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Abstract 

Background: 

 High density lipoprotein (HDL) oxidation is a potential biomarker for coronary artery 

disease (CAD) severity. Methionine sulfoxidation, tyrosine chlorination and C-terminal truncation 

are Apo A- I modifications that inactivate HDL and lead to pro-oxidant action. We hypothesize 

that C-terminal truncation of apolipoprotein A1 glutamate residue 243 (Apo A-I Des-Q243) is a 

byproduct of a protease, such as a matrix metalloprotease (MMP), and it is associated with the 

presence and severity of coronary artery disease and chronic kidney disease (CKD). 

Methods: 

 We enrolled 103 patients presenting for evaluation of chest pain in this cross-sectional 

study at Maricopa Medical Center. Plasma and serum samples were collected, processed, and 

transferred to Arizona State University (ASU) Biodesign Institute for high pressure liquid 

chromatography-mass spectrometry (HPLC-MS). A statistical analysis was conducted with a 

spearman’s coefficient, two-tailed linear regression and multivariate analysis of the relative 

fractional abundance (RFA) of Apo A-I Des-Q243 and clinical variables. 

Results: 

 Multivariate analysis revealed significantly reduced levels of Apo A-I Des-Q243 in the 

presence of male gender (-1.5%, P=0.035), atrial fibrillation (-2.8%, P=0.04), and ACEi/ARB use (-

2.4%, P=0.001). Additionally, a diagnosis of CKD (2.3%, P=0.037) and the presence of four (9.6%, 

P=0.005) or five (4.7%, P=0.045) coronary stents, regardless of vessel location, were associated 

with significantly increased levels of Apo A-I Des-Q243. American Indian/Alaskan race as 

compared to Caucasian race (Plasma -5.8%, 95% CI -9.9- -1.8%, P=0.005; Serum -4.6%, 95% CI -

8.5- -0.8%, P=0.02), and the eGFR (Plasma ρ=-0.024, P=0.014, Serum ρ=-0.291, P=0.003) only 

reached significance in the linear regression and spearman’s correlation analysis respectively. 

  



Conclusion: 

 Apo A-I Des-Q243 is elevated in patients with multiple coronary stents, and thus may be 

contributing to vascular inflammation and plaque formation. Furthermore, Apo A-I Des-Q243 is 

elevated in CKD and is directly correlated with its severity as determined by eGFR. These findings 

highlight the renin-aldosterone system’s (RAS) role in HDL oxidation and the anti-oxidant action 

of ACEi/ARBs. Apo A-I Des-Q243 appears to be an important link between CAD and CKD and is a 

promising biomarker that warrants further study. 

Highlights: 

• Apo A-I Des-Q243 is hypothesized to be an oxidation product of a protease such as matrix 

metalloprotease (MMP). 

• Apo A-I DesQ243 is increased in patients with multiple coronary stents. 

• Apo A-I Des-Q243 is increased in patients with CKD and is negatively correlated with eGFR. 

• Apo A-I Des-Q243 is decreased in patients on ACE/ARB therapy. 
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Introduction 

Atherosclerosis is one of the greatest health burdens in the modern world. It is the number 

one cause of all type mortality in the United States since 19211. Oxidative stress plays a key role 

in the pathogenesis of atherosclerotic cardiovascular disease (ASCVD). Many of the “traditional” 

risk factors, e.g. diabetes mellitus (DM), obesity, hypertension (HTN), hyperlipidemia (HLD), 

smoking and alcohol consumption either directly or indirectly lead to higher levels of oxidative 

stress. Still, despite the evidence for the role of oxidation in ASCVD, the dominate treatment 

strategy involves modification of lipoprotein levels. Hyperlipidemia is, without a doubt, a major 

contributor to ASCVD because it provides the substrate required for plaque deposition. Although 

treatment of HLD with statin therapy led to significantly reduced cardiovascular events, there 

exists a subset of patients with “normal” lipid levels that present with worsening ASCVD and 

major adverse cardiac events2. Lipoprotein function and/or oxidation status seems to be a new 

risk factor and drug target in these patients.  

High density lipoprotein (HDL), when functioning normally, prevents atherosclerosis. Normal 

HDL function is dependent on Apolipoprotein A-I (Apo A-I), the primary protein constituent of 

HDL (~95% of the protein in HDL is Apo A-I and to a lesser extent Apo A-II)3. The functions of HDL 

include: reverse cholesterol exchange, reduction of endothelial dysfunction, pro-antioxidant, 

anti-inflammatory and anti-apoptotic effects. In particular, reverse cholesterol exchange is an 

essential function of HDL. This involves removal of cholesterol from macrophage foam cells in 

the arterial cell walls and subsequent transport to the liver for disposal in the bile (Figure 1). This 

process requires proper interaction between ATP-binding cassette transporter A1 (ABCA1), ATP-

binding cassette transporter G1 (ABCG1), lecithin: cholesterol acyltransferase (LCAT) and ApoA-

14.  

A review by Robert Rosenson and colleagues addresses the role of oxidation-induced high 

density lipoprotein (HDL) dysfunction in ASCVD5. They believe oxidized ApoA-1 no longer protects 

against atherosclerosis but paradoxically exhibits pro-atherosclerotic activity. This phenomenon 

was first described by the Van Lenten group in 19956. In the study, HDL no longer prevented LDL 

from oxidation during an acute phase reaction in both human and rabbit models. Instead, HDL 
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increased release of pro-inflammatory molecules, such as serum amyloid A (SAA), from arterial 

cell walls. 

There are several types of oxidative modifications of Apo A-I that can disrupt the normal 

function of HDL. These include methionine oxidation (Met(O)), tyrosine chlorination and/or C-

terminal truncation. Myeloperoxidase (MPO), a heme protein expressed by macrophages in 

atherosclerotic lesions, produces hydrogen peroxide. This leads to reactive intermediates that 

modify methionine residues 86, 112, and 148 of Apo A-I7. Similarly, tyrosine residue 192 is an 

additional target of MPO. Both methionine oxidation and tyrosine chlorination of Apo A-I have  

been suggested as biomarkers given evidence of an association with increased ASCVD risk8-9. 

Of particular interest to our present study, is C-terminal truncation of Apo A-I glutamine 

residue 243. Apo A-I C-terminal truncation was first identified by three different groups using 

liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS)10-12. The 

truncation was identified in multiple patient samples, suggesting that it was a post-translational 

modification of Apo A-I that occurs with natural aging. It is likely caused by enzymatic 

degradation. To our knowledge no such enzyme has been identified based on the literature. 

Potential agents could include a chymase13 or matrix metalloproteinase (MMP)14 both of which 

have been found to cause C-terminal truncation and subsequent reduction in reverse cholesterol 

efflux (Figure 1). We believe Apo A-I Des-Q243 is an oxidation product of a protease and that it 

also causes HDL dysfunction15-16. 

HDL dysfunction and oxidation is elevated in individuals with ASCVD21-23. Therefore 

determining the extent of dysfunctional HDL could be a valuable marker of CVD risk and/or 

severity in addition to quantitative measurements of HDL cholesterol. The purpose of this study 

was to determine if Apo A-I Des-Q243 is a biomarker for oxidative stress and disease severity of 

CAD and/or CKD. Whether this extends to other inflammatory conditions, e.g. hypertension 

(HTN), congestive heart failure (CHF), diabetes mellitus (DM) and/or various types of cancer is 

yet to be determined.  
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Figure 1: HDL and Apo A-I Normal Function and PTMDP in atherosclerotic lesions. HDL = 
high density lipoprotein, Apo A-I = Apolipoprotein A-I, ROS = Reactive Oxygen Species, 
MMP = Matrix Metalloproteinase, LCAT = Lectin-Cholesterol Acyltransferase, ABCA-1 = 
ATP-binding cassette A1, ABCG1 – ATP-binding cassette G1, NO = nitric oxide 
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Materials and Methods 

Study Design, Patient Enrollment and Clinical Data Collection: 

 This is a single center cross-sectional study of 103 patients who presented for evaluation 

of CAD. The patients received a single diagnostic cardiac test or some combination of either an 

exercise stress test, nuclear perfusion scan, computed tomography coronary angiogram (CCTA), 

or coronary angiogram performed at Maricopa Medical Center (MMC). Patients were included in 

the study if their plasma and serum samples met our laboratory protocol specifications. Patients 

were excluded if they did not want to participate and/or sign the consent form, were pregnant, 

minors, prisoners and/or did not meet laboratory specifications for inclusion (e.g., hemolysis 

>50mg/dl, insufficient quantity, unacceptable deviations from lab protocol). Consent was 

gathered by either a resident physician, or clinical research coordinator for all patients as defined 

by the MMC institutional review board. Enrollment began in August of 2016 and was ongoing at 

the time of this analysis, reaching 103 patients during October of 2018. All clinical data were 

gathered up to the point of their current cardiovascular evaluation via the electronic medical 

record (Epic Systems, Verona, WI). Chart review was performed by two individuals and compared 

for fidelity. 

Material and Reagents: 

All non‐LC‐ESI-MS solvents were of HPLC grade. Refer to Borges et al for complete solvent 

list24. 

Sample Collection and Processing: 

Patients received a single blood specimen collection of one 10mL serum tube and one 

pre-chilled 10mL K2EDTA plasma using standard venipuncture procedure. Upon collection, tubes 

underwent 10 immediate inversions. Samples were then centrifuged at 2,000g for 20 minutes at 

4°C either after clotting for 30 minutes for serum tubes, but no longer than 45 minutes after draw 

time, or immediately for plasma tube, but no later than 30 minutes after draw time. Each tube 

was then immediately aliquoted and stored at -80OC (within -65°C to -90°C) within ~40 minutes 

of collection. Samples were stored for approximately 1-2 months and then sent for analysis at 
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Arizona State University (ASU) Biodesign Institute. Times of draw, centrifugation and placement 

under deep freeze were recorded for each sample. Sample hemolysis was determined by 

comparison to a color chart, minimal, mild, and moderate or greater hemolysis, ranging from < 

20 mg hemoglobin/dL, 20‐50 mg/dL and > 50 mg/dL, respectively.   

Liquid chromatography-electrospray ionization-mass spectrometry:  

LC-ESI-MS was gathered using the same technique as previously mentioned in Borges et 

al24. In brief, P/S samples are prepared for injection onto the LC‐ESI-MS by 1000x dilution in 0.1% 

(v/v) TFA after incubation at 37 °C for 18 hrs. Apo A-I Des Q243 was gathered via LC‐ESI‐MS on a 

Dionex Ultimate 3000 HPLC equipped with a 1:100 flow splitter connected to a Bruker maXis 4G 

quadrupole‐time‐of‐flight (Q‐TOF) mass spectrometer. A trap‐and‐elute form of LC‐MS was 

carried out in which 5 μL of sample was loaded and solubilized via a loading pump at 10 μl/min 

in 80% water containing 0.1% formic acid (Solvent A) / 20% acetonitrile (Solvent B) as per 

standard protocol. The mass spectrometer was set to operate in positive ion, Q-TOF‐only mode, 

acquiring spectra in the m/z range of 300 to 3000. Relative fractional abundance (RFA) of 

apolipoprotein A-I Des-Q243 was determined by dividing the mass of Apo A-I Des-Q243 by 

unmodified Apo A-I. Levels of Apo A-I Met(O) were gathered simultaneously and reported as 

weighted relative fractional abundance (WRFA) ((1xMet(O)*1/3)+(2xMet(O)*2/3)+(3xMet(O)*1) 

/Total Fractional Abundance (TFA) of  Apo A-I + all Met(O)) and weighted relative percent 

abundance (WRPA) (WRFA*100%).  

Statistical Analysis: 

 Two-tailed linear regression was calculated for between Apo A-I Des-Q243 and the 

categorical clinical variables. Spearman’s correlation was used to assess for any relationship 

between Apo A-I Des-Q243 and continuous clinical variables. All statistically significant results 

and those within ~5% were subsequently analyzed with multivariate regression. 
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Results 

Patient demographics: 

 Of the 103 patients included in the analysis, a minority of patients were male (41.8%) with 

a mean age of 59.2 ± 9.1. The most common medical conditions were HTN (88.4%), HLD (77.7%), 

DM (49%) and CAD (44.7%) (Table 1a). CKD was present in 10.7% of the patients with a mean 

eGFR of 87.8 ± 30.2 (Table 1b); none of those patients were in end-stage renal disease or receiving 

hemodialysis. The most commonly prescribed medications were aspirin (72.8%), statins (79.6%), 

angiotensin converting enzyme/angiotensin receptor blockers (47.6%) and beta blockers (47.6%). 

The patients presented with a variety of cardiovascular complaints: no chest pain (24.5%), 

atypical chest pain (49%), typical chest pain (20.6%), unstable angina (1%) or NSTEMI (4.9%). 

None of the patients presented with a STEMI. The average ASCVD risk score was high (15.3±15.6). 

Fifty patients underwent coronary angiography showing a pattern of less severe disease with 

major stenosis in either one vessel (34%), two vessels (34%), three vessels (6%) or the left main 

coronary artery (6%). 

Spearman’s Correlation:  

 The spearman’s correlation analysis (Table 2) revealed a statistically significant negative 

association between weight (Plasma ρ -0.306, P=0.002; Serum ρ=-0.323, P=0.001) and body mass 

index (BMI) (Plasma ρ=-0.214, P=0.03; Serum ρ= -0.258, P=0.009). EGFR was negatively 

associated with Apo A-I Des-Q243 (Plasma ρ=-0.024, P=0.014, Serum ρ=-0.291, P=0.003). No 

other variables reached statistical significance.  

Linear Regression:  

 Table 3 demonstrates the linear regression of the clinical variables and Apo A-I Des-Q243. 

Race/ethnicity demonstrated little difference except for American Indian/Alaskan patients which 

had significantly lower values as compared to Caucasian patients (Plasma -5.8%, 95% CI -9.9- -  
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Table 1a: Patient Demographics and Clinical Data 

Variable Summary Statistics 

Gender   
  Male  43 (41.8%) 
  Female 60 (58.3%) 
Race/Ethnicity   
  Caucasian, Non-Hispanic/Latino 32 (31.1%) 
  Caucasian, Hispanic/Latino 47 (45.6%) 
  African American 20 (19.4%) 
  American Indian/Alaskan 4 (3.9%) 
CAD Test Indication   
  No Chest Pain/Risk Stratification 25 (24.5%) 
  Atypical Chest Pain 50 (49%) 
  Typical Angina 21 (20.6%) 
  Unstable Angina 1 (1%) 
  NSTEMI 5 (4.9%) 
Coronary Artery Disease 46 (44.7%) 
Chronic Kidney Disease* 11 (10.7%) 
Hypertension 91 (88.4%) 
Hyperlipidemia 80 (77.7%) 
Diabetes Mellitus 50 (49%) 
Atrial Fibrillation 7 (6.8%) 
History of MACE 35 (34%) 
Statin 82 (79.6%) 
ACE/ARB 54 (47.6%) 
Number of Severely Obstructive Vessels (>70%)   
  None 17 (34%) 
  One 17 (34%) 
  Two 10 (20%) 
  Three 3 (6%) 
  Left Main 3 (6%) 
Number of Stents   
  None 80 (78.4%) 
  One 6 (5.9%) 
  Two 9 (8.8%) 
  Three 4 (3.9%) 
  Four 1 (1%) 
  Five 2 (2%) 

*No patients with end-stage renal disease or on hemodialysis. 
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Table 1b: Patient Demographics and Clinical Data 

Variable Summary Statistics 

Age (Years) 59.2 ± 9.1 

Wt (kg) 95.8 ± 27.4 

BMI 33.9 ± 8.6 

eGFR (mL/min/1.73m2) 87.8 ± 30.2 

Creatinine (mg/dL) 0.9 ± 0.3 

Total cholesterol (mg/dL) 
(mg/dL) 169.6 ± 40.7 

Triglycerides (mg/dL) 
(mg/dL) 157.9 ± 97.9 

High Density Lipoprotein (mg/dL) 45.9 ± 13.6 

Low Density Lipoprotein (mg/dL) 98.2 ± 32.2 

HgbA1C (%) 7.0 ± 1.8 

Acute Peak Troponin (ng/mL) 0.7 ± 2.9 

ASCVD Risk Estimator Plus (%) 15.3  ± 15.6 
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Table 2 Spearman's Coefficient of Apo A-I Des-Q243 and Clinical Variables 

Patient Characteristics Sample 
Size (n =) 

Relative Fractional 
Abundance of Apo A-I Des-

Q243 (Plasma) 

Relative Fractional 
Abundance of Apo A-I des 

Q243 (Serum) 
Spearman's ρ P value Spearman's ρ P value 

Demographics           

Age (Years) 103     0.064 0.523 

Weight (kg) 103 -0.306 0.002* -0.323 0.001* 

Body Mass Index 103 -0.214 0.023* -0.258 0.009* 

Tobacco Pack Years 94 -0.110 0.293 -0.066 0.528 

Years Since Quitting Smoking 31 -0.066 0.724     

Standard Drinks per Week 91 0.045 0.672 0.046 0.666 
Framingham 10-year 

cardiovascular risk score (%) 56 0.016 0.909 -0.082 0.550 

ASCVD Risk Estimator Plus 
(%) 55 0.037 0.786 -0.039 0.778 

Labs and Vitals           
Systolic Blood Pressure 

(mmHg) 103 -0.007 0.944 -0.045 0.652 

Diastolic Blood Pressure 
(mmHg) 103 0.122 0.219 0.059 0.551 

Heart Rate (BPM) 103 0.033 0.738 0.068 0.496 
Estimated Glomerular 

Filtration Rate 
(mL/min/1.73m^2) 

103 -0.242 0.014* -0.291 0.003* 

Creatinine (mg/dL) 103 0.080 0.422 0.144 0.148 
N-terminal Pro B-type 

Natriuretic Peptide (pg/mL) 40 0.038 0.817 -0.037 0.822 

C-Reactive Protein 
(mg/l) 13 0.088 0.775 0.11 0.721 

Erythrocyte Sedimentation 
Rate (mm/hr) 17 -0.237 0.360 -0.2 0.442 

Total Cholesterol 
(mg/dL) 101 0.049 0.628 0.08 0.428 

Triglycerides 
(mg/dL) 101 -0.002 0.981 -0.001 0.993 

High Density Lipoprotein 
(mg\dL) 101 -0.077 0.939 -0.039 0.7 

Low Density Lipoprotein 
(mg/dL) 101 -0.024 0.811 0.05 0.618 

Hemoglobin A1c (%) 91 0.081 0.446 0.061 0.564 

Acute Peak Troponin (ng/mL) 27 0.082 0.684 0.170 0.396 



10 
 

 

Echo           

Systolic Function (%) 92 -0.035 0.742 -0.016 0.882 

Exercise Stress Test           

Duke Treadmill Score 16 -0.247 0.356 -0.328 0.214 

Metabolic Equivalents 16 -0.366 0.164 -0.425 0.101 

Rate Pressure 16 -0.277 0.3 -0.285 0.284 
Myocardial Perfusion 

Imaging           

Number of Ischemic Regions 86 0.158 0.147 0.039 0.724 

Summed Stress Score 82 0.110 0.324 0.012 0.918 

Summed Difference Score 76 0.123 0.292 0.047 0.686 
Ischemic Total Perfusion 

Defect (%) 76 0.117 0.314 0.031 0.789 



 
 

Table 3 Linear Regression of Apo A-I Des-Q243 and Clinical Variables 

Patient Characteristics 
Sample 

Size 
(n=) 

Percent Difference of Apo A-I Des-
Q243 (Plasma) 

Percent Difference of Apo A-I Des-
Q243 (Serum) 

Difference 95% CI P 
value Difference 95% CI P 

value 
Demographics                   

Gender Male vs 
Female 103 -1.5% -3.0% 0.1% 0.06 -1.3% -2.8% 0.1% 0.07 

Race/Ethnicity 
Caucasian vs 

Hispanic 
Latino 

103 -0.4% -2.2% 1.3% 0.62 -0.5% -2.2% 1.1% 0.52 

  
Caucasian vs 

African 
American 

  -1.0% -3.2% 1.1% 0.34 -0.6% -2.7% 1.4% 0.54 

  
Caucasian vs 

American 
Indian/Alaskan 

  -5.8% -9.9% -1.8% 0.005* -4.6% -8.5% -0.8% 0.02* 

FH of Premature 
CAD 

Presence vs 
Absence 100 -1.2% -4.0% 1.5% 0.38 -1.9% -4.5% 0.8% 0.16 

  
Present vs 

Unknown Age 
of FH 

  -0.7% -3.7% 2.3% 0.64 -1.1% -3.9% 1.8% 0.46 

CAD Test 
Indication  

No Chest Pain 
vs Atypical 
Chest Pain 

102 0.7% -1.2% 2.6% 0.46 -0.3% -2.1% 1.5% 0.74 

  
No Chest Pain 

vs Typical 
Chest Pain 

  1.3% -1.0% 3.6% 0.27 0.7% -1.5% 2.9% 0.55 

  
No Chest Pain 

vs Unstable 
Angina 

  -3.5% -
11.5% 4.5% 0.38 -3.2% -

10.8% 4.4% 0.40 



 
 

  No Chest Pain 
vs NSTEMI   0.9% -2.9% 4.7% 0.64 0.0% -3.6% 3.7% 0.99 

CCS Angina Grade 
Asymptomatic 
vs Strenuous 

Exertion 
49 -1.2% -4.9% 2.4% 0.50 -1.4% -4.7% 1.9% 0.39 

  
Asymptomatic 
vs Moderate 

Exertion 
  0.1% -3.0% 3.2% 0.93 -0.1% -2.9% 2.7% 0.96 

  
Asymptomatic 

vs Light 
Exertion 

  4.4% -0.5% 9.3% 0.08 2.6% -1.8% 7.0% 0.24 

  Asymptomatic 
vs Rest   -1.9% -6.8% 3.0% 0.45 -1.6% -6.0% 2.8% 0.47 

Substance Use                   

Tobacco Current vs 
Former Use 103 -0.3% -2.4% 1.8% 0.78 -0.1% -2.1% 2.0% 0.96 

  Current vs No 
Use   0.9% -1.1% 3.0% 0.36 0.8% -1.2% 2.7% 0.43 

Alcohol Use Current vs 
Former Use 102 -0.3% -4.1% 3.4% 0.86 -0.5% -4.1% 3.1% 0.78 

  Current vs No 
Use   -0.7% -2.4% 0.9% 0.39 -0.8% -2.4% 0.8% 0.30 

Cocaine Current vs No 
Use 102 1.5% -2.4% 5.5% 0.45 3.2% -0.6% 6.9% 0.10 

Methamphetamine Current vs No 
Use 102 0.5% -3.5% 4.4% 0.82 1.2% -2.6% 5.0% 0.54 

Opioid Current vs No 
Use 102 -2.3% -7.8% 3.3% 0.42 -3.8% -9.1% 1.4% 0.15 

Marijuana Current vs No 
Use 102 1.1% -1.3% 3.6% 0.36 1.8% -0.5% 4.2% 0.13 

Medical History                   
Coronary Artery 

Disease 
Presence vs 

Absence 103 0.5% -1.1% 2.0% 0.58 0.4% -1.0% 1.9% 0.55 



 
 

Hypertension Presence vs 
Absence 103 1.1% -1.3% 3.5% 0.36 0.8% -1.5% 3.1% 0.50 

Diabetes Mellitus Presence vs 
Absence 102 -0.1% -1.6% 1.4% 0.87 -0.2% -1.6% 1.2% 0.79 

Hyperlipidemia Presence vs 
Absence 103 -0.5% -2.3% 1.4% 0.61 -0.6% -2.3% 1.2% 0.51 

Cerebrovascular 
Accident 

Presence vs 
Absence 103 1.4% -1.5% 4.3% 0.34 0.6% -2.1% 3.4% 0.64 

Atrial Fibrillation Presence vs 
Absence 103 -2.8% -5.8% 0.2% 0.07 -2.8% -5.6% 0.1% 0.06 

Chronic Kidney 
Disease 

Presence vs 
Absence 103 2.5% 0.0% 4.9% 0.05* 2.9% 0.6% 5.6% 0.014* 

Obstructive Sleep 
Apnea 

Presence vs 
Absence 103 -0.7% -2.5% 1.2% 0.47 -0.8% -2.6% 1.0% 0.37 

Chronic 
Obstructive 

Pulmonary Disease 

Presence vs 
Absence 103 2.2% -1.1% 5.5% 0.18 2.3% -0.8% 5.4% 0.14 

Peripheral Artery 
Disease 

Presence vs 
Absence 103 -0.3% -4.0% 3.3% 0.86 -1.6% -5.0% 1.8% 0.36 

Carotid Artery 
Disease 

Presence vs 
Absence 103 1.2% -3.4% 5.8% 0.61 1.5% -2.8% 5.9% 0.48 

Major Depressive 
Disorder 

Presence vs 
Absence 103 0.7% -1.0% 2.5% 0.41 0.9% -0.7% 2.6% 0.27 

Generalized 
Anxiety Disorder 

Presence vs 
Absence 103 1.1% -1.0% 3.1% 0.30 0.8% -1.1% 2.8% 0.38 

Bipolar Disorder Presence vs 
Absence 103 -2.8% -8.4% 2.8% 0.33 -2.9% -8.2% 2.3% 0.27 

Hypothyroidism Presence vs 
Absence 103 -0.9% -4.0% 2.2% 0.56 -1.4% -4.4% 1.5% 0.33 

HTN Treatment Treated vs 
Untreated 103 1.1% -2.5% 4.8% 0.54 0.8% -2.6% 4.2% 0.64 

  Treated vs 
Undiagnosed   -1.4% -3.8% 1.0% 0.26 -0.9% -3.2% 1.4% 0.43 



 
 

History of MACE Presence vs 
Absence 103 0.5% -1.1% 2.1% 0.54 0.1% -1.5% 1.6% 0.94 

Inflammatory 
Condition 

Presence vs 
Absence 103 -0.3% -2.0% 1.5% 0.76 -0.7% -2.3% 0.9% 0.37 

Autoimmune 
Condition 

Presence vs 
Absence 103 0.1% -2.8% 3.1% 0.92 -1.4% -4.1% 1.3% 0.31 

Cancer Presence vs 
Absence 103 0.2% -2.6% 2.9% 0.91 0.2% -2.4% 2.8% 0.89 

Infection 
Acute vs 
Chronic 

Infection 
103 3.6% -2.4% 9.6% 0.24 3.5% -2.1% 9.2% 0.22 

  Acute vs No 
Infection   3.6% -2.0% 9.2% 0.21 3.8% -1.5% 9.1% 0.16 

Hx of Gout Presence vs 
Absence 103 0.5% -2.8% 3.9% 0.75 1.0% -2.2% 4.1% 0.54 

Medication Use                   

Aspirin Current vs No 
Use 103 0.1% -1.6% 1.9% 0.91 -0.1% -1.7% 1.6% 0.91 

Statin Current vs No 
Use 103 0.4% -1.5% 2.3% 0.68 0.4% -1.4% 2.2% 0.67 

ACEi/ARB Current vs No 
Use 103 -2.1% -3.6% -0.6% 0.006* -1.7% -3.1% -0.2% 0.022* 

Beta Blocker Current vs No 
Use 103 0.4% -1.2% 1.9% 0.64 0.1% -1.3% 1.6% 0.85 

P2Y2 Inhibitor Current vs No 
Use 103 0.4% -1.6% 2.5% 0.68 -0.7% -2.6% 1.3% 0.49 

Short Acting 
Nitrate 

Current vs No 
Use 103 0.6% -1.5% 2.6% 0.58 0.2% -1.8% 2.1% 0.87 

Long Acting Nitrate Current Use 103 1.2% -1.1% 3.4% 0.31 0.8% -1.3% 3.0% 0.44 

Angiogram                    

Diffuse Disease Presence vs 
Absence 48 -1.2% -4.0% 1.6% 0.39 -1.0% -3.4% 1.3% 0.38 



 
 

Number of 
Minimally 

Obstructive 
Vessels (<50%) 

None vs One 49 -0.9% -3.6% 1.7% 0.49 -0.7% -2.9% 1.5% 0.53 

  None vs Two   1.9% -2.2% 6.0% 0.36 1.3% -2.2% 4.7% 0.47 

  None vs Three   7.3% 1.2% 13.5% 0.021* 5.6% 0.4% 10.8% 0.035* 

  None vs Four   -2.7% -
11.2% 5.9% 0.53 -3.2% -

10.4% 4.0% 0.37 

Number of 
Moderately 
Obstructive 

Vessels (50-70%) 

None vs One 50 -0.7% -3.9% 2.6% 0.68 -1.0% -3.7% 1.7% 0.46 

  None vs Two   0.0% -8.9% 8.9% 1.00 0.9% -6.5% 8.3% 0.81 
Number of 

Severely 
Obstructive 

Vessels (>70%) 

None vs One 50 0.3% -2.8% 3.4% 0.86 -0.3% -2.9% 2.3% 0.81 

  None vs Two   1.2% -2.4% 4.8% 0.51 -0.3% -3.3% 2.7% 0.85 

  None vs Three   0.6% -5.0% 6.3% 0.82 0.3% -4.4% 5.0% 0.89 

  None vs Left 
Main   0.7% -4.9% 6.4% 0.79 0.2% -4.5% 4.9% 0.93 

Interventions PCI vs Stenting 53 1.5% -5.0% 8.0% 0.65 2.0% -3.5% 7.4% 0.47 

  PCI vs Medical 
Therapy   -0.7% -7.1% 5.6% 0.82 -0.1% -5.4% 5.2% 0.97 

History of Stenting Presence vs 
Absence 103 1.1% -0.8% 2.9% 0.25 0.7% -1.0% 2.5% 0.40 

Number of Stents None vs One 102 2.8% -0.3% 5.9% 0.075 2.4% -0.6% 5.4% 0.12 

  None vs Two   -1.2% -3.8% 1.4% 0.35 -1.0% -3.5% 1.6% 0.45 

  None vs Three   -1.8% -5.6% 1.9% 0.34 -1.8% -5.4% 1.9% 0.35 

  None vs Four   12.0% 4.6% 19.4% 0.002* 9.3% 2.0% 16.5% 0.013* 

  None vs Five   4.8% -0.5% 10.1% 0.073 2.8% -2.3% 8.0% 0.28 



 
 

 
 

Stent Restenosis Total vs None 16 3.2% -5.0% 11.5% 0.41 2.9% -4.3% 10.2% 0.40 

  Total vs Partial   -0.5% -
13.8% 12.9% 0.94 0.7% -

11.0% 12.4% 0.90 

Echo                   

Diastolic Function Normal vs 
Grade 1 86 1.1% -1.8% 4.0% 0.45 1.4% -1.3% 4.1% 0.30 

  Normal vs 
Grade 2   0.1% -2.2% 2.5% 0.91 -0.8% -3.0% 1.4% 0.47 

  Normal vs 
Grade 3   -3.0% -8.7% 2.7% 0.30 -0.2% -5.5% 5.1% 0.94 

  Normal vs 
Grade 4   -0.7% -3.4% 2.1% 0.63 -1.0% -3.6% 1.6% 0.44 

  Normal vs 
Indeterminate   3.5% -0.6% 7.6% 0.09 4.3% 0.5% 8.2% 0.028* 

Stress Imaging                   

Exercise Stress Test Positive vs 
Negative 16 -4.3% -

11.4% 2.8% 0.22 -4.1% -
11.8% 3.6% 0.27 

  Positive vs 
Indeterminate   -0.8% -8.4% 6.9% 0.83 -0.7% -8.9% 7.6% 0.87 

Myocardial 
Perfusion Imaging 

Positive vs 
Negative 87 0.4% -1.6% 2.5% 0.70 0.2% -1.8% 2.2% 0.84 

Type of Lesion Fixed vs 
Reversible 28 -1.4% -4.6% 1.8% 0.37 -0.3% -3.6% 3.0% 0.85 

  Fixed vs Both   2.3% -3.8% 8.4% 0.44 3.5% -2.6% 9.7% 0.25 

Size of Lesion Small vs 
Moderate 28 0.4% -2.7% 3.5% 0.79 0.2% -3.0% 3.4% 0.90 

  Small vs Large   1.4% -7.0% 9.7% 0.74 -0.8% -9.2% 7.6% 0.85 
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Multivariate Analysis:   

 Table 4 demonstrates the multivariate analysis of the significant clinical variables and 

those that were within ~5% of statistical significance. Levels of Apo A-I Des-Q243 were 

significantly lower in male patients (-1.5%, P=0.035). Patients with CKD (2.3%, P=0.037) exhibited 

a higher level of Apo A-I Des-Q243, while those with atrial fibrillation (-2.8%, P=0.04) had lower 

levels of Apo A-I Des-Q243. ACEi/ARB therapy (-2.4%, P=0.001) was associated with lower levels 

of Apo A-I Des-Q243. Finally, patients with four (9.6%, P=0.005) or five (4.7%, P=0.045) stents 

were found to have significantly elevated levels of Apo A-I Des-Q243.  

Apo A-I Methionine Oxidation: 

 Levels of Apo A-I Met(O) for the first 30 patients were within the signal-to-noise ratio for 

the LC-ESI-MS (< 5% relative abundance) (Table 5). Samples 31-103 were ran on a different 

instrument due to mechanical failure of the previous LC-ESI-MS. The low abundance of Apo A-I 

Met(O) (+16 Da) was obscured by sodium adducts (+22 Da) of approximately the same size. This 

resulted in unmeasurable levels of Apo A-I Met(O). 
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Table 4: Multivariate Analysis of Clinical Parameters 

Patient 

Characteristics 

Difference in Percentage 

of Apo A-I Des Q243 (%) 
95% CI P value 

BMI -0.1 -0.2 - -0.1 0.001* 

Male Gender -1.5 -2.8 - -1 0.035* 

Chronic Kidney 

Disease 
2.3 1.4 - 4.3 0.037* 

Atrial Fibrillation -2.8 -5.4 - -0.1 0.04* 

ACE/ARB Use -2.4 -3.8 - -1 0.001* 

Number of Stents           

  One 2.8 0 - 5.7 0.057 

  Two -0.6 -3 - 1.8 0.637 

  Three -0.4 -3.8 - 3 0.801 

  Four 9.6 3 - 16.2 0.005* 

  Five 4.7 0.1 - 9.4 0.045* 

Not included in multivariate: eGFR, Spearman's ρ = -0.29; p=0.003  
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Table 5: Weighted Relative Percent Abundance (WRPA) of Oxidized Apo A-I 

Patient Number Plasma Serum 
1 2.9% 3.6% 
2 3.7% 3.1% 
3 3.0% 3.0% 
4 3.4% 2.6% 
5 3.2% 4.1% 
6 5.1% 4.0% 
7 2.6% 3.6% 
8 4.5% 3.9% 
9 3.6% 3.3% 

10 3.0% 3.5% 
11 2.9% 3.5% 
12 2.9% 3.5% 
13 3.5% 3.4% 
14 3.2% 3.0% 
15 2.8% 3.1% 
16 2.9% 3.5% 
17 3.9% 4.0% 
18 6.0% 3.1% 
19 3.2% 3.2% 
20 2.6% 2.9% 
21 3.5% 6.9% 
22 3.6% 3.6% 
23 3.7% 3.0% 
24 3.6% 4.0% 
25 4.1% 4.2% 
26 3.2% 2.9% 
27 3.9% 3.4% 
28 4.6% 2.7% 
29 4.1% 3.2% 
30 8.1% 3.7% 
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Discussion 

 The major findings of this study were: 1) increased levels of Apo A-I Des-Q243 in patients 

with multiple stents, 2) increased levels of Apo A-I Des-Q243 in patients with CKD, which is 

linearly associated with worsening renal failure (eGFR), 3) decreased levels of Apo A-I Des-Q243 

in patients on ACEi/ARB therapy. And 4) Apo A-I Des-Q243 appears to be a stable measureable 

biomarker.  

Apo A-1 Des Q243 and CAD: 

Previous studies by Nikolova et al noted a positive association between Apo A-I Des-Q243 

and the presence of angiographically confirmed CAD, particularly in the right coronary artery 

(RCA) and left circumflex artery (LCX) regions16. Additionally, the HDL/Apo A-I Des-Q243 ratio was 

found to be elevated in patients with CAD and DM15. The findings of these studies laid the ground 

work for the current study. This paper expands upon the previous work to include additional 

clinical variables that could affect oxidation status.  

This study demonstrates a significant positive association between Apo A-I Des-Q243 and the 

number of coronary stents, regardless of the type of stent (bare-metal or drug eluting). One 

potential explanation is that the stents themselves could be acting as a nidus for oxidative 

damage by increasing enzymatic activation of MMP or similar proteases. There is known 

activation of leukocytes and inflammatory mediators in the literature and it is believed to be a 

component of in-stent restenosis29-31. Our results didn’t reach significance for stent restenosis 

but the sample size was small. Another explanation could be that levels of Apo A-I Des-Q243 were 

higher with presence of multiple stents as a function of more severe underlying CAD and/or other 

inflammatory conditions of the patient.  
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Apo A-1 Des-Q243 and CKD: 

A new finding of the study was the relationship between Apo A-I Des-Q243 and chronic kidney 

disease. Our results suggest that CKD-mediated oxidative stress significantly increases the levels 

of Apo A-I Des-Q243 and is inversely correlated with the eGFR. These are novel findings, which 

haven’t been previously described in the literature to our knowledge. 

For patients taking ACEi/ARBs the levels of Apo A-I Des-Q243 were found to be significantly 

lower. The renin-angiotensin system (RAS) is likely involved and there is literature demonstrating 

that activation of RAS in hypertension leads to the formation of reactive oxygen species (ROS)25-

27. Thus ACEi/ARB therapy is protective against oxidation.  This data supports other literature of 

an anti-oxidant mechanism of ACEi/ARB33-35. This is an additional benefit for patients with CAD 

and CKD.  

These results suggests a common pathway between chronic kidney disease (CKD), coronary 

artery disease (CAD) and Apo A-I Des-Q243. CKD is well known to cause accelerated 

atherosclerosis. This is due to oxidative stress, uremic toxins and metabolic derangements17-19. A 

review by Nans Florens in Toxins discusses the effects on HDL activity in CKD20. These include 

decreased levels of Apo A-I, decreased function of Apo A-I-mediated reverse cholesterol efflux 

and either decreased levels and/or function of essential enzymes, e.g. LCAT, cholesterol-ester 

transfer protein (CTEP), nitric oxide (NO), paraoxonase (PON) and glutathione peroxidase (GPX). 

The Florens group used the term “posttranslational modification derived products” (PTMDPs) to 

encapsulate the various byproducts that occur in CKD (Figure 1). It is likely that Apo A-I Des-Q243 

is another PTMDP byproduct of CKD in addition to CAD.  
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Apo A-I Oxidation Products: 

Much of the focus in the literature on HDL dysfunction has been on Met(O) and to a lesser 

extent, tyrosine chlorination8-9,22,28. As previously mentioned, Met(O) has been shown to be a 

potential biomarker of CAD. Unfortunately, a major limitation is that oxidation of methionine 

residues does not stop until the samples are frozen at approximately -80OC, so called ex vivo 

oxidation12,24. Without proper handling, ex vivo oxidation inflates the levels of Met(O). In fact, 

levels of methionine oxidation became nearly undetectable via HPLC-MS when utilizing fresh 

plasma and serum samples combined with careful processing (table 5). This includes strict time 

and sample integrity metrics as adapted by Borges et al24. There is convincing evidence that 

Met(O) is a result of in vivo oxidative stress; however, its sensitivity to ex vivo oxidation makes it 

less stable and therefore an unreliable biomarker. This could explain why attempts to quantify 

any consistent clinical correlation have yielded mixed results at best8-9,22. Thus other markers of 

oxidative stress that are more stable would be desirable if the goal is to develop a clinically useful 

biomarker.  

One such candidate may be Apo A-I C-terminal truncation of glutamate residue 243. Our 

studies have yet to show ex vivo changes in the total fractional abundance of Apo A-I Des-Q243. 

With proper handling of fresh samples, we have no reason to believe that Apo A-I Des-Q243 

undergoes any substantial modifications. It is important to note, that this hasn’t been 

systematically studied and it is a potential area of future study. Another consideration when 

measuring Apo A-I Des-Q243, is that methionine oxidation can be superimposed upon it. The 

effect of this can be avoided by calculating the total fractional abundance, which takes into 

account both Apo A-I Des-Q243 with and without superimposed Met(O). 
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Limitations: 

Based on our original power calculations a target sample size of 166 patients was determined 

necessary to reach a β >80%. Due to time constraints our final small sample size only reached 

103 patients. Some of our clinical variables may have been underpowered, specifically our 

angiographic data (n=50). This may explain why several variables didn’t reach statistical 

significance, despite the fact that Apo A-I Des-Q243 was elevated and these variables had 

reached significance in Nikolova et al15-16. Another limitation of this single center study was that 

there was a disproportionate number of Hispanic patients (45.6%) as compared to the general 

United States population (~18.1% based 2017 US census data) and this could influence the 

generalizability of the study.  

Finally a major limitation was the lack of a healthy control population. It is very likely that 

most, if not all of the patients, had elevations in the levels of Apo A-I Des-Q243, given the number 

of co-morbid inflammatory conditions present. This could have limited the magnitude of change 

in Apo A-I Des-Q243 and made any attempt to distinguish between levels undistinguishable. 
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Future Directions 

Future areas of study could include: 1) determining the reference ranges of Apo A-I Des Q243 

in healthy individuals and those with oxidative disease states, e.g. CAD, CKD, DM, and CHF. 2) 

studying the mechanism of Apo A-I Des-Q243 formation which could lead to potential 

pharmaceutical targeting, 3) further characterization of ex vivo stability of Apo A-I Des-Q243 and 

optimal sample handling which would improve its utility as a biomarker and 4) confirming 

causality with a prospective cohort study. 
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Conclusion 

This cross-sectional study of fresh plasma and serum samples further demonstrates the 

positive association between Apo A-I Des-Q243 and CAD severity, as determined by the quantity 

of coronary stents.  Additionally, this article gives preliminary evidence of a positive association 

between Apo A-I Des-Q243 and the presence of CKD, which is found to be inversely correlated to 

its severity as determined by eGFR. The negative association between ACEi/ARB therapy and Apo 

A-I DesQ243 implicates RAS-mediated oxidation as a common link between CAD and CKD 

pathogenesis. Thus Apo A- I Des-Q243 may be of particular utility as a stable biomarker in this 

population.  
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Abbreviations 

ABCA1   ATP-binding cassette transporter A1 

ABCG1   ATP-binding cassette transporter G1 

ACE/ARB  Angiotensin converting enzyme inhibitor/Angiotensin receptor blocker 

Apo A-I   Apolipoprotein A-I 

Apo A-I Des-Q243 Apo lipoprotein A-I C-terminal truncation of glutamine residue 243 

Apo A-II   Apolipoprotein A-II 

ASCVD   Atherosclerotic cardiovascular disease 

BMI   Body mass index 

CAD   Coronary artery disease 

CKD   Chronic kidney disease 

CHF   Congestive Heart Failure 

CCTA   Computed tomography coronary angiogram 

CTEP   Cholesterol-ester transfer protein 

DM   Diabetes Mellitus 

eGFR   Estimated glomerular filtration rate 

ESRD   End stage renal disease 

GPX   Glutathione peroxidase 

HDL   High density lipoprotein 

HLD   Hyperlipidemia 

HTN   Hypertension 

LC-ESI-MS  Liquid chromatography‐electrospray ionization‐mass spectrometry 

LCAT   Lecithin: cholesterol acyltransferase 

LCX   Left circumflex artery 

Met(O)   Methionine oxidation 

MMC   Maricopa Medical Center 

MMP   Matrix Metalloprotease 

MPO   Myeloperoxidase 

NO   Nitric Oxide   
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NSTEMI  Non-ST elevation myocardial infarction 

PON   Paraoxonase 

PTMDP   Posttranslational modification derived products  

Q‐TOF   Quadrupole‐time‐of‐flight 

RCA   Right coronary artery 

ROS   Reactive oxygen species 

RFA   Relative fractional abundance 

SAA   Serum amyloid A 

STEMI   ST elevation myocardial infarction 

WRFA   Weighted relative fractional abundance 

WRPA   Weighted relative percent abundance 
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