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ABSTRACT

We present mathematical arguments and experimental evidence that suggest that Gaussian approximations of
posterior distributions are appropriate even if the physical system under consideration is nonlinear. The
reason for this is a regularizing effect of the observations that can turn multi-modal prior distributions into
nearly Gaussian posterior distributions. This has important ramifications on data assimilation (DA)
algorithms in numerical weather prediction because the various algorithms (ensemble Kalman filters/
smoothers, variational methods, particle filters (PF)/smoothers (PS)) apply Gaussian approximations to
different distributions, which leads to different approximate posterior distributions, and, subsequently,
different degrees of error in their representation of the true posterior distribution. In particular, we explain
that, in problems with ‘medium’ nonlinearity, (i) smoothers and variational methods tend to outperform
ensemble Kalman filters; (i) smoothers can be as accurate as PF, but may require fewer ensemble members;
(ili) localization of PFs can introduce errors that are more severe than errors due to Gaussian
approximations. In problems with ‘strong’ nonlinearity, posterior distributions are not amenable to Gaussian
approximation. This happens, e.g. when posterior distributions are multi-modal. PFs can be used on these
problems, but the required ensemble size is expected to be large (hundreds to thousands), even if the PFs are
localized. Moreover, the usual indicators of performance (small root mean square error and comparable
spread) may not be useful in strongly nonlinear problems. We arrive at these conclusions using a
combination of theoretical considerations and a suite of numerical DA experiments with low- and high-
dimensional nonlinear models in which we can control the nonlinearity.

Keywords: data assimilation; Gaussian approximation; ensemble Kalman filter, particle filter; variational data

assimilation

1. Introduction

Probabilistic geophysical state estimation uses Bayes’ rule
to merge prior information about the system’s state with
information from noisy observations. Gaussian approxi-
mations to prior and posterior distributions in geophys-
ical state estimation are widely used, e.g. in ensemble
Kalman filters (EnKF, see, e.g. Evensen, 2006; Tippet
et al., 2003) or variational methods (see, e.g. Talagrand
and Courtier, 1987; Poterjoy and Zhang, 2015).
Application of Gaussian approximations to different
objects in different DA algorithms (ensemble Kalman fil-
ters/smoothers, variational methods, particle filters (PF)/
smoothers (PS)) leads to different approximate posterior
distributions, and, subsequently, different degrees of error
in their representation of the true posterior. Therefore,

*Corresponding author. e-mail: mmo@math.arizona.edu

not all Gaussian approximations are equal. We explore
the use of Gaussian approximations in different DA algo-
rithms using a combination of theoretical considerations
and numerical experiments in which we can control the
nonlinearity. Our focus is on ramifications of our findings
on contemporary DA algorithms in numerical weather
prediction (NWP), where the goals is to find an initial
condition for a forecast that can be made in real time.
We consider and contrast smoothing algorithms, which
estimate the state before observation time, and filtering
algorithms, which estimate the state at (or after) observa-
tion time. Mathematical arguments and numerical experi-
ments suggest that, within identical problem setups,
Gaussian approximations in a smoother can be appropri-
ate even if the model is nonlinear and the filtering prior
is not at all Gaussian (e.g. multi modal). We find that
this effect arises in regimes of ‘medium’ nonlinearity due
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to a regularizing effect of the observations (see Bocquet,
2011; Metref et al., 2014; and Section 3 for definitions of
mild, medium and strong nonlinearity). In this regime, PS
and variational methods tend to outperform the EnKF,
while PF require substantially larger numbers of ensemble
members to be competitive (even when localized with
contemporary methods, see also Poterjoy et al., 2018). In
short, the reasons are that (i) smoothers make use of
nearly Gaussian smoothing priors and posteriors, while
PFs make no assumption about the underlying problem
structure even though, in this situation, exploring near
Gaussianity is beneficial; (i) the EnKF implicitly makes a
Gaussian approximation of a filtering prior, which, in the
regime of medium nonlinearity, is less amenable to
Gaussian approximation than the smoothing prior
and posterior.

The examples suggest that a fully non-Gaussian
approach (e.g. the PF) is worthwhile only if Gaussian
approximations to posterior distributions are not appro-
priate. This happens, for example, if posterior distribu-
tions are multi-modal and/or have long and heavy tails.
In this case, large ensemble sizes are needed for accurate
probabilistic inference. Moreover, state estimation by an
(approximate) posterior mean is not meaningful in this
situation and computing root mean
(RMSE) and average standard deviations (spread) may
be insufficient to assess the performance of a DA algo-
rithm in a strongly nonlinear problem. Thus, the usual
indicators of performance of a DA algorithm need to be
re-evaluated in strongly nonlinear problems.

High-dimensional problems in NWP require localiza-
tion. Generally, localization means to reduce errors due
to a small ensemble size. In NWP, localization often
means to delete ensemble based covariances that suggest
unphysical long-range correlations. Localization is well-
understood in the EnKF, see, e.g. Hamill et al. (2001);
Houtekamer and Mitchell (2001), but localization of PFs
is less straightforward and is a current research topic, see,
e.g. Lei and Bickel (2011); Reich (2013); Penny and
Miyoshi (2015); Todter and Ahrens (2015); Lee and
Majda (2016); Poterjoy (2016); Poterjoy and Anderson
(2016); Poterjoy et al. (2017, 2018); Robert and Kiinsch
(2017); Farchi and Bocquet (2018). The various localiza-
tion techniques proposed over the past years introduce
errors and biases, which at this point in time, are not
fully understood. We provide numerical examples where
additional errors caused by localization of the PF are
more severe than errors due to Gaussian approximations
in PS.

Metref et al. (2014) also discuss the importance of
choosing the appropriate DA algorithm based on the
degree of nonlinearity of the model. In fact, our paper
can be viewed as an extension of the work by Metref

squared errors

et al. (2014): in addition to considering mild, medium and
strong nonlinear test cases, we describe the regularizing
effects of observations, discuss the importance of subtle
differences between filters and smoothers in problems
with medium nonlinearity, and consider advantages and
disadvantages of Gaussian approximations compared to
localized PFs in high-dimensional problems. There are
also connections of our work to iterative ensemble
smoothers, recently reviewed by Evensen (2018), as well
as the work on iterative ensemble Kalman filters and
smoothers, see, e.g. Sakov et al. (2012); Bocquet and
Sakov (2013, 2014); Bocquet (2016). In these references, it
was found that smoothers can outperform filters and that
RMSE can be small even if the smoothers do not sample
the ‘true’ posterior distribution. Our work, the numerical
examples and the mathematical formulations, corroborate
these two points.

2. Background
2.1. Notation, problem setup and assumptions

We set up the notation used throughout this paper and
state our assumptions. We use bold face lower case for
vectors, bold face capital letters for matrices and italic
lower case for scalars. We use N with an index to denote
dimension. For example, Ny is the dimension of the vec-
tor x. NV, is ensemble size. The Ny components of a vector
x are denoted by [x|;, j=1,..., Nx. We write Ly, for the
Ny x Ny identity matrix and x~A/(m,A) for an
Nx-dimensional Gaussian random vector x whose mean is
m and whose covariance matrix is A. We use the short-
hand notation y,,, for the set of vectors {y,,...,y,}.
We consider numerical models of the form

Xn :M(xn—l)» (1)

where M : R™ — R™ is a function connected to the
numerical model and n=1,2,3,... is a time index. The
observations are

yﬂ = Hxn + n)‘ﬂ nﬂNN(O7 R’1)7 (2)

where H is a Ny x Ny matrix and where R, are Ny x Ny
symmetric positive definite covariance matrices. Note that
the observation error covariance can change over time
and that the function M may involve running a discre-
tized numerical model for several time steps. Thus, our
assumptions can be summarized as
1. deterministic model;
2. linear observation function;
3. Gaussian observation errors.

Our assumptions are met by many ‘test-problems’ in
the DA literature and are perhaps not too far from
NWP reality.



GAUSSIAN APPROXIMATIONS IN FILTERS AND SMOOTHERS FOR DATA ASSIMILATION 3

2.2. Probability distributions in filters and smoothers

We define the distributions that arise when a DA algo-
rithm is configured as a filter or a smoother. A filter esti-
mates the state at or after observation time while a
smoother uses the current observation to estimate a state
in the past. Examples of filters include the EnKF or the
PF, smoothers include the ensemble Kalman smoother
(EnKS) and the PS. We use the term smoother broadly
and also interpret a variational or hybrid DA method as
a smoother. There are subtle but important differences
between filters and smoothers, which have been discussed
in many studies. For example, Weir et al. (2013) have
shown that the PS collapses less drastically than the PF.
The iterative ensemble Kalman filter (IEnKF) and itera-
tive ensemble Kalman smoother (IEnKS), see, e.g. Sakov
et al. (2012); Bocquet and Sakov (2013, 2014); Bocquet
(2016), and the variational PS (varPS, see Morzfeld et al.,
2018) are also based on the idea of exploring subtle dif-
ferences between smoothing and filtering.

2.2.1. Prior and posterior distributions of a filter. In the
Bayesian framework, one way to combine information
from the model and observations is through a filtering
posterior distribution, viz.

pf(xn|yl:n) ocp(Yn‘XVl)p(Xn')Il:nfl)‘ (3)

This filtering posterior distribution describes the prob-
ability of the state at observation time n, given the obser-
vations up to time object being
approximated in, e.g. the EnKF and the PF. Filters esti-
mate the state based on the posterior mean of x,|y,,,, see,
e.g. Evensen (2006). We call the distribution p(X,|y1,,_1)s
which describes the probability of the current state given
the past observations, the filtering prior distribution. The
filtering prior is the proposal distribution in the ‘standard
PF’ (see, e.g. Doucet et al., 2001) and is also used to gen-
erate the forecast ensemble in the EnKF. The distribution
p(y,|x,) is a likelihood, describing the probability of the
observations given a model state at time 7.

n and is the

2.2.2. Prior and posterior distributions of a smoother.
Another way to combine information within a Bayesian
framework is to consider the (lag-one) smoothing poster-
ior distribution

Ps(Xn-11¥1.0) < P (Yol Xn-1)P (X1 [¥101)- (4)

The smoothing posterior distribution describes the
state at time n — 1 given the observations up to time n.
The likelihood, p(y,|x,—1), is equivalent to the likelihood
p(y,|x,) in the filtering posterior distribution since x, =
M(x,_1), 1.e. the state at time n is a deterministic func-
tion of the state at time n — 1. We emphasize that the

smoothing prior, p(X,_1|y;,_;), is equal to the filtering
posterior of the previous cycle. For this reason, we will
compare the forecast of a smoother with the analysis of a
filter in our numerical experiments below (see also
Section 5.1).

We note that we only describe smoothing distributions
that ‘walk back’ one observation (lag-one smoothing). It
is also possible to use a ‘window’ of L > 1 observations in
time (lag-L smoothing). The extension is straightforward
and we can make our main points with the simpler lag-1
smoothing and, for that reason, do not discuss lag-L
smoothing further.

2.2.3. Nonlinearity. We define what we mean by mild,
medium and strong nonlinearity:

e  Mild nonlinearity: the model is nonlinear, but the fil-
tering prior is nearly Gaussian.

e  Medium nonlinearity: the model is nonlinear, the fil-
tering prior is not nearly Gaussian (e.g. multi-modal)
but the filtering and smoothing posterior distribu-
tions are nearly Gaussian.

e  Strong nonlinearity: the model is nonlinear and the
filtering and/or smoothing posterior distributions are
not nearly Gaussian (e.g. multi-modal).

These definitions align with what is called mild,
medium and strong nonlinearity in Bocquet (2011);
Metref et al. (2014) in the context of the Lorenz’63 model
(see Section 5).

2.3. Numerical DA algorithms

We list the DA algorithms we consider in numerical
experiments and point out where Gaussian approxima-
tions are used. This will become important in Sections 4
and 5.

2.3.1. Ensemble Kalman filters and smoothers. There are
two common implementations of EnKFs, the ‘stochastic’
EnKF and the ‘square root” EnKF. The stochastic EnKF
operates as follows. Given an ensemble at time n — 1 and
a new observation at time »n, the forecast model is used to
generate an ensemble at time n. Assuming the ensemble
at time n — 1 is distributed according to the posterior dis-
tribution at time n — 1, the forecast ensemble is distrib-
uted according to the filtering prior. The forecast mean
and forecast covariance are computed from this ensemble
and a Kalman step, performed for each ensemble mem-
ber, transforms the forecast ensemble into an analysis
ensemble. Thus, the EnKF makes use of a Gaussian
approximation of the filtering prior because higher
moments of the filtering prior are not computed. The
EnKF analysis ensemble is approximately distributed
according to the filtering posterior if the problem is linear
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and Gaussian. For a discussion of how the EnKF
approximates non-Gaussian distributions, see; Hodyss
et al. (2016). The square root EnKF computes the ana-
lysis ensemble as a linear combination of the prior ensem-
ble, see, e.g. Tippet et al. (2003); Evensen (2006). The
computations only consider the forecast mean and cova-
riances, thus also implicitly making Gaussian approxima-
tions of the filtering prior. The square root EnKF and
the stochastic EnKF are equivalent if the problem is lin-
ear and Gaussian, and if, in addition, the ensemble size is
infinite. In all other situations (small/finite ensemble size
or nonlinear problem), the stochastic EnKF and square
root filters lead to (slightly) different results. For that rea-
son, we consider both implementations of the EnKF in
the numerical examples below.

The EnKS uses the prior ensemble to compute cova-
riances through time so that the observation at time n
can be used to estimate the state at time n — 1. Since only
covariances (of the forecast ensemble through time) are
used, but higher moments are neglected, some of the non-
linear effects of the numerical model may be lost. The
result of an assimilation with the EnKS is an analysis
ensemble. In linear problems, the analysis ensemble
approximates the smoothing posterior distribution. An
approximation of the filtering posterior can be obtained
by propagating the analysis ensemble from this smoother
to the observation time via the model.

We note that the distribution of the EnKS or
EnKF analysis ensembles in nonlinear problems is not
fully understood. It is known, however, that the distri-
bution of the analysis ensemble of deterministic and
stochastic EnKFs is not the posterior distribution, see,
e.g. Hodyss and Campbell (2013a); Posselt et al.
(2014). Nonetheless, the goal of data assimilation (DA)
is to produce a sensible probabilistic forecast and,
therefore, we assess the quality of EnKF and EnKS in
the numerical example below by comparing the distri-
butions of their analysis ensembles to the posterior
distribution.

2.3.2. Particle filters. The ‘standard’ PF works as fol-
lows. Given an ensemble {fo}, j=1,... N, distributed
according to the filtering posterior at time n - 1,
P(Xn—1]¥1,—1), one applies the model to each ensemble
member to generate a forecast ensemble x/, = M(X{H) at
time n. For each ensemble member we then compute a
weight w o p(y"|x}). The weights are subsequently nor-
malized so that their sum is equal to one. This weighted
ensemble {x/,w'} is distributed according to the filtering
posterior distribution at time n, p(X,|y;,,). The weighted
ensemble is typically resampled, i.e. ensemble members
with a small weight are deleted and ensemble members
with a large weight are duplicated. The above steps are

then repeated to incorporate new observations. The
standard PF is described in more detail in many papers,
e.g. in Doucet et al. (2001).

This PF (and many other PFs for that matter) suffer
from the curse of dimensionality and ‘collapse’ when the
dimension of the problem is large, see, e.g. Bengtsson
et al. (2008); Bickel et al. (2008); Snyder et al. (2008);
Snyder (2011); Snyder et al. (2015); Morzfeld et al.
(2017). This issue can be overcome by localizing the PF
(see below).

A second issue is that the PF using a finite number of
ensemble members and a deterministic model will collapse
over time regardless of the dimension of the problem.
The reason is that it is inevitable that a few ensemble
members will be deleted during the resampling step at
each observation time. This means that the ensemble col-
lapses to a single ensemble member given enough time.
Application of fittering’ algorithms can ameliorate this
issue. The purpose of jittering is to increase ensemble
spread in a way that does not destroy the overall prob-
ability distributions. Several strategies for jittering are
described in Doucet et al. (2001). In the numerical exam-
ples below, we use a very simple jittering strategy that
relies on a Gaussian approximation of the filtering pos-
terior. That is, we use the ‘analysis ensemble’ (after
resampling) to compute a mean and covariance matrix.
The covariance can be localized and inflated as in the
EnKF. We then use this Gaussian to draw a new ensem-
ble that is distributed according to the Gaussian approxi-
mation of the filtering posterior distribution. This
technique is expected to ‘work well’ in problems with
mild or medium nonlinearity. We do not claim that the
Gaussian resampling we describe here is new or particu-
larly appropriate. It is, however, a simple strategy that is
good enough in the examples we consider and that allows
us to make our points. We emphasize that this version of
the standard PF, which we call the PF-GR (PF with
Gaussian replenishing) is not a fully non-Gaussian DA
method as it now makes a Gaussian approximation of
the posterior.

We also consider localized versions of the PF.
Specifically, we use the ‘local PF’ of Poterjoy (2016)
which, in addition to the localization, also incorporates a
step similar to covariance inflation in the EnKF. We fur-
ther use another localized PF, which we call the ‘PF with
partial resampling and Gaussian replenishing’ (PF-PR-
GR). The idea here is to use a localization scheme for the
PF that is similar to how localization is done in the local
ensemble transform Kalman filter (LETKF), see, e.g.
Hunt et al. (2007). The procedure is as follows. As in the
PF, the PF-GR, the EnKF or the EnKS, we begin by
generating a forecast ensemble x/, = M(x._|). For each

n—1
component of each ensemble member [¥/],i=1,..., Ny
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we compute weights w/(i) oc p(y<”|x'), where k(i) defines

the observations in the ‘neighborhood’ of [x}];. In the
numerical examples below we consider the case where we
use L observations ‘to the right and to the left’ of the
[¥/];, where L is a tunable constant (the numerical
example is defined on a 1D spatial domain, see Section
5.3). We then perform resampling for each component
[¥/];, independently of all other components, and based
on the local weights w/(7). After cycling through all com-
ponents of x/, this procedure generates an ‘analysis’
ensemble. We inflate this analysis ensemble using
Gaussian replenishing as described above, i.e. we com-
pute the ensemble mean and covariance, localize and
inflate the covariance as in the EnKF, and finally gener-
ate a new ensemble that is used for the next assimilation
cycle. We do not claim that this localization or inflation
scheme is optimal in any way or in fact a particularly
appropriate way to localize the PF. For example, the
independent (partial) resampling of the components of
the state may destroy important model balances.
Nonetheless, this localization scheme is perhaps a natural
attempt to localize PFs (see also Farchi and Bocquet,
2018), is similar to the localized PF of the German
Weather Service (DWD, see Potthast et al., 2018) and
will help us make our points about localization in con-
nection with Gaussian approximations. Other localization
schemes for the PF are described by Lei and Bickel
(2011); Reich (2013); Penny and Miyoshi (2015); Todter
and Ahrens (2015); Lee and Majda (2016); Robert and
Kiinsch (2017).

2.3.3. 4D-Var, ensemble of data assimilation (EDA) and
variational PS. A variational DA method (4D-var) assumes a
Gaussian background, i.e. the smoothing prior p(X,—1|y,,_1)
is approximated by a Gaussian with mean p and covariance
matrix B. One then optimizes the cost function

1. [
J =SB (x5 IR (v, = M%) P, (5)

typically by a Gauss-Newton method. The inverse of the
Gauss-Newton approximate Hessian of the cost function
at its minimizer is often used to construct a Gaussian
approximation of the smoothing posterior.

Ensemble formulations of 4D-var use an ensemble to
update the background covariance and background. In
the EDA method, this is done as follows, see, e.g.
Bonavita et al. (2012). The optimization is done N, times
to generate an ensemble x{H, j=1,...,N., but during
each optimization a perturbed version of the optimization
problem is considered. Specifically, to compute ensemble
member j, one optimizes the cost function

A TR L
T =3B —x0) | + 5 IR (§,=M(xo) )P, (6)

where [/ is a sample from the Gaussian A(u,B) and
where )7’,'1 is a sample from the Gaussian N(y,,R). The
ensemble is then propagated to time n by using the
numerical model, ¥/, = M(X{H). The ensemble at time n
is used to compute an ensemble covariance, which can be
localized and inflated. This localized and inflated covari-
ance replaces the background covariance B for the next
cycle. In the numerical examples of Section 5, we update
the background mean by propagating the optimizer of
the unperturbed optimization problem (5) to time n.

Note that the ensembles (at time n — 1 and at time n),
generated by EDA, are not Gaussian. In fact, the method
can be viewed as a version of the ‘randomize-then-opti-
mize’ sampler described by Bardsley et al. (2014) or as an
iterative smoother, see, e.g. Evensen (2018). The method,
however, relies on a Gaussian approximation of the
smoothing prior (background mean and covariance).
Other ensemble formulations of 4D-var are also possible,
but we only consider EDA. For more detail about ensem-
ble formulations of 4D-var and for comparisons of the
various methods see, e.g. Buehner (2005); Liu et al.
(2008); Kuhl et al. (2013); Lorenc et al. (2015); Poterjoy
and Zhang (2015).

We consider the variational particle smoother (varPS)
described in Morzfeld et al. (2018). The method assumes
a Gaussian smoothing prior (as in EDA) and solves the
unperturbed optimization problem (5). We denote the
minimizer by x;_; and the Gauss-Newton approximation
of the Hessian of the cost function J, evaluated at x}_,
by J. The Gaussian proposal distribution of the varPS is
given by g = /\/'(xj,fl,J’l) and samples from it define the
ensemble {%71},j =1,...,N.. The ensemble is weighted
by the ratio of target and proposal distribution, i.e. W
exp (—J (X{1—I)) /q(x’,'H). The weighted ensemble is distrib-
uted according to the distribution p o exp (—J (xf?_l)), ie.
to an approximation of the smoothing posterior that
relies on a Gaussian approximation of the smoothing
prior (just as EDA). The weighted or resampled ensemble
is then propagated to time n by using the numerical
model, x/, = M(xﬁl_l). The ensemble at time 7 is used to
compute an ensemble covariance that is localized and
inflated as in the EnKF. As in EDA, we update the back-
ground mean by propagating the optimizer of the unper-
turbed optimization problem (5) to time n.

In addition to localizing the ensemble covariance at
time n, the weights of the varPS have to be localized
when the dimension of the problem is large.
Alternatively, one can simply neglect the weights, i.e. use
the varPS proposal distribution as an approximation of
the target distribution. This can give results similar to
what one obtains by localizing the weights, as reported
by Morzfeld et al. (2018), and is appropriate when the
smoothing posterior is nearly Gaussian. We refer to this
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Table 1. Gaussian approximations in DA algorithms.

Gauss. app. of

Targeted posterior filtering prior?

Gauss. app. of
filtering posterior?

Gauss. app. of
smoothing prior?

Gauss. app. of
smoothing posterior?

PF Filtering No No - -

PF-GR Filtering No Yes - -

EnKF Filtering Yes No - -

EnKS Smoothing - No Yes No

4D-Var Smoothing - No Yes Yes/No

EDA Smoothing - No Yes No

varPS Smoothing - No Yes No
varPS-nw  Smoothing - No Yes Yes

The “-” means “not applicable”. Smoothing algorithms can produce approximations of the filtering posterior by the smoother

ensemble and the numerical model. The resulting representation of the filtering posterior is not Gaussian. For that reason, smoothing
algorithms do not utilize Gaussian approximations of the filtering posterior. Whether or not 4D-Var makes a Gaussian
approximation of the smoothing posterior depends on its implementation (see text for more detail).

technique, which essentially amounts to a Laplace
approximation of the smoothing posterior, as the varPS-
nw (where the nw indicates that ‘no weights’ are used).
Finally, we note that the varPS and in particular the
varPS-nw has connections with IEnKS (see, e.g. Sakov
et al.,, 2012; Bocquet and Sakov, 2013, 2014; Bocquet,
2016), which are explained in Morzfeld
et al. (2018).

in detail

2.3.4. Summary. In Table 1, we summarize how the
various DA algorithms deploy Gaussian approximations.
We remind the reader that all methods require localiza-
tion and inflation in high-dimensional problems, but this
does not affect how the algorithms make use of Gaussian
approximations (hence localization is not emphasized in
the table).

Recall that smoothers and variational methods target
the smoothing posterior while filters target the filtering
posterior. Smoothers and variational methods, however,
can also produce approximations of the filtering posterior
because the smoother’s analysis ensemble, at time n — 1,
can be propagated to observation time n via the numer-
ical model. If this model is nonlinear, the ensemble at
time » is not Gaussian distributed, even if the variational
methods makes use of a Gaussian approximation of the
smoothing posterior (e.g. the varPS-nw). For that reason,
we include in Table 1 that the smoothing algorithms do
not utilize of the filter-
ing posterior.

Finally, we emphasize that whether or not 4D-Var
makes a Gaussian approximation of the smoothing pos-
terior depends on what type of 4D-Var is implemented.
In Section 2.3.3, we describe a ‘simple’ 4D-Var that does
make a Gaussian approximation of the smoothing poster-
ior (similar to the proposal distribution in the varPS-nw).
There are, however, other ways to implement a 4D-Var

Gaussian approximations

and these techniques may not require Gaussian approxi-
mations of the smoothing posterior. In this paper, we
consider EDA as a representative method of this class of
4D-Var techniques, but other methods have also been
successfully applied, e.g. Kuhl et al. (2013).

3. Regularization through observations

We discuss basic properties of the various distributions in
filters and smoothers. We then show, under simplifying
assumptions (including Gaussian observation errors), that
observations have a regularizing effect in the sense that
multiplication of a non-Gaussian prior distribution by the
likelihood leads to a posterior distribution that is amen-
able to Gaussian approximation. We provide several sim-
ple illustrations of these ideas.

3.1. Connections between the distributions of
smoothers and filters

First we note that the smoothing prior at the nth cycle,
P(X1-1|¥101), 1s the filtering posterior of the previous
cycle. Since observations reduce variance, i.e. posterior
variances are typically smaller than prior variances, this
implies that the smoothing prior is likely to have a
smaller variance than the filtering prior at the same cycle.
Similarly, the smoothing posterior, p(Xi.|y;.,.1), includes
more observations than the filtering posterior at the same
time, p(Xixly;,). Thus, the smoothing posterior has
smaller variance than the filtering posterior if we assume
that more observations lead to greater error reduction
and that smaller errors also results in smaller variances.
We can make these statements precise under additional
simplifying assumptions (see Appendix). Moreover, in a
well-tuned DA algorithm, the spread, defined as the
square root of the trace of the posterior covariance
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Fig. 1. A simplified schematic diagram of the RMSE of filters and smoothers. Diagonal arrows represent the model and vertical
(downward) arrows represent assimilation of observations. The purple and orange regions illustrate the RMSE that the filter and

smoother produce.

divided by Ny, is comparable to the RMSE. Thus, we can
connect the statements about the posterior covariances of
filtering and smoothing distributions directly to RMSE: a
smaller variance implies a smaller RMSE (and vice
versa). This leads to the cartoon in Fig. 1. In addition to
illustrating that smoothers operate on lower RMSE lev-
els, Fig. 1 also illustrates how the various distributions
are connected. In particular it shows that the filtering
posterior at time n is the smoothing prior at the
same cycle.

Intuitively, distributions with a smaller variance are
more amenable to Gaussian approximations than distri-
butions with larger variance. For example, a bi-modal
distribution with two (identical) well separated modes has
a larger variance than a distribution that contains only
one of these two modes; a distribution with significant
skew typically (but not always) has a larger variance than
the same distribution with the skew removed. Our consid-
erations above thus suggest that Gaussian approxima-
tions in smoothers are more appropriate than Gaussian
approximations in filters. We present simple examples
below and further numerical evidence in Section 5 that
suggest that this is indeed the case when the nonlinearity
is ‘medium’. In strongly nonlinear problems, however, it
is generally not true that Gaussian approximations in
smoothers are more appropriate than in filters. This is
shown by specific numerical examples below and in
Section 5.

3.2. Regularization of posterior distributions by
observations

We have argued above that observations reduce variance
and that a small variance leads to good Gaussian approx-
imations. Here, we make these arguments more precise
under the following assumptions. We assume that n=1
and that p(x¢) is Gaussian. Without loss of generality we
consider the prior p(xo)~A(0,Iy,). Finally, we assume
that the model M is invertible, i.e. that there exists a
function M™' such that M~'(M(x))=x. Using a
change of variables, we can write the filtering prior as

(D

dXo
()

where dx(/dx; is the Jacobian matrix of the inverse func-
tion M~'. Since dxo/dx; = (dx;/dx)" and det(A™")
1/det(A) for any nonsingular matrix A, we can re-write
the filtering prior as

i) x exp (S 1 )

1 , _
P(X1) X exp <—§H/\/l"l(x1)||2 — log |det</vl <M 1(x1)>)|>,
(®)
where M’ =dx;/dx¢ is shorthand notation for the
Jacobian of the model M. The likelihood is

1
) exp (SR -y ) )

We can thus write the filtering posterior as py(xi]y;) o
exp (—Fy(x;))) where

1, 1 _
Fr(x1) = 5 IR (Hx =) + 5 1M x|

(10)
+ log|det <M' (M’l (X1 ))) |

Note that if F,is quadratic, then the filtering posterior
is Gaussian and vice versa. This happens when the model,
M, is linear, so that the second term is quadratic and the
third term is a constant. The first term, however, is quad-
ratic even if M is not linear. This means that (under our
assumptions) the observations always have a regularizing
effect on the function F; making it ‘more quadratic’,
which in turn implies that the filtering posterior distribu-
tion is ‘more Gaussian’ than the filtering prior. Recall
that the observation error covariance matrix R controls
the reduction in variance from filtering prior to posterior,
or, equivalently, the strength of the regularization in (10).
Large R lead to a modest reduction in variance and a
mild regularizing effect, but with accurate observations
and small R the regularization can be strong and the
reduction in variance is large.

So far, we focused on the case of a fixed number of
observations, varying their effect on an analysis by vary-
ing observation error covariances (because it is mathem-
atically straightforward). One can also consider scenarios
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Table 2. Filtering prior, filtering posterior and smoothing posterior of two nonlinear examples.

Model # 1 2

Nonlinearity x) = atan(zo) o =17 zol<1

Prior N(0,1) N(O,%)

—log (p(x1)) I(tanz;)® + 2log (cos (x1)) ﬁ(lf;,)2+210g(1—x1)

~ log (ps(@119)) La? + 3 (tan )’ + 2log (cos (z1)) Lot 4+ (125) + 2log (1-o1)

—log (ps(zoly))

Lad +Latan(zo)’

. 2
%20+ (11%)

in which one holds observation error variances constant
and considers large or small numbers of observations. In
this case, observation networks with a larger number of
observations will lead to more regularization than a
observation networks with a smaller number of observa-
tions (mathematically, the 2-norm of the observation
term in (10) increases with the dimension of y). From a
practical perspective, one can expect that a large number
of good quality observations result in nearly Gaussian fil-
tering posterior distributions.

An example, suppose that

M(x0) = X0 +eg(Xo), M '(x1)=x1+gf(x1), (1)

i.e. the model and its inverse are a linear function with an
added, small nonlinear term (one can think of the above
as a truncation of the Taylor expansions of the nonlinear
model and its inverse). Then, equation (10) becomes

| 1
Fy(x1) = 5IR V2 (Hx—yy)|P +§|IXIH2 +ex{f(x1)

+ i log (1 +&h(x1)) + 0(&?),
=

(12)

where A;(x;) are the eigenvalues of the Jacobian of f(xi).
Taylor expansion of the eigenvalues A;(x;), which are
functions of x; followed by Taylor expanding the func-
tion log (1 + x)~x—x?/2 + x3/3 + ... leads to a quadratic
Fy(x;) with perturbations of size O(g). This means that
‘nearly’ linear models, with nonlinearity of order O(e),
lead to ‘nearly’ Gaussian filtering posterior distributions
with Fy being a quadratic with O(g) higher order terms.
This is the regime of mild nonlinearity.

Similarly, we can consider the smoothing posterior
which, under our assumptions, can be written as
po(xoly)) o exp (—Fy(xo)), where

| S 1
Fy(xo) = 3[R (HM(x0)=y1) " + 5 [Ixol 7. (13)

Note that the regularization is due to the Gaussian
prior p(xXo). The likelihood adds non-Gaussian effects due
to the nonlinearity of the model M. Recall from Section
3.1 that when we cycle through observations, the filtering
posterior, p(X,—_1|y;,,_;), takes the role of the smoothing
prior (see equation (4)). By our arguments above, we can

expect that the filtering posterior can be nearly Gaussian
even if the model is nonlinear. This means that the regu-
larization of the smoothing posterior, stemming from the
Gaussian prior, is not an artifact of our simplifying
assumptions but we can indeed expect that the posterior
distribution from a previous cycle has a regularizing
effect on the current DA cycle. For the nearly linear
model in equation (11) we find, with H=1Iy, and R =
IN,@ that

1 1
Fy(x0) = 5 Iy =o]* + 5 [1%0]1* + &+ (v1-%0) g (x0) + O(&?).
(14)

We emphasize that the first two terms are quadratic in
Xo and, therefore, these two terms lead to a Gaussian.
Thus, mild nonlinearities (small ¢) lead to nearly
Gaussian posterior distributions.

In summary, we conclude that when a mildly nonlinear
model causes a mildly non-Gaussian filtering prior, then
Gaussian observation errors and linear observation oper-
ators cause a regularization effect that keeps filtering and
smoothing posterior distributions nearly Gaussian and,
therefore, amenable to Gaussian approximations. Such a
regularization by observations can also occur when the
nonlinearity of the model is more severe. We provide sim-
ple examples of this situation below and provide further
numerical evidence of this statement in Section 5.

3.3. Hlustrations

We illustrate the regularizing effects of the observations
in scalar examples for which we can compute the filtering
and smoothing prior and posterior distributions. The
nonlinear models (x; = M(xy)) we consider are listed in
Table 2. For both models, we use an observation y=0
with Gaussian observation noise of mean zero and stand-
ard deviation one. The precise value of the observation y
is not important and we use y =0 because it corresponds
to an unperturbed observation of the prior mean. We use
Gaussian priors, which are also listed in Table 2. Further
shown in Table 2 are the negative logarithm of the filter-
ing prior, p(x;), filtering posterior, ps(xi|y) and smooth-
ing posterior, ps(xg|y) (up to an additive constant that is
irrelevant). The regularization, coming from the linear
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Fig. 2. Filtering prior (left), filtering posterior (center) and smoothing posterior (right) of two nonlinear models. Top row:

x1 = atan(zo). Bottom row: z; = zo/(1 + @9), |zo|<1. Shown are the distributions in blue, the bin heights of histograms obtained from

10° samples as orange dots, and a Gaussian approximation in red.

Table 3. Skewness and excess kurtosis of filtering prior, filtering posterior and smoothing posterior of four nonlinear examples.

x| = atan(xo) x| = lﬁr:n s |CEO‘<1 T = exp (xo) z; = log (Io),x0>0
Skewness of p(z) 8.30-107* -332.57 6.33 -1.54
Skewness of p(x|y) -3.05-107* -1.48 1.28 -0.59
Skewness of p(xg|y) —5.65-107* 0.15 -0.49 0.93
Excess kurtosis of p(z) -1.228 2.17-10° 109.4 4.09
Excess kurtosis of p(z|y) -1.06 4.03 2.11 0.41
Excess kurtosis of p(zo|y) 0.36 -0.12 0.18 0.99

observations, is evident from the quadratic terms that
appear in the posterior distributions but not in the filter-
ing prior.

The regularizing effects can be illustrated by plotting
the distributions in Fig. 2 (blue lines). We also plot a
Gaussian approximation (red lines) of each distribution,
which we obtain by drawing 10° samples from each distri-
bution and then computing the ensemble mean and
ensemble variance. The bin heights of (normalized) histo-
grams of the samples are shown as orange dots. For
model #1 (x; = atan(xy), first row in Fig. 2) the observa-
tions regularize a multi-modal filtering prior into uni-
modal posterior distributions (this also happens in L63,
see Section 5.2). When the model is a rational function
(model #2, second row in Fig. 2), we observe that the

smoothing posterior is ‘almost’ Gaussian even though the
filtering prior is not nearly Gaussian.

We can quantify the non-Gaussian effects by comput-
ing the skewness and excess kurtosis of the three distribu-
tions. We compute these quantities from the 10° samples
we draw and show our results in Table 3. For model #1,
we find that all three distributions are symmetric about
the mean and, hence, the skewness is zero. The distribu-
tion, however, is not Gaussian and we note that the
excess kurtosis is larger for the filtering prior than for the
posterior distributions (recall that the excess kurtosis of a
Gaussian is equal to zero). For model #2 we find that
the two measures of non-Gaussianity are several orders
of magnitude larger for the filtering prior than for the
posterior distributions. In summary, the two measures of
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Fig. 3. Filtering prior (left), filtering posterior (center) and smoothing posterior (right) of two nonlinear models. Top row:

x1 = exp (zg). Bottom row: z; =
samples as orange dots, and a Gaussian approximation in red.

non-Gaussianity (skewness and excess kurtosis) illustrate
that the filtering prior is ‘less Gaussian’ than the poster-
ior distributions of a filter or smoother.

The two examples suggest that there are problems for
which a Gaussian approximation of the smoothing pos-
terior is more appropriate than a Gaussian approxima-
tion of the filtering posterior. Specifically, using a Taylor
series around the mode (x; = 0), the filtering posterior of
model #1 can be written as

1 13
Fy(xi) = g X1 +ggX1 + -

6
(15)

We note the missing quadratic term, which suggests
that a Gaussian approximation, which is equivalent to a
quadratic approximation of Fy(x;) is not appropriate.
The smoothing posterior distribution, again using Taylor
series at the model xy = 0, can be written as

pr(x1ly) = exp (—Fy(x1)),

1
Fi(x0) = xf)—gxg + -,
(16)

which shows that a Gaussian approximation can be valid
for small x, near the mode. Similar expansions can be
done for model #2, but the modes of the distributions
are not at x; = 0 or xo = 0, which makes the expressions

ps(xoly) = exp (_FV(XO))7

log (), 29>0. Shown are the distributions in blue, the bin heights of histograms obtained from 10°

longer and the effects are also less dramatic: both nega-
tive logarithms of the posterior distributions have quad-
ratic terms in their Taylor expansions. The non-quadratic
terms, however, are larger for the filtering posterior dis-
tribution, which demonstrates, just as the measures of
non-Gaussianity in Table 3, that the smoothing posterior
is more suitable for Gaussian approximations than the fil-
tering posterior.

Another class of problems where a Gaussian approxi-
mation of the smoothing posterior may be more appro-
priate than a Gaussian approximation of the filtering
posterior are characterized by numerical models M which
impose constraints on the variable x;. A simple example
is the nonlinearity x; = exp (xp), which imposes the con-
straint that x;>0 so that the conditional random variable
x1]y is also constrained to be positive. Gaussian approxi-
mations of ps(xi|y) do not (easily) incorporate this con-
straint. The random variable x; as well as the conditional
random variable x|y, however, are not constrained and,
for that reason, Gaussian approximations of the smooth-
ing posterior are appropriate. This can be illustrated by
plotting the filtering prior and the posterior distributions
in Fig. 3 (top row). We can also compute skewness and
excess kurtosis for this example and the results are shown
in Table 3. As before, our estimates of skewness and
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excess kurtosis are based on 10° samples and using the
observation y=0. As the in previous two examples, this
numerical experiment indicates that posterior distribu-
tions are ‘more Gaussian’ than the filtering prior.

All three examples are characterized by smoothing pos-
teriors that are more amenable to Gaussian approxima-
tion than the filtering posteriors. It is however generally
not true that the smoothing posterior is always ‘more
Gaussian’ than the filtering posterior. A simple example
is the inverse of the previous example, i.e. the nonlinear-
ity x; = log (xp). We show the filtering prior and the pos-
terior distributions with their Gaussian approximations in
Fig. 3. Table 3 also shows the values of skewness and
excess kurtosis for this example (based, as before, on 10°
samples and using the observation y=0). The measures
of non-Gaussianity indicate that the filtering posterior is
‘more Gaussian’ than the smoothing posterior.

4. Ramifications for numerical DA

In Section 3, we describe the regularizing effect of the

observations on posterior distributions and argued that

Gaussian approximations of posterior distributions are

more appropriate than Gaussian approximations of the

filtering prior distribution. We remind the reader of our
main conclusions:

(1) in problems with medium nonlinearity, observations
have a regularizing effect such that posterior
distributions (filtering or smoothing) can be nearly
Gaussian even if the filtering prior is not
nearly Gaussian;

(i)) when the nonlinearity is strong, the regularizing
effect of the observations is mild and posterior
distributions are not nearly Gaussian.

We now consider the ramifications of these findings on
cycling DA methods, described in Section 2.3, that make
use of different Gaussian approximations to different
distributions.

4.1. Mild nonlinearity

When nonlinearity is mild, prior and posterior distribu-
tions are nearly Gaussian. In this case, one can expect
that RMSE and spread of the EnKF/EnKS, variational
methods and the PF are comparable. The computational
requirements of each algorithm should thus be the main
factor for selecting a specific algorithm. The computa-
tional cost of an algorithm depends, at least in part, on
how much the algorithm can make use of the problem
structure (characteristics of the numerical model, observa-
tion operators and observation errors). We thus note that
the PFs make no assumptions about the problem struc-
ture (no Gaussian or linear assumptions). Variational

methods (varPS and EDA) and the EnKF/EnKS make
Gaussian approximations, which, for mildly nonlinear
problems, are indeed valid. Since the PF exploits less
problem structure than EnKF/EnKF or a variational
method, we expect that the PF is not as effective as the
other techniques. Put differently, when the problem really
is nearly Gaussian an efficient DA method should make
explicit use of that fact; the PFs not exploiting near-
Gaussian problem structure in problems with mild nonli-
nearities is, thus, a drawback. These ideas are conditional
on the assumption that
Gaussianity does not have significant effects of increased
RMSE or spread.

the mild deviation from

4.2. EnKF vs. variational DA in problems with
medium nonlinearity

In problems with medium nonlinearity, the filtering prior
is not nearly Gaussian (e.g. bimodal), but the filtering
posterior (smoothing prior) and smoothing posterior are
nearly Gaussian. Recall that the EnKF uses a Gaussian
approximation of the filtering prior; variational methods
(varPS, EDA) assume that the smoothing prior and pos-
terior are Gaussian. Using result (i), we thus expect that
variational methods lead to better performance (in terms
of RMSE, spread and required ensemble size) than the
EnKF when the nonlinearity is medium.

4.3. PF vs. variational DA in problems with medium
nonlinearity

Variational methods (varPS and EDA), with localization,
exploit near-Gaussian smoothing posterior distributions
as well as locality of correlations. Localized PFs exploit
local correlation structure but make no additional
assumptions. Thus, as in the case of mild nonlinearity, we
expect that variational methods are more effective than
the PFs in problems with medium nonlinearity because
variational methods exploit more of the prob-
lem’s structure.

4.4. PF vs. variational DA in problems with strong
nonlinearity

Strong nonlinearity leads to filtering and/or smoothing
posterior distributions that are not nearly Gaussian (e.g.
multi-modal). This means that variational methods
(varPS or EDA), which make use of Gaussian approxi-
mations of posterior distributions, can be expected to
break down. For example, in a multi-modal scenario, the
varPS or EDA may represent one of the modes, but fail
to represent the others. This could be overcome by more
careful optimization (e.g. find several modes, perform
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local Gaussian approximations at each one and combine
the results in a Gaussian mixture model), but we do not
pursue these ideas further. The PFs are thus worthwhile
in strongly nonlinear problems because the PFs do not
rely on Gaussian approximations (of prior or posterior
distributions). One should, however, expect larger
required ensemble sizes, even if the PFs are localized by
contemporary methods. The reason is that even scalar
distributions, which are severely non-Gaussian (e.g.
multi-modal), require a large ensemble size (hundreds to
thousands, see also the conclusions in Poterjoy et al.,
2018) to resolve all of the modes and/or any long tails of
the distributions. In addition, the required ‘jittering’ must
be implemented carefully and, preferably, without
Gaussian approximations.

4.5. Filters vs. smoothers

We do not have general results that support that the fil-
tering posterior is ‘more Gaussian’ than the smoothing
posterior or vice versa. In DA practice, however, the
EnKS is routinely used. In the numerical examples below,
we find that the EnKS can yield smaller RMSE than the
EnKF (all errors are computed at the same time) in prob-
lems with mild or medium nonlinearity. This suggests
that, for these examples, the Gaussian approximations in
a smoother are more appropriate than the Gaussian
approximation of the filtering prior in mild to medium
nonlinearity. Some of the examples of Section 3.3, how-
ever, show that the opposite can also be true. The numer-
ical illustrations below reveal an interesting secondary
result. When nonlinearity is strong, the EnKF leads to
smaller RMSE than variational methods. Probabilistic
inference based on the EnKF, however, are likely do be
unreliable because of inappropriate assumptions (near
Gaussian filtering prior).

5. Numerical illustrations

We illustrate the ramifications of our findings on DA
algorithms by two numerical examples. We first consider
a ‘classical’ low-dimensional example, the L63 model, see
Lorenz (1963). Localization is not required for this low-
dimensional model (but using localization may further
reduce errors). The numerical experiments with L63 can
thus be viewed as a benchmark for what one can expect
in a best case scenario for high-dimensional problems
when the localization is done adequately. The low-dimen-
sional problem and the fact that we do not use (need)
localization allows us to compare the PF with the EnKF/
EnKS and variational methods in a fair way. On a high-
dimensional problem, the PF will collapse unless it is
localized, but the localization of the PF is not (yet) fully

understood. We address additional difficulties and errors
that can arise in the PF due to localization in high-
dimensional problems separately by numerical examples
with a Korteweg-de-Vries (KdV) equation with one spa-
tial dimension (and state dimension 128). For both mod-
els, we perform a series of numerical DA experiments
and compare a of different
DA methods.

The results we obtain in our numerical experiments are
quantitatively not portable to operational NWP frame-
works, where the dimension is significantly larger (10®
rather than 3 or 10%) and where additional biases and

number numerical

errors arise because the observations are of the Earth’s
atmosphere, not of the numerical model. However, con-
sidering low-dimensional models enables us to compare a
large number of DA methods in a variety of settings for
which we can control the nonlinearity. This is infeasible
to do within operational NWP frameworks. We antici-
pate that the qualitative trends we observe in our simple
examples are indicative of what one can expect to
encounter in NWP.

5.1. Performance metrics and tuning

All algorithms are implemented with inflation and with
localization when required (KdV). We tune localization
and inflation parameters for each algorithm and each
ensemble size. Throughout this paper, we only present
tuned results. The tuning finds the inflation and (when
needed) localization parameters that minimize the time
averaged RMSE. RMSE at observation time k is defined
by

1 2
RMSE; = Vx; ([xfk]j - [x;g]/) , (17)
where x/ is the true state and x{ is the ‘analysis’ of the
DA method we test. For the EnKFs and the PFs, x{ is
the mean of the analysis ensemble. For the EnKS, x{ is
the mean of the analysis ensemble at time k& — 1, propa-
gated to the observation time k by the model, M. For
the variational methods (EDA and varPS) x{ is the min-
imizer of the cost function (unperturbed in case of EDA)
propagated to the observation time k£ by the model, M.
The spread at observation time k is defined by

1
Spread, = Ftrace(l’a), (18)

X
where P, is the approximate posterior covariance at time
k. For the EnKFs and the PFs, P, is, thus, the covariance
of the analysis ensemble. For the EnKS, P, is computed
from the analysis ensemble at time k — 1 propagated to
observation time k by the model. Similarly, for EDA and
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the varPS, P, is computed as the covariance of the ana-
lysis ensemble at time k — 1, propagated to time k by
the model.

5.2. Low-dimensional example: L63

We consider the L63 model described in Lorenz (1963).
The L63 model is a set of three differential equations

dx dy dz

o= L= X(pn)y o=xw-Bn (19)

o(r=x),
where we use the ‘classical’ setting with o =10, p=28
and B = 8/3. We discretize the equations with a fourth
order Runge-Kutta (RK) method and use a time step of
At = 0.05. The model M in equation (1) thus represents
solving the L63 dynamics, discretized by an RK4 scheme
with time step \ Af, and run for AT time units (equiva-
lently, AT /At steps). In the numerical experiments below,
we consider AT between 0.1 and 0.6. As described by
Metref et al. (2014) and Bocquet (2011), this corresponds
to mild (AT =0.1), medium (0.2<AT<0.4) and
strongly nonlinear (AT > 0.5) test cases. Following
Metref et al. (2014), we focus on observations of all three
state variables with observation noise covariance R = 4I3.
The results we obtain with this problem setup, however,
are robust and we briefly mention some other problem
setups we considered.

Note that we use the time interval between observa-
tions to control the nonlinearity to in turn control the
non-Gaussianity of prior and posterior distributions. One
could also envision other mechanisms for controlling the
non-Gaussianity, e.g. by considering different observation
networks (less observations lead to more
Gaussianity) or different observation error covariances
(larger error covariances lead to more non-Gaussianity).
Our more theoretical considerations, however, are more
in line with controlling non-Gaussianity by the time inter-
val between observations and, for that reason, this is the
only case we consider here.

non-

5.2.1. Setup, tuning and diagnostics. We consider
‘identical twin’ experiments to test and compare the vari-
ous DA algorithms described above. For a given time
interval between observations, AT, we perform a simula-
tion with L63 that serves as the ground truth and then
generate observations by perturbing the ground truth
with Gaussian noise with covariance R. Each experiment
consists of 1,200 DA cycles. The first 200 cycles are
neglected as ‘spin up’.

For each DA algorithm, we tune the inflation and do
not use localization (for this reason we do not consider
the PF-PR-GR). We use ‘multiplicative prior inflation’,
i.e. we multiply the forecast covariance by a scalar. To

tune the inflation we consider a number of inflation
parameters (ranging from 0.9 to 1.8) and declare the
value that leads to the smallest (time averaged) RMSE as
the optimal value. Each algorithm is initialized by an
ensemble that is generated by a tuned EnKF. This
reduces spin-up time, which saves overall computation
time of performing the DA experiments because each
experiment can be shorter. We also vary the ensemble
size for each algorithm. Below we present results we
obtained with N, = 50 for all algorithms except the PF-
GR, for which we use N, = 10°. The reason is that larger
ensemble sizes do not significantly reduce RMSE. We
made little effort to find the ‘minimum’ ensemble size
required, but considered ensemble sizes N, =
20, 50, 100, 200, 500, 1000. We found that N. = 50 works
well for most algorithms and all AT we consider, except
the PF-GR, which requires larger N. (see below for
more details).

We compute an average skewness as a quantitative
indicator of non-Gaussianity of the filtering prior and fil-
tering/smoothing posterior distributions. We obtain esti-
mates of the skewness by using the PF-GR with ensemble
size N, = 10°. We used such a large ensemble because
computing skewness is noisy and sampling errors are
large unless the ensemble size is large. More specifically,
at observation time k, we compute the skewness of the x,
y and z variables based on the forecast ensemble (filtering
prior), and the ensemble distributed according to the
smoothing posterior and the ensemble distributed accord-
ing to the filtering posterior. In this context, it is import-
ant to recall that the smoothing prior at the current cycle
is the filtering posterior of the previous cycle. We then
average the absolute values of the skewness in x, y and z.
Using the absolute value is necessary to avoid cancela-
tions in positive or negative skewness. This average abso-
lute values of the skewness, averaged over the variables,
is then averaged over the 1,000 DA cycles (after spin-up).
The code we used for this paper is available at https://
github.com/mattimorzfeld. An animation of the filtering
prior and filtering posterior distributions for problems
with mild, medium and strong nonlinearity can be found
in the supplementary materials.

5.2.2. Results. We plot RMSE as a function of the time
interval between observations in the left panel of Fig. 4
and we plot the average skewness of the filtering/smooth-
ing prior and the filtering/smoothing posterior distribu-
tions as a function of the time interval between
observations in the right panel of Fig. 4. We do not show
the spread in the left panel because it is comparable to
RMSE for each DA algorithm but the plots are easier to
read without the spread. We note that the average skew-
ness increases with the time interval between the
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Fig. 4. Left: RMSE as a function of the time interval between observations for a fully observed L63 system. Right: average of

absolute value of skewness of filtering/smoothing priors and filtering/smoothing posteriors.

observations, indicating that the problem becomes indeed
more non-Gaussian (in terms of both prior and posterior
distributions) as the time interval between observations
becomes larger. Recall, however, that skewness is zero
whenever a distribution has symmetry, and therefore
small (or even zero) skewness does not imply a Gaussian
distribution (see also Section 3.3). We also remind the
reader here that the smoothing prior is identical to the fil-
tering posterior and its skewness is indirectly depicted in
the right panel of Fig. 4.

For each DA method, the RMSE increases with the
time interval between the observations but at different
rates. This difference in the rate of increase of RMSE as
the interval between observations increases is a clear fac-
tor determining the differences in the methods. It is clear
from Fig. 4 that the PF-GR gives the smallest RMSE at
any AT. The results shown in Fig. 4 are consistent with
those reported by Metref et al. (2014). In particular, we
note that the RMSE of the PF-GR is comparable with
the RMSE of the multivariate rank histogram filter, see
Metref et al. (2014). The results we obtain here with the
PF-GR are also comparable to the PF used by Metref
et al. (2014), which differs from the PF-GR in its infla-
tion (jittering) scheme.

The EnKFs yield a larger RMSE than the PF-GR for
all AT. The difference in RMSE between the EnKFs and
the PF-GR however increases with the time interval
between observations. We also note that the square root
filter gives a slightly larger RMSE than the stochastic
implementation. RMSE of the local PF is comparable to
that of the PF-GR when 0.1 < AT < 0.2, but its perform-
ance degrades when the time interval is increased. Since
we do not make use of the localization of this algorithm

(we set the localization radius to be large), the poor per-
formance for large AT indicates that the inflation used by
the local PF is not ideal for problems with medium nonli-
nearity. This issue is addressed in Poterjoy et al. (2018),
where inflation strategies of the local PF
are discussed.

The variational algorithms (varPS, varPS-nw, EDA)
yield RMSE comparable to the PF-GR and smaller
RMSE than the EnKFs when the nonlinearity is mild or
medium (0.1 < AT < 0.4). These results are in agreement
with other studies of ensemble smoothers, where smaller
errors by smoothers than by filters in problems with
medium nonlinearity were reported, see, e.g. Sakov et al.
(2012); Bocquet and Sakov (2013, 2014); Bocquet (2016);
Evensen (2018). For larger AT, Gaussian approximations
of posterior distributions become inappropriate, which
causes RMSE to increase to or to exceed RMSE of the
EnKF. We discuss this case in more detail below.

The EnKS yields RMSE comparable to the PF-GR
but smaller than the EnKFs when 0.1 < AT <0.2. The
EnKS yields RMSE comparable to the EnKF when
AT = 0.3 and the RMSE is very large when the time
interval between observations exceeds AT = 0.3. The
EnKS and the varPS-nw are in fact connected. The
EnKS is equivalent to the first step of a Gauss-Newton
optimization, and the analysis ensemble has a covariance
that is comparable to the inverse of the Gauss-Newton
approximation of the Hessian of the logarithm of the
smoothing posterior after the first step (this is also dis-
cussed in the context of IEnKS Bocquet, 2016; Bocquet
and Sakov, 2013, 2014; Sakov et al., 2012). Indeed, we
can configure the varPS-nw to perform only one Gauss-
Newton step, or outer loop, and the RMSE and spread

new
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Fig. 5. Ensemble size of the PF-GR required to reach RMSE
of the PF-GR with ensemble size N, = 1,000 as a function of the
time interval between observations. The dots correspond to
results we obtained by considering the ensemble sizes
N. = {20, 50,100,200, 500, 1000}, and the dashed line is a least
squares fit.

we obtain with this technique are comparable to the
EnKS (the varPS and the varPS-nw whose RMSE is
shown use up to three outer loops, less if default toleran-
ces are met). In particular, we observe an increase in
RMSE at AT = 0.3 for both methods. This suggests that
outer loops are important in problems with medium non-
linearity, because the main difference between the EnKS
and the varPS-nw is the number of outer loops.

The PF-GR leads to the lowest RMSE for all setups
we consider, but this comes at the cost of a large required
ensemble size. The required ensemble size in fact increases
with AT as shown in Fig. 5, where we plot the required
ensemble size as a function of the time interval between
observations. We define the required ensemble size as fol-
lows. For a given N, we compute RMSE and compare
this RMSE to the RMSE we computed with the PF-GR
with N. = 1000. The required ensemble size is defined as
the minimum ensemble size that leads to a difference in
the RMSEs that is below a tolerance. Figure 5 thus illus-
trates what ensemble size the PF-GR requires to yield
nearly the same RMSE as the PF-GR with N, = N, max =
1,000. We note that with increasing nonlinearity, the
required ensemble size increases and for strongly nonlin-
ear problems a large ensemble size is required
(Ne = 500—1,000). Note that this is independent of
dimension. PFs require (exponentially) larger ensembles
when the dimension increases to avoid collapse, but local-
ization of PFs can prevent such extremely large ensem-
bles. In the low-dimensional L63 problem, the large
ensemble size is required because of the strong
nonlinearity.

In summary, we find that when the nonlinearity is
weak (AT = 0.1), all DA methods considered here ‘work’
and lead to similar RMSE and spread (but at different
costs and for different N.). In the regime of mild or
medium nonlinearity (0.1 < A7 < 0.4), the variational
methods (varPS, varPS-nw and EDA) are characterized
by an RMSE comparable to the PF-GR, but their com-
putational cost is lower. In the regime of medium nonli-
nearity, the variational methods lead to smaller RMSE
than the rank histogram filter (RHF) described by
Anderson (2010) (see Fig. 8 of Metref et al., 2014 for the
results), the EnKFs and the EnKS. For strong non-lin-
earity, the variational methods lead to large RMSE, while
the EnKF has modestly lower RMSE, and we describe
the details of how this occurs below.

5.2.3. Discussion-mild and medium nonlinearity. Our
main conclusion from Section 3 is that Gaussian approxi-
mations to posterior distributions are more appropriate
than Gaussian approximations to the filtering prior when
the problem is characterized by mild or medium nonli-
nearity (0.1 < AT < 0.4). The DA experiments with L63
provide numerical evidence that this is indeed the case. In
particular, we note the smaller average skewness of the
smoothing or filtering posterior distributions as compared
to the filtering prior (see Fig. 4).

Small RMSE (and spread) of the PF-GR, which makes
a Gaussian approximation of the filtering posterior distri-
bution at each assimilation time, indicates that the the
Gaussian approximation is reasonable. In other words,
the filtering posterior distribution can be nearly
Gaussian, even when the filtering prior is not nearly
Gaussian. This can be illustrated further by considering
the prior and posterior distributions of one DA cycle.
Specifically, we perform one DA cycle, starting from a
Gaussian prior distribution xg~N (i, B), where u is a typ-
ical state of the L63 model and B is the climatological
covariance (obtained by running a long simulation with
L63 and computing the covariance). We then make an
observation of all three state variables at 1t = AT with
observation error covariance R =4I; and consider two
intervals between observations, A7 = 0.1 (mild nonlinear-
ity) and AT = 0.3 (medium nonlinearity). We approxi-
mate the filtering prior and filtering/smoothing posterior
distributions by the standard PF using a very large
ensemble size. That is, we draw N, = 10° ensemble mem-
bers, x{,, j=1,...,N., from the Gaussian prior distribu-
tion and propagate each ensemble member to time
t=AT to obtain the forecast ensemble X, = M(x)).
The forecast ensemble is distributed according to the fil-
tering prior. We then compute weights w/ o p(y|x,,) and
resample the ensemble XQT with these weights. The
resampled ensemble is distributed according to the
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filtering posterior p,(xarly). We also resample the prior
ensemble at time zero, x{), with the same weights. This
resampled ensemble is distributed according to the
smoothing posterior py(Xoly).

In Fig. 6, we plot histograms of the samples of the
prior and posterior distributions in the form of ‘corner
plots’ for two values of AT. A corner plot contains histo-
grams of all one and two dimensional marginals of a
multivariate distribution. The top row of Fig. 6 shows
corner plots of the filtering prior (left), filtering posterior
(center), and smoothing posterior (right) for a time inter-
val between observations of A7 = 0.1 (mild nonlinearity).
The bottom rows show the same distributions for a larger
time interval between observations of AT = 0.3 (medium
nonlinearity). We see that the filtering prior evolves from
being uni-modal for AT =0.1 to multi-modal when
AT = 0.3. The observations, however, regularize the non-
Gaussian filtering prior and lead to uni-modal posterior
distributions (smoothing or filtering) for both values of
AT. The posterior distributions (smoothing or filtering)
are thus more amenable to Gaussian approximations
than the filtering prior.

Variational algorithms (varPS, varPS-nw, EDA) yield
a small RMSE, comparable to the PF-GR and smaller
than RMSE of the EnKFs when the nonlinearity is mild
or medium (0.1 < AT < 0.4). This too can be explained
by posterior
Gaussian approximations than the filtering prior. Recall
that the variational methods rely on Gaussian approxi-
mations of the smoothing prior and posterior and that

distributions being more amenable to

Filtering posterior p(xaT|y)
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Corner plots of prior and posterior distributions for two different time intervals between observations.

the smoothing prior is in fact a posterior distribution (fil-
tering posterior from the previous DA cycle). The
EnKFs, however, make (indirect) use of a Gaussian
approximation of the filtering prior. During an EnKF
analysis only the mean and covariance of the filtering
prior are computed; other, non-Gaussian, aspects of the
filtering prior are subsequently ignored. The filtering
prior, however, becomes more non-Gaussian when the
time interval between observations increases. With larger
time observations,
aspects of the filtering prior thus become more significant
and, hence, the performance of the EnKF degrades. This
explains, at least in part, why the EnKFs yields small
RMSE when the time interval between the observations
is short, but large RMSE when this time interval is long.
In addition, we recall that the square root EnKF oper-
ates slightly differently than the stochastic EnKF and in
fact has a ‘more non-Gaussian’ analysis ensemble, see,
e.g. Lawson and Hansen (2004). This is illustrated in
Fig. 7, where we show corner plots of the filtering poster-
ior distributions (analysis ensemble) of the square root
EnKF (N, = 10*) and of the stochastic EnKFs (N = 10%)
for one cycle of the DA problem with AT = 0.3. We note
that the approximation of the filtering posterior distribu-
tion of the square root EnKF is ‘less Gaussian’ (bimodal)
than the filtering posterior distribution of the stochastic
EnKF. In view of the fact that the actual filtering poster-
ior distribution (computed via the PF-GR with N, = 10°)
is well approximated by a Gaussian, it is not surprising
that the stochastic EnKF yields smaller RMSE than the

intervals between non-Gaussian
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observations is AT = 0.3.

square root EnKF in this example where it has exagger-
ated the true amount of non-Gaussianity (see Hodyss and
Campbell 2013 for further discussion).

Finally, we note that the results we obtain by the
varPS and the varPS-nw are almost identical and the
performance of both methods degrades at the same time
interval between observations (AT = 0.5, we investigate
how this increase in RMSE occurs in more detail below).
Recall that the varPS-nw samples a Gaussian approxi-
mation of the smoothing posterior and wuses this
Gaussian for inferences. The weights, used in the varPS,
morph this Gaussian proposal distribution into a non-
Gaussian smoothing posterior. Comparing the varPS
and the varPS-nw reveals that the unweighted ensemble
gives nearly identical results to the weighted ensemble,
which implies that the varPS target distribution (smooth-
ing posterior) is well approximated by the Gaussian pro-
posal of the varPS. This, again, is numerical evidence
that the smoothing posterior distribution is amenable to
Gaussian approximations when the nonlinearity is mild
to medium (0.1 < AT <0.5). Similar results
obtained by other ensemble smoothers in other test
problems with medium nonlinearity, see Sakov et al.
(2012); Bocquet and Sakov (2013, 2014); Bocquet (2016);
Evensen (2018).

We summarize the numerical evidence that Gaussian
approximations of posterior distributions are more appro-
priate than Gaussian approximations of filtering prior
distributions in the regime of mild to medium nonlinear-
ity (0.1 < AT <0.4).

(1) Good performance of the PF-GR, which makes use
of a Gaussian approximation of the filtering
posterior distribution, suggests that the posterior
distribution remains nearly Gaussian even when the
nonlinearity is medium, leading to filtering priors
that are not nearly Gaussian.

were
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(i) The fact that the RMSEs of the EnKFs, which make
use of a Gaussian approximation of the filtering prior,
are larger than the RMSE:s of the variational methods,
which make use of Gaussian approximations of
posterior distributions, corroborates that posterior
distributions are more amenable to Gaussian
approximations than the filtering prior.

(i) On average, the skewness is larger for the filtering
prior than for the smoothing or filtering posterior
distributions.

(iv) The fact that the stochastic EnKF, which yields a
‘more Gaussian’ analysis ensemble than the square
root filter, leads to smaller RMSE than the square
root filter suggests that the filtering posterior may
indeed be well approximated by a Gaussian.

(v) The fact that the weights in the varPS, which morph a
Gaussian proposal into a non-Gaussian posterior
distribution, have nearly no impact on RMSE suggests
that the Gaussian proposal is a good approximation of
a nearly Gaussian smoothing posterior.

The fact that the PF-GR (and other PFs) requires a
larger ensemble size than the variational methods in the
regime of medium nonlinearity may seem counterintui-
tive, but there is a simple explanation. We have seen
above that in problems with medium nonlinearity, the
smoothing posterior is nearly a Gaussian and that
varPS and other variational methods explicitly exploit
this structure. The PF-GR, however, does not make
any assumptions of this kind during inference—the
Gaussian approximation is only needed to initialize the
Thus, the PF-GR exploits less problem
structure and, for that reason, is not as effective as the
methods that do exploit near-Gaussian problem struc-
ture. When the problem really is nearly Gaussian one
should make explicit use of it during DA; the fact that
the PF-GR does not do this is thus a drawback of this

next cycle.
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Top: corner plots of filtering prior (left), filtering posterior (center) and smoothing posterior (right) for DA cycle 631 with

AT = 0.6. The histograms are obtained by running the PF-GR with N, = 10°. The red dots are the true states and the orange dots are
the observations. Bottom: RMSE as a function of DA cycle (left) and the varPS-nw approximations of the filtering posterior (center)

and smoothing posterior (right).

method (when applied with medium

nonlinearity).

to problems

5.2.4. Discussion—strong nonlinearity. For long time
intervals between observations, AT > 0.5, the filtering
and smoothing distributions severely non-
Gaussian and, during some DA cycles, multi-modal. One
would expect that all methods we consider here should
yield large errors, during a DA cycle in which the filtering
and smoothing posterior distributions are multi-modal,
because all methods, including the PF-GR, rely on
Gaussian approximations of posterior distributions in one
way or another. We found, however, that this is not
always the Gaussian approximations may be
inappropriate, but that does not necessarily lead to
large RMSE.

An example of this situation is provided in Fig. 8
where we show corner plots of the filtering prior as well
as the smoothing and filtering posterior distributions at
cycle 631. The corner plots are obtained from the ensem-
ble of the PF-GR with N, = 10° (top row of the figure).
We note that all three distributions are multi-modal. We
also show RMSE as a function of DA cycle and the
varPS-nw approximations of the smoothing posterior and
filtering posterior distributions (N. = 100, bottom row of
the figure).

can be

true:

RMSEs of the PF-GR and the varPS-nw in Fig. 8
remain small at this cycle. Specifically, the varPS-nw
approximates the multi-modal distribution by a uni-
modal distribution centered at the dominant mode, which
results in a small RMSE. Thus, while the Gaussian
approximation used in the varPS-nw is clearly wrong,
this deficiency cannot be diagnosed by considering
RMSE. In fact, the multi-modal situation in Fig. 8 is vir-
tually indistinguishable in terms of RMSE and spread to
the uni-modal situation at DA cycle 632, illustrated in
Fig. 9.

We note at cycle 632 that RMSE of the varPS-nw
remains small because at the previous cycle (631) the
varPS-nw has ‘picked’ the mode near the true state.
Thus, the Gaussian approximation during cycle 631 does
not to lead to large RMSE at cycle 632. Nonetheless, the
Gaussian approximation is not valid because the other
modes are ignored and there is no guarantee that the
varPS will pick the correct mode (i.e. near the true state)
at every cycle. Therefore, while RMSE is small, probabil-
istic inference made using the Gaussian approximation of
the PDF will be unreliable. Moreover, the converse situ-
ation is also true. During several DA cycles, the optimiza-
tion in the varPS-nw converges to a mode that is not
near the true state and, for that reason, produces large
RMSE (see also below for further explanation).
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and smoothing posterior (right).

Similarly, the PF-GR has produced the distributions
shown in Fig. 9 by making a Gaussian approximation to
the multi-modal smoothing prior distribution shown in
the center panel of the top row of Fig. 8. The RMSE of
the PF-GR remains small at cycle 632, even though the
Gaussian approximation made is clearly inappropriate.
Therefore, the examples indicate that

(1) under strong nonlinearity, Gaussian approximations
to smoothing prior distributions may not be valid,
but these Gaussian approximations may still lead to
small RMSE in the average;

(i) small RMSE is neither necessary nor sufficient to
determine if a posterior distribution is uni-modal or
if multiple modes are present;

(iii) small RMSE does not imply that the DA method
accurately
distribution.

These findings have ramifications on how one should
test new DA methods for strongly nonlinear problems.
Often, a simple model such as L63 or the Lorenz 96
model (see Lorenz, 1996) are used to illustrate that a new
DA method is ‘better’ than, say, the EnKF (see, e.g.
Farchi and Bocquet, 2018). For such experiments to be
useful, one should first investigate the degree to which
the various distributions are non-Gaussian and if strong
non-Gaussianity is indeed observed, performance

approximates the true posterior

indicators other than RMSE should be used if probabilis-
tic inference is important.

Large RMSE can occur for a variational method when
the scheme picks out ‘the wrong mode’ (the one not con-
taining the true state). We wish to emphasize that there
are other ways in which a large RMSE can occur in vari-
ational methods. We focus on the varPS-nw, but similar
arguments can be made for the varPS or EDA. We have
shown above that multi-modality of the smoothing pos-
terior does not necessarily cause large RMSE in the
varPS-nw if the optimization finds the ‘correct’” mode of
the smoothing posterior In fact, the
Gaussian approximation of the smoothing prior is not
critical during many DA cycles, since the varPS-nw can
produce RMSE comparable to the PF-GR (see left panel
of bottom row of Figs. 8 and 9). We did however find sit-
uations with large RMSE in uni-modal situations when
the minimization terminates unsuccessfully due to numer-
ical issues. This situation is illustrated in Fig. 10. As
before, we show corner plots of the filtering prior and fil-
tering/smoothing posterior distributions (obtained by the
PF-GR with N, =10°%) as well as the RMSE and the
varPS-nw approximations of the posterior distributions.
Focusing on the center panel in the bottom row, we can
clearly identify that the optimization has returned a state
that is not near the minimizer of the cost function or the

distribution.
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Fig. 10. Top: corner plots of filtering prior (left), filtering posterior (center) and smoothing posterior (right) for DA cycle 660 with

AT = 0.6. The histograms are obtained by running the PF-GR with N, = 10°. The red dots are the true states and the orange dots are
the observations. Bottom: RMSE as a function of DA cycle (left) and the varPS-nw approximations of the filtering posterior (center)

and smoothing posterior (right).

true state. Such numerical issues cause the varPS-nw (and
the other variational methods) to ‘lose track’ of the true
state for a few cycles, before again yielding small RMSE
(see left panel, bottom row of Fig. 10). The number of
times such numerical issues occur during the 1200 DA
cycles we consider in our experiments increases when the
time interval between observations becomes longer.
Numerical issues of this kind are not fixable by using
weights (at finite ensemble size), as is indicated by the
fact that the varPS and the varPS-nw lead to nearly iden-
tical RMSE.

The numerical issues arise because the optimization is
implemented in a simple manner. We use Matlab’s
Gauss-Newton optimizer and compute the required gradi-
ent by finite differences (we did not bother with a tangent
linear adjoint model because computations with L63 are
inexpensive). We initialize the optimization with the prior
mean and perform at most three Gauss-Newton itera-
tions, or outer loops. Fewer than three outer loops are
used when default tolerances are satisfied. We then use
the result of the optimization without corrections if the
optimizer has terminated unsuccessfully, i.e. if the com-
puted mode is not a local minimum of the cost function.
A more careful implementation of the optimization may
help to reduce the RMSE of the variational methods to
the RMSE levels of the PF-GR. In particular, one can

consider tempering methods, as suggested by Evensen
(2018), or re-start the optimizer with a new initial guess
when optimization tolerances are not met. One can also
envision running several optimizations to find several
modes. We leave further investigation of more sophisti-
cated optimization strategies for future work. Here, we
report the conclusion that the optimization, routinely per-
formed in variational methods, requires additional care
when the problem is strongly nonlinear.

Finally, we notice that the EnKS yields smaller RMSE
than the EnKF for short intervals between observations
(0.1 < AT <0.2). This suggests that the smoothing pos-
terior distribution may be more amenable to Gaussian
approximations than the filtering posterior distribution
when the time interval between observations is small.
This is further corroborated by the fact that the average
skewness of the smoothing posterior distribution is
smaller than the average skewness of the filtering poster-
ior distribution when AT is small (see right panel of Fig.
4). However, for larger AT, this is not necessarily the
case, as is illustrated in Fig. 11, where we show corner
plots of the PF ensembles (N, = 10°, as above) of the fil-
tering prior and the filtering/smoothing posterior for a
DA cycle with AT = 0.5. The figure shows that the filter-
ing prior and the smoothing posterior can be multi-modal
while the filtering posterior is uni-modal (this is in
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agreement with the simple examples in Section 3.3). Thus,
for this DA cycle, the filtering posterior is more amenable
to Gaussian approximations than the smoothing poster-
ior. The corner plot may appear at odds with the right
panel of Fig. 4, which shows that the average (absolute)
skewness of the posterior smoothing distribution is
smaller than the average (absolute) skewness of the filter-
ing posterior distribution. We must recall, however, that
the skewness in Fig. 4 is averaged over the variables and
over time. Thus, while on average the skewness may be
smaller for the smoothing posterior than for the filtering
posterior, this does not mean that this indicator of non-
Gaussianity is always smaller or that the smoothing pos-
terior is always more amenable to Gaussian approxima-
tions than the filtering posterior. In fact, we have already
encountered a DA cycle in which both posterior distribu-
tions are multi-modal. At any given DA cycle of a
strongly nonlinear problem, it is not possible for us to
determine a priori which posterior distribution
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RMSE as a function of the time interval between observations for a fully observed L63 system (left) and a partially observed

(smoothing or filtering) is more amenable to Gaussian
approximation. In strongly nonlinear problems, this
seems to in fact depend on the observation and
DA cycle.

5.2.5. Other observation networks. We performed a ser-
ies of further numerical experiments in which we changed
the ‘observation network’ and considered smaller values
for the observation error covariance R, as well as obser-
vations of only a subset of the variables. We show some
of our results in Fig. 12. In the left panel, we show results
we obtain when all three variables are observed but the
observation error covariance is smaller than above
(R=13). In the right panel, we show results obtained
when we observe the x and z variable with small observa-
tion noise (R=0.1 I). All scenarios we considered
exhibit the same qualitative trends: the PF-GR gives con-
sistently the smallest RMSE, but in the regime of medium
nonlinearity, the variational methods lead to errors as
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Fig. 13.  An example solution plotted in space and through
time for the variable-coefficient KdV equation. The solitary
waves are bouncing back-and-forth within a “potential well’
whose width is approximately defined between —40 and 40.

small as the PF-GR and smaller than for the EnKF. This
suggests that these trends are not tied to one specific
set up of a L63 problem but may indeed be indicative of
what to expect for a class of nonlinear DA problems.

5.3. Higher-dimensional example: KdV

The L63 model has three dimensions and, for that reason,
localization is not required for this example. Higher
dimensional models, however, require that the algorithms
be localized. Localization of ensemble covariances in vari-
ational methods, the EnKF and the EnKS is well under-
stood and has been used in practice for many years.
Localization of PFs, however, is not yet as well under-
stood and one can expect that localization schemes intro-
duce additional errors. The numerical experiments with
L63 suggest that errors due to Gaussian approximations
of posterior distributions are not critical in the regime of
medium nonlinearity. A natural question is: are errors
due to Gaussian approximations of posterior distributions
perhaps less severe than errors introduced by localization
of the PF.

We use the variable-coefficient, KdV equation of
Hodyss and Nathan (2006, 2007) as a test problem, viz.

04 4 o4 o4

a1 @ my (x) a + mg(x)A—A a =0 (20)

where

mg(x) = —2axe ™", a=0.0005,
2D

on the domain x € [—25m,257]. This equation is a simple
model of nonlinear waves in variable media. Hodyss and
Nathan (2006, 2007) have shown that there exist two
classes of instabilities owing to the spatially varying coef-
ficients that correspond to oscillatory wave packets and
smooth envelope structures. These instabilities grow to

my(x) =1—e ",

finite amplitude, invoke wave breaking, and subsequently
spawn new solitary waves and other nonlinear waves. An
example solution to (20) is presented in Fig. 13.

5.3.1. Setup, tuning and diagnostics. We consider a dis-
cretization of the equation on a regular grid, leading to a
state vector of dimension Ny = 128 and use a pseudo-
spectral method combined with a third order RK in time
(time step At = 0.1). The observations are also taken on a
regular grid and we observe every other grid point
(Ny = 64 observations). The observation error covariance
is chosen to be a diagonal matrix whose diagonal ele-
ments are 10% of the true state at observation time. We
consider cases where observations are available every AT
time units and we vary AT. As before in the L63
example, larger AT makes the filtering prior ‘more non-
Gaussian’ due to the nonlinear dynamics. This does not
mean, however, that the posterior distributions are also
strongly non-Gaussian. We perform synthetic data experi-
ments of 1,200 DA cycles and compute RMSE and spread
for all DA algorithms we consider (stochastic and square
root EnKF, EnKS, varPS-new, PF-GR, PF-PR-GR, local
PF). The first 200 cycles are discarded as spin up. All
algorithms start with an ensemble of a spun up EnKF.

We tuned the localization and inflation parameters on
shorter DA experiments with 120 DA cycles, discarding
the first 20 cycles as spin up. The inflation is ‘prior infla-
tion’ as described in the context of L63 (see Section
5.2.1). The localization of the EnKF and the EnKS is
based on a circulant localization matrix that is defined
from Fourier basis functions. Briefly, we define a matrix,
E, whose columns are the sine and cosine functions prop-
erly normalized and arranged from smallest to largest
wavenumber such that EE” =1 We make use of the
property that the Fourier transform of a Gaussian is
another Gaussian and, subsequently, define a diagonal
matrix, I', whose diagonal is a Gaussian as a function of
wavenumber and for which the length-scale parameter
may be shown to be related to the correlation length-scale
inherent to the resulting localization matrix, C; = ETE”.
We then tune the length scale parameter. We believe that
the precise choice of the localization matrix is not critical
to our results. The use of other schemes, e.g. Gaspari-
Cohn, can be expected to produce similar results. To tune
the localization of PF-PR-GR (see Section 2.3.2) we con-
sider neighborhoods containing 1-5 grid points to the left
and right.

We considered several ensemble sizes, but below only
show results for N, = 200 for the EnKFs, the EnKS, the
PF-PR-GR, the local PF and the varPS-nw and for N, =
10* for the PF-GR. The large ensemble size is necessary
for the PF-GR because the filter is not localized. Note
that we are not suggesting that the PF-GR is a viable
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DA method in practice; the main purpose of the PF-GR
is simply to
this problem.

serve as a benchmark solution for

5.3.2. Results. We plot RMSE as a function of the time
interval between observations in Fig. 14. We also com-
puted the spread for each DA method and found that
spread and RMSE are comparable. As we tuned RMSE
and spread to match we do not plot spread for clarity.

The results are qualitatively the same as for the low-
dimensional L63 example: we find that the PF-GR gives
consistently the smallest RMSE, but also requires the
largest ensemble size. The smoothing algorithms (varPS-
nw and EnKS) come close to the performance of the the
PF-GR, which suggests that the smoothing posterior in
this example is nearly Gaussian. The reason is that we
consider a case with many observations and small obser-
vation error variance; hence, the regularization of the fil-
tering prior by the observations is strong and posterior
distributions are nearly Gaussian. As in L63, we also find
that the stochastic EnKF performs slightly better than
the square root filter (and for the same reasons). We
made an effort to thoroughly tune the local PF; however,
we could not find a configuration in which the local PF
gives RMSE comparable to the RMSE of the other algo-
rithms. This could be due to insufficient tuning, or could
be interpreted as another hint at the fact that the infla-
tion of our implementation of the local PF is problem-
atic, especially when the observation noise is small. Such
issues are addressed in Poterjoy et al. (2018). More gener-
ally, our results with the local PF can be viewed as a
piece of evidence that inflation, or jittering, of PFs is as
important as localization—we had no luck with PFs with-
out inflation in low-dimensional problems and the

RMSE as a function of the time interval between observations for a partially observed KdV system.

inflation proves problematic in this higher-dimensional
example as well.

In contrast to the L63 tests, the KdV tests require
localization of PFs to avoid extremely large ensemble
sizes. This allows us to study the additional error due to
localization and how these errors compare with errors
due to Gaussian approximation. We note that the RMSE
of the PF-PR-GR with N, =200 is larger than the
RMSEs of the PF-GR with Ne:104, the varPS-nw
(Ne = 200), the EnKS (N, =200), and the stochastic
EnKF (N, =200). The RMSE of the PF-PR-GR
(N, = 200), however, is smaller than what we can obtain
by the square root EnKF (N. = 200). This suggests that
localization of the PF is not necessarily a remedy for all
issues with PFs and their collapse: unless the localization
is done carefully, it may introduce additional errors that
are more severe than errors one causes by Gaussian
approximations of posterior distributions in variational
methods such as EDA or varPS/varPS-nw. As indicated
above, our localization scheme may not be optimal, yet
the experiments with the KdV equation suggest that a
LETKF-style localization of the PF may not be viable, at
least in some nonlinear problems. This is also compatible
with the results reported in Potthast et al. (2018) and
Farchi and Bocquet (2018), where a similarly localized
PF is applied to an operational NWP system and yields
results that are slightly worse (in terms of RMSE) than
what one can obtain by an EnKF.

6. Summary and discussion

We have presented mathematical arguments and numer-
ical evidence that suggest that posterior distributions can
be nearly Gaussian even when the numerical model is
nonlinear, resulting in filtering prior distributions that are
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not nearly Gaussian. The findings of this paper further

suggest several ramifications for DA in NWP. We sum-

marize our main conclusions.

1. When nonlinearity is mild, the various distributions in
filters and smoothers are nearly Gaussian and the
various DA methods (EnKF, EnKS, PF, PS and
variational methods) lead to similar RMSE and
spreads, but at different costs. Methods that make
use of near-Gaussian problem structure (EnKF,
EnKS, variational methods) tend to be more effective
than methods that do not exploit this structure, e.g.
the PF.

2. When nonlinearity is medium, DA algorithms that
make use of Gaussian approximations of posterior
distributions, e.g. variational methods and variational
PS, can be more appropriate than the EnKF, which
makes use of Gaussian approximations of the filtering
prior. Variational methods are also more appropriate
than PFs because PFs do not exploit near-Gaussian

problem structure and, for that reason, require
larger ensembles.
3. In high-dimensional problems with medium

nonlinearity, localization of the PF must be done
carefully, or else additional errors due to localization
can be
approximations of posterior distributions.

4. PFs are worthwhile if a DA problem is strongly
nonlinear, with severely non-Gaussian posterior
distributions; in this regime, however, larger ensemble
sizes than usually considered are required (hundreds
to thousands, see also Poterjoy et al., 2018).

5. Variational methods are sensitive to the numerical
implementation of the optimization in strongly
nonlinear problems and can produce large errors
unless the optimization is implemented carefully. The
EnKF may be a useful alternative as the EnKF does
not require numerical optimization and can lead to
similar RMSE as variational methods with its ‘simple’
optimization strategy in strongly nonlinear problems.
Probabilistic inferences based on the EnKF, however,
are likely to be poor in strongly nonlinear problems
with multi-modal distributions.

The main motivation for using PFs is to be able to
capture non-Gaussian aspects of the (filtering) posterior
distribution. For that reason, PFs make no assumptions
about underlying problem structure. Localized PFs rely
on the assumption that the model is ‘local’, i.e. that inter-
actions of state variables are constrained to neighbor-
hoods and that observations have a local, not global
effect. It follows that PFs, even optimal ones, optimally
localized, cannot ‘beat’ the EnKF in linear problems
because a localized EnKF exploits linearity of the model
and local problem structure (see also Morzfeld et al.,

larger than errors due to Gaussian

2018). This fact, in conjunction with our comparisons of
the PF with variational methods and PS in problems with
mild and medium nonlinearity indicate that PFs are
worthwhile only if the nonlinearity is strong (multi-modal
posterior distribution).

Strong nonlinearity and severely non-Gaussian poster-
ior distributions, however, require a re-thinking of the
overall DA approach. For example state estimates are
typically based on posterior means or modes (or approxi-
mations thereof), but posterior means or modes are not
adequate as state estimates in multi-modal situations. It is
unclear to us how to produce a single state estimate if
one detects two (or more) modes in the filtering posterior.
In addition, DA algorithms are often evaluated based on
RMSE and spread. When the posterior distributions are
non-Gaussian (multi-modal), then these two quantities
may no longer be sufficient to adequately assess the per-
formance of a numerical DA method.

The ensemble size of the PF in a strongly nonlinear
problem should be expected to be large (see also the
conclusions of Poterjoy et al., 2018). The reason is that
even scalar distributions, with large skew or multiple
modes, are not easily represented by small ensembles.
Our experiments with L63 suggest that ensembles sizes
of several hundred or even thousands should be consid-
ered when dealing with severely non-Gaussian problems
(and otherwise PFs should be avoided as explained
above). Such large ensembles are computationally chal-
lenging to produce with operational NWP codes.
Perhaps one way forward could be to pursue a ‘hybrid’
or multi-scale approach, where the bulk of the state is
estimated by a suitable nearly Gaussian technique (vari-
ational DA or PS), and where PFs and non-Gaussian
methods are only used on a subset of the state, see also
Robert and Kiinsch (2017). This, however, requires a
deep understanding of the nonlinearity and non-
Gaussianity of the NWP DA problem, which at this
point, is missing.

The most pressing question for NWP is: how nonlinear
is a NWP problem and how does this nonlinearity
change, e.g. when the resolution of the model is refined
or when the observation network is changed. It is often
said that the ‘problem is more nonlinear when the reso-
lution is increased’ (see, e.g. Farchi and Bocquet, 2018),
but it is unclear what this statement means in regards to
‘how non-Gaussian’ the resulting posterior distributions
are, in particular if the observation network is also
changed. Our work does not give answers to these
important questions, but we have worked out guidelines
that suggest which DA algorithms are suitable depending
on the type of non-Gaussianity of posterior and prior dis-
tributions one encounters in NWP.
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Appendix: Covariance matrices of smoothing
prior and posterior are smaller than the
covariance matrix of the filtering prior

and posterior

In Section 3.1, it was stated that the smoothing posterior
has smaller variance than the filtering posterior and that
the smoothing prior has smaller variance than the filtering
posterior. We can make these statements mathematically
precise under additional simplifying assumptions. First, we
require that the model be linear, i.e.

Xp = MX”,“ (22)

and that the largest singular value of the model matrix
M, is larger than one. Recall that the largest singular
value of a matrix is the induced two-norm. Generically,
we write the largest singular value of a matrix A as
[|All, =6a. Let u, ; and P,_; be the mean and
covariance of the filtering posterior at time n — 1. Then
the smoothing and filtering prior at cycle n are

p(xlinfl‘yl:nfl) = N(I’Ln717Pn*1)7 (23)
p(xlzn|y}:n—l) :N(Mﬂn,17Pf)7 (24)

where the forecast covariance P/ =MP,_ M’. We
further assume that the covariance matrix P,_; and the
model matrix can be decomposed as

P, =UI'U?, M=VAU?, (25)

where I" and A are diagonal matrices and where U and V
are orthogonal matrices, i.e. VV' =1Iy,UU" =1y,. In
other words, the eigenvectors of the covariance matrix
are equal to the right singular vectors of the model
This consistent with typical

matrix. assumption is
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example problems, e.g. Lorenz (1996), where the
covariance and model matrices are both homogeneous
and circulant (Toeplitz). Under our assumptions:

[[P7]], = |MP,_ M"||, = |[VATAV]

2. (26)
= [IATAl, = 66w

>6-Pn = ||Pn*1H2'

n—1

Thus, the covariance of the smoothing prior is less
than the covariance of the filtering prior (in the induced
two-norm).

Using the same notation as above, and denoting the
mean and covariance of the smoothing posterior by u’

and P®, we have

Ps (xl:n71|y1;n) :N(ﬂi,ppflf])v (27)
pr (XIZHIYI:n) = N(H'm P”)7 (28)
where P, = MPfHMT. Assuming that P;_, = Uau?,

1

where U is as above and ® is a diagonal matrix, the same
arguments as above give:

[Pt [ <I[P] - (29)

n—1

Thus, the smoothing posterior has a smaller covariance
than the filtering posterior at the same cycle.
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