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Several distinct models of emotional intelligence (EI) have been developed over the past
two decades. The ability model conceptualizes EI as a narrow set of interconnected,
objectively measured, cognitive-emotional abilities, including the ability to perceive,
manage, facilitate, and understand the emotions of the self and others. By contrast,
trait or mixed models focus on subjective ratings of emotional/social competencies.
Theoretically, EI is associated with neurobiological processes involved in emotional
regulation and reactivity. The neurovisceral integration (NVI) model proposes a positive
relationship between cardiac vagal control (CVC) and cognitive-emotional abilities similar
to those encompassed by EI. The current study examined the association between
CVC and EI. Because ability EI is directly tied to actual performance on emotional
tasks, we hypothesized that individuals with higher ability-based EI scores would show
greater levels of CVC at rest, and in response to a stressful task. Because mixed-
models of EI are not linked directly to observable emotional behavior, we predicted
no association with CVC. Consistent with expectations, individuals with higher levels of
ability EI, but not mixed EI, had higher levels of CVC. We also found that individuals with
greater levels of CVC who demonstrated reactivity to a stress induction had significantly
higher EI compared to individuals that did not respond to the stress induction. Our
findings support the theoretically expected overlap between constructs within the NVI
model and ability EI model, however, the observed effect size was small, and the
associations between EI and CVC should not be taken to indicate a causal connection.
Results suggest that variance in the ability to understand emotional processes in oneself
and to reason about one’s visceral experience may facilitate better CVC. Future work
manipulating either CVC or EI may prove informative in teasing apart the causal role
driving their observed relationship.

Keywords: cardiac vagal control, emotional intelligence, mixed emotional intelligence, ability emotional
intelligence, heart rate variability, stress, autonomic control, emotion regulation

INTRODUCTION

Emotion and cognition represent a dynamic system involved in a reciprocal relationship. Their
interplay is proposed to facilitate social adaptation, thus facilitating the optimization of health,
and behavior (Lazarus, 1991). The facilitation and balance between emotion and cognition are
thought to be a unique set of abilities, separate from general intelligence (IQ), and conceptualized
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as emotional intelligence (EI) (Salovey and Mayer, 1990). EI has
been defined in a number of ways but is generically described
as the awareness and understanding of emotional information
relating to oneself and others, and the ability to use that
information to facilitate goal-oriented behavior (Payne, 1985;
Mayer and Geher, 1996; Goleman, 2006; Smith et al., 2018).
The concept of EI has been defined by multiple authors, to
index the degree to which emotion relates to adaptive human
behavior and social engagement (Bar-On, 2004; Extremera and
Fernández-Berrocal, 2005; Pérez et al., 2005; Seal et al., 2009).

Two main models for quantifying EI for research purposes
have emerged from previous work and are proposed as either
purely “performance ability” or “trait” based (Bar-On, 1997;
Mayer et al., 2008). The ability model postulates EI as a narrow
construct and uses objective performance-based testing as a
means of quantification, whereas trait models theorize that it is
a broader skill set and have become known as mixed-models
of EI (Mayer et al., 2002; Bar-On, 2004; Gutiérrez-Cobo et al.,
2016). The Mayer-Salovey-Caruso Emotional Intelligence Test
(MSCEIT) is the most widely used performance-based ability
model test and encompasses a variety of skills and abilities related
to emotional processing, such as the ability to use emotions
purposefully, distinguish emotional cues, and deliberately use
emotions when having to make decisions (Mayer et al., 2001;
Brackett et al., 2006). The model proposes a hierarchy of
performance based on the quality of responses to a variety of
emotion-focused problems. As an ability measure, the MSCEIT
comprises a series of tasks that assess discrete emotional skills
such as the ability to recognize emotions in visual stimuli such
as faces and photographs, the ability to regulate and manage
emotions in various contexts, and the ability to solve emotional
problems. On the other hand, the Bar-On emotional quotient
inventory (EQ-i) is one of the most widely used self-report
instruments assessing mixed model EI (Bar-On, 2004). The Bar-
On model, and other mixed approaches, generally conceive of
EI as a set of stable social and emotional competencies of
which the individual is self-aware and that are assessed via self-
report statements (Petrides and Furnham, 2001). An alternative
conceptualization of EI that has gained attention for its potential
to foster a more holistic theory of EI calls for a multi-level
model and the integration of a behavioral level of EI relating it
to social and professional outcomes (Boyatzis, 2018). A multi-
level approach will undoubtedly propel our understanding of
EI as a unique and specific construct relating to cognition
and behavior. However, the time and resource demands of the
qualitative methodology inherent to this type of assessment of
EI capacities has been a barrier to its larger scale dissemination
and application in research. As such, practitioners wishing to
assess EI find themselves having to consider not only theoretical
orientations but the resources necessary to adequately assess the
capacity (Boyatzis, 2018). Despite more than two decades of
intensive research, there continues to be a wide-ranging debate
about the construct validity of the various models of EI and how
such models relate to cognition (Mayer et al., 2001; Locke, 2005;
Alkozei et al., 2018).

It is well accepted that effective emotion regulation strategies
contribute to wellbeing and positive mental health outcomes.

Higher levels of EI are particularly strong predictors of mental
health outcomes and also associated with better physical health
(Martins et al., 2010; Fernández-Abascal and Martín-Díaz, 2015).
Interestingly, mixed and ability measures of EI are often poorly
correlated with one another and predict different aspects of
health (Webb et al., 2013). For example, higher mixed EI
has been associated with increased well-being, yet attempts to
replicate this association with ability tests have been unsuccessful
(Furnham and Petrides, 2003; Zeidner and Olnick-Shemesh,
2010). Higher levels of mixed EI may also protect against
emotion dysregulation and facilitate greater quality in social
interactions (Lopes et al., 2005). Individuals with higher levels
of mixed EI demonstrate increased resilience against decrements
in personally relevant moral-judgment decisions while sleep
deprived, without significant changes for other moral domains
(Killgore et al., 2007). Both mixed and ability model scores
demonstrate a positive association with accuracy in recognizing
emotional facial expressions (Petrides and Furnham, 2003;
Wojciechowski et al., 2014). There is a high correlation between
mixed EI and job performance, however, well-established
measures of knowledge, skills, abilities, and other characteristics
offer significant incremental prediction beyond measures of
mixed EI (Joseph et al., 2015). The mixed findings for the
two models underscore the notion that associations between
EI as a quantified measure are dependent on several factors,
including cognition, the testing modality, and the degree of
emotional content inherent to the endeavor. A growing body
of work demonstrates a distinction between cognitive tasks that
are emotionally neutral, as opposed to those containing affective
stimuli, conceptualized as utilizing “hot” or “cool” cognitive
processes (Metcalfe and Mischel, 1999). A recent systematic
review of studies showed that ability, but not mixed, EI correlated
positively with task performance that required “hot” cognitive
processes, while studies investigating the relationship between
EI metrics, and “cool” cognitive processes failed to produce any
positive associations (Gutiérrez-Cobo et al., 2016). Based on their
findings, the authors concluded that current ability and mixed
model conceptualizations of EI are only relevant for tasks that
require affective processing and that the MSCEIT is the only
current ability or mixed model based EI measure that reliably
predicts increased performance on affective cognitive tasks.

Emotional functioning depends on a dynamic interplay
of the central nervous system and the autonomic nervous
system. A fundamental component of the parasympathetic
branch of the autonomic nervous system critical to mind-
body interactions is cardiac vagal control (CVC), which
provides a reliable marker for emotional health (Porges, 1995).
Measures of CVC, such as heart rate variability (HRV),
are considered representative of interindividual differences in
parasympathetic efferent control of cardiac rate, which when
high promotes adaptive emotional responding and regulation
that underlie physical, and mental health (van Ravenswaaij-
Arts et al., 1993; Acharya et al., 2007; Beauchaine and
Thayer, 2015). Optimal cardiac reactivity demonstrates tightly
coupled reciprocal responsiveness between the sympathetic and
parasympathetic systems in reaction to environmental demands
(Mccabe et al., 2000). The Polyvagal theory posits that CVC

Frontiers in Human Neuroscience | www.frontiersin.org 2 June 2019 | Volume 13 | Article 181

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00181 June 8, 2019 Time: 10:53 # 3

Vanuk et al. Emotional Intelligence and Cardiac Vagal Control

is responsible for higher-order functions in mammals, from
a phylogenetic perspective, by facilitating emotion regulation,
and promoting social engagement (Porges, 1995). Individual
differences in CVC reactivity predict vulnerability to stress, along
with positive outcomes in communication, attention, and the
regulation of emotion (Suess et al., 1994; Porges, 1995; Thayer
and Lane, 2000; Appelhans and Luecken, 2006). A substantial
body of work demonstrates associations between low levels of
resting and reactive CVC with multiple forms of internalizing
and externalizing psychopathology (Kemp and Quintana, 2013;
Shahrestani et al., 2014; Beauchaine, 2015). Greater CVC
reactivity buffers against the development of psychopathology
and health problems (El-Sheikh et al., 2001). Increases in CVC are
related to optimal outcomes in the treatment of major depression
and have been suggested as a target for anxiety interventions
(Chambers and Allen, 2002; Chalmers et al., 2014).

Cardiac vagal control is important in a wide range of situations
that demand effective cognitive-emotional regulation through
coordination of biological systems. The degree of influence
CVC has over the central autonomic network is thought to
rely on prefrontal inhibition, and the neurovisceral integration
(NVI) model proposes that the dynamic system contributing to
autonomic control involves a negative feedback system guided by
attention regulation and affective processing (Thayer and Lane,
2000). The central autonomic network demonstrates a positive
relationship between CVC modulation and increased cognitive-
emotional abilities that are similar to EI and is predictive of
positive behavioral health outcomes in mood disorders, such
as depression (Friedman, 2007). Since its initial conception,
the NVI model has gained considerable empirical support
relevant to positive behavioral health outcomes, and recent
work has extended NVI model to a hierarchical model involved
in predictive cognitive coding computations (Smith et al.,
2017). Cognitive coding computations are critical during early
development and are vital to learning and the comprehension of
knowledge (Clark and Paivio, 1991). Children with higher levels
of resting HRV have higher capacities for sustained attention
and higher attention span/persistence in early childhood; which
contribute to cognitive development and higher educational
attainment (Suess et al., 1994; McClelland et al., 2013).
Increased performance in high-stress environments such as
sports competition is also linked to greater ability to regulate
emotions, as well as resting CVC and its modulation (Crombie
et al., 2009; Plews et al., 2012). The use of biofeedback to enhance
CVC control is related to improvements in emotional health
in the workplace as well as better performance in competitive
environments where high levels of stress are inherent (McCraty
et al., 2003; Holden, 2006). Favorable results related to increases
in resting CVC recovery following a stressor after targeted
biofeedback training have been shown to occur and contribute
to positive outcomes related to anxiety and emotion regulation
(McCraty et al., 1999; Thurber et al., 2010).

Chronic stress and the inability to regulate emotions are
associated with maladaptive physiology, mental health, and have
a critical impact on multiple aspects of well-being (Chrousos,
2000). Higher levels of ability-based EI predict greater CVC
reactivity during more intense emotional experiences (Rash

and Prkachin, 2013). Self-report mixed EI metrics also predict
positive outcomes and better cardiac responsiveness during stress
(Bar-On et al., 2006). Athletes with higher levels of mixed EI have
lower levels of CVC reactivity during high-stress competitive
environments (Laborde et al., 2011). However, this must be
considered in light of the fact that athletes demonstrate atypical
autonomic reactivity compared to less physically fit individuals
and have significantly higher levels of self-esteem and social
connectedness (Koivula et al., 2002; Plews et al., 2012). In
conclusion, studies investigating the relationship between the
different conceptualizations of EI, CVC, and its reactivity to
stress demonstrate consistent positive associations between EI
and CVC; but no study to date has investigated this relationship
incorporating two of the most widely used and validated
measures of mixed and ability EI simultaneously.

To address the current gap in literature associating CVC and
EI, we examined the influence of both ability EI and mixed EI on
CVC during rest and in response to a potentially stressful task.
Since CVC reactivity is linked to flexibility in emotion regulation
and ability-based metrics are most representative of cognitive
control, likely extending to EI, then individual differences in EI
are expected to be related to CVC modulation during stress.
In light of prior evidence, three general hypotheses were tested.
First, we hypothesized that individuals with higher levels of ability
EI would have greater levels of CVC at rest, and if so by the
perceiving and understanding domains that are less likely to
incorporate acute CVC reactivity. Second, we hypothesized that
individuals with higher levels of ability EI would have greater
decreases in CVC in response to stress and greater subsequent
increases during recovery, and if so, these would be driven by
the managing and using domains, which may be more likely
to be utilized in contexts requiring CVC reactivity. Finally,
we hypothesized that cardiac metrics that are less specifically
sensitive to vagally mediated influences (i.e., sensitive to some
extent also to sympathetic influences) would not demonstrate the
same associations with EI as CVC metrics that reflect primarily
parasympathetic influence.

MATERIALS AND METHODS

Participants
One hundred thirty-five healthy adults (87 females) were
recruited from the local community via internet, newspaper,
radio, and flyer advertisements for the present study. A power
analysis modeled on previous work investigating CVC and
emotional dispositions suggested that effect sizes were small to
medium (Pearson’s r ranged from 0.21 to 0.38) (Oveis et al.,
2009). Therefore, for the proposed study, we applied the mean
effect size (r = 0.29) to estimate power to detect individual
differences. That power analysis showed that with α = 0.05 (2-
tailed), a sample of n = 88 should provide adequate power
(1-β = 0.8) to detect individual differences to be established by
CVC characteristics, which was less than the minimum number
of individuals to be recruited for a subsequent study sharing
a recruitment effort with the present study. Participants were
between the ages of 18–40. Because of the high reading and

Frontiers in Human Neuroscience | www.frontiersin.org 3 June 2019 | Volume 13 | Article 181

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00181 June 8, 2019 Time: 10:53 # 4

Vanuk et al. Emotional Intelligence and Cardiac Vagal Control

cognitive demands of the tasks, participants were required to
have an English reading proficiency of 8th grade or higher as
defined by the WRAT4 Reading subtest and were also screened
to exclude individuals with impaired reading comprehension,
and altered mental status or capacity, due to medications,
substances, cognitive status, injury, or medical conditions that
could influence the outcome of psychological assessment.

Participants were excluded from analyses if they took
medication with a mechanism of action that influences cardiac
reactivity (21 participants, see Supplementary Appendix A for a
list of medications) or had unusable EKG data (8 participants).
Four participants failed to have their EQi recorded and were
also removed from analyses. The final sample for analyses
included 102 individuals (64 females, mean age = 22.8 years,
SD = 4.4). All participants had a high school diploma or
equivalent, 91.2% of participants completed some college, 28.4%
of participants had a Bachelor’s degree or higher. 54.9% of
participants were Caucasian, 21.6% were Hispanic/Latino, 12.7%
were Asian/Pacific Islander, 4.9% were African American, and
5.9% reported ethnicity as “other.”

All participants provided written informed consent before
enrollment. The study protocol was approved by the Institutional
Review Boards of the University of Arizona and the U.S. Army
Human Research Protections Office.

Apparatus and Materials
Psychological Assessment
The Mayer-Salovey-Caruso Emotional Intelligence Test II
(MSCEIT) was used to assess ability-based EI and evaluates a
number of specific skills and abilities related to reasoning about
and regulating emotional processes (Mayer et al., 2003). The
MSCEIT is a 141-item performance test requiring subjects to
identify emotions in faces and designs, to specify emotions or
feelings that interfere with or facilitate specific thought processes,
demonstrate an understanding of how various emotions combine
to create higher-order emotions and how these blends may
change over time, as well as demonstrate knowledge of how
specific emotional management strategies will lead to various
consequences in oneself and others. The test yields a total EI
score, two area scores (experiencing and strategic), and four
branch scores (perceiving, using, understanding, and managing);
derived from eight task-level scores. The area scores are specific
to the ability to recognize emotions and determine how they
interact with a thought or understand emotional meanings
relative to others and manage them. The branch scores are
specific to the ability to identify emotions, facilitate thought using
emotions, understand emotions, and manage emotions. The
MSCEIT has been found to have adequate reliability (split-half
reliability overall = 0.91) and good discriminant and convergent
validity (Mayer et al., 2002).

Mixed EI was assessed using the Bar-On EQ-I 2 (EQi), a self-
report inventory designed to evaluate the construct of EI and
the underlying factors that contribute to emotionally intelligent
behavior (Bar-On et al., 2006). The EQi is a 133-item self-
report measure using short sentences (e.g., “I am good at reading
other people’s emotions”) and a 5-point Likert response scale

ranging from (1) “very seldom or not true of me” to (5) “very
often true of me or true of me.” The measure provides several
scores, including a general metric of total EI and five composite
scales (self-perception, self-expression, interpersonal, decision
making, stress management), assessing various features of mixed
EI. The EQi has been found to have good discriminant and
convergent validity, as well as very high reliability (internal
consistency = 0.97) (Bar-On, 2004).

Physiological Assessment
Physiological data were recorded using a Zephyr Biopatch1 with
conductive adhesive hydrogel foam electrodes. The device was
placed at the sternum, and the ECG signal was sampled at
1000 Hz, which is above the minimum suggested sampling
frequency (Camm et al., 1996). Off-line analysis was performed
by extracting the inter-beat interval (IBI) series from the raw
digitized ECG signal using QRSTool Software (Allen et al., 2007).

Procedure
After providing informed consent, participants underwent an
ECG reactivity assessment that entailed two five-minute resting
periods separated by a 90-s cognitive challenge as a stress
induction (serial subtraction) (Tomaka et al., 1994; Seraganian
et al., 1997). During resting periods, participants were instructed
to sit quietly without talking or moving while focusing on a
fixation cross positioned in front of them. During the stress
induction, participants were asked to count backward by 17,
starting from 1,025, as quickly as possible. Participants were
provided pre-recorded auditory feedback contingent on their
performance via an E-Prime program2, controlled by a research
technician. To maximize the stress induction, participants were
instructed to begin again if they made an error in their
subtraction, or that they needed to go faster and to start again
if they reached predetermined points without error. Participants
completed all psychological measures, including the MSCEIT and
EQi, subsequent to the ECG reactivity assessment.

Physiological Data Reduction and Variable Selection
The extracted IBI series were hand corrected by a trained and
experienced technician to eliminate artifacts such as ectopic,
erroneous, and missed beats (Berntson et al., 1990). Data
were processed using Matlab (version 2015B3) with parameters
modeled on those of CMetX Cardiac Metric Software (Allen et al.,
2007), with the additional incorporation of a moving window.
The moving window used 30-s segments that shifted by 3-s at a
time. Estimates of multiple metrics of cardiac chronotropy were
derived using the extracted time series. The moving window
approach ensures that variance estimates from a non-stationary
time series (as is almost always the case with interbeat-interval
data) are not inflated by recording length. The mean value across
all 30-s epochs was taken for each metric as the final value to be
used in analyses.

1https://www.zephyranywhere.com/media/download/zephyr-performance-
biopatch-hp-brochure.pdf
2https://pstnet.com/products/e-prime/
3https://www.mathworks.com
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CVC Variable Selection and Estimates
Increased influence of the vagus nerve on heart rate leads to larger
variance in the time interval between heartbeats; a phenomenon
classified HRV. HRV is widely accepted as representative of CVC
and is sensitive to both the parasympathetic and sympathetic
influences of the autonomic nervous system, but it reflects
predominantly parasympathetic influences when individuals are
at rest (Allen et al., 2007; Kromenacker et al., 2018). The
root mean square of successive differences (RMSSD) is another
time-domain measure proposed to quantify the parasympathetic
nervous system’s impact on HRV (Von Neumann, 1941; Malik
et al., 1996). The Polyvagal theory proposes respiratory sinus
arrhythmia (RSA) as a measure of CVC, indexing the magnitude
of respiratory-linked changes in HRV (Porges, 1995). Individual
differences in RMSSD are associated with similar outcomes as
RSA, such as susceptibility to cardiovascular disease, but more
sensitive to low-frequency HRV contributions that can represent
a combination of parasympathetic and sympathetic influences on
HRV (Berntson et al., 2005; Thayer et al., 2010; Kromenacker
et al., 2018). While RSA is the gold standard in the non-invasive
quantification of parasympathetic control, it is still an imperfect
index of CVC, as it is susceptible to the influence of respiration
(Grossman et al., 1991; Allen et al., 2007). RMSSD is less sensitive
to the impact of slow respiration and individuals breathing
outside the targeted range, but debate remains regarding the
underlying influence on this time domain metric (Hill et al.,
2009). Previous work shows high correlations between RSA and
RMSSD (r’s = 0.85–0.91) but RSA has higher correlations with
HRV (r = 0.90) than RMSSD (r = 0.84) (Berntson et al., 2005;
Kleiger et al., 2005; Allen et al., 2007).

Respiratory sinus arrhythmia was estimated by calculating
HRV in the high-frequency band that captures respiratory-
related changes in the timing of heart beats (0.12–0.4 Hz). The IBI
series was converted to a time series sampled at 10 Hz with linear
interpolation and a 241-point optimal finite impulse response
digital filter designed using FWTGEN V3.8 (Cook and Miller,
1992) with half amplitude frequencies of 0.12–0.4 Hz. RSA is
the natural log of the variance of this filtered time series. HRV
is the natural log of the variance of the unfiltered time series.
RMSSD was also quantified as a measure of CVC, to be utilized in
the event the RSA metric was compromised by individuals with
a peak frequency of respiration below 0.12 Hz. An estimate of
RMSSD was derived using the root mean square of successive
differences in the IBI time series across each moving window.
An index of respiration rate was obtained using a fast Fourier
transform on the IBI series, and the dominant frequency in the
power spectrum of the respiration waveform was inspected to
ensure the rate did not fall below 0.12 Hz, which invalidates
the estimate of RSA for such segments (Grossman and Taylor,
2007). During the resting baseline period, 77.2% of individuals
had max power frequencies that fell below 0.12 Hz. Due to this
problem, which invalidated the RSA measure in the majority
of subjects, all analyses targeting CVC were conducted using
RMSSD rather than RSA. CVC estimates represent mean levels
during each unique condition (i.e., during the baseline resting
period, during the stressor, and during the post-stress recovery
resting period).

MSCEIT Scoring
Raw data from the MSCEIT were scored by the Multi-Health-
Systems using consensus scoring adjusted for age and gender.
Consensus scoring is based on the concept that general consensus
should identify the optimal answer to the majority of emotion-
based questions, as emotions are evolved signals that require the
majority of the group to understand and accept as valid/accurate
(Mayer et al., 2003).

Statistical Analysis
All statistical tests used an a priori significance level of
p ≤ 0.05. Inspection of skewness, kurtosis, and the Shapiro-
Wilk test indicated non-normal distributions among multiple
variables. Due to deviations from normality and the presence of
heteroscedasticity, log transformations of variables of interest
were employed. However, as some variables of interest still failed
to achieve normality assumptions, optimal model parameters
were identified using akaike’s information criterion (AIC)
penalized-likelihood criteria, and the optimal model parameters
reported utilized employed fixed variances and separate
covariances with restricted maximum likelihood estimation.

Software and packages utilized
All statistical analyses were performed using R (version 3.5.14).
Correlation analyses were performed using the hmisc package
(Harrell, 2018). Linear regression model assumptions were
interrogated and ensured to have been met using the gvlma
package (Pena and Slate, 2014). Linear models were analyzed
utilizing the nlme and predictmeans packages (Luo et al., 2014;
Pinheiro et al., 2014). Penalized likelihood criteria were analyzed
using the glmnet package (Friedman et al., 2010). Hierarchical
agglomerative clustering was conducted using the FactoMineR
package (Lê et al., 2008; Wickham, 2016). Stepwise variable
selection was implemented using the stepAIC function in the
MASS package (Ripley, 2002). Figures and tables were generated
using the corrplot and ggplot2 packages (Wei and Simko, 2013;
Lüdecke, 2018).

Zero-order correlation analysis
Bivariate Spearman correlations were performed across all
subjects for age, total EI scores, and cardiovascular variables for
resting baseline, stress reactivity and recovery indices (change
in RMSSD from the prior level). EI subscale correlations are
presented in the Supplementary Material S3.

EI predicting baseline CVC
A simple linear regression model was used to predict baseline
cardiac metrics, based on the total score of each EI measure.
Outcomes and predictors were log transformed [y’ = log(y)]
after the initial model failed to meet the model assumptions of
skewness, kurtosis, and heteroscedasticity. Model assumptions
were satisfied utilizing the log-transformed variables. To identify
which EI subscale drove potential significant effects, a multiple
linear regression model was fit using all sub scale scores from
the unique EI metric and an automated forward and backward
stepwise variable selection method simplified the model to limit
multi-collinearity between predictors.

4https://www.r-project.org
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Physiological response to serial subtraction
A linear mixed model for repeated measures over time using
generalized least squares was used to investigate changes in
RMSSD in response to the serial subtraction task and subsequent
recovery following the stress induction.

EI predicting change in CVC across conditions
The identified optimal parameters for the linear mixed models
assessing RMSSD across time were used to investigate the
main effect and interactions for EI measures and RMSSD
levels across the stress induction and recovery conditions using
RMSSD as the dependent variable and condition, total ability
EI, and total mixed EI scores as predictors. AIC penalized-
likelihood criteria was used to determine if the addition of
the EI total scores in a main effect or interaction model had
a significant influence beyond the simpler model with only
condition (e.g., resting baseline, stress induction, and resting
recovery levels), as a predictor.

Investigating potential influential covariates
Akaike’s information criterion penalized-likelihood criteria was
used to determine if covariates of interest had a significant
influence on the models with a least absolute shrinkage and
selection operator (LASSO) regression analysis using baseline
RMSSD as an outcome variable and gender, age, caffeine
consumption that day, and time of day as predictors. Regression
models were rerun, accounting for the identified covariates of
influence, to investigate potential increases in the total variance
accounted for within the models and compared to the simpler
model using AIC penalized-likelihood criteria.

Exploring individual differences in CVC in response to stress
and recovery
To investigate potential group level effects associated with
individual differences in CVC, a principal components analysis
(PCA) in conjunction with hierarchical agglomerative clustering
was employed across RMSSD at rest, stress induction, and
recovery. Initial analyses investigating between-group effects
were conducted using t-tests. However, residuals were not
normally distributed, so non-parametric two-tailed Mann-
Whitney U tests were utilized for group-level analyses
examining associations CVC responsiveness to stress induction
and EI variables.

Secondary analyses
Additional secondary analyses on HRV and HR are presented
in the Supplementary Materials, including statistical methods
and results. See Supplementary Material S1 and Supplementary
Tables S2, S3, S6, S7.

RESULTS

Descriptive Statistics and Correlations
Table 1 presents descriptive statistics, means, and
associated standard deviations for the demographic, EI,
and physiological variables.

TABLE 1 | Descriptive statistics of the sample.

Measure Mean St. Dev.

Age 22.78 4.39

Baseline RMSSD 32.74 19.64

Stress induction RMSSD 26.81 13.40

Stress recovery RMSSD 33.61 17.94

Baseline HRV 7.26 0.98

Stress induction HRV 7.49 0.84

Stress recovery HRV 7.30 0.90

Baseline HR 84.63 11.15

Stress induction HR 95.20 13.91

Stress recovery HR 83.27 11.48

EQi total 102.79 12.62

EQi interpersonal branch 105.78 13.62

EQi decision making branch 101.85 12.80

EQi stress management branch 104.84 12.30

EQi self perception branch 101.46 13.46

EQi self expression branch 97.64 14.10

MSCEIT total 107.97 12.52

MSCEIT perceiving branch 110.16 12.81

MSCEIT using branch 106.93 13.48

MSCEIT understanding branch 111.84 18.92

MSCEIT managing branch 100.97 11.79

RMSSD, root mean square of successive differences; HRV, heart rate variability;
HR, heart rate; EQi, Bar-On EQ-I 2; MSCEIT, Mayer-Salovey-Caruso Emotional
Intelligence Test II; St. Dev., standard deviation.

Full Sample Zero-Order Correlations
Figure 1 presents bivariate correlations assessing relationships
among RMSSD, HRV, and HR at baseline resting levels, and
stress reactivity and recovery indices (change in RMSSD from
the prior level), with age, depression, and total EI scores
across the total sample. Baseline RMSSD showed positive
associations with the MSCEIT total score. Total mixed EI
had a positive association with change in RMSSD from stress
induction to recovery. No associations were observed for HRV
or HR at baseline, change after stress, or after recovery. Age
had a negative association with the MSCEIT total score, as
well as baseline and recovery levels of HR; however, age
had a high degree of positive skew. None of the observed
associations remained significant after Bonferroni correction for
multiple comparisons.

EI Predicting Baseline CVC
EI and RMSSD
Total ability EI was a significant predictor for baseline RMSSD,
F(1,99) = 4.60, p = 0.03, (Figure 2A). The observed effect was
driven by the understanding branch of ability EI, F(1,100) = 3.89,
p = 0.05, which was not significantly associated with baseline
RMSSD as an independent predictor. In contrast to ability EI,
total mixed EI was not a significant predictor of baseline RMSSD,
F(1,99) = 0.26, p = 0.61 (Figure 2B). HRV and HR during the
baseline resting condition were not significant predictors of EI
(Figure 2C–E). See Supplementary Table S1 for RMSSD model
coefficients, sums of squares, and partial eta-squared.
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FIGURE 1 | Bivariate Spearman correlations performed across all subjects with correlation coefficients in the upper portion of the matrix and significant correlations
identified in the lower portion of the matrix. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. RMSSD, root mean square of successive differences; HRV, heart rate variability;
EQi, Bar-On EQ-I 2; MSCEIT, Mayer-Salovey-Caruso Emotional Intelligence Test II.

Physiological Response to Serial Subtraction
A linear mixed model was utilized to assess the response to
the serial subtraction task and subsequent recovery following
the stress induction. As expected, the model demonstrated that
participants showed significant reductions in RMSSD during
the stress induction and significant increases during recovery
relative to baseline levels, F(2,303) = 9.55, p < 0.0001. See
Supplementary Table S4 for model coefficients, sums of squares,
and partial eta-squared.

EI Predicting Change in CVC Across
Conditions
Total ability EI and total mixed EI scores were both incorporated
into the physiological response to serial subtraction linear mixed
model to assess whether EI could account for changes in RMSSD
during stress induction or recovery conditions; beyond the
associations observed for RMSSD during the baseline resting

condition. There was no significant main effect of total ability
EI and RMSSD with condition, F(1,301) = 2.03, p = 0.08 or
total mixed EI and RMSSD with condition, F(1,301) = 0.80,
p = 0.54. No significant interactions between EI and stress
induction or recovery conditions were observed for ability EI,
F(2,294) = 0.86, p = 0.42, or mixed EI, F(2,294) = 1.95, p = 0.14.
The addition of total EI scores was not favored over the simpler
model only including RMSSD and condition, for the main effect
L.Ratio = 3.24, p = 0.20, or interaction L.Ratio = 11.85, p = 0.22.
See Supplementary Table S5 for model coefficients, standard
errors, and beta values.

Investigating the Potential Influence of
Covariates
Gender and caffeine use were tested as potentially influential
covariates affecting CVC during rest, based on prior literature
(Allen et al., 2007). The combination of both covariates
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FIGURE 2 | Panels (A,B) depict the relationship between EI measures and RMSSD at baseline, panels (C,D) depict the relationship between EI measures and HRV
at baseline, and panels (E,F) depict the relationship between EI measures and HR at baseline. The intercept reflects levels at baseline, and the shaded area
represents the 95% confidence interval. Plots and values are displayed on a log scale reflecting the data transformations utilized to meet model assumptions.
RMSSD, root mean square of successive differences; HRV, heart rate variability; HR, heart rate; EQi, Bar-On EQ-I 2; MSCEIT, Mayer-Salovey-Caruso Emotional
Intelligence Test II; η2

partial, partial eta-squared. ∗p < 0.05.
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was not favored over the simpler model main effect model
only including RMSSD and EI, nor was their addition
independently. See Supplementary Material S2 for model
comparison statistics.

Exploring Individual Differences in CVC
in Response to Stress and Recovery
CVC Reactivity Cluster Identification
The principal components analysis identified two components
that accounted for 97.93% of the cumulative percentage
of variance in RMSSD across conditions. Hierarchical
agglomerative clustering classified three unique groups based
on CVC (Figure 3A). Due to the large variance in the sample
sizes between the clusters identified (n = 53, n = 39, and n = 10),
the two unique groups that had similar decreases in RMSSD
during stress and subsequent increases during the recovery were
collapsed to form two groups with comparable sample sizes
to assess differences in CVC responsiveness [i.e., CVC-non-
responders (n = 53) and CVC-responders (n = 49)] (Figure 3B).
Table 2 presents initial group descriptive statistics, means, and
associated standard deviations for the demographic, EI, and
physiological variables. Table 3 presents the collapsed groups
descriptive statistics, means, and associated standard deviations
for the demographic, EI, and physiological variables.

CVC Responsiveness to Stress Predicting EI
Compared to CVC-non-responders, individuals that experienced
decreases in RMSSD during the stress induction condition and
subsequent increases during recovery had significantly higher
levels of total ability EI (W = 891, p = 0.01). The association
was not driven by a specific subscale. There were no significant
differences between groups for total mixed EI (W = 1105.5,
p = 0.26). See Supplementary Table S8 for model coefficients,
group means, and standard deviations.

DISCUSSION

In this study, we investigated the relationship between EI,
as measured by two alternate theoretical models, and CVC
under resting and reactive conditions. Based on prior findings,
we hypothesized that higher ability EI would be associated
with higher levels of CVC. Overall, we found support for this
hypothesis, although with some qualifications. We discuss these
findings and their implications in detail below.

Primary Hypotheses
First, we hypothesized that individuals with higher levels of ability
EI would have greater levels of CVC at rest. This hypothesis
was supported, as individuals with higher levels of CVC at rest
indeed had significantly higher levels of total ability EI, whereas
no association was found with total mixed EI. Contradictory to
expectations, higher levels of understanding emotions and the
ability to perceive emotions were not significantly associated with
resting CVC, even though understanding emotions was found to
drive the association with total ability EI. This may be because
the ability to perceive emotions is more specific to affective

FIGURE 3 | Parameters of RMSSD estimates across conditions for the CVC
reactivity groups presented as violin plots. Outlines illustrate kernel probability
density, i.e., the width of the shaded area represents the proportion of the
data located there. Panel (A) represents the initial groupings identified using
hierarchical cluster analysis. Panel (B) represents the collapsed grouping
discriminating CVC reactivity to the stress induction for Mann-Whitney
U analyses.

processing and the ability to self-regulate in environments
eliciting more personally relevant emotion-specific contexts
(Rash and Prkachin, 2013). The only other study investigating
ability EI and CVC did not find any association with total EI
at rest (Rash and Prkachin, 2013). However, participants in that
study may have been aware that the experiment involved a
personally relevant experiential sadness induction, as they had to
provide a personalized sadness narrative before their laboratory
visit. This may have led to affect specific introspective thoughts
during the resting period. Our study had greater statistical power
than the Rash & Prkachin study and, therefore, may be more
representative of the typical resting condition utilized in CVC
reactivity assessments (Rash and Prkachin, 2013). Thus, we
conclude that individuals with greater demonstrated ability EI,
perhaps by those who show a more sophisticated understanding
of emotions, the factors that influence them, and how they may
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TABLE 2 | Descriptive statistics of groups identified using hierarchical
agglomerative clustering.

CVC low
responders

CVC middle
responders

CVC high
responders

Measure Mean St. Dev. Mean St. Dev. Mean St. Dev.

Age 22.72 4.59 23.16 4.62 21.80 2.10

Baseline RMSSD 19.76 6.21 39.69 11.83 73.44 21.49

Stress induction RMSSD 20.03 6.92 29.49 10.07 51.51 18.15

Stress recovery RMSSD 20.79 6.77 41.42 9.81 70.36 14.19

EQi total 101.21 13.30 105.97 10.83 100.70 13.94

MSCEIT total 104.81 11.59 112.24 13.43 107.44 9.75

RMSSD, root mean square of successive differences; HRV, heart rate variability;
HR, heart rate; EQi, Bar-On EQ-I 2; MSCEIT, Mayer-Salovey-Caruso Emotional
Intelligence Test II.

TABLE 3 | Descriptive statistics of the collapsed grouping utilized for
group level analyses.

CVC responders CVC non-responders

Measure Mean St. Dev. Mean St. Dev.

Age 22.88 4.24 22.72 4.59

Baseline RMSSD 46.72 19.76 19.76 6.21

Stress induction RMSSD 34.08 14.99 20.03 6.92

Stress recovery RMSSD 47.45 15.98 20.79 6.77

EQi total 104.88 11.58 101.21 13.30

MSCEIT total 111.24 12.81 104.81 11.59

RMSSD, root mean square of successive differences; HRV, heart rate variability;
HR, heart rate; EQi, Bar-On EQ-I 2; MSCEIT, Mayer-Salovey-Caruso Emotional
Intelligence Test II.

evolve over time and during the course of social interactions, also
show a greater capacity to regulate cardiac vagal responsiveness.

Second, we hypothesized that individuals who have higher
levels of ability EI would have greater decreases in CVC
in response to stress and show subsequent increases during
recovery. This hypothesis was not supported by initial statistical
models. Participants with greater modulation in CVC across
the stress induction period (RMSSD decrease) and subsequent
recovery (RMSSD increase) did not have higher levels of
total ability EI or mixed EI. Baseline differences in CVC
appear to drive the observed association with EI since no
interactions with stress induction or recovery conditions were
found. Although sympathetic and parasympathetic outflows
tend to have a close-fitting reciprocal relationship, modes of
autonomic control are not always linear (Berntson et al., 1991).
Higher resting CVC is associated with situationally appropriate
emotional responding and can mitigate the experience of negative
emotional arousal in response to stress (Fabes and Eisenberg,
1997). This may represent an adaptive response where activation
of parasympathetic systems attenuates sympathetic dominance
when individuals experience stressors. From these findings, we
conclude that individuals with higher ability EI demonstrate a
greater level of resting CVC.

Exploratory Analyses
As part of the present study, we also sought to clarify how
the predictive validity of EI on CVC compares to other cardiac
metrics. The observed associations between ability EI and
RMSSD, but not HRV or HR, suggest that parasympathetic
influences on autonomic control are responsible for the majority
of observed associations with ability-based EI. RMSSD is a metric
that results in a differential gain function such that it weights
more heavily the high-frequency vagal influence whereas HRV
is a metric that results in a flat gain function that will capture
frequencies that represent a combination of sympathetic and
parasympathetic influences (Allen et al., 2007).

We also sought to determine how categorization based on
individual differences in CVC reactivity would predict ability EI
and mixed EI. Individual categorization based on responsiveness
to the stress induction confirmed the relationship observed in
the linear regression models. Individuals identified as responders
to the stress induction had significantly higher ability EI scores
compared to CVC non-responders; while no difference between
groups was observed for mixed EI scores. Intriguingly, no specific
domain of ability EI displayed significant positive associations
with CVC responders. These findings suggest that during stressful
experiences, individuals with higher baseline levels of CVC and
greater cardiovascular responses, which reflect higher baseline
parasympathetic control, greater withdrawal during stressors and
greater increases during the subsequent recovery, may have a
greater capacity to modulate CVC and in a manner that facilitates
the ability to cope with emotional demands.

Considerations
Our findings are consistent with the only other study that
investigated direct associations between HRV as a metric
representative of autonomic control and quantified EI (Rash and
Prkachin, 2013). Two other studies examining CVC and EI used
less known mixed-model-based metrics to quantify EI, which
may have contributed to their varied findings, and failure to
distinguish associations between EI and baseline CVC (Laborde
et al., 2011; Plews et al., 2012). EI as a measurable construct
remains highly debated, and the call for an increased focus on
refinement in its assessment may lead to greater clarity about the
association between EI and CVC (Fiori and Antonakis, 2011).
The substantial body of work associating CVC and emotional
regulation emphasizes the notion that if EI is validly conceived
and measured, at least some aspects should have significant
associations with autonomic processes. While the amount of
variance accounted for in our significant baseline model using
RMSSD (partial η2 = 0.04) was relatively small, the findings are
consistent with the amount of unique variance accounted for by
the association between RSA and ability EI in the only other study
examining CVC and the MSCEIT (Rash and Prkachin, 2013). The
theoretical construct of EI also remains heavily debated, and a
multi-level theoretical approach incorporating actual behavioral
outcomes will be critical to the construct in achieving its potential
for psychometric validity (Boyatzis, 2018). In light of this, we
believe that our study offers a unique and valuable insight into
the relationship between CVC and EI that will help propel future
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investigations relating these two constructs (Ioannidis, 2005).
Based on the Polyvagal theory, the relationship between higher
CVC and reactivity is associated with adaptive and beneficial
behavioral responding, which based on the evidence presented,
is associated with higher levels of EI. Whether higher CVC leads
to higher EI or higher EI results in higher and more responsive
CVC is, at present, an empirical question, and one that might
be fruitfully examined in a longitudinal developmental study, or
in a study training CVC and EI to observe the time-dependent
changes in each.

The interplay between emotion and feeling are critical
components in the maintenance of health and the facilitation
of perception, decision making, and learning; and an inability
to integrate the two processes often leads to maladaptive
behavior (Damasio, 2001). Decreased CVC is associated with
both mild and more severe forms of psychopathology and is
becoming a more widely accepted biomarker for susceptibility
to emotion dysregulation (Thayer et al., 2012). The cognitive
system contributing to autonomic control, as defined by the NVI
model, is especially sensitive to negative feedback (Thayer and
Lane, 2000). Lower resting CVC is associated with perceived
difficulties in emotion regulation, specific to decrements in
emotional clarity and impulse control (Williams et al., 2015).
Attention regulation and affective processing are necessary to
counter sympathetic activation during non-optimal contexts and
facilitate social interaction as described by the Polyvagal theory
(Porges, 1995). There is also an association between stress-related
illness, blunted autonomic regulation, and negative family-of-
origin relationship experiences (Luecken et al., 2005). This
further highlights the impact of biopsychosocial development
on physiologic and emotion regulation capacities that should
theoretically relate to the construct of EI. Higher levels of
cognitive-emotional abilities contribute to emotion regulation
abilities that drive positive behavioral outcomes. A recent
systematic review of 135 papers concluded resting CVC is
associated with flexible emotional responding and emotion
regulation strategies, as well as supports CVC as an objective
marker of emotion regulation (Balzarotti et al., 2017). The
interplay between decrements in physiological resources (e.g.,
during sleep deprivation, environmental extremes, emotional
stress, and physical hardship), and degradation of cognitive
function contribute to potentially detrimental decision making
and allude to the need for novel interventions to mitigate the
impact of stress on cognitive systems.

The use of biofeedback to augment CVC and its reactivity
under stressful conditions is widely used and increasingly has
focused on domains ranging from workplace office environments
to fitness centers (McCraty et al., 2003; Düking et al.,
2017). Interventions targeting emotional processes, such as
mindfulness-attention training, can lead to positive outcomes in
well-being, and have a substantial impact on emotion-specific
neurocognitive processing (Shapiro et al., 2008; Desbordes et al.,
2012). Recent work has also demonstrated that EI is malleable
and susceptible to increases with targeted training (Alkozei
et al., 2018; Mattingly and Kraiger, 2018). The current findings
suggest there is a need for further study into the use of training
interventions targeting CVC and EI in conjunction as a useful

non-pharmacological method for improving well-being; perhaps
mitigating symptomology associated with decreases in emotional
processing on both an impermanent and pathological level in a
manner that promotes well-being.

LIMITATIONS

Several limitations should be considered when interpreting the
results of this study. We have interpreted the decrease in
RMSSD during stress and subsequent increase during recovery
as evidence of an optimal adaptive emotion regulation process,
relative to the experience of stress. While the stress induction
indeed produced a significant decrease in CVC across the
sample of participants, a subset of individuals experienced
increases in autonomic control during the stress induction or
no change at all. It is possible that some individuals did not
take the task seriously and did not actively engage in the
serial subtraction task. Using a multi-faceted stress induction,
such as the serial subtraction task in conjunction with a cold
pressor or the Trier Social Stress Test, as well as variations
in stressors more specific to different emotions may be more
appropriate in future work to assess the relationship between
EI and the experience of stress. The use of an affect induction,
such as sadness, would also provide valuable information
on individual differences in the associations between CVC,
stress, affect, and EI.

Recent work has demonstrated the usual reciprocal
relationship between the sympathetic and parasympathetic
systems, representing the widely accepted fluctuations in
autonomic control in response to stress, is dependent on
individuals’ cumulative exposure to risk, and resting sympathetic
activation (Giuliano et al., 2017). It is possible that the exposure
to stress and adversity may have moderated the response to
the serial subtraction task and contributed to the observed
individual differences in CVC. Further exploration of the
influence of cumulative life experiences on CVC and EI is
necessary. Of note, we did not collect data on body mass
index or specific to anxiety/depression in the present study,
which have both been shown to impact HRV. It is conceivable
that these unmeasured factors may have also influenced the
statistical models and would be appropriate to examine in future
work. Participants also completed EI assessment measures after
the stress reactivity assessment, leaving the potential for the
residual effects of the stress induction to affect individual’s
performance on the subsequent measurement of EI, and
measurements assessing the behavioral level of EI were also
not collected. Lastly, multiple biological systems and factors
influence autonomic control, and the associations observed
between EI and CVC should not be taken to indicate a causal
connection (Bauman et al., 2002).

CONCLUSION

The present study examined the association between the mixed
and ability models of EI and their relation to CVC at rest
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and in response to a stressor. These findings help clarify the
relationship between individual differences in the two most
widely used metrics of EI for the mixed and ability models and
their associations with CVC. Higher levels of total ability EI
and the ability to understand the complexities of emotions were
associated with an index of cardiac parasympathetic control at
rest. Larger reductions in parasympathetic control during stress
and the ability to recover were also found to be associated with
higher total ability EI and driven by the ability to understand
emotions. These results suggest that differences in the ability to
understand emotional processes in oneself and reason about one’s
visceral experience may facilitate better cognitive and emotional
processing. Additional research is needed to clarify the degree to
which affect influences the relationship between stress and EI, as
well as whether improvements in EI can also lead to subsequent
increases in CVC or vice versa.
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