On asteroids, intergranular
cohesion (Scheeres et al. 2010) becomes a sizeable source of
tensile strength, which may affect the impact outcome. Resolving
these complex physics requires higher numerical resolution and
much more computational overhead per timestep of evolution. At
the larger extreme, there are few sets of data regarding giant
impacts for planets larger than the Earth (see Marcus et al.
2009, 2010a, 2010b; Liu et al. 2015; Kegerreis et al. 2018b). A
primary challenge here is the reliable treatment of massive
atmospheres. The same techniques of surrogate model develop-
ment can be applied to these simulations, ultimately forming a

12

The Astrophysical Journal, 875:40 (14pp), 2019 April 10 Cambioni et al.



general surrogate model for similar-sized planetary collisions at
every scale; however, to date, no data table has been published at
every scale.

The surrogate model is only as good as the post-processing
of the physical simulations that gives us the derived outcomes
for each run. The masses of the final bound remnants, and their
velocities, rotations and compositions, must be reliably
determined. In this study, the final masses have been computed
using a friends-of-friends analysis and a calculation of binding
energy. However, this is an approximation compared to
running the simulation out many days longer in time to get
the final bound objects, which is increasingly effected by
inaccuracies in the integrator. The application of CNNs
(Krizhevsky et al. 2012) could also improve the reliability of
clump detection, allowing for a more accurate identification
and classification of second- and third-mass planets or
planetesimals emerging from accretion-regime giant impacts.
If it is possible to reliably identify bound clumps much earlier
in a calculation, then emphasis could be placed on higher
numerical resolution rather than longer runtime.

The combination of giant impact studies and ML is new
research and we anticipate that many future studies will follow
(e.g., Valencia et al. 2019). Machine classification is able to
corral the herd of thousands of high-resolution simulations to
identify the underlying structure of the parameter space.
Machine regression is able to produce a quick and efficient
algorithm for accretion efficiency, which can be used in
dynamical models, such as N-body codes studying the growth
of planets. These constitute the prototype of a surrogate model
that will reliably map inputs to outcomes and will effectively be
equivalent to running an SPH simulation as an intermediate
step during N-body studies of planet formation. In fact, the
surrogate models may become preferred because they run on an
expedient functional call, yet are trained on high-resolution
simulations instead of low-resolution simulations that would be
run on-the-fly.

Because it represents simulation-derived data as a function, a
surrogate model can be inverted to formally understand the
likelihood of specified scenarios of planet formation, such as
Theia deriving from nearby the Earth or Mercury forming in a
couple of hit-and-run collisions (Chau et al. 2018). Such
inversion can be performed by means of Markov Chain Monte
Carlo Bayesian inference (Stuart 2010) of observed post-
collision scenarios, in which the surrogate models are used to
sample the (unknown) posterior distribution of pre-impact
conditions. Recent uses of this approach in planetary science
include a new technique for constraining the thermal inertias of
rock and regolith, and relative rock abundance, on asteroids
from observed infrared fluxes (Cambioni et al. 2019). Rather
than a boutique of scenarios that can solve for the origin of a
given planet, there can be an inversion of outcomes. Lastly,
there is an unknown future significance of ML in studies of
planet formation, where unsupervised classification of these
datasets can reveal new and unforeseen trends and relationships
in the data, leading to the development of better scientific
models. Humans are excellent at looking for patterns in 2D and
3D datasets, but N-dimensional trends can often be performed
better by a computer, leading to accurate data-driven models
and scaling laws that help us to explain why collisions happen
the way that they do.
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