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INTRODUCTION

Genomic sequencing of colorectal cancers reveals that
16% have a very high tumor mutation burden (TMB).1

Three quarters of such tumors display microsatellite
instability (MSI) associated with silencing or somatic
mutation of mismatch repair (MMR) genes. One
quarter are microsatellite stable (MSS) with somatic
mutation of the replicative DNA polymerase gene
POLE. Among advanced colorectal cancers, the
prevalence of POLE mutations remains unknown, but
only 3.5% are defective in MMR.2 POLE proofreading
and MMR act in concert to correct replication errors.
Because MMR-deficient tumors often respond to
immune checkpoint therapy,3-5 POLE-mutated tu-
mors might also respond. This report presents
a patient who had metastatic colorectal cancer with
an ultra-high TMB, intact MMR, and a pathogenic
p.Val411Leu POLE mutation, and who experi-
enced a complete and sustained response to the
programmed death 1 (PD-1) checkpoint inhibitor
pembrolizumab.

CASE REPORT

A 44-year-old man presented with a near obstructing
15-cm rectal mass. Family history was negative for
colorectal cancer. He underwent partial sigmoid
colon resection and colostomy. Pathology revealed
moderately differentiated adenocarcinoma with two
involved lymph nodes, classified as stage IIIC disease
(pT4bN1b according to the American Joint Committee
on Cancer staging system, eighth edition). He received
neoadjuvant radiation with capecitabine followed
by definitive surgery with low anterior resection,
intraoperative radiotherapy, radical cystectomy, and
construction of an ileal conduit. Pathology showed
abundant mucin without residual tumor cells. After
adjuvant chemotherapy with fluorouracil and oxali-
platin, computerized tomography (CT) scan showed
no evidence of disease.

Three years later, biopsy of an enlarging left supra-
clavicular lymph node revealed a KRAS-mutated MSS
adenocarcinoma with abundant extracellular mucin
and a lack of programmed death ligand 1 (PD-L1)

tumor cell expression by both E1L3N and SP263
antibody clones. The tumor-infiltrating lymphocytes
(TILs) could not be assessed, because this was
a lymph node metastasis and the primary tumor was
unavailable.

The patient received fluorouracil and irinotecan plus
bevacizumab. Treatment was complicated by a small
bowel fistula, which required discontinuation of bev-
acizumab, partial small bowel resection, takedown of
an enterorectal fistula, and placement of a permanent
rectal tube.

After a 3-month recovery from surgical complications,
imaging showed new pulmonary metastases. The
combination of fluorouracil and irinotecan was
restarted. Progressive disease led to retreatment with
fluorouracil and oxaliplatin, which was aborted after
a severe oxaliplatin hypersensitivity reaction. Enroll-
ment in a clinical trial assigned the patient to the
regorafenib control arm, but treatment was aborted
after 5 days for gross hemoptysis and a decrease in
hemoglobin from 10.1 to 7.0 g/dL. With extensive
pulmonary and nodal metastases and a large pelvic
tumor, he enrolled in hospice. The hemoptysis re-
solved, and performance status improved, so the
patient was treated with trifluridine and tipiracil. Five
months later, he suffered toxicities of pancytopenia
and fatigue and developed progressive disease. The
enlarging left supraclavicular nodal mass led to Horner
syndrome with ptosis and near syncope, which re-
quired palliative radiation.

The left supraclavicular lymph node specimen ob-
tained 3 years after surgery displayed approximately
20% tumor purity by histology. Genomic profiling with
the Stanford Solid Tumor Actionable Mutation Panel,
a hybrid capture–based next-generation sequencing
assay, revealed an ultra-high TMB relative to colorectal
carcinomas analyzed on the same panel (Fig 1B).
Additional testing demonstrated intact expression of
MMR proteins as well as MSS by polymerase chain
reaction. This prompted a search for the cause of the
striking TMB. An updated version of the Stanford Solid
Tumor Actionable Mutation Panel that included exon
9 and 13 of the POLE gene identified a pathogenic
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mutation in the POLE proofreading exonuclease domain
(p.Val411Leu; c.1231G.T) with a variant allele fraction of
25% (Fig 1A), consistent with estimated tumor purity. On the
basis of the ultra-high TMB, estimated at 200 mutations/Mb
(Fig 1C), our molecular tumor board recommended im-
munotherapy with an immune checkpoint inhibitor.

Pembrolizumab was obtained for compassionate use.
Treatment led to a transient increase in the carcinoem-
bryonic antigen (CEA) from 2,742 ng/mL to a peak of
3,727 ng/mL followed by a decline to a plateau of 57 to

83 ng/mL which was maintained through 25 months of
treatment and an additional 3 months of follow-up (Fig 2A).
This was associated with resolution of pain and normali-
zation of performance status from Eastern Cooperative
Oncology Group status of 2 to 0. Much of the residual CEA
level may have been attributable to inflammation from the
persistent enterorectal fistula. Serial positron emission to-
mography/CT scans showed gradual and sustained de-
crease in tumor size with complete resolution of metabolic
activity by day 729 (Fig 2B). The chest x-ray showed slow,
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POLE mutn Patient Tumor TMB/Mb PD-L1 Treatment (mo) Response (mo) Reference

V411L 44 yM CRC 200 Negative Pembro (25) CR (> 28)

V411L 81 yM CRC 122 Negative Pembro (> 12) CR (> 12) Gong14; Wang15

V411L 53 yF EC 150 Positive Pembro (> 14) PR (> 14) Mehnert12

P286R 57 yF EC 117 Weakly positive Nivo (> 7) PR (> 7) Santin13

POLE-mutant tumor characteristics and responses

FIG 1. Characterization of patient’s tumor. (A) POLE mutation. The exon 13 mutation c.1232G.T leads to amino acid substitution p.Val411Leu. The
mutation is depicted as C.A in this representative subset of the data, because POLE is encoded on the minus strand. We detected a total of 495 C.A
transversions of 1,982 reads, which provided a variant allele fraction of 25%. (B) Tumor mutation burden (TMB). The green dot indicates the number of
nonsynonymous mutations in the patient’s tumor detected by the targeted 196-gene Stanford Solid Tumor Actionable Mutation Panel. The boxplot
shows the median, interquartile range, and standard deviation for the TMB in 82 microsatellite-stable (MSS) colorectal cancers (CRCs) detected by the
Stanford Solid Tumor Actionable Mutation Panel at the time of patient testing. (C) Estimated TMB of patient’s tumor versus other tumors. The green dot
indicates the patient’s tumor. The gray dots indicate TMB for those POLE-mutated tumors reported to have responded to programmed death 1 (PD-1)
blockade: two CRCs and two endometrial cancers (ECs). The box plots show the TMB for a survey of 859 tumors with likely driver mutations in mismatch
repair genes that would producemicrosatellite instability (MSI) and 102 tumors with known or likely functional POLEmutations (adapted from Chalmers
et al16). (D) POLE-mutant tumors that responded to PD-1 blockade. The green text indicates the patient’s tumor. The table shows the POLE mutation
(mutn); patient age and sex (male [M] or female [F]); tumor type; TMB per megabase of sequenced DNA; programmed death ligand 1 (PD-L1) staining
of tumor cells; PD-1 blockade with pembrolizumab (pembro) or nivolumab (nivo) with treatment duration in months (mo); and complete response (CR)
or partial response (PR) with response duration in months.
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but ultimately complete, disappearance of the pulmonary
masses (Fig 2C). The delayed response was consistent with
slow clearance of mucin after tumor cell death.

The patient experienced a brief episode of localized herpes
zoster and later a brief episode of asymptomatic grade 1
transaminitis. Each episode was addressed by withholding
one cycle of pembrolizumab, and each quickly resolved
without sequelae.

DISCUSSION

In recent years, immune checkpoint blockade has emerged
as a safe and effective treatment of many solid tumors. In
particular, tumors with high level of MSI andmismatch repair
deficiency have shown dramatic responses to treatment with
immune checkpoint inhibitors.4,5 Similarly, accumulating

evidence suggests that TMB alone, independent of MMR
status, correlates with response to immune checkpoint
blockade for some tumor types.3,6-9 Hence, MSS tumors with
an ultra-mutated phenotype as a result of mutations in POLE
or POLD110,11 represent an intriguing subset of tumors that
may also respond to immune checkpoint inhibitors.

The case presented here adds to the few reports of POLE-
mutated tumors that responded to PD-1 checkpoint
blockade. Previous reports include two endometrial
cancers12,13 and a single colorectal cancer described at
4 and 12 months of follow-up.14,15 The four responsive
tumors, including the tumor in this report, displayed mu-
tations in the exonuclease domain of POLE (Fig 1D) and
ultra-high mutation burdens (greater than 100 mutations/
Mb, ie, more than 5-fold greater than the median TMB
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FIG 2. Tumor response to treatment. (A) Carcinoembryonic antigen (CEA). Bars above the graph indicate periods of treatment with fluorouracil and
irinotecan (FOLFIRI), fluorouracil and oxaliplatin (FOLFOX), regorafenib, trifluridine (TFD) and tipiracil (TPI), radiation therapy (XRT) to the left
supraclavicular mass, and the programmed death 1 (PD-1) inhibitor pembrolizumab. Time is shown as days relative to the initiation of pem-
brolizumab on day 0. (B) Positron emission tomography (PET)/computed tomography scan. Images show tumor burden on days 40 and 729 of
pembrolizumab treatment. Metabolic activity in the neck and lung showed near-complete resolution. The day 729 left cervical mass was interpreted
as lacking hypermetabolic activity on the basis of a comparison with the peritracheal signal from the blood pool. (C) Chest x-ray (CXR). Images show
tumor burden on days 84, 259, 469, and 791. Note the delayed disappearance of masses in contrast to the rapid decline in CEA.
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reported for MSI and POLE-mutated tumors17 [Fig 1C]). By
contrast, the responsive tumors were inconsistent in PD-L1
expression (Fig 1D).

Unlike patients in the other cases, the patient in this report
began treatment with the greatest extent of disease and
enjoyed the longest sustained response (which continued
beyond 28 months). The response was complete by chest
x-ray and positron emission tomography/CT scan (Figs 2A
and 2B). The dramatic decline in CEA led to residual CEA
levels, which may reflect residual fistulas and tissue
damage from previous tumor invasion. Finally, the patient’s
clinical course illustrates the potential pitfalls in early
evaluation of tumor response. Radiologic density of tumors
failed to change significantly for 8 months before finally
disappearing at 28 months.

The dramatic response in this patient shows the potential
benefit of evaluating MSS tumors for POLE and possibly
POLD1 mutations. However, it is important to realize that
some POLE or POLD1 mutations, particularly previously
uncharacterized mutations, may prove to be passenger
alterations with no effect on TMB.10 A prospective analysis
of 80,853 patients with advanced solid tumors revealed
known genomic alterations in POLE in only 259 patients
(0.3%), with a median TMB of 31 mutations/Mb.17 The
most common mutation was p.R446Q (n = 77), which is
uncharacterized, associated with low TMB (less than five

mutations/Mb), and predominantly germline. The two next-
most-common mutations, p.P286R (n = 41) and p.V411L
(n = 29), are both functional, associated with high TMB
(greater than 20 mutations/Mb), predominantly somatic,
and enriched in colorectal cancer and endometrial carci-
noma. These were the mutations present in the four POLE-
mutant tumors that have responded to PD-1 checkpoint
blockade in this and other published reports (Fig 1D).

However, not all POLE-mutated tumors respond to check-
point blockade. Two colorectal cancers with the p.P286R
mutation showed progressive and stable disease after 1 and
more than 10 months of follow-up.15 Both cases showed low
levels of CD8+ TILs. In fact, in a cohort of five MSI tumors and
three POLE-mutated tumors, high levels of CD8+ TILs oc-
curred in all four patients who experienced response and
none of the four patients who did not experience response
(P = .0007).15

It is still unknown if responses to PD-1 checkpoint blockade
will occur for tumors with POLD1 mutations or POLE mu-
tations outside the exonuclease domain or if responses will
occur in POLE-mutant tumors with a less extreme TMB (ie,
10 to 100 mutations/Mb). These unanswered questions,
along with the dramatic and prolonged response reported
here, strongly emphasize the importance of ongoing clinical
trials to evaluate responses to immune checkpoint inhibitors
in tumors that harbor POLE mutations.18-20
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