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Abstract

We present the detection of very extended stellar populations around the Large Magellanic Cloud (LMC) out to
R∼21°, or ∼18.5 kpc at the LMC distance of 50 kpc, as detected in the Survey of the MAgellanic Stellar History
(SMASH) performed with the Dark Energy Camera on the NOAO Blanco 4 m Telescope. The deep (g∼24)
SMASH color–magnitude diagrams (CMDs) clearly reveal old (∼9 Gyr), metal-poor ([Fe/H]≈−0.8 dex) main-
sequence stars at a distance of ∼50 kpc. The surface brightness of these detections is extremely low with our most
distant detection at Σg≈34 mag arcsec−2. The SMASH radial density profile breaks from the inner LMC
exponential decline at ∼13°–15°and a second component at larger radii has a shallower slope with power-law
index α=−2.2 that contributes ∼0.4% of the LMC’s total stellar mass. In addition, the SMASH densities exhibit
large scatter around our best-fit model of ∼70% indicating that the envelope of stellar material in the LMC
periphery is highly disturbed. We also use data from the NOAO Source catalog to map the LMC main-sequence
populations at intermediate radii and detect a steep dropoff in density on the eastern side of the LMC (at R≈8°) as
well as an extended structure to the far northeast. These combined results confirm the existence of a very extended,
low-density envelope of stellar material with a disturbed shape around the LMC. The exact origin of this structure
remains unclear, but the leading options include an accreted halo or tidally stripped outer disk material.

Key words: galaxies: dwarf – galaxies: halos – galaxies: individual (Large Magellanic Cloud) – Local Group –

Magellanic Clouds

1. Introduction

The advent of deep wide-area surveys in the southern
hemisphere has dramatically changed our view of the size and
structure of the Magellanic Clouds, particularly through the use
of resolved stars as tracers of structure. Using red giant branch
(RGB) and asymptotic giant branch (AGB) stars measured in
the 2MASS (Skrutskie et al. 2006) and DENIS (Epchtein et al.
1997) surveys, van der Marel (2001) showed that the disk of

the Large Magellanic Cloud (LMC) appears both more
extended, smoother, and more elongated than optical photo-
graphs suggest in these maps of intermediate-age and old stellar
populations. Choi et al. (2018a) extended the reach and
resolution of such maps further by using red clump stars
measured by the Survey of the MAgellanic Stellar History23

(SMASH; Nidever et al. 2017) using the Dark Energy Camera
(DECam; Flaugher et al. 2015) and found a distinct warp in the
southwestern portion of the outer disk, 7°from the center,
bending ∼4 kpc out of the LMC plane. In addition, Choi et al.
(2018b) used the red clump maps to find a ring-like stellar
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22 Visiting astronomer, Cerro Tololo Inter-American Observatory, National
Optical Astronomy Observatory, which is operated by the Association of
Universities for Research in Astronomy (AURA) under a cooperative
agreement with the National Science Foundation. 23 http://datalab.noao.edu/smash/smash.php
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overdensity in the LMC disk at a radius of ∼6°(∼5.2 kpc) with
an amplitude of up to ∼2.5 times larger than the smooth disk.

In the LMC periphery, the Outer Limits Survey (OLS; Saha
et al. 2010) used main-sequence stars as tracers along a series
of probes to the north of the LMC, and found LMC populations
out to at least 16°radius. More recently, Mackey et al. (2016)
discovered a spur-like structure in the northern LMC extending
from ∼13°to ∼16°, pointing toward the Carina dwarf
spheroidal galaxy. Mackey et al. (2018) used new DECam
data in the southern and southwestern region of the LMC to
map out the extended stellar populations in these regions using
main-sequence stars, and found a smooth LMC disk population
extending to ∼10°but with two spurs extending to ∼14°. One
of these spurs is cospatial with the old RR Lyrae bridge
discovered by Belokurov et al. (2017) and likely has a tidal
origin, which is distinct from the Magellanic Bridge (e.g., Noël
et al. 2013; Carrera et al. 2017). At a larger radius still, Muñoz
et al. (2006) discovered a kinematically “cold” population of
high-velocity stars in the foreground of the Carina dwarf
spheroidal galaxy that were consistent with having an LMC
origin but ∼22°from the LMC center. The MAgellanic
Periphery Survey (MAPS) was conducted as a follow-up of
this discovery to ascertain the origin and structure of this new
stellar population (Majewski et al. 2009; Nidever 2009). It
confirmed the existence of the extended stellar population and
mapped it across an azimuthal range of over 180°. Belokurov
& Koposov (2016) used blue horizontal branch (BHB) stars in
Dark Energy Survey (DES; Dark Energy Survey Collaboration
et al. 2016) data to discover stream-like structures associated
with the LMC out to distances of 30°from the LMC center,
indicating that the area of sky that may contain Magellanic
Cloud populations is truly enormous.

The picture that emerges from these recent discoveries is one
in which the disk of the LMC is both much more extended than
previously thought, and, particularly for the stellar populations
in the periphery, much more disturbed. Clearly, the interaction
between the Clouds (e.g., Besla et al. 2007, 2012) has left a
strong imprint on the LMC’s structure. The debris and
distortions from tidal interactions is a key observational probe
of the dynamical masses, orbits, and interaction histories of the
galaxies. However, a complete understanding of the origin of
these substructures requires a determination of the full extent
and shape of the LMC stellar disk as well as other populations
in the periphery.

Here, we use deep SMASH photometry of old main-
sequence turnoff (MSTO) stars to probe the spatial distribution
and origin of stellar populations in the LMC periphery to lower
surface brightnesses than previously possible. We detect very
extended stellar populations in many directions to R∼21°or
18.5 kpc (at the LMC distance) with surface brightnesses as
low as ≈34 mag arcsec−2 in the g-band. The layout of this
paper is as follows. Section 2 gives an overview of our
observations and data reduction. Section 3 describes the
analysis of our deep color–magnitude diagrams, and the results
are presented in Section 4. The relevance and interpretation of
our measurements are discussed in Section 5, and, finally, our
conclusions are summarized in Section 6.

2. Observations and Data Reduction

The SMASH survey is an NOAO community survey that
used ∼50 nights with the DECam on the CTIO Blanco 4 m
telescope to perform deep imaging in ugriz of ∼200 “island”

fields spread over ∼2400 deg2 of the southern sky, resulting in
an extended map with ∼20% filling factor. In the inner regions
of the Clouds, the observed fields fully overlap, yielding a filled
map of the main bodies. Figure 1 shows the region around the
Magellanic Clouds and the SMASH fields used in the current
analysis. These 21 fields include all deep SMASH fields with
measurable LMC populations beyond the main disk body
(where the stellar populations are more complicated) but
excludes heavily dust obscured fields.
The survey observations and data reduction are fully

described in Nidever et al. (2017). In brief, we used the
InstCal image data products (calibrated, single-frame images)
produced by the DECam Community Pipeline (CP; Valdes
et al. 2014) and provided by the NOAO Science Archive
Server.24 The photometric measurements were performed with
the DAOPHOT (Stetson 1987, 1994) suite-based PHOTRED25

pipeline (Nidever et al. 2017). PHOTRED was used to perform
WCS fitting, single-image PSF photometry (using ALLSTAR),
forced PSF photometry of multiple images with a master source
list created from a deep stack of all exposures (using
ALLFRAME), aperture correction, photometric calibration,
and dereddening. The photometric reduction resulted in
measurements with median 5σ depths of 23.9, 24.8, 24.5,
24.2, and 23.5 mag in ugriz, respectively.
We also use the NOAO Source Catalog (NSC; Nidever et al.

2018) that contains aperture photometry of nearly all public
DECam data including many SMASH exposures to select
LMC MSTO stars and contiguously map the regions around the
LMC (see Figure 1) with an eye to using both the SMASH and
NSC data sets to further understand the structure of LMC. The
NSC selection is 0.0�g−r�0.4 and 21.8�g�22.8 with
shape FWHM<1 5 to remove background galaxies. While
the photometry was not dereddened, regions with SFD98
E(B−V )>0.5 mag were excluded.

3. Analysis

We conducted an analysis of the deep SMASH CMDs to
measure the surface density of Magellanic stars using the
MSTO. The portion of the CMD populated with these stars is
contaminated by both background galaxies and foreground
MW stars. The galaxies were removed with both color–color
and morphological cuts while MW models were used to
subtract the MW stars. Then, the LMC MSTO luminosity
function was compared to a fiducial field to measure the surface
density. The steps are described in more detail below.

3.1. Removing Background Galaxies

At faint magnitudes (g23), there is a large number of
galaxies that contaminate our stellar signal of the LMC MSTO
(e.g., Fadely et al. 2012). Applying cuts on the morphological
parameters only partially mitigates the problem because many
of the galaxies are unresolved. To further cull the stellar
sample, we apply cuts taking advantage of the limited region of
the multi-dimensional color space that stars occupy (i.e., the
stellar “locus”) and the multi-band ugriz SMASH photometry.
In each independent color–color diagram, bright PSF-like
sources are used to determine the stellar locus (and its intrinsic
width) in that plane. We use the g−z, r−z, and i−z colors

24 https://www.portal-nvo.noao.edu
25 https://github.com/dnidever/PHOTRED
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and g−i as the fiducial color. The u-band was not used since
it is not as deep as the other bands, and colors using u show
higher intrinsic scatter (especially for bluer objects) making it
more challenging to remove galaxies as “outliers” in these
colors. The stellar locus model is computed for each object
(with good photometry in all three bands of a given color–color
plane) using its g−i color. If the deviation from the stellar
locus is more than 2.5 times the observational color uncertainty
or 0.2 mag then the object is considered inconsistent with the
stellar locus and removed. A morphological shape cut is also
applied using the DAOPHOT SHARP parameter (Stetson 1987),
which is a measure of the peakedness of an object’s spatial
profile compared to the PSF, with stars having values around
zero while extended objects have large values. We set a lower
cutoff of 0.2 on |SHARP| for the brighter stars and allow the
threshold to grow slightly with magnitude but set an upper limit
of 1.0. Finally, we also set a lower cutoff of 0.2 on the Source
Extractor (Bertin & Arnouts 1996) stellar probability value
(PROB column in the SMASH catalogs) but allow an exception
for bright stars that have an artificially low PROB value likely
due to the brighter-fatter effect (Gruen et al. 2015). An example
of the stellar locus and morphology cuts is shown in Figure 2.

3.2. Artificial Star Tests

Artificial star tests (ASTs) were performed for all SMASH
fields to estimate completeness. In brief, artificial stars uniformly
spanning the (g−i, g) CMD space (−1.0<g−i<3.5,
17.0<g<27.0) were injected into all images for a single
CCD and the images were processed with PHOTRED the same
way the original images were. The final catalog of sources was
then cross-matched with the original list of injected artificial

stars. See Choi et al. (2018a) for a more detailed description of
the SMASH single-chip AST procedure. Completeness maps
were generated for the CMD analysis using the requirement that
an AST had to be detected in at least one image in both g and
i and pass the star/galaxy separation cuts (Figure 3).

3.3. Cleaning Milky Way Populations

MW populations are an important contaminant for our study
of the MCs. Popular MW models such as the Besançon
Galactic Model (Robin et al. 2003) or Galaxia (Sharma et al.
2011) provide unsatisfactory results for our deep SMASH data
that probe regions of the CMD not previously used to constrain
the existing models. Therefore, we fit our own MW model
to the SMASH data itself. Spatial and population parameters
for the MW (see Robin et al. 2003 for more details) were
constrained by fitting the observed distribution of stars in a set
of CMDs. To obtain the best constraint on the parameters of the
different MW components, as large an area as possible was
included in the fit. SMASH fields were selected in the southern
hemisphere far from the MW midplane (|b|>20°) and the
MCs (>10°from each) to avoid populations not included in the
model. The set of 38 fields were fit in the (g, g−i) plane using
Dartmouth isochrones26 (Dotter et al. 2008) in the region
−0.2<g−i<1.8 and 14<g<22.5 to sample an area that
excludes faint M-dwarfs (which are challenging to model) and
where the data are nearly 100% complete. The resulting best-fit
parameters for the thin disk, thick disk, and halo are mostly
consistent with previous studies. Most importantly to our
present work, the best fit to the data gives an MW halo

Figure 1. The region of the Magellanic system relevant to the SMASH survey. (Left) The observed H I column density of the Magellanic Stream system is shown in
grayscale (Nidever et al. 2010), while the dark blue contours represent the 2MASS (Skrutskie et al. 2006) RGB starcounts. The 21 SMASH fields used in the current
analysis are shown as filled orange hexagons with shading indicating the LMC MSTO density in stars deg−2 as indicated by the colorbar (see Section 3). The MAPS
fields are shown as filled green squares and OLS as filled red squares. The DES footprint is represented by the purple shaded region. (Right) LMC MSTO density map
using the NSC. The central regions of the Magellanic Clouds are represented by 2MASS RGB starcounts (grayscale and dark blue contours). The irregular structure of
the LMC disk with steep density dropoffs at ∼10°–12°(or ∼9 kpc at the LMC distance) is clearly visible. The 21 SMASH fields are shown as orange hexagons, the
MAPS fields as open green squares, and the OLS fields as open red squares.

26 http://stellar.dartmouth.edu/models/
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component that follows a power-law index of −3 and flattening
∼0.5 similar to those seen previously (Bell et al. 2008; Deason
et al. 2011; Slater et al. 2016). A more detailed description
of this work will be presented in the near future (T. de Boer
et al. 2019, in preparation). MW models were generated for
each SMASH field using the best-fit parameters, and convolved
with photometric error and completeness of each indivi-
dual field.
The SMASH stellar catalogs use Schlegel et al. (1998,

hereafter SFD98) E(B−V ) dereddening by default. However,
CMDs of SFD98-dereddened photometry still showed slight
field-to-field color offsets in the blue edge of the MW
populations. Therefore, we recomputed field-specific reddening
using color offsets of the MW blue edge. The edge was measured
in the magnitude range 21.0<g<22.0 for the MW model, the
fiducial field, and the science field. The color offset relative to the
MW model was then used as the E(g−i) reddening and used to

Figure 2. Illustration of our star/galaxy separation using the stellar locus in one color–color space for Field59 (three color–color combinations are used for the final
cuts). Morphological shape and detection cuts (|SHARP|<1, CHI<2, and NDET>5) are already applied for the data in the figure. (Top left) g−z vs. g−i for
g<23.0. The brighter sources are dominated by stars and are used to define the empirical template of the stellar locus (red dashed line). (Top right) g−z vs. g−i
for all stars. The cuts around the stellar locus applied to objects at g=22 and g=24 mag are shown (blue and orange, respectively). (Bottom left) g vs. g−i CMD
for all sources, (bottom middle) sources that pass all color–color stellar locus cuts such as shown in the top panel, and (bottom right) the removed sources. The large
majority of extragalactic contaminants are removed.

Figure 3. Completeness maps for Field58 for all objects (left) and after the
star/galaxy cuts are applied (right).
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compute the A(g) extinction (with Schlafly & Finkbeiner 2011
extinction coefficients) for the fiducial and science data.

Of the three MW populations (thin disk, thick disk, halo)
only halo stars are present in the region of the CMD populated
by the LMC MSTO. The halo component of the MW models
was sometimes underrepresented (possibly because the faintest
magnitudes were not included in the MW fitting) and we used a
scaling factor to match the data. A parallelogram in the region
0.60�(g−i)0�1.1 and 22.4�g0�23.0 (see top left
panel of Figure 4) was used to measure the observed and
MW model densities and to calculate the MW halo scaling
factor with a median value of 1.88. The Hess density map in the
dereddened CMD was generated for the observed SMASH
stars and then the scaled MW halo model population map
(corrected for completeness) was subtracted. It was more
challenging to remove the MW halo component in the fields
nearer to the MW midplane because of the presence of the
Monoceros ring stars in the foreground (at ∼10–20 kpc). For
these fields, the MW halo selection box was fine tuned for each
field, and sometimes the MW halo scaling parameter was
manually set after by-eye inspection of the residual image.

3.4. Main-sequence Luminosity Functions

For our CMD analysis, we use one SMASH field, FieldB
north of the LMC (see Figure 1), with a well-measured LMC
main sequence and good photometry with little extinction as
our “fiducial” LMC field (see Figure 5). FieldB is at R=14°5,
and the data were obtained during the SMASH pilot project and
is therefore a magnitude deeper than the regular SMASH data.

We used the LMC main-sequence luminosity function to
measure the density of LMC stars relative to the fiducial field.
The region 0.11�(g−i)0�0.44 and 21.0�g0�22.8

(slightly fainter for the fiducial field) was used to measure
the observed luminosity function, which extends somewhat
brighter of the LMC MSTO to include a region to set the
“background” level. The luminosity function was modeled
using a shifted, scaled, and offset version of the fiducial
luminosity function multiplied by the completeness map using
an automated routine to find the best fit (see Figure 4). The
mean background level was ∼50 stars per 0.1 mag bin while
the number of LMC MSTO stars per bin ranged from 25 to
3100. This technique was found to be more reliable than a two-
dimensional modeling method, which was more sensitive to the
shape and position of the LMC main sequence and consistently
underestimated the LMC densities. The density of MSTO stars
was then constructed by multiplying the scaling of the fiducial
luminosity function by the number of fiducial MSTO stars with
g�22.8 (1014 stars) and dividing by the 3 deg2 field of view
of DECam (see Figure 6). The same factors were multiplied by
the uncertainty in the fiducial luminosity scaling from the
fitting procedure to obtain the uncertainty in the density of
MSTO stars. The g-band surface brightness for the fiducial
FieldB was calculated to be 32.02 mag arcsec1 by comparing
the number of MSTO stars to synthetic photometry from a
Z=0.002, 8 Gyr, 50 kpc BaSTI isochrone (Pietrinferni et al.
2004). Surface brightnesses for the other fields were boot-
strapped off of the FieldB value by using the luminosity
function scaling value. Table 1 gives density and other
information on the 21 fields used in this study.

4. Results

Figure 1 shows the LMC density distribution from both the
SMASH data (left) as well as the NSC (right), which highlight
different spatial features. The features described in Mackey et al.
(2016) are prominent in the NSC map including the northern spur
and its extension to the west as well as the sharp density dropoff
on the western side of the LMC. In addition, the newly
discovered tidal spurs in the southern LMC by Mackey et al.
(2018) are also partly visible in the NSC image. Moreover, the
NSC data reveal previously unexplored structures on the eastern
and northeastern side of the LMC, although the photographic
isophotes from Irwin (1991) showed similar features but at
smaller radii. A fairly sharp edge exists on the western side
(possibly giving rise to the large variations in the SMASH
densities in this area) that is reminiscent of the dropoff on the
eastern side seen by Mackey et al. The northern spur and similar
low-density features are extended farther to the northeast (toward
Carina) than compared to Mackey et al. (2016). Overall, the shape
of the LMC at ∼11°is quite striking and somewhat triangular.
The SMASH data are able to probe to larger radii than the

NSC map. Figure 5 presents example Hess diagrams of objects
passing the star/galaxy separation for six of the 21 SMASH
fields used in this study of the LMC periphery moving radially
outward with the best “by-eye” fit isochrones. The LMC lower
main sequence is clearly visible in all fields indicating that the
deep SMASH data can be used to trace Magellanic populations
to very low surface brightnesses.
Figure 6 shows the radial density profile of the LMC from

individual SMASH (open hexagons), MAPS (small filled
circles), and OLS (open circles) fields. Each symbol is color-
coded by its position angle. Both the SMASH and OLS
densities were put on the MAPS scale of giants stars per deg2

using overlapping fields that have well-measured values. While
the three data sets cover slightly different regions of the sky,

Figure 4. The CMD analysis for a single SMASH field (Field59). (Top left)
Hess diagram of dereddened SMASH stars. The magnitude range used to
determine the MW blue edge and the MW halo scaling box are shown in
dashed lines. (Top right) Scaled MW halo density map and the measured blue
edge (dashed line). (Bottom left) Observed Hess diagrams with the scaled MW
halo subtracted. The box used to compute the luminosity function is shown in
dashed lines. (Bottom right) Observed LMC MSTO luminosity function
(black) and the scaled, shifted and offset model using the fiducial field (red).
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their results generally agree with each other. All of them show
an exponential decline out to ∼15°with a scale-length of ∼1°.
Both the MAPS and SMASH data show the existence of low-
density populations beyond ∼16°extending to ∼21°with the
SMASH best-fit inner exponential (hR=1°.1±0°.03) and
outer power-law (α=−2.2±0.4) exhibiting a “break” at
∼13°–15°. The SMASH results show a significant scatter of
62% around the best-fit model (i.e., standard deviation of data/
model), especially as a function of position angle, with some
fields deviating by as much as 2–2.5× from the best-fit model.
Many of these variations are well above the uncertainties in the
density measurements with ∼1/3 of the points being 5σ
outliers resulting in the solution having a poor reduced
χ2=37.4. At smaller radii, these variations are due to the
inclined and intrinsically elongated LMC disk (van der
Marel 2001), but at larger radii, this is likely because of the
irregular shape of the LMC (as seen by Mackey et al. and the
NSC data) as well as the substructure of spurs and stream-like
features. The total mass of the power-low component (from 13°
to 23°), assuming it continues on the northwestern side not
probed by SMASH, compared to the exponential component is

0.4%, although this quantity is quite uncertain due to the large
variability in the LMC envelope.

5. Discussion

The origins of the stellar populations in the LMC periphery
remain unclear. Majewski et al. (2009) proposed that the large
spatial extent, radial profile, radial velocity profile, and low
metallicity resembled an accreted stellar halo. In contrast, Saha
et al. (2010) found that out to ∼16°,the radial profile (to the
north) is well-fit by an exponential and, therefore, the stellar
populations are likely an extended disk. Moreover, Mackey
et al. (2016) claimed that the northern stream-like feature was
material most likely stripped from the outskirts of the LMC
disk by the MW’s tidal force. Besla et al. (2016), Choi et al.
(2018a, 2018b) discuss substructures in the LMC disk that
likely arose due to the recent interactions with the SMC, and,
potentially, these impulses could have created similar structures
at larger radii.
The SMASH data reveal a very extended (R∼21°)

“envelope” of old (∼9 Gyr) and relatively metal-poor

Figure 5. Color–magnitude diagrams of objects passing the star/galaxy cuts for six SMASH fields moving radially outwards from the center of the LMC: (Top left)
Field54, R=7°. 1; (Top middle) Field52, R=10°. 7; (Top right) FieldB, R=14°. 5; (Bottom left) Field64, R=16°. 1; (Bottom middle) Field57, R=19°. 4; and
(Bottom right) Field246, R=19°. 9. Best-fitting PARSEC isochrones (Girardi et al. 2002) are shown in red with the parameters and adopted distance in the legend.
While only the innermost field (Field55) shows clear signs of young stars (and a double-subgiant branch), faint main-sequence stars are seen in all fields to a radial
distance of 21°. 1 or 18.4 kpc at the LMC distance.
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([Fe/H]≈−0.8 dex) stars around the LMC covering a large
range in position angle and possessing a shallow radial density
profile at large radii that constitutes ∼0.4% of the LMC’s
stellar mass. Our results corroborate earlier work on the
existence of this structure but add important empirical
constraints using our deep CMDs especially in the south, east,
and northeastern side of the LMC periphery. Our NSC map
extends contiguous mapping to the eastern side of the LMC and
uncovers an irregular shape and sharp density dropoff there
(∼10°). This, combined with the Mackey et al. results,
illustrates the pronounced asymmetric shape of the LMC at
∼10°. In addition, the SMASH densities exhibit large scatter
around our best-fit exponential plus power-law model of
∼70%. All of this shows that the structure of the LMC stellar
periphery is highly disturbed and irregular, quite possibly due
to tidal interactions with the SMC and MW.

The recent discovery of several dwarf satellite galaxies (e.g.,
Bechtol et al. 2015; Drlica-Wagner et al. 2015), many of them
close to the MCs and some having radial velocities consistent
with MC origins (e.g., Walker et al. 2016; Li et al. 2018),
indicates that the MCs have their own system of satellites as
suggested by simulations (Deason et al. 2015; Wheeler et al.
2015). It is therefore quite likely that the MCs also have a halo
of disrupted satellite galaxies. We also note that the mass
fraction that we derive for the LMC stellar envelope of ∼0.4%
is quite similar to the mass fraction of the MW’s stellar halo of
∼1% (Carney et al. 1990; Bell et al. 2008) and expectations
from simulations of stellar halos (e.g., Bullock & Johnston
2005). In addition, RR Lyrae studies have found that the inner
region of the LMC possesses a kinematically hot and very

metal-poor ([Fe/H]≈−1.5 dex) stellar component (Minniti
et al. 2003; Borissova et al. 2004). Furthermore, recent SDSS-
IV APOGEE-2 (Blanton et al. 2017; Majewski et al. 2017)
spectroscopic results also show the existence of a kinematically
hot and metal-poor (to [Fe/H]≈−2.5 dex) population of RGB
stars prominent at intermediate radii (∼7°–9°; Nidever et al.
2019). Therefore, there is strong evidence from a variety of
studies suggesting that an accreted halo of the LMC does exist
and is roughly consistent with our observations of the LMC
periphery.
On the other hand, the Magellanic interaction simulations of

Besla et al. (2016) and Mackey et al. (2016) compellingly
reproduce several substructures in the outer LMC. Tidally
induced perturbations in the disk also create asymmetries and
different density profiles in the north versus the south that can
explain the observed higher densities in the northern portion of
the LMC periphery. Moreover, the outer LMC disk is known to
be old and somewhat more metal-poor compared to the inner
regions (Carrera et al. 2008; Meschin et al. 2014), which could
fit with the known characteristics of the periphery stars. This
trend is also seen in simulations of dwarf galaxy formation that
suggest they should have an extended distribution of old,
metal-poor stars that resembles a “halo-like” component due to
early star formation taking place in very low V/σ gas (Read
et al. 2006; El-Badry et al. 2018). In addition, the LMC disk is
substantially thicker than those of larger spirals with a V/σ=3
(van der Marel et al. 2002), which is even lower than the MW’s
thick disk (V/σ=4), making the distinction between a disk
and halo component less clear.

Figure 6. The density of LMC stars vs. radius for various studies. The MAPS fields are represented by small filled dots, open circles are data from OLS, and open
hexagons are the SMASH fields. The group of LMC stars in the foreground of the Carina dwarf spheroidal discovered in Muñoz et al. (2006) is the large filled triangle.
The points are color-coded by position angle (east of north). The density uncertainties are indicated by vertical gray lines while the radial coverage is indicated by the
horizontal gray lines. The MAPS exponential plus de Vaucouleurs fit is shown as the dotted line, the OLS exponential fit is the dashed line, and the SMASH
exponential plus power-law fit is the solid line.
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After the initial submission of this paper, the second data
release from the Gaia mission (Gaia Collaboration 2018) has
provided further insights into the outer stellar distribution of the
LMC. Gaia only detects brighter stars than the faint main-
sequence turnoff that we study here, but has the benefit of full-
sky coverage and kinematical selection (e.g., with proper
motions). The Gaia analysis of Belokurov & Erkal (2019)
confirms several of the findings presented here. For example,
they also find that the LMC stellar populations extend ∼20°to
the south, east, and north while there is a lack of extended
structure to the west. In addition, they find signs of substructure
that are qualitatively consistent with the large scatter we detect.
Finally, they find a stream-like or arm feature toward the south
that, in combination with the northern arm, lends support to an
interaction-induced origin of the outer stellar structures.

Therefore, it is quite likely that both a tidally disturbed disk
(with a potentially old, metal-poor extended component) as
well as the accretion of satellites (e.g., producing a classical
halo) contribute to the stellar envelope that we reveal here, but
further information (e.g., stellar kinematics and abundances)
will be needed to fully unravel their relative contributions.

6. Summary

We have used deep SMASH photometry obtained with
CTIO-4 m Blanco and DECam to study the low surface
brightness features in the periphery of the Large Magellanic
Cloud. Our data reveal a very extended stellar envelope around
the LMC reaching to large radii with a distorted structure. Our
main conclusions are:

1. We detect faint LMC main-sequence populations to very
large radii in many directions reaching R=21°.1 in the
northeast with a surface brightness of Σg≈34 mag
arcsec2.

2. The deep SMASH CMDs of the outer LMC reveal the
stellar populations to be old (∼9 Gyr) and relatively
metal-poor ([Fe/H]≈−0.8 dex).

3. The LMC surface density profile initially follows an
exponential decline (hR=1°.1±0°.03) but “breaks” to a
shallower slope at ∼13°–15°with a power-law index of
α=−2.2±0.4. The low-density outer component
(13°�R�23°) contributes ∼0.4% of the total stellar
mass of the LMC.

4. The SMASH main-sequence densities show large
azimuthal variations with a scatter of ∼70% around the
the best-fit model, but with some deviating by 2–2.5×
from the average density. This shows that the structure of
the outer LMC populations is highly distorted.

5. Using LMC main-sequence turnoff stars from the NOAO
Source Catalog, we find a steep dropoff in density on the
eastern side at R≈8°, similar to the dropoff seen by
Mackey et al. (2016) on the western side, as well as a
low-density feature extending far to the northeast.

The origin of the outer LMC stellar envelope remains
unclear with evidence for both an accreted halo and tidal
stripping of the outer disk. Additional information such as
accurate distances and line-of-sight depths, kinematics, and
chemical abundances will be useful in unraveling the
mechanisms responsible for creating this extensive structure.
Finally, the low surface brightness measurements presented
here should provide quantitative constraints on simulations of
the formation of dwarf galaxies as well as the interaction of the
Magellanic Clouds that will help improve our understanding of
these important systems.

Y.C. & E.F.B. acknowledge support from NSF grant AST
1655677. T.d.B. acknowledges financial support from the ERC

Table 1
SMASH LMC MSTO Densities

Field Namea R.A. Decl. RLMC PALMC ρMSTO ρMSTO Error Σg MW Halo Scale
(J2000) (J2000) (deg) (deg) stars deg−2 stars deg−2 mag arcsec−2

Field24 03:14:56.4 −72:29:06.4 10.86 240.88 155.19 14.50 32.87 1.54
Field25 03:21:03.6 −79:48:28.6 12.60 205.19 376.25 52.85 31.90 2.35
Field26 03:40:18.9 −76:25:04.3 10.01 217.56 1489.34 86.24 30.41 1.48
Field27 04:08:11.9 −72:02:02.9 6.79 242.28 5628.62 436.16 28.97 2.87
Field31 04:52:55.9 −80:44:31.5 11.07 187.26 199.07 22.87 32.59 1.40
Field33 04:57:23.1 −84:17:33.7 14.49 182.99 219.15 27.54 32.49 1.75
FieldB 05:22:23.9 −55:24:00.0 14.50 357.00 338.00 33.00 32.02 L
Field52 06:25:26.4 −79:59:53.0 10.73 166.53 712.31 74.01 31.21 1.59
Field54 06:32:06.6 −75:10:37.7 7.14 145.14 7878.52 768.86 28.60 1.95
Field246 06:47:22.0 −52:13:49.0 19.89 37.88 57.58 16.10 33.94 1.26
Field56 07:09:11.3 −68:18:59.1 9.13 92.34 2199.10 145.95 29.99 2.01
Field57 07:14:33.6 −54:37:25.5 19.35 51.83 49.86 11.85 34.10 1.18
Field58 07:25:02.7 −59:20:37.4 16.13 64.15 106.15 18.88 33.28 1.88
Field59 07:25:10.3 −64:31:15.1 12.42 78.96 493.05 27.87 31.61 1.98
Field60 07:36:20.4 −76:11:39.5 11.10 138.69 249.37 16.45 32.35 1.55
Field61 07:38:41.3 −70:59:30.6 10.90 111.18 389.64 26.98 31.87 2.52
Field156 07:41:42.3 −54:53:23.6 21.08 62.04 74.92 15.62 33.66 1.90
Field63 07:52:11.1 −67:00:16.0 13.38 95.13 192.68 24.96 32.63 2.70
Field64 08:00:24.1 −84:26:13.8 16.12 167.53 111.62 16.10 33.22 1.54
Field66 08:32:37.3 −72:39:13.8 14.73 122.08 89.91 12.65 33.46 1.50
Field68 08:43:39.0 −76:05:41.0 15.06 135.74 80.13 15.62 33.58 2.10

Note.
a The MSTO densities are calculated using the fiducial scaling factor multiplied by the number of MSTO stars with g�=22.8 (1014) divided by the DECam field of
view (3 deg2).
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