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We propose a scheme for covert active sensing using floodlight illumination from a terahertz-bandwidth
amplified spontaneous emission (ASE) source and heterodyne detection. We evaluate the quantum-estimation-
theoretic performance limit of covert sensing, wherein a transmitter’s attempt to sense a target phase is kept
undetectable to a quantum-equipped passive adversary, by hiding the signal photons under the thermal noise
floor. Despite the quantum state of each mode of the ASE source being mixed (thermal), and hence inferior
compared to the pure coherent state of a laser mode, the thousand-times-higher optical bandwidth of the ASE
source results in achieving a substantially superior performance compared to a narrow-band laser source by
allowing the probe light to be spread over many more orthogonal temporal modes within a given integration
time. Even though our analysis is restricted to single-mode phase sensing, this system could be applicable or
extendible for various practical optical sensing applications.
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I. INTRODUCTION

Quantum technologies and in particular quantum and
quantum-enhanced sensing [1] have high-impact near-term
applications that include microscopy [2,3], vibrometry [4],
ranging [5], astronomy [6], and medical imaging [7]. More-
over, they have contributed to fundamental discoveries such
as gravitational wave detection [8]. In particular, the problem
of high-precision estimation of a small unknown phase mod-
ulation has attracted a lot of attention in the quantum sensing
literature because of its applicability to many of the aforesaid
real-life optical imaging and sensing problems.

The quantum-physical modeling of a typical sensor results
in the quantum state ρ(θ ) of a single mode of the target-
modulated light encoding a parameter of interest, θ . We are
interested in scenarios where n ≈ W T independent temporal
modes [where W (Hz) is the optical bandwidth of the optical
source and T (s) is the interrogation time] are modulated
identically by a static target resulting in a target-return state of
the form ρ(θ )⊗n. One desires to find the optimal measurement
on this target-return light that generates an estimate θ̂n with
the minimum possible deviation from the true value, often
quantified as the variance, or the mean squared error (MSE),
〈(θ − θ̂n)2〉. The quantum Cramér-Rao bound (QCRB) [9]
gives a lower bound on the MSE attainable over all measure-
ments generating an unbiased estimate of θ , which is given
by 〈(θ − θ̂n)2〉 � 1/(nF ), where F is the quantum Fisher
information (QFI) of θ , calculated on ρ(θ ). The bound gets
asymptotically tight as n → ∞.

There is an extensive literature on quantum sensing that
has explored various setups for quantum enhancements in
the sensitivity in estimating a single or multiple unknown
phases (see for example [10–14]). The main focus of this
literature has been to investigate the use of quantum light and

measurements to achieve the so-called Heisenberg limit, i.e.,
QFI ∝ N2, where N is the mean photon number expended
by the transmitter during the probing interval, as opposed
to QFI ∝ N attainable with a classical optical probe. The
effect of loss and thermal noise on the aforesaid quantum
enhancement has also been investigated [15,16]. In this paper,
we turn our attention to something different. Namely, we ask
if it is possible to optically probe and estimate an unknown
phase while a fully quantum-equipped adversary is not able
to credibly decide if such a sensing attempt took place or not.
Therefore, we explore the notion of quantum-secure covert
sensing, inspired by recent work on covert communications
[17–21].

Covert communications and covert sensing are related
problems, yet distinct in their figures of merit, their aims, and
their methods. In covert communications, the task is to hide
the existence of the communication attempt from an adversary
while making sure the message is reliably decoded by the
intended adversary. It was shown that O(

√
n) bits, but no

more, can be sent over n transmitted modes while maintaining
both of these (covertness and reliability) conditions [17,18].
In covert sensing, the task is to hide the existence of the
probing attempt of an active sensor from an adversary while
making sure the transmitter can still reliably estimate the
parameter of interest. The goal here is to prove that the MSE
of estimating a phase decays as O(1/

√
n), but no faster,

as a function of number of modes, n, transmitted in the
probe duration [22]. The connection between the above two
problems stems from the fact that the covertness criterion
forces the transmitter to modulate the power in a specific way
across the n transmitted modes, viz., mean photon number per
transmitted mode n̄ = O(1/

√
n). This type of a “whispering”

modality of transmission is unique to covert operation and lies
at the heart of the emergence of the aforesaid square root laws
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in the information-theoretic limits of covert communications
and sensing.

In this paper, the task is to minimize the MSE of sens-
ing an unknown carrier-phase modulation θ by using active
illumination. Additionally, we ensure that an all-powerful
non-line-of-sight passive adversary Willie is able to observe
the entire electromagnetic background around the sensor’s
field of operation equipped with all measurements allowed
by quantum physics. Moreover, we assume that Willie has
knowledge of the exact probing interval and the true value
of θ . Therefore, the overall task is that Willie not to be
able to reliably distinguish between the two equally likely
hypotheses: H0 (the target is not being probed) and H1 (the
target is being probed). A sensing scheme is ε-covert if
we can ensure Willie’s detection error probability to satisfy
1/2 − ε � P(det)

e � 1/2, ε > 0; i.e., his ability to distinguish
the two hypotheses is ε-close to that of flipping an unbiased
coin. Our goal is to find—with the optimal choice of an
optical transmitter and receiver—the minimum MSE that can
be attained as a function of n (which is proportional to the
integration time T for a given optical bandwidth W ), while
ensuring ε-covert operation. We note that passive sensing—
sensing a self-luminous or naturally illuminated scene—is by
definition the most covert form of sensing. The quintessential
example of passive sensing is human vision. Passive sensing
can, however, be impractical when the illumination levels are
so weak that the signal-to-noise ratio at the receiver is insuf-
ficient to obtain the desired accuracy within the integration
time, or if the target is hidden from direct sight. In this paper,
we focus on covert sensing using active illumination [23] and
consider the problem of phase estimation in the presence of
loss and noise.

The rest of the paper is organized as follows. In Sec. II we
give the setup considered in this paper, in Sec. III we state
our main results, in Sec. IV we briefly revisit covert sensing
using a laser probe, in Sec. V we examine covert sensing with
floodlight illumination (ASE source), in Sec. VI we compare
the coherent state and ASE sources’ performances, in Sec. VII
we put specific values in our formulas for realistic sources.
Finally, in Sec. VIII we discuss our results and we give further
perspective.

II. PROBLEM SETUP

Figure 1 is a schematic of the problem setup. Alice (the
sensor) generates an n-mode optical probe, each mode of
which traverses the forward propagation path to the tar-
get, modeled by a single-mode bosonic channel C1(η1, n̄B1 )
of transmissivity η1 and additive thermal noise of mean
photon number n̄B1 per mode. Each mode of the output
light illuminates the same (unknown) target phase θ . The
target-modulated light propagates through the return chan-
nel C2(η2, n̄B2 ) back to Alice. All the lost photons on both
the forward and return path channels are given to Willie,
who is allowed to make an arbitrary measurement on this
2n-mode optical state in order to do his hypothesis test to
determine whether Alice is sensing or not. The problem is
to quantify the minimum MSE attainable as a function of
n, with optimal choices of Alice’s probe state, receiver, and
the transmitted mean photon number per mode, n̄S, so as to

( , ) ( , )
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W
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A

ASE

FIG. 1. Alice splits the output of the source on a highly unbal-
anced beam splitter with controllable transmissivity τ . She sends the
weaker of the two beams along a forward propagation path, a single-
mode bosonic channel C1(η1, n̄B1 ) of transmissivity η1 and additive
thermal noise of mean photon number n̄B1 per mode. The propagated
light, after accruing an unknown target phase θ , propagates back to
Alice on a single-mode bosonic channel C1(η2, n̄B2 ). The brighter
of the two beams at the transmitter is held locally for use as local
oscillator to heterodyne detect the target-return light. All the lost
photons on both the forward and return path channels are given to
Willie, who is allowed to make an arbitrary quantum measurement.

ensure ε-covertness no matter what measurement Willie uses.
We assume the forward and return path transmissivities η1 and
η2 to be known to Alice, and different in general, to account
for bistatic sensor configurations with unequal path lengths.
We also allow for different thermal noise temperatures for
the forward and return path channels, to account for scenarios
such as one of the two paths being actively jammed.

III. MAIN RESULTS

For our achievability results, we consider two sensor
probes: (1) a laser-light (coherent-state) transmitter and het-
erodyne detection, and (2) a broadband amplified spontaneous
emission (ASE) noise source (see Fig. 1), whose output is
split on a highly unbalanced beam splitter which produces a
phase-insensitive classically correlated two-mode output. The
weaker of the two outputs is used to probe the target, while the
brighter beam is kept locally at the transmitter to be used as
a local oscillator to heterodyne detect the target-return light.
Our two main results are as follows.

Result 1. Alice can achieve an MSE, 〈(θ − θ̂n)2〉 =
O(1/

√
n). Attempting to have the MSE diminish any faster

as a function of n must result in detection by Willie with high
probability.

Result 2. The MSE when Alice uses a coherent-state probe
state scales as 〈(θ − θ̂n)2〉 = ccoh/(ε

√
n), ε > 0, whereas

when she uses the ASE source, 〈(θ − θ̂n)2〉 = cASE/(ε
√

n),
ε > 0. The per-mode performance of the coherent-state probe
is better than the ASE source probe, i.e., ccoh � cASE. How-
ever, the ASE source can achieve a much lower MSE for a
given integration time T , since n ≈ W T and optical band-
width W of the ASE source is larger by two to three orders
of magnitude.

IV. COVERT SENSING WITH A COHERENT-STATE PROBE

Let us summarize the main results from [22]. The model is
depicted in Fig. 2 with ηeff = η and n̄Beff = n̄B. Over n modes,
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FIG. 2. For the setup of Fig. 1, Alice sees one effective thermal
channel Ceff. This setup was used in [22] for covert sensing with a
coherent-state probe.

Alice transmits a mean photon number of 〈NS〉 = nn̄S, where
n̄S is the mean transmitted photon number per mode. We make
the assumption that the total variance 〈�N2

S 〉 = O(n). Let us
begin by stating the converse: Alice’s sensing attempt is either
detected by Willie with arbitrarily low detection probability,
or the MSE of Alice’s estimation is tightly lower bounded
by 1/

√
n, i.e., 〈(θ − θ̂n)2〉 = �(1/

√
n) [22]. This notation

implies that if Alice tries to get her MSE to surpass the 1/
√

n
scaling (e.g., by increasing her transmit power), Willie will
detect her sensing attempt with high probability. Now, we
state the achievability: Suppose that Willie can perform any
measurement permitted by physics on the 2n optical modes
he collects. Alice can lower-bound Willie’s detection error
probability P(det)

e � 1/2 − ε, for any ε > 0 while achieving
the MSE 〈(θ − θ̂n)2〉 = O(1/

√
n) using an n-mode coherent-

state probe. For a coherent probe state ⊗n
i=1|αi〉, where each

complex amplitude αi is drawn from the distribution p(α) =
e−|α|2/n̄S/π n̄S, Willie’s detection error probability is shown to
satisfy [22]

P(det)
e � 1

2
− (1 − η)n̄S

√
n

4
√

ηn̄B(1 + η)
.

Alice can choose

n̄S = 4ε
√

ηn̄B(1 + ηn̄B)√
n(1 − η)

to ensure ε-covertness [22]. Using the aforesaid coherent-state
probe and ideal heterodyne detection measurement, Alice can
achieve the MSE [22]:

〈(θ − θ̂n)2〉 ≈ chet

ε
√

n
,

where

chet = (1 − η)[1 + n̄B(1 − η)]

8η
√

ηn̄B(1 + ηn̄B)
.

Using a coherent-state probe, but no restriction on the re-
ceiver, the MSE achieved is at best two times lower than that
achieved with a heterodyne receiver [22]. In other words, with
Alice’s optimal receiver,

〈(θ − θ̂n)2〉 � ccoh

ε
√

n
,

where

ccoh = (1 − η)[1 + 2n̄B(1 − η)]

16η
√

ηn̄B(1 + ηn̄B)
.

V. COVERT SENSING WITH ASE
FLOODLIGHT ILLUMINATION

Let us first consider the achievability. Since all states and
channels involved are Gaussian, we work with the symplectic
formalism. Furthermore, all the first moments of the states
involved are zero. The ASE source, after being split on
an unbalanced beam splitter, emits a two-mode zero-mean
Gaussian state with covariance matrix (CM) given by [24]

VASE =
(

AASE 02×2

02×2 AASE

)
, (1)

where

AASE =
(

n̄S + 1
2

√
n̄Sn̄LO√

n̄Sn̄LO n̄LO + 1
2

)
. (2)

Here, n̄S is the mean transmit photon number per mode, and
n̄LO 
 n̄S is the mean photon number per mode of Alice’s
local oscillator (LO) for her heterodyne detection receiver.
If Alice is probing the target, Willie gets a state with the
following CM (see the Appendix, Sec. A 2):

VW =
(

BW CW

CT
W BW

)
, (3)

where

BW =
(

w11 −w12 cos θ

−w12 cos θ w22

)
(4)

and

CW =
(

0 w12 sin θ

−w12 sin θ 0

)
, (5)

where w11 = (1 − η2)η1n̄S + (1 − η1)(1 − η2)n̄B1 + η2n̄B2 +
1/2, w12 = √

(1 − η2)η1(1 − η1)(n̄B1 − n̄S), and w22 =
η1n̄B1 + (1 − η1)n̄S + 1/2. When Alice is not sensing,
Willie’s CM is given by (see the Appendix, Sec. A 2)
V (0)

W = VW (n̄S = 0), where w
(0)
i j = wi j (n̄S = 0). We assume

n̄S � n̄B1 and n̄S � n̄B2 , as this is intuitively needed for
remaining covert. Willie must discriminate between the state
ρ̂1 with CM VW (Alice is sensing) and the state ρ̂0 with CM
V (0)

W (Alice is not sensing). After transmission of n modes
over the probing interval, Willie’s average probability of
discrimination error is

P(w)
e � 1

2

[
1 − 1

2

∥∥ρ̂⊗n
0 − ρ̂⊗n

1

∥∥
1

]
.

See also Sec. A 1 of the Appendix for a brief discussion on
detectability. The trace distance ‖ρ̂0 − ρ̂1‖1 between states
ρ̂0 and ρ̂1 is upper bounded by the quantum relative en-
tropy (QRE) D(ρ̂0‖ρ̂1) = tr(ρ̂0 ln ρ̂0) − tr(ρ̂0 ln ρ̂1) using the
quantum Pinsker inequality, i.e., ‖ρ̂0 − ρ̂1‖1 � √

2D(ρ̂0‖ρ̂1),
which implies that

P(w)
e � 1

2 −
√

1
8 D

(
ρ̂⊗n

0

∥∥ρ̂⊗n
1

)
. (6)

Thus, ensuring that D(ρ̂⊗n
0 ‖ρ̂⊗n

1 ) � 8ε2 ensures that P(w)
e �

1
2 − ε over n channel uses. QRE is additive for tensor prod-
uct states; therefore, D(ρ̂⊗n

0 ‖ρ̂⊗n
1 ) = nD(ρ̂0‖ρ̂1). By expand-

ing the QRE in Taylor series with respect to n̄S at n̄S = 0
and by using Taylor’s theorem with the remainder we
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can upper-bound D(ρ̂0‖ρ̂1) by its second-order term c2 =
f (η1, η2, n̄B1 , n̄B2 ) > 0. For the aforesaid analysis on the
QRE, see the Appendix, Sec. A 4. Consequently Willie’s error
probability will be lower bounded as

P(w)
e � 1

2
−

√
c2

4

√
n n̄S. (7)

Thus, if Alice sets

n̄S = 4ε√
c2

1√
n
, (8)

she can ensure ε-covertness, i.e., P(w)
e � 1

2 − ε. As shown
in Fig. 2, Alice sees one effective thermal channel (see
the Appendix, Sec. A 5), with ηeff = η1η2 and n̄Beff =
[n̄B1 (1 − η1)η2 + n̄B2 (1 − η2)]/(1 − η1η2), which simplifies
the analysis on Alice’s measurement. We consider heterodyne
detection and in Sec. A 6 of the Appendix we prove that the
heterodyne output is composed of a pair of quadrature mea-
surements with Gaussian distributions N (μi, σ

2
i ), i = 1, 2,

of means μi and variances σ 2
i . N (cos θ, [1 + n̄Beff (1 − ηeff )]/

(2ηeffn̄S) + cos2 θ ) and N (sin θ, [1 + n̄Beff (1 − ηeff )]/
(2ηeffn̄S) + sin2 θ ). The variances σ 2

1,2 are taken in the
limit n̄LO → ∞, i.e., a very bright local oscillator. By
considering n modes, taking into account that independent
Gaussian variables are additive, substituting n̄S from Eq. (8),
and assuming that n 
 1, we get σ 2

1 ≈ σ 2
2 = σ 2

het (see the
Appendix, Sec. A 6), where

σ 2
het = c̃het

ε
√

n
, (9)

and c̃het = [1 + n̄Beff (1 − ηeff )]
√

c2/(8ηeff ). Therefore,

〈(θ − θ̂het,n)2〉 ≈ c̃het

ε
√

n
= O

(
1√
n

)
. (10)

For a justification of the approximation in Eq. (10), refer to
[22] (Appendix C therein) and the Appendix, Sec. A 7. In the
same limit n̄LO → ∞, the QFI for the parameter θ for Alice is
given by (see the Appendix, Sec. A 8)

FA = 4n̄Sηeff

1 + 2n̄Beff (1 − ηeff )
. (11)

Therefore, by imposing the covertness condition Eq. (8) we
get the QCRB for the ASE source,

〈(θ − θ̂n)2〉 � cASE

ε
√

n
, (12)

where cASE = [1 + 2n̄Beff (1 − ηeff )]
√

c2/(16ηeff ). Therefore,
with the ASE source, from Eqs. (10) and (12), heterodyne
detection yields an MSE that is at most twice compared to
what is attainable by the optimal quantum receiver.

Let us discuss briefly the converse, i.e., the statement that,
regardless of the n-mode probe state employed by Alice,
the sensing attempt is either detected with arbitrarily low
detection probability, or the MSE of Alice’s estimator is
tightly lower bounded as 〈(θ − θ̂n)2〉 = �(1/

√
n). Since for

the converse a specific probe state is not fixed and having
proved that Alice sees only one effective thermal channel with
(ηeff, n̄Beff ), the converse proved in [22] using the methods and
results from [16,25] is still valid.

VI. LASER LIGHT VERSUS ASE SOURCE PROBE

Let us compare the quantum limits corresponding to
the ASE and the coherent-state sources. In [22], it was
found that for a coherent-state probe, 〈(θ − θ̂n)2〉 � F−1

coh =
ccoh/(ε

√
n), where ccoh = (1 − ηeff )[1 + 2n̄Beff (1 − ηeff )]/

[16ηeff
√

ηeffn̄Beff (1 + ηeffn̄Beff )] and Fcoh is the QFI for the
coherent-state probe and for the effective single thermal
channel Alice sees. When the ratio μ = F−1

A /F−1
coh is μ < 1,

the ASE source can outperform the coherent-state probe.
For n = W T channel uses, where the optical bandwidth
W depends on the source and the probing time T is
fixed, the ratio is μ = μc/

√
μw, where μc = cASE/ccoh

and μw = WASE/Wcoh. If n̄B1 = n̄B2 , as expected in most
situations since thermal equilibrium across the forward
and return paths is not an onerous assumption, we get
μc = 1 which is its minimum value (see the Appendix,
Sec. A 4); i.e., the per-mode performance for the two sources
is identical. Therefore, we have μ = √

Wcoh/WASE < 1 since
the bandwidth of a typical laser source is in the gigahertz
regime while that of an ASE source is in the terahertz regime.
We thus conclude that the ASE source would outperform a
coherent-state probe because of its larger bandwidth, under
identical thermal environments.

We close this section by noting that instead of floodlight
illumination, one could in principle use laser light with ran-
domly modulated amplitude and phase, which would result
in increasing the bandwidth of the source (around the center
frequency). Since the modulation can be known to Alice but
not to Willie, Alice can undo the modulation upon receiving
back the probe light. However, it is unknown if there are ter-
ahertz modulated laser sources whose optical bandwidth can
outperform that of an ASE source. Moreover, ASE sources are
commercially available.

VII. PERFORMANCE EVALUATION

Let us consider sensing over a monostatic free-space
channel of line-of-sight range L, with an ASE source of
center wavelength (cw) λ. We employ a single spatial mode
(the fundamental Gaussian mode) probe. Assuming vacuum
propagation (ignoring turbulence and atmospheric extinc-
tion), and Gaussian-attenuation apertures (for simplifying
the expressions without losing the essence of the problem),
we get the transmissivities of both the forward and return
paths as η1 = η2 = η = [1 + 2D − √

1 + 4D]/(2D), where
D = (At AT )/(λL)2. At = πr2

t is the area of the radius-rt exit
pupil of Alice’s transmitter aperture, which we take to be
equal to the area of the entrance pupil of the aperture of
her receiver telescope. AT = πr2

T is the effective (radius-rT

circular) area of the target cross section interrogated. The cw
ASE source of optical bandwidth W illuminates the target for
T s, which results in n ≈ W T temporal modes to probe the
target. If D � 1, then η1 = η2 = η ≈ D.

In Fig. 3, we plot cASE of Eq. (12) as a function of
the center frequency f = hc/λ of the source, where h is
Planck’s constant and c is the speed of light. We as-
sume Planck law limited thermal noise, with n̄B1 = n̄B2 =
n̄B = [exp(hc/(λkBT0)) − 1]−1, where kB is the Boltzmann
constant and T0 = 300 K is the ambient temperature.
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FIG. 3. Plot of cASE as a function of center frequency of trans-
mission, f , for three different values of target range, L. We used
rt = 4 cm, rT = 10 cm, and ε = 10−3. The shaded area is where the
minima appear.

Longer wavelengths (smaller frequencies) have more noise
(larger n̄B) to hide the probe, which tends to make cASE

smaller. On the other hand, longer wavelengths (smaller
frequencies) have more diffraction-limited loss (smaller η),
giving more photons to Willie, which tends to make cASE

higher. So, there is a trade-off in the choice of the center fre-
quency, and we see that the minimum of cASE happens in the
mid- to long-wave-infrared (ML-IR) region. We numerically
evaluate the optimal wavelength λ which minimizes cASE. For
ε = 10−3, the probing time T = 1 s, and for a source with
bandwidth W = 3 THz we find the right-hand side of Eq. (12),
which we denote as B, the MSE lower bound. For L = 1 km,
λ = 9.40 μm, B = 0.00322; for L = 3 km, λ = 6.35 μm,
B = 0.09927; and for L = 5 km, λ = 5.38 μm, B = 0.81438.

Sources in the ML-IR region with W = 3 THz and wave-
length 3 � λ � 4.4 μm and λ = 4, 4.6, 8.7, and 10.2 μm such
as Refs. [26,27], for L = 1 km and T = 1 s, give B = 0.00327
and B = 0.08423 for wavelengths 8.7 and 3 μm respec-
tively, which correspond to the extrema of the performance
for the aforementioned parameters, wavelength range, and
values.

VIII. CONCLUSIONS

Our work introduces to the greater communities of optical
sensing, strategic security, and fundamental quantum optics
the concept of quantum-secure covert (low probability of
detection) sensing. Our analytical analysis has shown that,
using floodlight illumination from an ASE source, covert
phase sensing is possible and experimentally feasible. In fact,
the ASE source enhances covert sensing performance by
exploiting its large optical bandwidth W ; i.e., the number
of available orthogonal modes n = W T can significantly in-
crease for a given time T . An open question is to consider
sensing multiple parameters, e.g., covert sensing of phase and
loss (ranging) or multiple phases that could be the pixels of an
image. We leave these questions for future work. Our setup is
experimentally feasible. The ASE source is divided into two
arms by a highly reflective fiber coupler, so that n̄S � 1 and
n̄LO 
 1. The sensing arm is frequency shifted prior to being

sent to a very noisy environment and then is phase shifted
by a weakly reflecting object. The LO is stored locally in
a spool of optical fibers for later heterodyne measurement.
Note that for sources with smaller wavelengths than those
in Refs. [26,27], one could inject artificial noise to get a
reasonable MSE lower bound for a proof-of-concept exper-
iment. Our present work indicates covert sensing is experi-
mentally feasible and applicable to practical optical sensing
tasks. A thorough analysis of modeling, experimental demon-
stration, and application development is left for follow-up
works.
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APPENDIX

We give information on the derivations used in the main
paper. Specifically, we discuss detectability, and we derive the
covariance matrices for the global output, for Alice, and for
Willie. We calculate the QRE for Willie’s part between the
states which correspond to Alice is sensing and Alice is not
sensing scenarios and we discuss the Taylor expansion of the
QRE. We prove that Alice sees only one effective thermal
channel. We give explicit calculations for the heterodyne
detection. Finally, we derive the quantum Fisher information
for when Alice is sensing the unknown phase.

1. Detectability

The adversary performs a binary hypothesis test on his
sample to determine whether the target is being interrogated or
not. Performance of the hypothesis test is typically measured
by its detection error probability, denoted as P(det)

e here since
we speak generally, but it is P(w)

e in the main paper when we
talk about the ASE source. We have P(det)

e = PFA+PMD
2 , where

equal prior probabilities on a sensor’s interrogation state are
assumed, PFA is the probability of false alarm, and PMD is
the probability of missed detection. The sensor desires to
remain covert by ensuring that P(det)

e � 1
2 − ε for an arbitrary

small ε > 0 regardless of the adversary’s measurement choice
(since P(det)

e = 1
2 for a random guess). By decreasing the

power used in a probe, the sensor can decrease the effective-
ness of the adversary’s hypothesis test at the expense of the
increased MSE of the estimate.
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2. Alice’s and Willie’s covariance matrices

We give the full expressions of the final CM of the global
state, i.e, the final state that contains both Alice’s and Willie’s
modes (four modes in total, and therefore the dimensions of
the CM are 8×8), and the CM for each of Alice and Willie.
We remind the reader that the first moments are zero. We also
provide a guide on how these CMs were derived.

We use the symplectic formalism [28], where under
a symplectic matrix S, a CM V0 is evolved to the CM
V = SV0ST . All CMs are in the qqpp representation, mean-
ing that for a 2N×2N CM the upper left block contains

information only on position, the lower right block concerns
only momentum, and the off-diagonal blocks contain infor-
mation on position-momentum correlations. The phase-space
vector is r = (r1, . . . , r2N )T = (q1, . . . , qN , p1, . . . , pN )T . In
our setup, we assume that the first two modes belong to Willie,
while the last two modes belong to Alice. We have worked
with h̄ = 1; therefore, the CM for vacuum is I/2, where I is
the identity matrix.

Since initially Alice’s and Willie’s systems are un-
correlated, in the qqpp representation the initial, global
CM is

VAW 0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n̄B2 + 1
2 0 0 0 0 0 0 0

0 n̄B1 + 1
2 0 0 0 0 0 0

0 0 n̄S + 1
2

√
n̄Sn̄LO 0 0 0 0

0 0
√

n̄Sn̄LO n̄LO + 1
2 0 0 0 0

0 0 0 0 n̄B2 + 1
2 0 0 0

0 0 0 0 0 n̄B1 + 1
2 0 0

0 0 0 0 0 0 n̄S + 1
2

√
n̄Sn̄LO

0 0 0 0 0 0
√

n̄Sn̄LO n̄LO + 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A1)

Our setup consists of three symplectic transformations, which are depicted in Fig. 4 and in order of action are the following:
a beam splitter B23(η1) with transmissivity η1 acting on modes 2 and 3, a phase shift R3(θ ) acting on mode 3, and a beam splitter
B13(η2) with transmissivity η2 acting on modes 1 and 3. By noticing on which modes each symplectic matrix acts, finding the
final CM becomes a straightforward job. Let us demonstrate an example. The beam splitter B23(η1) will act on the submatrices
V (pos1 )

AW 0
and V (mom1 )

AW 0
of VAW 0 with elements V i j

AW 0
(i, j = 2, 3) and V i j

AW 0
(i, j = 6, 7), respectively, i.e., to the momentum and

position coordinates with indices 2 and 3. The symplectic matrix B23(η1) is

B23(η1) =
(

B(pos)
23 (η1) 02×2

02×2 B(mom)
23 (η1)

)
, (A2)

where

B(pos)
23 (η1) = B(mom)

23 (η1) =
( √

η1
√

1 − η1

−√
1 − η1

√
η1

)
. (A3)

Therefore, we apply the transformation V1 = B23(η1)(V (pos1 )
AW 0

⊕ V (mom1 )
AW 0

)BT
23(η1) where all involved matrices are block diagonal

and therefore the resulting matrix will also be block diagonal. Then in VAW 0 , we substitute the V (pos1 )
AW 0

and V (mom1 )
AW 0

blocks with
the resulting blocks of V1. The rest of the VAW 0 elements remain unchanged.

Subsequently, we apply the phase shift which corresponds to the symplectic matrix

R3(θ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 cos θ 0 0 0 − sin θ 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 sin θ 0 0 0 cos θ 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A4)

or one can again simplify calculations by noticing which modes the phase shift affects. Finally, the beam splitter B13(η2) is
applied on the resulting CM. The final, global CM is

V =
(

B C

CT B

)
, (A5)
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A

W

Heterodyne

Measurement

ASE

FIG. 4. A layout of the setup, equivalent to the one of the main paper, but more explanatory regarding the transformations. The light gray
area (A) belongs to Alice, while the darker gray area (W) belongs to Willie.

where

B =
(

BW BAW

BAW BA

)
(A6)

and

C =
(

CW CAW

−CT
AW CA

)
(A7)

with

BW =
(

(1 − η2)η1n̄S + (1 − η1)(1 − η2)n̄B1 + η2n̄B2 + 1
2

√
(1 − η2)η1(1 − η1)(n̄B1 − n̄S) cos θ

√
(1 − η2)η1(1 − η1)(n̄B1 − n̄S) cos θ η1n̄B1 + (1 − η1)n̄S + 1

2

)
, (A8)

BAW =
(√

η2(1 − η2)[η1n̄S + (1 − η1)n̄B1 − n̄B2 ]
√

(1 − η2)η1n̄Sn̄LO cos θ
√

η2η1(1 − η1)(n̄B1 − n̄S) cos θ
√

(1 − η1)n̄SNLO

)
, (A9)

BA =
(

(1 − η1)η2n̄B1 + (1 − η2)n̄B2 + η1η2n̄S + 1
2

√
η1η2n̄Sn̄LO cos θ

√
η1η2n̄Sn̄LO cos θ n̄LO + 1

2

)
, (A10)

CW =
(

0 −√
(1 − η2)η1(1 − η1)(n̄B1 − n̄S) sin θ

√
(1 − η2)η1(1 − η1)(n̄B1 − n̄S) sin θ 0

)
, (A11)

CAW =
(

0 −√
(1 − η2)η1n̄Sn̄LO sin θ

√
η2η1(1 − η1)(n̄B1 − n̄S) sin θ 0

)
, (A12)

CA =
(

0 −√
η2η1n̄Sn̄LO sin θ

√
η2η1n̄Sn̄LO sin θ 0

)
. (A13)

By tracing out, i.e., by keeping the corresponding submatrices, we can find the covariance matrices VA for Alice and VW for
Willie,

VA =
(

BA CA

CT
A BA

)
=

⎛
⎜⎝

a11 −a12 cos θ 0 a12 sin θ

−a12 cos θ a22 −a12 sin θ 0
0 −a12 sin θ a11 −a12 cos θ

a12 sin θ 0 −a12 cos θ a22

⎞
⎟⎠, (A14)
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VW =
(

BW CW

CT
W BW

)
=

⎛
⎜⎝

w11 −w12 cos θ 0 w12 sin θ

−w12 cos θ w22 −w12 sin θ 0
0 −w12 sin θ w11 −w12 cos θ

w12 sin θ 0 −w12 cos θ w22

⎞
⎟⎠, (A15)

where

a11 = (1 − η1)η2n̄B1 + (1 − η2)n̄B2 + η1η2n̄S + 1
2 , (A16)

a12 = −√
η1η2n̄Sn̄LO cos θ, (A17)

a22 = n̄LO + 1
2 , (A18)

w11 = (1 − η2)η1n̄S + (1 − η1)(1 − η2)n̄B1 + η2n̄B2 + 1
2 , (A19)

w12 =
√

(1 − η2)η1(1 − η1)(n̄B1 − n̄S), (A20)

w22 = η1n̄B1 + (1 − η1)n̄S + 1
2 . (A21)

3. The quantum relative entropy

To calculate the QRE D(ρ̂0‖ρ̂1) = tr(ρ̂0 ln ρ̂0) − tr(ρ̂0 ln ρ̂1) between two Gaussian states ρ̂0 and ρ̂1, we need to find the
symplectic eigenvalues and symplectic eigenvectors of one of the two covariance matrices and the symplectic eigenvalues of the
other [29] (see the section Methods therein). Let ρ̂0, ρ̂1 to have a covariance matrix V0, V1, respectively. The covariance matrix
V1 is for the case where Alice is sensing (i.e., n̄S �= 0), while the covariance matrix V0 is for the case where Alice is not sensing
(i.e., n̄S = 0); therefore, V0 = VW (n̄S = 0) and V1 = VW (n̄S �= 0), where VW is Willie’s covariance matrix given in Eq. (A15).
That means Willie’s CM elements for n̄S = 0, i.e., the matrix elements of V0, are

w
(0)
11 = (1 − η1)(1 − η2)n̄B1 + η2n̄B2 + 1

2 , (A22)

w
(0)
12 =

√
(1 − η2)η1(1 − η1)n̄B1 , (A23)

w
(0)
22 = η1n̄B1 + 1

2 , (A24)

and V0 will have the same structure as VW in Eq. (A15). The QRE is

D(ρ̂0‖ρ̂1) = −(V0,V0) + (V0,V1). (A25)

In Eq. (A25), the first term is the von Neumann entropy (with a minus in front) of a Gaussian state with CM V0 and zero first
moments, which for our case is

(V0,V0) = 1

2

2∑
k=1

[(
1 + 2u(0)

k

)
ln

(
u(0)

k + 1

2

)
+ (

1 − 2u(0)
k

)
ln

(
u(0)

k − 1

2

)]
, (A26)

where u(0)
k (k = 1, 2) are the symplectic eigenvalues of V0 given by

u(0)
1 = 1

2

(
w

(0)
11 + w

(0)
22 +

√
4w

(0)2
12 + (

w
(0)
11 − w

(0)
22

)2)
, (A27)

u(0)
2 = 1

2

(
w

(0)
11 + w

(0)
22 −

√
4w

(0)2
12 + (

w
(0)
11 − w

(0)
22

)2)
. (A28)

The second term in Eq. (A25), for the case at hand, is given by

(V0,V1) = 1

2

2∑
k=1

[
(1 + 2dk ) ln

(
uk + 1

2

)
+ (1 − 2dk ) ln

(
uk − 1

2

)]
, (A29)

where uk are the symplectic eigenvalues of V1 and dk are the diagonal elements (which are doubly degenerate in our case, just
as the symplectic spectrum of a CM) of V ′

0 = MT V0M, where M is the symplectic eigenvectors’ matrix of V1. The symplectic
eigenvalues of V1 are found to be

u1 = 1
2

(
w11 + w22 +

√
4w2

12 + (w11 − w22)2
)
, (A30)

u2 = 1
2

(
w11 + w22 −

√
4w2

12 + (w11 − w22)2
)
, (A31)
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and the symplectic eigenvectors’ matrix of V1 is a beam splitter followed by a two-mode phase rotation,

M = R

(
θ

2
+ π,−θ

2

)
B(τ ) =

⎛
⎜⎜⎜⎜⎜⎝

−√
τ cos θ

2

√
1 − τ sin θ

2

√
τ sin θ

2 −√
1 − τ sin θ

2√
1 − τ cos θ

2

√
τ cos θ

2

√
1 − τ sin θ

2

√
τ sin θ

2

−√
τ sin θ

2

√
1 − τ sin θ

2 −√
τ cos θ

2

√
1 − τ cos θ

2

−√
1 − τ sin θ

2 −√
τ sin θ

2

√
1 − τ cos θ

2

√
τ cos θ

2

⎞
⎟⎟⎟⎟⎟⎠, (A32)

where

τ = w11 − w22

2
√

4w2
12 + (w11 − w22)2

+ 1

2
. (A33)

The matrix M can be easily checked to satisfy MV1MT = diag(u0, u1, u0, u1) and M�MT = �, where

� =
(

02×2 I2×2

−I2×2 02×2

)
, (A34)

meaning that M is a valid symplectic matrix that diagonalizes (in the symplectic sense) the matrix V1. The diagonal elements of
V ′

0 are

d1 = w
(0)
11 + w

(0)
22

2
+ 1

2
√

4w2
12 + (w11 − w22)2

(
4w12w

(0)
12 + (w11 − w22)

(
w

(0)
11 − w

(0)
22

))
, (A35)

d2 = w
(0)
11 + w

(0)
22

2
− 1

2
√

4w2
12 + (w11 − w22)2

(
4w12w

(0)
12 + (w11 − w22)

(
w

(0)
11 − w

(0)
22

))
. (A36)

Given the expressions (A27), (A28), (A30), (A31), (A35), and (A36), the relative entropy is now known as a function of the V0

and V1 matrix elements through Eqs. (A25), (A26), and (A29) (see also the Supplemental Material [30]).

4. Taylor expansion of the relative entropy

We expand the QRE (A25) in Taylor series with respect to n̄S at n̄S = 0

D(ρ̂0‖ρ̂1) ≡ D(n̄S) = D(0) + ∂D(n̄S)

∂ n̄S

∣∣∣∣
n̄S=0

+ 1

2!

∂2D(n̄S)

∂ n̄2
S

∣∣∣∣
n̄S=0

+ 1

3!

∂3D(n̄S)

∂ n̄3
S

∣∣∣∣
n̄S=0

+ · · · . (A37)

The zeroth term in Eq. (A37) is zero because D(0) = D(ρ̂0‖ρ̂0) = 0. The first-order term is zero, as the QRE has a minimum at
D(ρ̂0‖ρ̂1) = 0, and the second-order term is non-negative as the QRE D(ρ̂0‖ρ̂1) � 0, i.e., it has a global minimum at zero. Note
that (V0,V0) of the QRE (A25) is not dependent on n̄S; therefore, one is concerned only with the term (V0,V1) when taking
derivatives on the QRE with respect to n̄S.

Having expressed the QRE as a function of the CM elements and consequently as a function of (η1, η2, n̄B1 , n̄B2 ), it is
straightforward to derive the second- and third-order derivatives. Below, we give a guide on how to derive that the second-order
derivative (at n̄S = 0) is non-negative, that μc � 1, and that the third-order derivative (at n̄S = 0) is negative. The main tool is to
upper- and lower-bound the ln(·) [31] with

2x

x + 2
� ln (1 + x) � x

2

x + 2

x + 1
, x � 0. (A38)

The expression of the second-order derivative has the form

c2 = ∂2D(n̄S)

∂ n̄2
S

∣∣∣∣
n̄S=0

= T1 + T2 ln (1 + x), (A39)

where T1, T2 > 0, and x > 0 are functions of (η1, η2, n̄B1 , n̄B2 ). Since T2 > 0, we use the lower bound of (A38), c2 � T1 + T2
2x

x+2 ,
from which expression it can be shown that c2 � 0.

To prove that μc = cASE/ccoh � 1 ⇒ cASE − ccoh � 0, where cASE = [1 + 2n̄Beff (1 − ηeff )]
√

c2/(16ηeff ), we use a similar
technique. We eliminate the ln(·) in c2 using again the lower bound of (A38), a technique which gives a sufficient, but not
necessary, condition. However, we get indeed μc � 1.

The third-order derivative of the QRE has the form

c3 = ∂3D(n̄S)

∂ n̄3
S

∣∣∣∣
n̄S=0

= P1 + P2 + P3 ln (1 + x), (A40)
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where P1, P2, P3, and x > 0 are functions of (η1, η2, n̄B1 , n̄B2 ). In this case, P3 can be positive or negative. Therefore, one has
to take cases when eliminating the ln(·), which again gives a sufficient, but not necessary, condition. When P3 > 0, we use the
upper bound of (A38), c3 � P1 + P2 + P3

x
2

x+2
x+1 , while when P3 < 0, we use the lower bound of (A38), c3 � P1 + P2 + P3

2x
x+2 .

For both cases it can shown that c3 � 0.
The case where n̄B1 = n̄B2 = n̄B yields simple results:

D(ρ̂0‖ρ̂1)(n̄B ) = ηeffn̄B ln

[
ηeffn̄B

1 + ηeffn̄B

1 + (1 − ηeff )n̄S + ηeffn̄B

(1 − ηeff )n̄S + ηeffn̄B

]
+ ln

[
1 + (1 − ηeff )n̄S + ηeffn̄B

(1 − ηeff )n̄S + ηeffn̄B

]
, (A41)

c2 (n̄B ) = (1 − ηeff )2

ηeffn̄B(1 + ηeffn̄B)
> 0, (A42)

λc = 1, (A43)

c3 (n̄B ) = −2(1 − ηeff )3(1 + 2ηeffn̄B)

η2
effn̄

2
B(1 + ηeffn̄B)2

< 0. (A44)

Details can be found in the Supplemental Material [30].

5. Effective channel

A covariance matrix V1 under a thermal channel C(n̄B, η) [32] is transformed as

V2 = XV1X T + Y, (A45)

where

X = √
ηI, (A46)

Y = (1 − η)
(
n̄B − 1

2

)
I. (A47)

Alice’s sensing arm goes through a thermal channel C1(n̄B1 , η1), a phase shift R(θ ) which is a symplectic orthogonal matrix, and
another thermal channel C2(n̄B2 , η2). Therefore, the sensing arm will see the transformation,

X̃ = X2R(θ )X1, (A48)

Ỹ = X2R(θ )Y1RT (θ )X T
2 + Y2, (A49)

where X1,Y1 and X2,Y2 correspond to C1 and C2, respectively. Using Eqs. (A46) and (A47), and since the matrices X1, X2,Y1,Y2

are proportional to the identity matrix I they commute with R(θ ), Eqs. (A48) and (A49) give

X̃ = √
ηeffI, (A50)

Ỹ = (1 − ηeff )
(
n̄Beff + 1

2

)
I, (A51)

where

ηeff = η1η2, (A52)

n̄Beff = (1 − η1)η2n̄B1 + (1 − η2)n̄B2

1 − η1η2
. (A53)

Therefore, Alice’s sensing arm sees only one effective thermal channel with transmittance ηeff, mean thermal photon number
n̄Beff , and a phase shift R(θ ). The phase shift R(θ ) can be put before or after the thermal channel as it commutes with X̃ and Ỹ
and R(θ ) is orthogonal. The matrix elements a11 and a12 in Alice’s CM can now be written as

a11 = (1 − ηeff )n̄Beff + ηeffn̄S + 1
2 , (A54)

a12 = −√
ηeffn̄Sn̄LO cos θ. (A55)

6. Heterodyne detection

We consider dual homodyne detection on Alice’s system as in Fig. 5, which is an implementation of heterodyne detection. We
want to calculate the mean values μ13, μ42 and the variances σ 2

13, σ 2
42 of the Gaussian distributions N (μ13, σ

2
13), N (μ42, σ

2
42),
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ASE

( , )

LO

0

0

+

+/2

(1)

(2)

(3)

(4)

FIG. 5. The heterodyne detection takes place in the gray area. Bold vertical lines represent balanced beam splitters. Alice splits her local
oscillator and the sensing arm into two equal beams each. On the lower local oscillator a phase π/2 is applied. Then, modes (1) and (2) of the
sensing arm are mixed with modes (3) and (4), respectively. Finally, a homodyne is performed on the couples of modes (1) and (3) and modes
(2) and (4) using photon number resolution detectors.

respectively. The aforementioned Gaussian distributions correspond to the observables n̂1 − n̂3 and n̂4 − n̂2 in the following
manner:

μ13 = 〈n̂1 − n̂3〉, (A56)

μ42 = 〈n̂4 − n̂2〉, (A57)

σ 2
13 = 〈(n̂1 − n̂3)2〉 = 〈

n̂2
1

〉 − 〈n̂1〉2 + 〈
n̂2

3

〉 − 〈n̂3〉2 − 2(〈n̂1n̂3〉 − 〈n̂1〉〈n̂3〉), (A58)

σ 2
42 = 〈(n̂4 − n̂4)2〉 = 〈

n̂2
4

〉 − 〈n̂4〉2 + 〈
n̂2

2

〉 − 〈n̂2〉2 − 2(〈n̂4n̂2〉 − 〈n̂4〉〈n̂2〉). (A59)

Therefore, we need to calculate the expectation values in Eqs. (A56)–(A59). To this end, we calculate the evolution of the CM
for the setup of Fig. 5. The CM Vin just before the heterodyne detection is given by Eq. (A14) and by taking into account that the
CM for vacuum is I/2:

Vin =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 0 0 0 0 0 0

0 a11 −a12 cos θ 0 0 0 a12 sin θ 0
0 −a12 cos θ a22 0 0 −a12 sin θ 0 0
0 0 0 1

2 0 0 0 0
0 0 0 0 1

2 0 0 0
0 0 −a12 sin θ 0 0 a11 −a12 cos θ 0
0 a12 sin θ 0 0 0 −a12 cos θ a22 0
0 0 0 0 0 0 0 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A60)

After the application of all symplectic matrices as described in Fig. 5, the CM just before the photon number resolution detectors
is

Vhet =
(

A B
BT A

)
, (A61)

A =

⎛
⎜⎝

A11 A12 A13 A14

A12 A22 A23 A24

A13 A23 A33 A34

A14 A24 A34 A44

⎞
⎟⎠, (A62)

B =

⎛
⎜⎝

0 B12 B13 B14

−B12 0 B23 B24

−B13 −B23 0 B34

−B14 −B24 −B34 0

⎞
⎟⎠, (A63)

A11 = 1
4 (1 + a11 + a22 − 2a12 cos θ ), (A64)

A12 = 1
8 [1 − 2a11 + 2a12(cos θ − sin θ )], (A65)
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A13 = a11 − a22

4
, (A66)

A14 = 1
8 [1 − 2a11 + 2a12(cos θ + sin θ )], (A67)

A22 = 1
4 (1 + a11 + a22 + 2a12 sin θ ), (A68)

A23 = 1
8 [1 − 2a11 − 2a12(cos θ + sin θ )], (A69)

A24 = a11 − a22

4
, (A70)

A33 = 1
4 (1 + a11 + a22 + 2a12 cos θ ), (A71)

A34 = 1
8 [1 − 2a11 − 2a12(cos θ − sin θ )], (A72)

A44 = 1
4 (1 + a11 + a22 − 2a12 sin θ ), (A73)

B12 = − 1
8 [1 − 2a22 + 2a12(cos θ − sin θ )], (A74)

B13 = − 1
2 a12 sin θ, (A75)

B14 = 1
8 [1 − 2a22 + 2a12(cos θ + sin θ )], (A76)

B23 = − 1
8 [1 − 2a22 − 2a12(cos θ + sin θ )], (A77)

B24 = − 1
2 a12 cos θ, (A78)

B34 = − 1
8 [1 − 2a22 − 2a12(cos θ − sin θ )]. (A79)

Using the CM of Eq. (A61), we can construct the Wigner function,

W (r) = 1

(2π )4
√

det Vhet

∫
d2r exp

(
−1

2
rT V −1

het r
)

, (A80)

where r = (q1, . . . , q4, p1, . . . , p4) is the phase-space vector (and qi and pi refer to position and momentum, respectively, of the
ith mode; also note that we work with h̄ = 1), and d2r = dq1 · · · dq4d p1 · · · d p4. Utilizing the Wigner function we can calculate
mean values in the symmetric ordering,

〈: n̂in̂ j :〉 =
∫

d2rW (r)

(
q2

i + p2
i

)(
q2

j + p2
j

)
4

. (A81)

Utilizing the Wick-Isserlis theorem and the commutation relation [âi, â†
j ] = δi j , for example,

〈: n̂in̂ j :〉 = 〈n̂in̂ j〉 + 1
2 〈n̂i〉 + 1

2 〈n̂ j〉 − 1
4 , (A82)

we find

〈n̂1〉 = 1
4 (a11 + a22 − 2a12 cos θ − 1), (A83)

〈n̂2〉 = 1
4 (a11 + a22 + 2a12 sin θ − 1), (A84)

〈n̂3〉 = 1
4 (a11 + a22 + 2a12 cos θ − 1), (A85)

〈n̂4〉 = 1
4 (a11 + a22 − 2a12 sin θ − 1), (A86)〈

n̂2
1

〉 = 1
8 (a11 + a22 − 2a12 cos θ − 1)(a11 + a22 − 2a12 cos θ + 1), (A87)〈

n̂2
2

〉 = 1
8 (a11 + a22 + 2a12 sin θ − 1)(a11 + a22 + 2a12 sin θ + 1), (A88)〈

n̂2
3

〉 = 1
8 (a11 + a22 + 2a12 cos θ − 1)(a11 + a22 + 2a12 cos θ + 1), (A89)〈

n̂2
4

〉 = 1
8 (a11 + a22 − 2a12 sin θ − 1)(a11 + a22 − 2a12 sin θ + 1), (A90)

〈n̂1n̂3〉 = 1
16

[
1 + 2(a11 − 1)a11 + 2(a22 − 1)a22 − 4a2

12 cos 2θ
]
, (A91)

〈n̂4n̂2〉 = 1
16

[
1 + 2(a11 − 1)a11 + 2(a22 − 1)a22 + 4a2

12 cos 2θ
]
. (A92)
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From Eqs. (A18), (A54)–(A59), and (A83)–(A92), we find

μ13 = √
ηeffn̄Sn̄LO cos θ, (A93)

μ42 = √
ηeffn̄Sn̄LO sin θ, (A94)

σ 2
13 = 1

2 [n̄LO + n̄eff(1 − ηeff ) + n̄eff(1 − ηeff )n̄LO + n̄Sηeff] + n̄LOn̄Sηeff cos2 θ, (A95)

σ 2
42 = 1

2 [n̄LO + n̄eff(1 − ηeff ) + n̄eff(1 − ηeff )n̄LO + n̄Sηeff] + n̄LOn̄Sηeff sin2 θ. (A96)

We normalize the mean values with k = √
ηeffn̄Sn̄LO and consequently the variances with k2, and by taking the limit of a very

strong local oscillator we get

μ1 = μ13

k
= cos θ, (A97)

μ2 = μ42

k
= sin θ, (A98)

σ 2
1 = lim

n̄LO→∞
σ13

k2
= σ 2 + cos2 θ, (A99)

σ 2
2 = lim

n̄LO→∞
σ42

k2
= σ 2 + sin2 θ, (A100)

where

σ 2 = 1 + (1 − ηeff )n̄Beff

2ηeffn̄S
. (A101)

Alice is trying to determine the mean values of the distributions N (cos θ, σ 2 + cos2 θ ) and N (sin θ, σ 2 + sin2 θ ) by using the
channel n times, i.e, by performing n measurements. Then the distributions of the mean values will be N (cos θ, σ 2/n + cos2 θ/n)
and N (sin θ, σ 2/n + sin2 θ/n), were we have used the fact that independent Gaussian variables are additive. We set

σ 2
het = σ 2

n
= 1 + (1 − ηeff )n̄Beff

2nηeffn̄S
(A102)

and by imposing the covertness condition n̄S = (4ε)/[
√

c2
√

n] we get

σ 2
het = c̃het

ε
√

n
, (A103)

where c̃het = [1 + n̄Beff (1 − ηeff )]
√

c2/(8ηeff ). Therefore, the two distributions now are N (cos θ, c̃het/(ε
√

n) + cos2 θ/n) and
N (sin θ, c̃het/(ε

√
n) + sin2 θ/n). In the limit of n 
 1 (a limit which is justified by the large bandwidth of the ASE source),

since sin2 θ � 1 and cos2 θ � 1 the term that scales as 1/n will be insignificant; therefore, the approach in Sec. A 7 and
in [22] (Appendix C therein) applies here as well and we conclude that the mean squared error of the estimator θ̂het,n =
arctan ((sin θ + σ 2

het )/(cos θ + σ 2
het )) scales as 〈(θ − θ̂het,n)2〉 = O(1/

√
n).

7. Proof that 〈(θ − θ̂het )2〉 � σ2
het + O( 1

n )

Consider the following estimator for θ :

θ̂het = tan−1

(
sin(θ ) + 1

n

∑n
i=1 Z (Q,N)

i

cos(θ ) + 1
n

∑n
i=1 Z (I,N)

i

)
(A104)

= tan−1

(
sin(θ ) + Z (Q)

cos(θ ) + Z (I)

)
, (A105)

where the random variables representing in-phase (I) and quadrature (Q) noise, Z (I) and Z (Q), respectively, obey the Gaussian
distributions Z (I) ∼ N (0, σ 2

het ) and Z (Q) ∼ N (0, σ 2
het ), Z (I,N) ∼ N (0, σ 2 + cos2 θ ) and Z (Q,N) ∼ N (0, σ 2 + sin2 θ ). The distri-

butions are indeed Gaussian for n 
 1 and by applying the central limit theorem. The variance σ 2
het is given in Eq. (A103). The

MSE is

〈
(θ − θ̂het )

2
〉 =

〈(
θ − tan−1

(
sin(θ ) + Z (Q)

cos(θ ) + Z (I)

))2〉
(A106)

=
〈(

θ − tan−1

(
sin(θ ) + R cos(ϕ)

cos(θ ) + R sin(ϕ)

))2〉
, (A107)
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where in Eq. (A107) we use circular symmetry of the two-dimensional added white Gaussian noise (AWGN) to change from
the rectangular to the polar coordinate system. Thus, the radius is distributed as a Rayleigh random variable R ∼ Rayleigh(σ 2

het )
while the angle is distributed uniformly, ϕ ∼ U ([0, 2π ]). Now, the Taylor-series expansion of tan−1 ( sin(θ )+r cos(ϕ)

cos(θ )+r sin(ϕ) ) around r = 0
is

tan−1

(
sin(θ ) + r cos(ϕ)

cos(θ ) + r sin(ϕ)

)
= θ + r cos(θ + ϕ) − r2

2
sin[2(θ + ϕ)] − r3

3
cos[3(θ + ϕ)] + r4

4
sin[4(θ + ϕ)]

+ r5

5
cos[5(θ + ϕ)] − r6

6
sin[6(θ + ϕ)] − r7

7
cos[7(θ + ϕ)] + r8

8
sin[8(θ + ϕ)] + · · · (A108)

� θ + r cos(θ + ϕ) +
∞∑

i=2

ri

i
(A109)

= θ + r cos(θ + ϕ) − [log(1 − r) + r] provided 0 � r < 1, (A110)

where the upper bound in Eq. (A109) is because sin(x), cos(x) ∈ [−1, 1]. While this demonstrates the convergence of the Taylor
series for r < 1, the nth root test shows that the Taylor series in Eq. (A108) does not converge for r > 1 (the series converges
for r = 1 by the alternating series test; however, this is a zero-probability event). However, since tan−1(x) ∈ [−π

2 , π
2 ] and

θ ∈ (−π
2 , π

2 ), for any r and ϕ, ∣∣∣∣tan−1

(
sin(θ ) + r cos(ϕ)

cos(θ ) + r sin(ϕ)

)
− θ

∣∣∣∣ � π. (A111)

Therefore, using the Taylor-series expansion of log(1 − x) around x = 0 in Eq. (A110), and Eq. (A111), it is straightforward to
show there exist constants a ∈ (0, 1) and b > 0 such that∣∣∣∣tan−1

(
sin(θ ) + r cos(ϕ)

cos(θ ) + r sin(ϕ)

)
− θ

∣∣∣∣ �
{

r cos(θ + ϕ) + br2 if r � a
π otherwise.

(A112)

We can use Eq. (A112) to upper-bound the MSE:

〈
(θ − θ̂het )

2
〉
� 1

2π

∫ 2π

0

(∫ a

0
[r cos(θ + ϕ) + br2]2 re−x2/2σ 2

het

σ 2
het

dr +
∫ ∞

a
π2 re−x2/2σ 2

het

σ 2
het

dr

)
dϕ (A113)

= σ 2
het + 8b2σ 4

het − 1

2
e
− a2

2σ2
het

[
2a4b2 + a2

(
1 + 8c2σ 2

het

) + 2σ 2
het

(
1 + 8c2σ 2

het

) − 2π2
]

(A114)

= σ 2
het + O

(
σ 4

het

)
(A115)

= σ 2
het + O

(
1

n

)
. (A116)

8. Quantum Fisher information

The final CM describing Alice’s state is

VA =

⎛
⎜⎝

a11 −a12 cos θ 0 a12 sin θ

−a12 cos θ a22 −a12 sin θ 0
0 −a12 sin θ a11 −a12 cos θ

a12 sin θ 0 −a12 cos θ a22

⎞
⎟⎠. (A117)

The QFI for the parameter θ can be calculated using the formalism developed in Refs. [33,34]. One first must derive the quantum
fidelity

F (ω) = 1√√
� + √

� −
√

(
√

� + √
�)2 − �

(A118)

between the two-mode states with CM VA ≡ VA(θ ) and VA(θ + ω) and zero first moments. Equation (A118) is based on the
symplectic invariants,

� = det (VA(θ ) + VA(θ + ω)) � 1, (A119)

� = 16 det

(
�VA(θ )�VA(θ + ω) − I4×4

4

)
� �, (A120)

� = 16 det

(
VA(θ ) + i

2
�

)
det

(
VA(θ + ω) + i

2
�

)
� 0, (A121)
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where

� =
(

02×2 I2×2

−I2×2 02×2

)
. (A122)

The QFI for the parameter θ F ′
A is given by the second derivative,

F ′
A = −4

d2F (ω)

dω2

∣∣∣∣
ω=0

= 8a2
12

4
(
a11a22 − a2

12

) − 1
= 8a2

12

4
√

det VA − 1
. (A123)

Substituting Eqs. (A16)–(A18), (A52), and (A53) into Eq. (A123) we get

F ′
A = 4n̄LOn̄Sηeff

n̄LO + (1 − ηeff )n̄Beff (1 + 2n̄LO) + ηeffn̄S
(A124)

and by taking the limit n̄LO → ∞ we get

FA = lim
n̄LO→∞ F ′

A = 4n̄Sηeff

1 + 2n̄Beff (1 − ηeff )
. (A125)
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