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ABSTRACT
This paper uses the beta function formalism to extend the analysis of quintessence cosmological
parameters to the logarithmic and exponential dark energy potentials. The previous paper
demonstrated the formalism using power and inverse power potentials. The essentially identical
evolution of the Hubble parameter for all of the quintessence cases and �CDM is attributed
to the flatness of the quintessence dark energy potentials in the dark energy dominated era.
The Hubble parameter is therefore incapable of discriminating between static and dynamic
dark energy. Unlike the other three potentials considered in the two papers the logarithmic
dark energy potential requires a numerical integration in the formula for the superpotential
rather than being an analytic function. The dark energy equation of state and the fundamental
constants continue to be good discriminators between static and dynamical dark energy. A
new analysis of quintessence with all four of the potentials relative the swampland conjectures
indicates that the conjecture on the change in the scalar field is satisfied but that the conjecture
on the change of the potential is not.
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1 IN T RO D U C T I O N

This is the second of two papers using the beta function methodol-
ogy to produce accurate analytic solutions from model dark energy
potentials in a quintessence cosmology. The first paper (Thompson
2018), hereinafter paper I, examined solutions for power and inverse
power-law potentials. This work extends the analysis to logarithmic
and exponential potentials. The analytic nature of the solutions pro-
vides the means to calculate solutions for other values of the input
parameters such as H0 and �m0 in a flat universe for comparison
with observations.

Exact analytic solutions for specific dark energy potentials are
often mathematically intractable (Narain 2017) but the beta func-
tion formalism (Binetruy et al. 2015; Cicciarella & Pieroni 2017)
provides a method for achieving accurate analytic solutions using
beta potentials Vb(φ) that are accurate, but not exact, representations
of model potentials Vm(φ). In many cases numerical calculations
can provide solutions for specific cases. Such solutions, however,
often neither readily reveal the basic physics in play nor do they
provide easily calculable solutions for alternative input parameters.
The particular potentials examined here are the logarithmic

Vm(φ) ∝
(

ln(φ)

ln(φ0)

)βl

(1)

� E-mail: rit@email.arizona.edu

and exponential

Vm(φ) ∝ exp [−βe(φ − φ0)] (2)

potentials, where β l and βe are real, positive constants.
The methodology follows the descriptions in Binetruy et al.

(2015) and Cicciarella & Pieroni (2017), particularly Cicciarella &
Pieroni (2017) who explicitly include matter as well as dark energy.
The details of the analysis are given in paper I and will not be re-
peated here except for clarity. This work concentrates on the ‘late
time’ evolution of the Universe which is taken to be the time between
a scale factor of 0.1 and 1.0 corresponding to redshifts between zero
and nine. A flat Universe is assumed with H0 = 70 km s−1 per mega-
parsec. The current ratio of the dark energy density to the critical
density �φ0 is set to 0.7 where φ0 is the current value of the scalar
φ. The current values of the dark energy equation of state are set to
w0 = (−0.98, −0.96, −0.94, −0.92, −0.90) as was done in paper I.
The last two values of w0 are unlikely but are included to determine
the limits on the validity of the solutions. In the exponential model
potential the value of w0 determines the value of βe removing one
degree of freedom. In paper I κ =

√
8π

mpl
was set to one, however, in

this paper natural units are used with mpl, the Planck mass, set to
one. This makes the units of the scalar φ the Planck mass rather than
1/κ . A section on where the quintessence cases considered here and
in paper I dwell relative to the swampland conjectures has also been
added.
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2 QU INTESSEN CE

Quintessence is characterized by an action of the form

S =
∫

d4x
√−g

[
R

2
− 1

2
gμν∂μ∂νφ − V (φ)

]
+ Sm, (3)

where R is the Ricci scalar, g is the determinant of the metric gμν ,
V(φ) is the dark energy potential, and, Sm is the action of the matter
fluid. Different types of quintessence are defined by different forms
of the dark energy potential. The quintessence dark energy density,
ρφ , and pressure, pφ , are given by

ρφ ≡ φ̇2

2
+ V (φ), pφ ≡ φ̇2

2
− V (φ). (4)

3 TH E B E TA FU N C T I O N

The beta function is defined as the derivative of the scalar φ with
respect to the natural log of the scale factor a (Binetruy et al. 2015)

β(φ) ≡ κdφ

d ln(a)
= κφ′, (5)

where κ =
√

8π
mpl

and the prime on the right hand term denotes the
derivative with respect to the natural log of the scale factor except
when it denotes the integration variable inside an integral as in
equation (11). As noted in the introduction paper I set κ to one as is
often done in the cosmological literature. Here instead the Planck
mass is set to one leading to the scalar φ being expressed in units
of the Planck mass, a difference of

√
8π ≈ 5 from paper I. In the

following k is used to denote
√

8π in an equation. Note that φ now
has the dimensions of mpl and that κφ is dimensionless.

The dark energy equation of state w = pφ

ρφ
for quintessence is

given by Nunes & Lidsey (2004)

w + 1 = k2φ′2

3�φ

= k2β2(φ)

3�φ

. (6)

For the logarithmic potentials this equation provides the boundary
condition to determine the current value of the scalar φ0. For the
exponential potential equation (6) determines βe as discussed in
Section 4.

The beta function is not an arbitrary function of φ and a, but
is determined the model dark energy potential Vm(φ) such that
(Cicciarella & Pieroni 2017)

Vm(φ) = exp

{
−
∫

kβ(φ)dkφ

}
. (7)

3.1 Beta functions from the potentials

From equation (7) the appropriate beta function is the logarithmic
derivative of the potential. Using the potentials listed in the intro-
duction the logarithmic beta function is

β(φ) =
( −βl

kφ ln(kφ)

)
. (8)

The exponential beta function is simply

β(φ) = βe

k
. (9)

Five β l values are considered, the integers one through five. The βe

values are set by the five values of w0.

4 EVO L U T I O N O F TH E S C A L A R

An important feature of the beta function formalism is that the
specification of the beta function, along with a boundary condition
determines the evolution of the scalar with respect to the scale factor
φ(a).

4.1 The scalar as a function of the scale factor (logarithmic)

The beta function, equation (5), provides the differential equation
for φ as a function of the scalar a. For the logarithmic potential

k2φ ln(kφ) d φ = −βld ln(a). (10)

Integrating both sides∫ φ

φ0

k2φ′ ln(kφ′) d φ′ = −βl

∫ a

1
d ln(a′) (11)

gives

k2φ2

2

(
ln(kφ) − 1

2

)
= −βl ln(a) + k2φ2

0

2

(
ln(kφ0) − 1

2

)
, (12)

where φ0 is the current value of the scalar. Denoting the right hand
term of the equation by Q the scalar is given by

kφ = ±
√

2Q

PL( 2Q

e )
. (13)

The term PL in equation (13) stands for the Product Log, more
commonly known as the Lambert W(x) function, the solution to
WeW = x. Here the Product Log term, used by Mathematica, is
retained to avoid confusion with the superpotential W(φ) introduced
later. The value of φ0 is determined by the current value of the dark
energy equation of state w0 using equation (6)

kφ0 ln(kφ0) = ±βl√
3�φ0 (w0 + 1)

, (14)

where �φ0 is the current ratio of the dark energy density to the
critical density. The solution to equation (14) again uses the PL
function

kφ0 =
±βl√

3�φ0 (w0+1)

PL( ±βl√
3�φ0 (w0+1)

)
. (15)

The Product Log does not have positive real solutions for negative
arguments. The definition of the logarithmic beta function assumes
that β l is a positive real number, therefore, the positive square
root is chosen in equations (13)–(15). None of the three equations
accommodate phantom solutions where (w + 1) < 0.

Figs 1 and 2 show the evolution of the scalar φ for the logarithmic
beta function with β l held constant at 3 in Fig. 1 for the five values
of w0 and w0 is held constant at −0.94 in Fig. 2 for the five values
of β l. Even though φ0 changes significantly with the value of β l,
the scalar φ evolves relatively little over a between 0.1 and 1.

4.2 The scalar as a function of the scale factor (exponential)

The exponential potential, V(φ) ∝ exp [βe(φ − φ0)] is the dark
energy potential for slow roll quintessence when the first slow roll
parameter, 1

V
dV
dφ

is held constant eg. Scherrer & Sen (2008). The
beta function for the exponential potential, βe, is unique in that it is
a constant and not a function of φ. Unlike all of the previous cases
βe cannot be set arbitrarily. The value of βe is set by equation (6)

βe = √
3�φ0 (w0 + 1) (16)
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5450 R. I. Thompson

Figure 1. The evolution of the scalar field φ as a function of the scalar a for
the logarithmic beta function with β l = 3.0 for the five values of w0 listed
in the introduction.

Figure 2. The evolution of the scalar field φ as a function of the scalar a
for the logarithmic beta function with the five values of β l and w0 = −0.94.

Figure 3. The evolution of the scalar field (φ − φ0) as a function of the
scalar a for the exponential beta function for the five values of w0 listed in
the introduction.

independent of φ or φ0, therefore there is no boundary condition to
set φ0. The solutions for the relevant cosmological parameters and
fundamental constants are all functions of (φ − φ0) therefore it is
the appropriate parameter rather than the absolute values of φ and
φ0. From the exponential potential beta function

k(φ − φ0) = βe ln(a). (17)

The evolution of (φ − φ0) is shown in Fig. 3. The values of βe for

Figure 4. The evolution of β(a) as a function of the scalar a for the logarith-
mic potential with β l = 3 for the five values of w0 listed in the introduction.

Figure 5. The evolution of β(a) as a function of the scalar a for the log-
arithmic potential with w0 = −0.94 for the five values of β l listed in the
introduction.

the appropriate values of w0 are listed in Fig. 3 and are all less than
one.

An anonymous referee has pointed out that a constant beta func-
tion never reaches a fixed de Sitter point which requires a beta
function value of zero. The referee also mentioned that for a small
value of the beta function, as is found here, that space time is evolv-
ing towards a power-law geometry that might have interesting con-
sequences in holography as discussed in Cicciarella, Mabillard &
Pieroni (2018).

5 TH E E VO L U T I O N O F TH E B E TA FU N C T I O N

In the beta function formalism many of the cosmological parameters
depend on the form of the beta function. Figs 4 and 5 display the
evolution of the logarithmic potential beta functions for the five
values of w0 with β l = 3, (Fig. 4) and for the five values of β i with
w0 = −0.94 (Fig. 5). The logarithmic beta functions are negative
and between −0.1 and −0.5 for scale factors between 0.1 and 1.

Fig. 6 shows the evolution of the exponential potential beta func-
tion for the five βe, w0 pairs. The values are positive and constant
which simplifies several of the subsequent calculations.

6 THE POTENTI ALS

In the beta function formalism two different types of potentials play
a prominent role. The first is the dark energy potential in the action
V(φ) that does not depend on matter. The second, in analogy with
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Figure 6. The evolution of β(a) as a function of the scalar a for the expo-
nential potential.

particle physics, is termed the superpotential W given by

W (φ) = −2H (φ) = −2
ȧ

a
. (18)

Even though the Hubble parameter H is the parameter of interest W
is utilized here to be consistent with the literature on beta functions.
Both the dark energy potential V(φ) and the superpotential W(φ)
can be expressed in terms of β(φ) (Cicciarella & Pieroni 2017) by

W (φ) = W0 exp

{
−1

2

∫ φ

φ0

β(kφ′)k d φ′
}

(19)

and

V (φ) = 3

4k2
W 2

0 exp

{
−
∫ φ

φ0

β(kφ′)kdφ′
}(

1 − β2(kφ)

6

)
, (20)

where W0 is the current value of W equal to −2H0. Note that the
superpotential is always denoted as a capital W and the dark energy
equation of state by a lower case w. The potential in equation (20)
is referred to as the beta potential of the model potential. It differs

from the model potential by the factor of (1 − β2(φ)
6 ). As long as this

factor is close to one the beta potential is an accurate, but not exact,
representation of the model potential.

6.1 The logarithmic potential

The model logarithmic potential is given by

Vm(φ) = 3

4k2
W 2

0

(
ln(kφ)

ln(kφ0)

)βl

(21)

with the beta function shown in equation (8). The logarithmic beta
potential is given by

Vb(φ) = 3

4k2
W 2

0

(
ln(kφ)

ln(kφ0)

)βl
(

1 − β2
l

6(kφ ln(kφ))2

)
. (22)

The logarithmic potential is decreasing as the scale factor increases.
Fig. 7 shows the potential with β l fixed at 3 for the five different
values of w0. The solid lines in Fig. 7 show the beta potential
which follows the model potential (dashed) quite well, particularly
for values of w0 close to minus one. The accuracy of the fit is
quantified in Section 6.4 for all of the potentials.

Figure 7. The evolution of the model logarithmic potential with β l = 3 is
shown by the dashed lines and the solid lines indicate the evolution of the
beta logarithmic potential.

Figure 8. The evolution of the model exponential potential is shown by the
dashed lines and the solid lines indicate the evolution of the beta exponential
potential.

6.2 The exponential potential

The model potential is of the form

Vm(φ) = 3

4k2
W 2

0 exp(−βek(φ − φ0)) (23)

with a beta potential of

Vb(φ) = 3

4k2
W 2

0 exp(−βek(φ − φ0))

(
1 − β2

e

6

)
. (24)

Fig. 8 shows the evolution of exponential model and beta poten-
tials.

6.3 Normalization

It is clear that the beta dark energy potentials have the desired model

potentials multiplied by (1 − β(φ)2

6 ) which produces both an offset
and a deviation from the model potentials. The deviation is expected

to be small since β(φ)2

6 is much less than one in most cases. In paper I
the potential was normalized to be 3

4 W 2
0 at a scale factor of one

producing a potential slightly different than the true beta potential.
In this work that practice has been abandoned and no normalization
has been applied. As a result the beta potentials shown in Figs 7

and 8 cross over each other at a ≈ 0.8 due to the β(φ)2

6 term.

6.4 Accuracy of fit

The cosmological parameters derived by the beta function formal-
ism are only useful if the beta potentials accurately represent the
model potentials. Figs 9 and 10 show the fractional deviation of the
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5452 R. I. Thompson

Figure 9. The fractional deviation of the beta logarithmic law potentials
from the model potentials with β l = 1, dashed lines, β l = 3.0, solid lines,
and βp = 5.0, dot-dashed lines. For each β l the tracks are marked with the
value w0 at the end.

Figure 10. The same as for Fig. 9 except for the exponential-law potentials.
All five values of βe are shown with the values of w0 marked on the figure.

beta potentials from the model potentials to quantify the deviations
of the beta potentials from the model potentials. For the logarith-
mic potential the minimum, median, and maximum β l values are
shown with w0 values equal to –0.98, –0.94, and –0.9 to show the
extremes without excessive overlap of tracks in the figures. For the
exponential potential all of the cases are shown since they do not
overlap. In paper I a conservative limit of only accepting solutions
with fractional deviations of 1 per cent or less was adopted. In this
paper that limit is expanded to 4 per cent which is a higher accuracy
than the accuracy of most of the available observational data.

6.4.1 The logarithmic beta potential fractional error

The primary feature of the logarithmic potential fractional deviation
in Fig. 9 is that all of the cases are within the acceptable error of
0.04. Unlike the normalized cases of paper I the highest fractional
deviation for the logarithmic beta potential is at a scale factor of one
increasing for values of w0 further from minus one but independent
of the value of β l. The evolution away from a = 1 is dependent on
β l but is decreasing for lower values of a. All of the logarithmic
cases are therefore retained in the subsequent analysis.

6.4.2 The exponential beta potential fractional errors

The exponential beta potential fractional errors shown in Fig. 10
are set by the values of w0 which also sets the value of βe. As

expected the fractional deviations of the exponential beta potential
are independent of the scale factor since β(φ) is constant for a given
w0 and all fall in the acceptable range. As with the logarithmic beta
potential all of the exponential cases are retained in the subsequent
analysis.

7 THE MATTER DENSI TY

The dark energy potentials are independent of matter but both bary-
onic and dark matter must be taken into account to calculate accu-
rate analytic solutions for fundamental constants and cosmological
parameters. Matter is represented by the Sm term in the action, equa-
tion (3). From Cicciarella & Pieroni (2017) and paper I the matter
density as a function of the scalar is given by

ρm(φ) = ρm0 exp

(
−3

∫ φ

φ0

dφ′

β(φ′)

)
, (25)

where ρm0 is the present-day mass density. Different beta functions
produce different functions for ρm as a function of φ hiding the
universality of the matter density when expressed as a function of
the scale factor a

ρm(a) = ρm0 exp

(
−3

∫ a

1
d ln(a′)

)
= ρm0a

−3 (26)

as expected, independent of β(φ).

8 THE SUPERPOTENTI AL W A N D T H E
HUBBLE PARAMETER H

From equation (18) it is obvious that calculating the superpotential
W is equivalent to calculating the Hubble Parameter H. As shown
in Cicciarella & Pieroni (2017) and paper I the differential equation
for W with matter is

WW,φ + 1

2
βW 2 = −2

ρm

β
, (27)

where the notation, φ indicates the derivative with respect to the
scalar φ. Paper I includes two specific examples, the power and
inverse power-law potentials and their related beta functions. Here
a more general solution is presented that gives a better insight of the
process. The solutions to equation (27) utilize integrating factors
f(x), where x = kφ for ease of notation. The integrating factors
multiply both sides of equation (27) to create an exact equation that
can be integrated. The exact form on the left of the equation has
the form of the left side of equation (28). The right side is then
integrated to provide the solution for W:

d

dx

(
1

2
W 2(x)f (x)

)
= −2f (x)

ρm(x)

β(x)
. (28)

Comparison with equation (27) shows that the integrating factor
must satisfy

df (x)

dx
= β(x)f (x) (29)

which determines f(x). Writing the equation out as the equality of
two differentials gives

d(W 2(x)f (x)) = −4f (x)
ρm(x)

β(x)
dx. (30)

Integrating both sides of equation (30) gives

W 2(x)f (x) − W 2
0 f (x0) = −4

∫ x

x0

f (x)
ρm(x)

β(x)
dx. (31)
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Equation (31) can be solved as a function of x or the much more
useful function of a using x(a) from equations (15) and (17) and the
much simpler ρm(a) from equation (26). The beta function provides
the conversion of dx on the right-hand side of equation (30) to da

dx = β(x(a))d ln(a) = β(x(a))
da

a
. (32)

The beta function in equation (32) cancels the beta function on
the right-hand side of equation (30). The right-hand side of equa-
tion (30) is now a function of a rather than x and the integral of the
right-hand side is

− 4ρm0

∫ a

1
f (x(a′))a′−4da′. (33)

After integrating the left side of equation (30) and re-arranging the
final answer is

W (a) = −
{

−4
ρm0

f (x(a))

∫ a

1
f (x(a′))a′−4da + W 2

0

f (x(a = 1)

f (x(a))

} 1
2

.

(34)

The integrating factors for the logarithmic and exponential po-
tentials are

(ln(kφ))−βl logarithmic

exp[βek(φ − φ0)] exponential. (35)

The integral in equation (33) for the exponential integrating factor
is quite simple and analytic. The integral for the logarithmic inte-
grating factor is not analytic and must be done numerically since it
contains the PL function for x(a) given in equation (13).

W (a) = −
[

− 4ρm0 (ln(kφ(a))βl

∫ a

1
(ln(kφ(a′))−βl a′−4da′

+W 2
0

(
ln(kφ(a))

ln(kφ0)

)βl
] 1

2

log

W (a) = −
[−4ρm0

β2
e − 3

(a−3 − a−β2
e ) + W 2

0 a−β2
e

] 1
2

exp, (36)

where kφ(a) is given by equation (13) for the logarithmic potentials.
The superpotential is a negative quantity therefore the negative
solution of the square roots in equations (36) are used.

8.1 The Hubble parameter as a function of the scale factor

The Hubble parameter is simply −W (a)
2 . As was found in paper I

for the power and inverse power-law potentials the evolution of the
Hubble parameter for the logarithmic and exponential potentials
is indistinguishable from the �CDM evolution at the scale of the
plots. To highlight the true differences Fig. 11 shows the ratio of the
Hubble parameter for logarithmic potential to the �CDM minus
one as a function of the scale factor. In Fig. 11 β l is held constant at
three and each of the five values of w0 are plotted. The same ratio is
plotted for the five exponential potential cases in Fig. 12. In both the
logarithmic and exponential cases the deviation from the �CDM
case is small and peaks at a ≈ 0.5 as expected. The similarity of the
Hubble parameter evolution for a dynamic quintessence cosmology
to the static �CDM cosmology makes it a poor discriminator be-
tween the two cases. One per cent accuracy observations of H(a)
at redshifts near one are required to distinguish between the two.
The reason for the similarity of the evolutions is given in the next
section.

Figure 11. The ratio of the logarithmic potential evolution of the Hubble
parameter Hl(a). β l is held constant at 3 and all five of the w0 values are
plotted.

Figure 12. The same as in Fig. 11 except for the five exponential potential
cases.

8.2 The evolution of the dark energy density

From the Einstein equation with mass

3H 2 = ρm + ρφ (37)

it is clear that

ρφ = 3H 2 − ρm = 3H 2(a) − ρm0

a3
(38)

for a flat universe. Figs 13 and 14 show the evolution of the dark
energy density for the logarithmic and exponential potentials, re-
spectively. The dashed line in the figures shows the evolution of the
matter density. The reason for the similarity of the quintessence evo-
lution of H(a) to the �CDM evolution is shown in the figures. The
quintessence dark energy density evolves very slowly in the current
dark energy dominated epoch, mimicking the static cosmological
constant dark energy density. The quintessence dark energy density
only evolves significantly at high redshift in the matter dominated
era. This is why the H(a) evolution is essentially similar for the
two cosmologies and may be true for most freezing cosmologies.
There are thawing quintessence cosmologies (Scherrer & Sen 2008)
however their potentials are extremely flat and must match the same
value of H0 as the freezing models.

9 TH E DA R K E N E R G Y E QUAT I O N O F S TATE

A primary observational indicator of a dynamical cosmology is
a dark energy equation of state different from the cosmological
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Figure 13. The log10 of the dark energy density values as a function of
the scale factor for the logarithmic potential. The dashed line is the matter
density which decreases below the dark energy density near a scale factor
of 0.75.

Figure 14. The dark energy density values as a function of the scale factor
for the exponential potential. As in Fig. 13 the dashed line shows the matter
density.

constant value of minus one. From paper I

1+ w(φ) = k2β2

3

(
1 − 4ρm0a

−3

3W 2

)−1

= k2β2

3
(1 − �m)−1 = k2β2(φ)

3�φ

(39)

for a flat universe. Fig. 15 shows the evolution of (w(a) + 1) for the
logarithmic dark energy potential with β l = 3 and all five values of
w0. Fig. 16 shows the evolution of (w(a) + 1) for the exponential
dark energy potential with the βe values set by (w0 + 1) = 0.02,
0.04, 0.06, 0.08, and 0.1.

A common feature of all of the potentials in this paper and paper I
is a very slow late time, a > 0.5 evolution of w(a) with significant
evolution for scale factors between 0.1 and 0.5. This indicates that
at least for the quintessence cosmology that high-redshift observa-
tions have the best chance of detecting the presence of dynamical
dark energy. The shapes of the logarithmic and exponential potential
w(a) are quite similar, particularly for the lower values of w0, while
they are more divergent for the higher values. Any determination
of the dark energy potential from the w(a) tracks would require a
secure knowledge of w0 and very accurate measurements of w(a)
at higher redshifts. The required level of accuracy is beyond cur-
rent observational capabilities. Detection of the predicted value of
w(a) ≈ −0.5 at a = 0.2, z = 4, however, might be possible with

Figure 15. The evolution of (w(a) + 1) as a function of a for the logarithmic
dark energy potential with β l = 3 and all five values of w0.

Figure 16. The evolution of (w(a) + 1) as a function of a for the exponential
dark energy potential for the five βe values set by (w0 + 1) = 0.02, 0.04,
0.06, 0.08, and 0.1.

present techniques. Further discussion of w(a) observations occurs
in Section 11.1.

9.1 The fundamental constants

Paper I gives an extensive discussion of the evolution of the funda-
mental constants for both the proton to electron mass ratio μ and the
fine structure constant α in terms of a change of φ and a coupling
constant ζ c where c is μ or α (Nunes & Lidsey 2004).

c

c
= ζck(φ − φ0) = ζc

∫ a

1
β(a′)d ln a′, c = α, μ. (40)

The first equality is usually interpreted as the first term of a Taylor
expansion of a possibly more complicated coupling. The observa-
tional constraints on α/α and μ/μ are of the order 10−6 or less,
justifying the assumption. The last equality, not shown in paper I,
explicitly shows the connection between the beta function and the
evolution of the fundamental constants. Sections 4.1 and 4.2 show
the transformation of β(φ) to β(a) via the formulae for φ(a).

Fig. 17 shows the evolution of μ/μ versus the scale factor
for the logarithmic potential with β l = 3 and the five values of
w0. The positive and negative evolutions simply indicate that the
coupling could have either a positive or negative sign. The coupling
is arbitrarily set to ±10−6 for the figure. The evolution of the fine
structure constant is identical for the same coupling constant. The
evolution reflects the evolution of φ(a) since the coupling is assumed
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Figure 17. The evolution of μ
μ

for the logarithmic dark energy potential
with βe = 3 and w0 = −0.98, −0.96, −0.94, −0.92, and −0.98. The
coupling constant ζμ is set to ±10−6 as an example.

Figure 18. The evolution of μ
μ

for the exponential dark energy potential
for the βe values set by (w0 + 1) = 0.02, 0.04, 0.06, 0.08, and 0.1. The
coupling constant ζμ is set to ±10−6.

to be a constant. As expected the higher the deviation of w0 is from
minus one the larger the evolution of μ. Similar to the power-law
potentials in paper I the evolution of μ/μ relatively insensitive to
changes in β l.

Fig. 18 shows the evolution of μ for the exponential potential. As
described in Section 4.2 w0 and βe are not independent variables in
the exponential case. In Fig. 18 the five values of w0 are retained as
in Fig. 3 with the appropriate values of βe for each case. The values
of βe are shown in Fig. 18.

9.1.1 Observational constraints on μ

μ

As discussed in paper I the primary constraint on a variation of
μ is μ/μ ≤ ±10−7 from Bagdonaite et al. (2013) and Kanekar
et al. (2015) at a redshift of 0.885 82. This measurement defines
an allowed and a forbidden parameter space in the ζμ w0 plane.
The first parameter, ζμ, defines the limits on the allowed deviation
from the standard model, ζμ = 0, and the second, w0, the allowed
deviation from the cosmological constant, (w0 + 1) = 0. The upper
limit on ζμ is given by

ζμ = μ/μ∫ aob

1 β(a′)d ln(a′)
= μ/μ√

3�0(w0 + 1) ln(aob)
, (41)

where aob is the scale factor at the epoch of the observation. The
second equality shows explicitly the dependence on w0. Fig. 19
shows the allowed and forbidden parameter space for the logarith-
mic dark energy potential and Fig. 20 the parameter spaces for the
exponential potential.

Figure 19. The allowed and forbidden parameter spaces in the ζμ – w0

plane for the logarithmic dark energy potential.

Figure 20. The allowed and forbidden parameter spaces in the ζμ – w0

plane for the exponential dark energy potential.

The plots start at (w0 + 1) = 0.001 to avoid the plus and minus
infinite values of ζμ at (w0 + 1) = 0. The allowed parameter space
contains the �CDM cosmology which is the 0,0 point in the plots.
Although constrained to either small values of ζμ or (w0 + 1)
there is still room in the allowed parameter space to accommodate
quintessence.

1 0 R E L E VA N T BU T N OT D I R E C T LY
OBSERVABLE PARAMETERS

There are several cosmological parameters that are relevant but not
directly observable. Here two parameters, the time derivative of the
scalar field and the dark energy pressure, are calculated as functions
of the scale factor a.

10.1 The evolution of the time derivative of the scalar

As shown in paper I the time derivative of the scalar φ̇ is simply the
Hubble parameter times the beta function.

kφ̇ = a
kdφ

da

ȧ

a
= βH (42)

Fig. 21 shows the evolution of φ̇ with respect to the scale factor
a for the logarithmic dark energy potential for the five values of
w0 with β l held constant at three. The differences in the tracks are
entirely due the differences in the beta function since the values of
H(a) are essentially invariant with respect to the input parameters
as shown in Section 8.1 and paper I. The values of φ̇ are negative
because the logarithmic beta function is negative.

Fig. 22 shows the tracks of φ̇ as a function of a for the exponential
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Figure 21. The time derivative of the scalar for the logarithmic potential
for the five values of w0 with β l held constant at three.

Figure 22. The time derivative of the scalar for the exponential potential
for the five values of w0 and their associated values of βe.

dark energy potential for the five values of w0 and the βe values
associated with them. Both the logarithmic and the exponential have
φ̇ values approaching zero at the present time.

10.2 The evolution of the dark energy pressure

The dark energy pressure comes from the second of the Ein-
stein equations. −2Ḣ = ρm + ρφ + pφ where Ḣ = − 1

2 φ̇W,φ . From
equation (27)

W,φ = −2ρm

βW
− 1

2
βW (43)

which yields using kφ̇ = − βW

2

pφ = −2ρm − k2

2
φ̇2 + 3H 2. (44)

Fig. 23 shows the evolution of the dark energy pressure for the
logarithmic dark energy potential for the five values of w0 with
β l = 3. Since the pressure is negative the negative numbers rather
than the logarithms are plotted. As expected from the dark energy
density plots the pφ tracks cross over themselves. Fig. 24 shows the
pφ for the exponential potential for the five βe, w0 pairs.

1 1 R E L E VA N C E O F T H E A NA LY S I S

This paper completes the investigation started in paper I of four
common dark energy potentials in a quintessence cosmology. Here
the relevance of the findings to important cosmological and new
physics questions is examined. The literature on determining cos-
mological parameters based on observations is vast and it is not the

Figure 23. The dark energy pressure for the five values of w0 with a
logarithmic potential with β l = 3.

Figure 24. The dark energy pressure for the five βe, w0 pairs with an
exponential potential.

purpose of this section to determine the veracity of the various stud-
ies. Instead the following points out which parameters calculated in
this study and paper I are relevant to the important questions and
how they may differ from the current body of work.

11.1 Dynamical versus static dark energy

What observations can discriminate between a dynamic dark energy
quintessence cosmology and a static dark energy �CDM Universe?
An important finding is that due to the flatness of the quintessence
potentials in the dark energy dominated eras both cosmologies pre-
dict essentially identical evolution of the Hubble parameter H(a).
H(a) measurements, therefore, cannot effectively discriminate be-
tween the two cases. Measurements that differed from the predicted
evolution would, however, rule out both cosmologies.

Measurements of the dark energy equation of state w(a) and the
values of the fundamental constants μ and α can discriminate be-
tween dynamical and static dark energy. A confirmed observation
of w(a) 	= −1 or a change in the value of a fundamental constant
would rule out �CDM but would be consistent with quintessence
or other dynamical dark energy cosmologies. Tests for a value of
w(a) 	= −1 eg. Avsajanishvilli et al. (2017), are often conducted
using the Chevallier–Polarsky–Linder (CPL) linear model (Cheval-
lier & Polarski 2001; Linder 2003).

w(a) = w0 + wa(1 − a). (45)

Examination of Figs 15 and 16 indicates that the model is a reason-
able fit at low redshifts but is a bad fit at high redshifts where w(a)
is evolving rapidly in the quintessence cosmology. The tracks in
these figures provide more realistic templates to compare with ob-
servations than the CPL linear model. The shapes of the w(a) tracks
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Figure 25. Three CPL fits, dashed lines, to the evolution of w(a) for an
exponential potential with w0 = −0.94. The fits to the full range and the
range between a = 0.2 and 1.0 produce false phantom crossings.

suggest a possible reason why many observational studies seem to
favour phantom, w < −1, values of w e.g. (Chen, Huang & Wang
2017). Fig. 25 shows CPL fits to the w0 = −0.94w(a) evolution
for an exponential potential over three scale factor ranges; the full
range between 0.1 and 1.0 (z = 9 − 0), the range between 0.2 and
1.0 (z = 4 − 0), and the range between 0.5 and 1.0 (z = 1 − 0).

As expected the fit between z = 1 and 0 is a good match but the
two fits that include the higher redshift evolution produce phantom
values for w0 in equation (45) even though the true evolution has
no phantom values. It is also evident that observations at redshifts
greater than one provide more leverage on constraining deviations
of w(a) from minus one than observations between redshifts one
and zero.

Measurements of the values of μ and α provide more precise
constraints on dynamical dark energy. Figs 17 and 18 show the
expected evolutionary tracks for μ with a coupling constant ζμ =
±10−6 and the five different values of w0. A single measurement,
under the quintessence assumption of homogeneous dark energy,
determines the allowed parameter space for dynamical dark energy.
Figs 19 and 20 show the allowed parameter space in the (w0 + 1),
ζμ plane based on the observational constraint discussed in Sec-
tion 9.1.1. Any point other than 0,0 in the plane requires dynamical
dark energy, new physics or both.

11.2 The dark energy potential

As with the question of dynamical versus static dark energy, the
Hubble parameter yields essentially no information on the func-
tional form of the dark energy potential. Although not explicitly
depicted here the tracks of the cosmological parameters, such as
w(a) for the logarithmic potential have the same insensitivity to the
value of β l as shown for the power and inverse power-law potential
in paper I. The w(a) tracks for the exponential potential, however,
are sensitive to βe since the values of βe and w0 are coupled by
equation (16).

An accurate observational measurement of w(a) at a particular
scale factor or for a range of scale factors does not uniquely de-
termine the dark energy potential. Examination of Figs 15 and 16
shows that for a given coordinate in the w(a), a plane either a
logarithmic or exponential potential can match the coordinate by
altering the value of w0. The tracks in the two figures are for specific
values of w0 but all of the area between the minimal and maximal
tracks are covered by the range of w0 between −0.9 and −0.98.
All of the area below the minimal −0.98 can be covered by making

Figure 26. The rate of change, μ̇/μ per year for the logarithmic potential
with a coupling constant of ζμ = 10−6.

Figure 27. The rate of change, μ̇/μ per year for the exponential potential
with a coupling constant of ζμ = 10−6.

w0 arbitrarily close to −1.0 and the area above the maximal −0.9
tracks can be covered by making w0 even further from −1. The
tracks in both figures have very similar shapes, making it difficult
to discriminate between the potentials even with good knowledge
of w(a) over a large range of scale factors. However, if there is an
accurate measurement of w0 along with w(a) at other scale factors
there is some leverage in determining the potential. Of course any
determination of w other than minus one at any epoch would be a
significant finding.

11.3 The rate of change of fundamental constants

Laboratory constraints on the rate of change of fundamental con-
stants is another check on the possibility of dynamical dark energy.
Figs 17 and 18 indicate that the rate of change of μ and α in a
quintessence freezing cosmology is slowing down in the current
epoch. Figs 26 and 27 show the rate of change, μ̇/μ per year for
the logarithmic and exponential dark energy potentials with a cou-
pling constant of ζμ = 10−6. The proton-to-electron ratio is used
in the example but the fine structure constant α has exactly the
same track if its coupling constant is also ζ α = 10−6. It is clear
from Figs 26 and 27 that in a quintessence freezing cosmology the
current rate of change of the fundamental constants is significantly
less than rate at high redshift. Table 1 shows the rate of change
in units of 10−17mpl per year for μ at scale factors of 0.1 and 1.0
for the logarithmic and exponential potentials for the five values
of w0 and a coupling constant of +10−6. The signs between the
two potentials are opposite and would be reversed for a negative
coupling constant. The current rates of change are essentially the
same between the two potentials but diverge at a scale factor of
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Table 1. μ̇/μ per year for the logarithmic and exponential dark energy
potentials at scale factors of 0.1 and 1.0 for the five values of the current
dark energy equation of state w0 and a coupling constant of ±10−6.

μ̇/μ in 10−17mpl per year
Logarithmic Exponential

w0 a = 0.1 a = 1.0 a = 0.1 a = 1.0

−0.98 −23.4 −1.47 25.6 1.47
−0.96 −31.1 −2.07 36.5 2.07
−0.94 −36.2 −2.54 45.0 2.54
−0.92 −40.0 −2.93 52.4 2.93
−0.90 −42.9 −3.28 59.0 3.28

Table 2. The two swampland parameters for the potentials in this paper
and paper I. The units of φ are Planck masses. The β l, p, i values are 3 for
all potentials except for the exponential potential which uses the βe value
appropriate to the w0 value.

Swampland parameters
Log Exp Pow Inv Pow

w0 φ V
V

φ V
V

φ V
V

φ V
V

−0.98 0.45 0.09 −0.47 0.10 0.55 0.10 −0.58 0.11
−0.96 0.62 0.18 −0.67 0.21 0.76 0.20 −0.84 0.23
−0.94 0.73 0.26 −0.82 0.34 0.92 0.30 −1.06 0.38
−0.92 0.82 0.34 −0.94 0.47 1.04 0.41 −1.26 0.56
−0.90 0.90 0.42 −1.06 0.62 1.14 0.52 X X

0.1. The average current rate of change is roughly 18 times less
than the rate of change at a scale factor of 0.1. Current laboratory
bounds (Godun et al. 2014) are μ̇/μ = (0.2 ± 1.1)10−16 yr−1 and
α̇/α = (−0.7 ± 2.1)10−17 yr−1. Matching the cosmological obser-
vational bounds on μ/μ discussed in Section 9.1.1 with a coupling
constant of ±10−6 requires (w0 + 1) ≤ 0.02 which is the first row
in Table 1. This sets a limit a factor of 10 below the laboratory
limit. Unlike the laboratory limits the cosmological limit on μ/μ
is more stringent than the limit on α/α.

11.4 Checking on the swampland

String theory postulates a vast landscape of vacua that is surrounded
by an even more vast landscape, termed the swampland, of consis-
tent looking scalar field theories that are inconsistent with a quantum
field theory of gravity (Vafa 2005; Agrawal et al. 2018). Put another
way the swampland is the landscape of valid scalar field theories
that are incompatible with quantum gravity (Heisenberg et al. 2018).
Given the current interest in the swampland it is worthwhile to de-
termine whether quintessence with the potentials considered here
and in paper I dwells in the swampland. The boundaries of the
swampland are usually defined by two conjectures. The first con-
jecture is that the change in the scalar should be φ < ∼O(1) and
the second is that V/V ≥ ∼O(1). If either of these conjectures are
violated then the cosmology is in the swampland. It is not entirely
clear how restrictive of order 1 is or exactly what range of scale
factors φ and V encompass. It is obvious that �CDM is in the
swampland since V = 0.

The quintessence models considered here and in paper I certainly
live near the swampland with perhaps one foot in the swamp and one
foot dry depending on how of order 1 is interpreted. The swampland
parameters for the potentials in this paper and paper I are shown in
Table 2. Both  values are for the scale factor range between 0.1

and 1.0. The potential V in V/V is the current-day potential. The X
in the inverse power-law parameters for w0 = −0.90 indicate that
this is not a valid solution as shown in paper I.

All of the exponential and logarithmic potential cases considered
here satisfy the condition on φ under the assumption that −1.06
is of order 1. The power and inverse power law φ entries for the
three values of w0 closest to minus one, the most likely values, also
satisfy the φ conjecture, the dry foot. None of the V/V entries
strictly satisfy the associated conjecture, the wet foot. Very recent
work by Kinney, Vagnozzi & Visinelli (2018) suggest that this is
a feature common to most single scalar field cosmologies. Since
the potentials V(φ) are functions of the scalar φ larger values of
V require larger changes in φ which, as Table 2 shows, requires
larger deviations of w from minus one and drives the φ values
higher which could result in violating the φ conjecture. Obied
et al. (2018) have also suggested a criterion that |φ| < 1 in Planck
units which is not satisfied by the scalars in this work. It is not the
purpose of this discussion to determine whether having one foot in
the swamp is a good or bad thing but rather to simply show where
quintessence with the potentials examined here lies with respect to
the swampland boundaries.

1 2 C O N C L U S I O N S

This and paper I show that the beta function formalism provides
an effective way to calculate accurate solutions for cosmological
parameters as a function of the scale factor a. For the most part the
solutions are analytic functions utilizing known mathematical func-
tions. The superpotential for the logarithmic dark energy potential,
however, required an easily calculated numerical integral. The two
papers also demonstrate the application of the beta function formal-
ism and can act as a guide to the extension of the formalism to other
potentials and cosmologies.
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