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Abstract

A number of recent studies have shown that cell shape and cytoskeletal texture can be used

as sensitive readouts of the physiological state of the cell. However, utilization of this infor-

mation requires the development of quantitative measures that can describe relevant

aspects of cell shape. In this paper we develop a toolbox, TISMorph, that calculates a set of

quantitative measures to address this need. Some of the measures introduced here have

been used previously, while others are new and have desirable properties for shape and

texture quantification of cells. These measures, broadly classifiable into the categories of

textural, irregularity and spreading measures, are tested by using them to discriminate

between osteosarcoma cell lines treated with different cytoskeletal drugs. We find that even

though specific classification tasks often rely on a few measures, these are not the same

between all classification tasks, thus requiring the use of the entire suite of measures for

classification and discrimination. We provide detailed descriptions of the measures, as well

as the TISMorph package to implement them. Quantitative morphological measures that

capture different aspects of cell morphology will help enhance large-scale image-based

quantitative analysis, which is emerging as a new field of biological data.

Introduction

The shape of a cell spread on a substrate is determined by the balance between the internal and

external forces exerted on the cell boundary. The cell exerts forces and responds to external

forces, from the extra-cellular matrix (ECM) or from neighboring cells, with the help of

molecular motors and the cellular cytoskeleton, which is thus the ultimate determinant of cell

shape [1, 2]. The cytoskeleton is a complex network, made of three major kinds of filaments—

f-actin, microtubules and intermediate filaments—that form a cross-linked dynamic mesh-

work in the cytoplasm, providing shape and structure to the cell [1, 3]. The most dynamic
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constituent of the cytoskeleton, which is especially important in force generation and motility,

is the filamentous actin (f-actin) network [4]. The f-actin network is directly involved in the

formation of lamellipodia and filopodia through polymerization of f-actin against the cell

membrane [5]. A third kind of cellular protrusions, blebs, are a result of the cortical actin net-

work detaching from the cell membrane [6], and the convex shapes of adherent cells have been

shown to result from myosin-II driven actin contractility [7].

The f-actin network is also deeply involved in force generation, force sensing and mechano-

transduction. Contractile forces generated by myosin motors within cytoskeletal networks,

membrane extension caused by actin polymerization, changes in osmotic pressure by opening

of water or ion channels are examples of internal forces that play a role in shape of a cell. Exter-

nal forces leading to shape changes are applied through neighboring cells or ECM [8]. Actin

filaments can generate and also resist mechanical stresses and cell deformation. But they can

also eventually reorganize and change their structure, thereby sometimes relaxing external

stresses. Different mechanical properties of the cell cytoskeleton and ECM will lead to different

shapes for the cell. Thus the f-actin network is primarily responsible for the shape acquired by

the adherent cell. It follows that the structure of the f-actin network must be related to the

global shape of the cell, though the exact relation between the two is likely to be complex and

non-linear.

Image-based screens are becoming widely used as a marker and predictor of cellular pheno-

type and behavior. Advancements in microscopy technology has provided the means to cap-

ture subcellular organization and cell shape with high resolution. However, our ability to gain

insight into cellular processes through subcellular organization and cell shape is limited by the

quantitative measures that we use to represent them. In machine learning algorithms informa-

tion of each pixel in the image can be used to screen phenotype. However, implementing fea-

tures of objects instead of pixels provides interpretable results at single cell resolution, which is

more beneficial in biological applications. In addition using object features leads to reduced

noise in the data, and may improve results.

In our previous work, we used Zernike moments and geometric parameters as a measure of

cell shape to distinguish between high metastatic and low metastatic osteosarcoma cancer cell

lines with 99% accuracy [9, 10]. Other groups have also reported that cell shape can predict

tumor grade [11], changes in the nuclear/cytoplasmic ratio of NFkB [12], and YAP (Yes-asso-

ciated protein), [13], chemosensitivity of human colon cancer cell lines [14, 15], differences in

motility [16], forms of motility [17], the progress of the Epithelial to Mesenchymal transition

(EMT) [18] and the differentiation of Human Mesenchymal Stem Cells (hMSCs) into osteo-

blasts [19]. Many of these developments have been extensively discussed in recent reviews

[20, 21].

In addition to the importance of the actin cytoskeleton in determining the shape of the cell

and the nucleus, the structure and organization of the f-actin network may provide additional

information that can improve the prediction of cell physiology and better distinguish between

cells in different states. There is a case to be made, therefore, of including measures of actin

organization into studies of cell shape and its relation with cell phenotype, especially as actin

staining is often used as the primary mean to determine the shape of the cell. Actin staining

also provides textural information, which is directly related with actin structure, and as we

show below, addition of this textural information significantly improves the discrimination

between cell types.

The importance of cell and nuclear morphology and cytoskeletal organization as a tool for

understanding and predicting cell behavior raises the need to appropriately quantify the shape

and cytoskeletal texture of a cell. Here we introduce TISMorph as a tool to quantify morphol-

ogy and sub cellular structure of a cell. Good quantitative measures, should be capable of
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capturing biologically important differences between different experimental conditions. How-

ever, not all measures will be optimal for each comparison, and thus one will have to begin

with a larger set of quantitative measures and discard uninformative ones if needed. Further-

more, good measures must not show significant differences between technical replicates in the

same experiment. Based on these arguments we chose to test the measures calculated by TIS-

Morph for cells treated with pharmacological modulators of the cytoskeleton. Features calcu-

lated by TISMorph can also be generalized to be used to quantify other subcellular structures

such as intermediate filaments, plasma membrane, endoplasmic reticulum, mitochondria or

even super cellular structures such as histopathology images and Magnetic resonance images

of brain. These quantitative measures also meet the criteria proposed for good morphometrics

by Pincus et. al. [22], i.e., that shape measures should possess fidelity, capture biologically

important variation and be meaningful and interpretable.

Experimental methods

For this study DUNN and DLM8 osteosarcoma cancer cells were used. The DLM8 line is

derived from the DUNN cell line with selection for metastasis [23]. Therefore, DLM8 is closely

related to DUNN except for degree of its invasiveness. Both cell lines were a gift from Dr.

Douglas Thamm (Colorado State University, CO, USA). They were cultured on glass detergent

washed and air dried (GDA) substrates with standard culture conditions of 37˚C and 5% car-

bon dioxide concentration in Dulbecco’s Modified Eagle Medium (DMEM) (Sigma Alrdich)

in triplicates on the same day. DMEM was supplemented with 10% EquaFETAL Fetal Bovine

Serum (Atlas Biologicals) and 100 Units/ml penicillin with 100 μg/ml streptomycin (Fisher Sci-

entific-Hyclone). After 45 hours of culture, cells were incubated with different cytoskeletal

drugs with description, conditions, and vendors listed in the Table A in S1 File for 3 hours.

Then the cells were washed and fixed with 4% paraformaldehyde. Finally, they were fluores-

cently stained for nuclei (DAPI from Molecular probes) and actin (Acti-stain 488 phalloidin

from Cytoskeleton, Inc). All the drugs were dissolved in Dimethyl sulfoxide (DMSO) (Fisher

BioReagents) and to drop its effect on cell shape and actin structure control study was also

treated with DMSO with the same molarity as other drugs. Then the cells were imaged using

fluorescent microscopy. Representative images of each cell line treated with these drugs are

shown in Fig 1.

Image processing

In order to strike a balance between the throughput and the accuracy of the image processing,

the image processing is fully supervised by the operator to reduce the number of artifacts and

also automated as much as possible to speed-up the processing of the images. The image pro-

cessing code is stream-lined into a consecutive step-by-step workflow which consists of four

steps as follows. 1) A graphic user interface (GUI) enables the binary thresholding of the actin

and nucleus images. While a thresholding value is suggested automatically by Otsu’s method,

users can easily adjust the thresholding value using a slide bar in the GUI by visually checking

the original image and the thresholded image displayed side-by-side in the GUI. 2) Cell declus-

tering in the thresholded images is done using an optimized template of the open-source soft-

ware CellProfiler [24]. 3) The outputs from the CellProfiler are then visually examined by the

operator and corrections can be made if necessary using the modules functionalized into this

step. To facilitate the following analyses, each cell is centered and saved separately into one

1024x1024 image. Except for CellProfiler, all the other image processing codes were pro-

grammed in-house using Matlab (Mathworks) and are available on https://github.com/

Wenlong-Xu/Image_Processing_Cell_Shape. Also available are the detailed protocol on
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how to configure the image processing codes and the CellProfiler template used for cell

declustering.

Data analysis methods

Quantifying changes in multidimensional shape space

We use close to 260 features to quantify shape and structure of the cell. Thus the morphology

of each cell is represented as a vector with 260 numbers, or equivalently as a point in a

260-dimensional space, where each axis represents a morphological measure. We can call this

260-dimensional space the “multi-dimensional shape space”. High dimensional data sets like

this one are typically analyzed using dimensionality reduction techniques such as Principal

Component Analysis (PCA) [25]. PCA is our method of choice here also because of its simplic-

ity and the fact that it is based on finding the directions of maximum variance in the data set,

and hence works well with classification tasks. The shape parameter vector can be projected

down to a lower-dimensional space of the first few principal components (PCs). However

since the principal components are a linear combination of the actual parameters, we often

cannot distinguish the role of specific parameter categories in morphological differences. For

example we may be interested in knowing what aspects of morphology changed the most

dramatically when a particular cell type is treated with a pharmacological drug, but this

Fig 1. Representative images of DUNN and DLM8 osteosarcoma cancer cell lines with different drug treatments. Blue color represents nuclei and

green color represents actin cytoskeleton.

https://doi.org/10.1371/journal.pone.0217346.g001
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information is often difficult to discern in either multidimensional shape space, or in the lower

dimensional principal component space. In order to facilitate this analysis we calculated the

principal components for each drug treatment and each of the shape categories discussed

below separately. In most cases the first four principal components account for almost all of

the variation in the data. While doing comparisons between two experimental conditions, we

will often pick the most informative principal component for our analysis from among the

first four PCs. This is done in the following manner. We pick the PC whose worst case, i.e.

largest p-value for a t-test for comparison of the means between cells in two experimental con-

ditions, is better (i.e. smaller) than that of any other PC, so that it is the best single measure for

distinguishing between all the comparisons. In other words, for each principal component

maximum p-value between all comparisons is calculated as Eq (1). Note that the p-value of the

t-test is not used here for calculation of statistical significance but just to help us easily pick the

best separated data among the 16 possible two dimensional plots for comparison of any two

shape categories.

MAX‐PPC1 ¼ MaxðP‐valuePC1;1; . . . ;P‐valuePC1;nÞ ð1Þ

Where P-valuePC1,n is the p-value for nth comparison in the first principal component. Then

from the first four PCs, the one that has the smallest MAX-P, maximum p-value between dif-

ferent comparisons, is chosen. In each shape category, we choose the best principal component

by this criteria, and will describe them as the Primary Principal Components (PPC) of each

shape quantification measure or category, for each analysis.

Pearson correlation

Many of the features that our toolbox calculates are partly redundant, and are therefore corre-

lated with each other. A simple method to estimate the degree of redundancy is to use the Pear-

son correlation coefficient, which calculates the extent to which two variables are linearly

correlated. The Pearson correlation coefficient is calculated between features as shown in Eq

(2). Here r is Pearson correlation coefficient, xi is the feature x for ith sample, yi is the feature y
for ith sample, μx is the average value of the feature x for all of the samples, and μy is the average

value of the feature y for all of the samples. This coefficient is calculated within each shape cate-

gory for all 14 cell lines and drug combinations (2 cell lines x 7 drugs) and the averaged coeffi-

cient is recorded. The results are shown in heat map plots in Fig A in S1 File. In these plots the

diagonal elements are correlation between features with themselves, so they are all 1. Note that

since the Pearson correlation coefficient is symmetric so each heat map plot will be symmetric

as well.

r ¼
Pn

i¼1
ðxi � mxÞðyi � myÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðxi � mxÞ

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ðyi � myÞ

2
q ð2Þ

Results

Developing shape quantifiers

The actin structure is obtained from pixel intensities of labelled actin, which we can represent

by a grayscale image, Fig 2A. These grayscale images of cells, or images of stained nuclei, are

converted into a binary image (Fig 2C) and the coordinates of the edges are recorded (Fig 2B),

yielding the cell boundary. To extract features of the morphology from this numerical data, we

introduce three classes of shape measures, described as textural,irregularity, and spreading

TISMorph: A tool to quantify cell morphology
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classes. Textural measures are divided into three subcategories called band based measure-

ments, gray scale fractal dimension, and gray scale measures which are calculated based on the

intensity plots of actin, Fig 2A. Irregularity measures include parameters such as the waviness

and roughness, which use information regarding the pixels at the boundary of the cell, Fig 2B.

Each of these shape categories have been described below. Spreading measures, which include

measures based on a Zernike moment representation of shape as well as subcategories involv-

ing basic geometric parameters such as area and perimeter, are extracted from the binary

representation of the cell(Fig 2C, its convex hull, or a similar image of the nuclei.

Textural measures. The textural measures that we adapted or developed were based on

actin organization, and were developed to capture aspects of the global and local structure of

actin. In many images actin was often organized into bands, necessitating the development of

the band based measured discussed below. Actin was often polarized, or partially polarized,

and there were differences in the distribution of thicker stress fibers and thinner fibers, with

some cells showing more heterogeneity than others. To quantify these we adapted planar frac-

tal dimension as well as the Gray Level Co-occurrence Matrix (GLCM) based measures dis-

cussed below.

Band based measurements This parameter is sensitive to changes in the radial symmetry

of the distribution of actin filaments. We divide the image into 10 equally spaced concentric

regions (Δr) around the center of mass of the image, called bands, as shown in Fig B in S1 File.

Five quantifiers are used to measure the differences in actin distribution between these bands.

First, average intensity for each band is calculated. Then indices of the bands which have the

lowest or the highest average intensity and their value are recorded. The last measurement is

what is called above average adjusted intensity of the bands which is formulated in Table B in

S1 File along with other band based measures [26]. Band based measures are especially impor-

tant in characterizing the actin distribution of the cells treated with Cytochalasin D, where

actin has very unique symmetrical distribution. In these cells, dense foci are formed around

the nucleus. The bands located in the central region of the cells are void of actin. At the outer

bands, short linear actin structures aligned along the radius are observed.

Gray scale fractal dimension Fractal dimension (FD) is a measure of roughness of objects,

and can be applied to the characterization of texture in engineered and natural images. There

are many methods to calculate this measure, and we chose the box counting method for its

inherent simplicity. In this method the binary image is first covered with an evenly spaced grid

with side length of �. Then, the number of boxes which cover the fractal image are counted.

Fig 2. Representation of cell shape. (A) Gray scale images using labeled actin. Intensity of each pixel is recorded and

represented as a grayscale intensity plot. (B) 2D outline: Position of each pixel in the boundary is recorded in polar or

Cartesian coordinate. (C) Binary image of actin.

https://doi.org/10.1371/journal.pone.0217346.g002
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This process is repeated by decreasing the side length and the FD is calculated based on Eq (3)

FD ¼ lim
�!0

logNð�Þ
log 1

�

ð3Þ

Here � is the size of each box in the grid and the variable N(�) is the number of the boxes

which contain the fractal. We calculate FD based on a binarization of the grayscale image

using edge detection methods to identify actin voids. This is done using four different edge

detection methods in Matlab. To provide an example, binarized images of a cell from DUNN

cell line treated with Cytochalasin D using these four edge detection methods are shown in Fig

C in S1 File. We found that different edge detection methods pick up different aspects of the

actin structure, and so for every cell their gray scale image is binarized using these four meth-

ods, and their FD calculated [27].

Other gray scale measures Haralik et al. introduced a procedure for quantifying the texture

of satellite images based on the spatial relation between the gray tone of neighboring pixels in

an image, for image classification [28]. This method is based on the Gray Level Co-occurrence

Matrix (GLCM, sometimes called Spatial-Dependence Matrix), calculated as follows. For an

image that has intensities of 1, 2, . . ., g, the co-occurrence matrix is a g x g matrix such that its

ijth element is the number of the times that a pixel in the image has intensity equal to “i” and

the pixel at a pre-defined distance~d (which we choose to be 1 pixel) from it has intensity of j.
An example of a 4 pixels x 4 pixels image with 5 gray tone levels is shown in Fig D in S1 File. In

a GLCM matrix when there are very few dominant transitions in gray tone of an image in

neighboring pixels, the matrix will have small value for all of the entries. Each diagonal element

of a GLCM matrix represents the number of the times that gray tone does not change in the

neighboring pixel. Large diagonal elements imply that the image is homogeneous. Large num-

bers in the far upper right and far lower left of the matrix implies large transitions in intensity

and high contrast in an image. After calculating the GLCM matrix, shown for the example

image in Fig D in S1 File, 23 different measures are calculated to quantify the texture in an

image. The list of measures are tabulated in Table C in S1 File [28–30]. For example one of the

parameters is the contrast. For interpretation of this measure, it is useful to keep in mind that

the contrast in an image is proportional to the changes in gray tone, n = |i − j|, so the far upper

right and far lower left which have bigger value of n will have bigger contribution to the con-

trast parameter. For homogeneous images, the diagonal entries will be large, and will have a

bigger contribution to the homogeneity measure. In this study we calculate the GLCM matrix

for the vector~d equal to 1 pixel in magnitude and with directions of 0˚, 45˚, 90˚, and 135˚ and

then the average value for each parameter is reported. This process yields rotation invariant

measures.

Irregularity of boundary measures. In addition to textural measures, irregularities in the

boundary also carry information about the state of the cell. For example an irregular border

could arise due to a large number of filopodia in the cell, which is a signature of a highly

dynamic cytoskeleton. A highly contractile cell may retract from focal adhesions at the bound-

ary creating many membrane protrusions that increase variability. To quantify irregularity of

the cell boundary, the 2D boundary of the cell is used as shown in Fig 2B. We use the pixel

positions that mark the boundary of the cell to calculate waviness, which estimates the periodic

variation in the boundary, and roughness, which measures the non-periodic variation in the

boundary, as discussed below.

Waviness measures Using a Fourier series, a signal can be expanded in terms of linear

combinations of orthogonal basis functions of sines and cosines with increasing frequencies.

In the Fourier series expansion, it is assumed that the input signal is periodic. The outline of a
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cell is a closed curve, hence it is counted as periodic signal. The boundary of the cell could be

represented in Cartesian coordinates, x and y, or polar coordinates, ρ and θ. Regardless of

coordinate selection, it will lead to two independent signals which can be separately written as

linear combination of cos and sin basis functions as Eq (4).

f ðxÞ ¼ Cx;0 þ
XnPixel

n¼1

ðAx;n cos ðwnxÞ þ Bx;n sin ðwnxÞÞ ð4Þ

Where nPixel is the number of the pixels in the boundary of a cell and w
2p

is fundamental fre-

quency which is equal to 1

2pnPixel. The variable n is an integer number and n � w is the nth fre-

quency in the decomposition. Variables Ax,n and Bx,n are amplitudes of nth frequency, Cx,0 is

the mean of the signal, and f(x) is the input signal. If we use a very large number of frequen-

cies, we can reconstruct the cell almost perfectly, but the number of descriptors will be unnec-

essarily high. There is a tradeoff between the number of frequencies (shape descriptors) used

and the accuracy of the reconstruction. We are interested in quantifying shape without deal-

ing with high number of parameters. Since the amplitude decreases with increasing frequency,

we can filter higher frequencies and just use lower frequencies to decrease the number of

descriptors used for the analysis. Here, with qualitative analysis of reconstructed cells with dif-

ferent frequency we decided to use only the first 35 frequencies as descriptor of the cell.

Reconstruction of the shape of even rather irregular cells using these 35 frequencies is excel-

lent, as shown in Fig 3. Finally, a remaining issue for the Fourier coefficients is that they are

not rotationally invariant. We can construct a rotationally invariant measure by using Eq (5),

which removes the phase difference in the Fourier expansion. This also reduces the number of

Fig 3. Reconstruction of the cells using Fourier decomposition. The blue line is the actual boundary of the cell and black line is the reconstruction of

the cell using the first 35 terms in the Fourier series expansion.

https://doi.org/10.1371/journal.pone.0217346.g003
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parameters by half. Even though reconstruction of cell shape will not be possible with the rota-

tionally invariant measures, our results show that they are nevertheless useful parameters for

distinguishing between cells with different degree of variations in the radius. We will refer to

these parameters as Waviness parameters. Interestingly, for Fourier parameters, all the fea-

tures show low correlation coefficient with each other (0.35), suggesting that each coefficient

carries mostly independent information. This observation was expected since we use orthogo-

nal basis functions.

Cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
An

2 þ Bn
2

p
ð5Þ

Roughness As explained earlier, in the Fourier series decomposition of the cell boundary,

higher frequencies have small amplitude and we neglect them. However, we can still obtain

information about small amplitude variations from those high frequency terms. Following the

method of Villanueva et. al. [31] to account for high frequency measures, we reconstruct the

cell with the 35 Fourier components and subtract it from the original signal. The difference

represents the roughness of the perimeter on a smaller scale than the variations picked up

faithfully by the 35 Fourier frequencies. Statistical measures of the magnitude of this difference

are called roughness measures and are listed in Table H in S1 File. Visual examples of rough-

ness as defined here can be seen in the lower panel of Fig 3.

Spreading measures. In this class of shape quantifiers, the binary image of cell and nuclei

is used. These measures include geometric parameters for nuclei and cell, convex hull mea-

sures and Zernike moments for cells.

Geometric measures Geometric measures are perhaps the most widely used morphology

measures, and those presented below have been adopted from previous studies. Parameters

like area, perimeter, major axis of fitted ellipse, minor axis of fitted ellipse, and their ratio are

examples of geometric measures. All geometric measures used in this study to quantify cell

and nuclei’s shapes are listed in Table E and Table F in S1 File.

Convex Hull measurements The closest regular geometric object to a spread cell is proba-

bly an enclosing convex polygon. A convex polygon is a closed polygon such that the connect-

ing line between any pair of points inside the polygon, lies completely inside the polygon. Fig

E in S1 File shows an example of a convex and non-convex polygon. The convex hull of a 2D

shape is the smallest convex polygon that encloses the whole shape [32], and its geometric

properties reflect the properties of the enclosed cell. An example of the convex hull of a 2D cell

shape is shown in Fig E in S1 File. Convex hull geometric measures used in this study are listed

in Table G in S1 File.

Zernike moments To calculate Zernike moments, the image of the cell is projected to the

Zernike Polynomial basis function and the coefficients, called Zernike moments, are used as

descriptor of cell shape. The Zernike polynomials form a complete orthogonal set of basis

functions over the unit circle. Zernike moments are complex numbers whose magnitude is

rotation invariant, and can be made displacement invariant by moving the cell to the center of

the imaging frame such that the center of mass of the image falls on the geometric center of the

frame. The procedure has been discussed extensively previously [9], and Zernike moments

have been used previously in other types of biological image recognition [33]. The Zernike

moment expansion is also a basis function expansion like the Fourier series, and is capable of

perfect reconstruction of the cell in principle. However in practice numerical errors prevent an

accurate reconstruction when too many moments are used, and thus Zernike moments cannot

capture the fine features of cell shape as well as Fourier series can. We found the best results

when using about 147 Zernike moments (order upto 30, repetition for each order upto 10),
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which is what is currently calculated by TISMorph. These numbers can be changed by the user

if needed.

Validating performance of developed measures on osteosarcoma cells

perturbed with different cytoskeletal drugs

Drugs which directly perturb microtubules, myosin-II or actin leave a unique signature

on actin structure which is quantifiable by textural measures. We found that the most dra-

matic and unique effects on cell shape and texture arise from drugs that directly perturb

microtubules or actin filaments. As shown in Fig 1, control cells acquire a polygonal shape on

surfaces. Depolymerizing actin using Cytochalasin D leads to rounded cells where the actin

has re-organized into alternating concentric rings of high and low density. Within each ring

the actin is structured in very unique radial streaks! Increasing the depolymerization rate of

microtubules using Nocodazole leads to a small rounded morphology. Inhibiting myosin II

activity and decreasing cell’s contractility using Blebbistatin leads to increase in irregularities

in the cell boundary. These changes in shape and structure of a cell are similar for both DUNN

and DLM8 cell lines. Changes in structure and morphology of the cells using the other drugs

in our experiments, with more indirect effects on the cytoskeleton, are subtle and not easily

identifiable by eye. To quantify changes in shape and structure of the cells perturbed with dif-

ferent drugs, gray scale and binary image of the cells along with information of the boundary

of the cells were used to measure all features in the 9 shape categories detailed above for each

cell. Fig H in S1 File demonstrates quantified changes in all the measures for all the drugs. As

demonstrated in this figure the changes in textural measures for all the drugs are significant, as

measured by a t-test. This means that all the drugs that perturbed actin either directly, or indi-

rectly through perturbing other cytoskeletal components, lead to significant changes in actin

cytoskeleton organization. Our morphological measures significantly improve the classifica-

tion of cells by experimental condition, compared with standard geometric measures. Some

examples of the improvement of classification tasks are shown in Fig 4. In particular the band

based measures and the planar fractal measures significantly improve some classification tasks

where relatively small changes in cell shape are accompanied by significant changes in actin

structure.

Actin reorganization changes the spreading measures for both the cell and the

nucleus. To explore changes in 2D shape of a cell and nuclei by changing actin distribution

we compare the PPC of the geometric measures of the cell and nuclei. As shown in Table I in

S1 File perturbing actin significantly changes cell geometric measures other than for DLM8

cell line treated with Jasplakinolide. Interestingly changes in actin structure not only changes

cell geometric measures, but it also changes nuclei geometric measures for all conditions other

than both cell lines treated with Blebbistatin and DUNN cell line treated with Jasplakinolide

and PP2 drugs. Zernike moments and Convex Hull parameters are similar in some respects.

Although their quantification method is very different, as shown in reconstruction of the

image of cells using Zernike moments (Fig F in S1 File) both measures ignore the irregularities

and fine fluctuations in the boundary. As demonstrated in Table I in S1 File, changes in the

PPC for both measures are not distinguishable for DUNN cell lines treated with PP2, and both

cell lines treated with FAKI 14. Moreover, hull geometric measures do not change significantly

for DLM8 cells treated with Cytochalasin-D and DUNN cells treated with Jasplakinolide. In

addition, Zernike moments do not change significantly for the DLM8 cells treated with Bleb-

bistatin and DUNN cells treated with Cytochalasin-D. All other drugs lead to distinguishable

changes in convex hull and Zernike moment measures. Since many cell shape parameters are
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expected to be correlated with each other, we performed a correlation analysis of all the mea-

sures within each shape quantification category, which are shown in Fig A in S1 File. These

results indicate that Zernike moments, cell geometric measures, nuclei geometric measures,

and convex hull geometric measures are highly correlated with each other.

Fig 4. Examples of classification tasks that improved after using the morphological measures in TISMorph. A).

Cells treated with cytochalasin D can be distinguished from control cells significantly better using band based

measures (right panel), when compared with geometric measures (left panel). B). Cells treated with PP2 overlap

significantly in their geometric measures with control cells (Left panel) but cluster separately when fractal dimension is

used. C). Cells from one experimental condition cluster together when primary principal components (PPCs) of

different morphological classes are plotted. (Left) Nuclei measures (represented by their PP1) vs Cell geometric

measures (PP2). (Right) Band based measures (PP2) vs Fractal dimension (PP2).

https://doi.org/10.1371/journal.pone.0217346.g004
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Cytoskeletal reorganization leads to changes in irregularities of a cell’s boundary. As

shown in Fig H in S1 File, waviness measures for all the drug conditions, except for DUNN

cell lines treated with Jasplakinolide or PP2 and both cell lines treated with FAKI 14, changes

significantly with respect to controls. In addition, the roughness measures change significantly

for both cell lines treated with Blebbistatin, Cytochalasin-D, FAKI 14, and Nocodazole. In

both cell lines, Jasplakinolide does not change the roughness measure significantly, which is

also the case for the DUNN cell lines treated with PP2.

Different categories of shape quantifiers represent partly non-redundant shape infor-

mation. While we have shown that each of our major categories and subcategories serve as

good shape measures, in that they can be used to look for interpretable shape changes in differ-

ent drug conditions, it is not clear whether we need all of them to represent shape. In order to

estimate the degree of redundant information carried by the different shape categories, we cal-

culated the Pearson correlation coefficient between all the features from different shape cate-

gories (shown in S2 File). In general, features from two different shape categories are relatively

weakly correlated (< 0.4) except for Convex Hull and Cell Geometric features which are highly

correlated with each other, which is expected. There are a few other specific exceptions for

which the features are also highly correlated. They are as follows. Zernike moments with

n< 16 and m = 0 are highly correlated with Area. The correlation coefficient between Cell

Area and Zernike Moment 0- 0 is 1. It decreases with increasing order till it is almost zero for

Zernike Moment (22- 0), then it becomes negative and increases in magnitude (Fig G in S1

File). The coefficient C0 from waviness features has a correlation of 1 with the Mean Cell

Radius. It is also highly correlated with Cell Area (0.93) and Convex Hull area. Since the Fou-

rier decomposition is based on a radial representation of the cell shape, C0 is a measure of the

average cell radius, and should be expected to show these high correlations. Fractal Dimension

measures also have high correlation with Cell Geometric, Nuclei Geometric, Gray Scale mea-

sures, and Zernike moments with m = 0 and n< 17. However, apart from these specific cases,

the relatively high number of weak correlations between different shape categories implies that

these shape categories contain non-redundant information about cell shape. Thus, quantitative

shape analysis should ideally be carried out with representations from all of these shape catego-

ries in order for most efficient discrimination between different experimental conditions.

Discussion

In this paper we introduce and provide the TISMorph package to quantify cell shape and cyto-

skeletal structure based on two dimensional images of cell morphology and actin structure.

The Matlab toolbox used to process the images and quantify the shape and structure of a cell is

shared in GitHub repository to be used by others. These toolboxes can be found in the follow-

ing addresses, https://github.com/Wenlong-Xu/Image_Processing_Cell_Shape, https://github.

com/Elaheh-Alizadeh/Quantifiction-of-shape-and-structure. Some of the textural and mor-

phological features calculated by TISMorph are similar to the measures calculated by CellPro-

filer(CP) [24]. Geometric features of nuclei and cell, and gray scale measures calculated in this

paper overlap with the measures calculated in CellProfiler by MeasureObjectSizeShape and

MeasureTexture module. CP also calculates Zernike moments, though only to order 10, while

we use Zernike moments up to order 30, because we find that fewer orders do not resolve

objects sufficiently. Some of the measures we calculate are not implemented in the version of

CP current during the time of submission. These are Fractal dimension, hull geometric mea-

sures, band based measures, and irregularity measures. However CP does calculate a few addi-

tional measures in the MeasureObjectIntensity module, which are statistical measures of

intensity of objects such as mean and standard deviation of intensity, that are currently not
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included in TISMorph. Thus TISMorph includes significant additions to the previous state of

the art as represented by the quantitative metrics calculated by CP.

The quantitative measures in the TISMorph package have been developed on the basis of

empirical investigation of statistically significant differences between experimental conditions

in principal component space. Though cell morphometrics are noisy, our data shows that mor-

phometric measures from technical replicates overlap with each other, indicating that cells in

identical conditions show the same distribution of morphologies (Fig I in S1 File). In this

paper we explored the capacity of these quantitative measures to capture biologically impor-

tant information. We perturbed the cytoskeleton of the cells with different drugs and explored

their effect on cell shape and its structure. The data can be found in S3 File. We first used

textural measures to verify that the actin structure of the cell changes in the cells treated by

cytoskeletal drugs and then we explored changes in the cell’s and nuclei’s 2D shape and irregu-

larities of the cell boundary accompanied by changes in actin structure. Here we showed that

most of the drugs used in this study directly or indirectly lead to significant changes in actin

structure. Then we explored effect of changes in the structure of the cell on the measures of

irregularities of cell boundary, nuclei spreading, and cell spreading. In most of the cases

changes in actin structure are accompanied with significant changes in irregularities of cell

boundary, and cell and nuclei spreading. The results show that textural measures and spread-

ing measures are related but their relation is not simple, and the two classes of measures carry

non-redundant information. It is worth mentioning that although we implemented textural

measures to quantify actin structure, they can be used to quantify other sub-cellular and

super-cellular structures as well. Shape quantification methods presented in this paper will

prove useful for morphological screening for use in computer aided diagnostics in diseases

such as cancer that are associated with cytoskeletal perturbations, assessment of qualitative cel-

lular changes in different experimental conditions, and for mechanistic understanding of the

determination of cell shape. In particular, morphological screening is emerging as a new high-

throughput technique with wide applications in assessing functional biological responses [20,

21], and TISMorph should help increase the sensitivity and specificity of morphological

comparisons.
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