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Abstract-Despite advancements in the areas of par­
allel and distributed computing, the complexity of 
programming on High Performance Computing (HPC) 
resources has deterred many domain experts, espe­
cially in the areas of machine learning and artificial 
intelligence (AI), from utilizing performance benefits 
of such systems. Researchers and scientists favor high­
productivity languages to avoid the inconvenience of 
programming in low-level languages and costs of ac­
quiring the necessary skills required for programming 
at this level. In recent years, Python, with the sup­
port of linear algebra libraries like NumPy, has gained 
popularity despite facing limitations which prevent this 
code from distributed runs. Here we present a solution 
which maintains both high level programming abstrac­
tions as well as parallel and distributed efficiency. Phy­
lanx, is an asynchronous array processing toolkit which 
transforms Python and N umPy operations into code 
which can be executed in parallel on HPC resources by 
mapping Python and N umPy functions and variables 
into a dependency tree executed by HPX, a general 
purpose, parallel, task-based runtime system written 
in c++. Phylanx additionally provides introspection 
and visualization capabilities for debugging and perfor­
mance analysis. We have tested the foundations of our 
approach by comparing our implementation of widely 
used machine learning algorithms to accepted N umPy 
standards. 

Index Terms-Array computing, Asynchronous, 
High Performance Computing, HPX, Python, Runtime 
systems 

I. INTRODUCTION 

The ever-increasing size of data sets in recent years have 
given the rise to the term "big data." The field of big data 
includes applications that utilize data sets so large that 
traditional means of processing cannot handle them [1], 
[2]. The tools that operate on such data sets are often 
termed as big data platforms. Some prominent examples 
are Spark, Hadoop, Theano and Tensorflow [3], [4]. 

One field which benefits form big data technology is 
Machine learning. Machine learning techniques are used 
to extract useful data from these large data sets [5], 
[6]. Theano [7] and Tensorflow [8] are two prominent 
frameworks that support machine learning as well as deep 

learning [9] technology. Both frameworks provide a Python 
interface, that has become the lingua franca for machine 
learning experts. This is due, in part, to the elegant math­
like syntax of Python that has been popular with domain 
scientists. Furthermore, the existence of frameworks and 
libraries catering to machine learning in Python such as 
NumPy, SciPy and Scikit-Learn have made Python the de 
facto standard for machine learning. 

While these solutions work well with mid-sized data 
sets, larger data sets still pose a big challenge to the 
field. Phylanx tackles this issue by providing a framework 
that can execute arbitrary Python code in a distributed 
setting using an asynchronous many-task runtime system. 
Phylanx is based on the open source C++ library for 
parallelism and concurrency (HPX [10], [11]). 

This paper introduces the architecture of Phylanx and 
demonstrates how this solution enables code expressed 
in Python to run in an HPC environment with minimal 
changes. While Phylanx provides general distributed array 
functionalities that are applicable beyond the field of 
machine learning, the examples in this paper focus on 
machine learning applications, the main target of our 
research. 

This paper makes the following contributions: 

• Describe the futurization technique used to decouple
the logical dependencies of the execution tree from its
execution.

• Illustrate the software architecture of Phylanx.
• Demonstrate the tooling support which visualizes

Phylanx's performance data to easily find bottlenecks
and enhance performance.

• Present initial performance results of the method.

We will describe the background in Section III, Phy­
lanx's architecture in Section IV, study the performance of 
several machine learning algorithms in Section V, discuss 
related work in Section II, and present conclusions in 
Section VI. 
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II. RELATED WORK 

Because of the popularity of Python, there have been 
many efforts to improve the performance of this language. 
Some specialized their solutions to machine learning while 
others provide wider range of support for numerical com­
putations in general. NumPy [12] provides excellent sup­
port for numerical computations on CPUs within a single 
node. Theano [13] provides a syntax similar to NumPy, 
however, it supports multiple architectures as the backend. 
Theano uses a symbolic representation to enable a range 
of optimizations through its compiler. PyTorch [14] makes 
heavy use of GPUs for high performance execution of deep 
learning algorithms. Numba [15] is a jit compiler that 
speeds up Python code by using decorators. It makes use 
of LLVM compiler to compile and optimize the decorated 
parts of the Python code. Numba relies on other libraries, 
like Dask [16] to support distributed computation. Dask 
is a distributed parallel computation library implemented 
purely in Python with support for both local and dis­
tributed executions of the Python code. Dask works tightly 
with NumPy and Pandas [17] data objects. The main 
limitation of Dask is that its scheduler has a per task 
overhead in the range of few hundred microseconds, which 
limits its scaling beyond a few thousand of cores. Google's 
Tensorflow [8] is a symbolic math library with support for 
parallel and distributed execution on many architectures 
and provides many optimizations for operations widely 
used in machine learning. Tensorflow is a library for 
dataflow programing which is a programming paradigm 
not natively supported by Python and, therefore, not 
widely used. 

III. TECHNOLOGIES UTILIZED TO IMPLEMENT PHYLANX 

HPX [10], [11] is an asynchronous many-task runtime 
system capable of running scientific applications both 
on a single process as well as in a distribued setting 
on thousands of nodes. HPX achieves a high degree of 
parallelism via lightweight tasks called HPX threads. 
These threads are scheduled on top of the Operating 
System threads via the HPX scheduler, which implements 
an M N thread scheduling system. HPX threads 
can also be executed remotely via a form of active 
messages [18] known as Parcels [19], [20]. We briefly 
introduce the technique of futurization, which is utilized 
within Phylanx. For more details we refer to [11]. 

//Definition of the function 
int convert( std ::string s){ return std ::stoi( s); 
//Asynchronous ex ecution of the function 
hpx::future<int> f = hpx::async(convert, 11 42 11 ); 
//Accessing the resul t of the function 
std:: cout << f .  get() << std:: endl; 

The concept of futurization [22] is illustrated in 
Listing 1. The function in Line 2 is intended to be 
executed in parallel on one of the lightweight HPX 
threads. Line 4 shows the usage of the asynchronous 
return type hpx: :future<T>, the so-called Future, of 
the asynchronous function call hpx: :async. Note that 
hpx: : async returns the future immediately even though 
the computation within convert may not have started 
yet. In Line 6, the result of the future is accessed via its 
member function . get O. Listing 1 is just a simple usecase 
of futurization which does not handle synchronization 
very efficiently. Consider the call to . get O, if the Future 
has not become "ready" .get() will cause the current 
thread to suspend. Each suspension will incur a context 
switch from the current thread which adds overhead to 
the execution time. It is very important to avoid these 
unnecessary suspensions for maximum efficiency. 

Fortunately, HPX provides barriers for the synchro­
nization of dependencies. These include: hpx: : wait_any, 

hpx: :wai t_any, and hpx: :wait_all(). then(). These barriers 
provide the user with a means to wait until a future is 
ready before attempting to retrieve its value. In HPX 
we have combined the hpx::wait_all().then() facility and 
provided the user with the hpx: :dataflow API [22] demon­
strated in Listing 2. 

template <t y pename Fune> 
future<int> traverse(node& n, Fune && f) 
{ 

// traversal of left and right sub-tree 
future<int> left = 

n.left ? traverse(*n.left, f)
: make_read y_future(O); 

future<int> right = 
n.right ? traverse(*n.right, f)

: make_read y_future(O); 

// return overall result for current nod e 
return dataflow( 

[&n, &f](future<int> l, future<int> r) 
-> int 

{ 

}, 

// calling .get() does not suspend 
return f(n) + l.get() + r.get (); 

std :: move ( l eft), std : : move ( right) 
) ; 

} 

Listing 2. Example for the concept of hpx: : dataflow for the trans­
verse of a tree. Example code was adapted from [21]. 

Listing 2 uses hpx: : dataflow to traverse a tree. In 
Line 5 and Line 8 the futures for the left and right 
traversal are returned. Note that these futures may 

} have not been computed yet when they are passed into 
the dataflow on Line 13. The user could have used an 
hpx: :async here instead of hpx: :dataflow, but the Future 
passed to the called function may have suspended the 

Listing l. Example for the concept of futurization within HPX. 
Example code was adapted from [21]. thread while waiting for its results in the .get() function. 

The hpx: :dataflow will not pass the Future arguments 



to the function until all of the Futures passed to the 
hpx: :dataflow are "ready". This avoids the suspension of 
the child function call. In Section IV futurization and the 
facility hpx: : dataflow are heavily utilized to construct the 
asynchronous architecture of Phylanx. 

Finally, the last technology we used to guide the devel­
opment of Phylanx is NumPy. NumPy [12] is a highly opti­
mized numerical computation library for Python. NumPy 
is used in many scientific applications and supports highly 
performant, multidimensional array operations for scien­
tific computing. Phylanx uses the library's API as the 
interface to the user. In addition, Phylanx supports nu­
merical computation on NumPy data objects through 
pybindll [23] without the need for data copies. 
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Fig. l. Overview of the Phylanx toolkit and its interactions with 
external libraries. 

IV. PHYLANX 

In Python, the order of code blocks determines the 
execution order of a program and implicit parallelism is 
only available within each block. Therefore, asynchrony 
and parallelism across code blocks must be explicitly ex­
plored by the programmer, a process which is tedious and 
error prone. In this section we discuss the implementation 
of our approach in Phylanx for automatic generation of 
task graphs and the infrastructure used for running them 
on HPX for parallel, asynchronous, distributed execution. 
We also discuss a suite of analysis and optimization tools 
included in the Phylanx toolkit. Figure 3 provides an 
overview of program flow in Phylanx. 

A. Frontend

The Phylanx frontend provides two essential function­
alities: 

• Transform the python code into a Phylanx internal
representation called PhySL (Phylanx Specification
Language).

• Copy-free handling of data objects between Python
and Phylanx executor (in C++ ).

In addition, the frontend exposes two main functionali­
ties of Phylanx that are implemented in C++ and required 
for generation and evaluation of the execution tree in 
Python. These functions are the compile and eval methods. 

1) Code Transformation: Performance benefits of
many-task runtime systems, like HPX, are more prominent 
when the compute load of the system exceeds the available 
resources. Therefore, using these runtimes for sections 
of a program which are not computationally intensive 
may result in little performance benefit. Moreover, the 
overhead of code transformation and inherent extrane­
ous work imposed by runtime systems may even cause 
performance degradation. Therefore, we have opted to 
limit our optimizations to performance critical parts of 
the code which we call computational kernels. The Phy­
lanx frontend provides a decorator ( @Phylanx) to trigger 
transformation of kernels into the execution tree. 

We have developed a custom internal representation 
of Python AST in order to facilitate the analysis of 
static optimizations and streamline the generation of the 
execution tree. The human-readable version of the AST, 
aka PhySL, is automatically generated and compiled into 
the execution tree by the frontend. More details on this 
compilation process can be found in IV-B. The benefit of 
using PhySL as the intermediate representation is twofold: 
(1) it closely reflects the nodes of the execution tree as 
each PhySL node represents a function that will be run 
by an HPX task during evaluation, and (2) it can be 
used for debugging and analyzing purposes for developers
interested in custom optimizations.

The compiled kernel is cached and can be be invoked 
directly in Python or in other kernels. 

2) Data Handling: Phylanx's data structures rely on
the high-performance open-source C++ library Blaze [24], 
[25]. Blaze already supports HPX as a parallelization 
library backend and it perfectly maps its data to Python 
data structures. Each Python list is mapped to a C++ 
vector and 1-D and 2-D N umPy arrays are mapped to a 
Blaze vector and Blaze matrix respectively. To avoid data 
copies between Python and C++, we take advantage of 
Python buffer protocol through pybindll library. Figure 1 
shows how Phylanx manages interactions with external 
libraries. 

B. Execution Tree

After the transformation phase, the frontend passes the
generated AST to the Phylanx compiler to construct the 
execution tree where nodes are primitives and edges rep­
resent dependencies between parents and children pairs. 

Primitives are the cornerstones of the Phylanx toolkit 
and building blocks of the Phylanx execution tree. Prim­
itives are C++ objects which contain a single execute 
function. This function is wrapped in a dataflow and can be 
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Fig. 2. Phylanx visualization tool provides a side-by-side view of the code and the corresponding expression tree along with performance 
information collected by builtin performance counters. 

as simple as a single instruction or as complex as a sophis­
ticated algorithm. We have implemented and optimized 
most Python constructs as well as many NumPy methods 
as primitives. Futurization and asynchronous execution 
of tasks are enabled through these constructs. One can 
consider primitives as lightweight tasks that are mapped 
to HPX threads. Each primitive accepts a list of futures 
as its arguments and returns the result of its wrapped 
function as a future. In this way, the primitive can accept 
both constant values known at compile time as well as 
the results of previous primitives known only after being 
computed. 

C. Futurized Execution

Upon the invocation of a kernel, Phylanx triggers the
evaluation function of the root node. This node represents 
the primitive corresponding to the result of the kernel. In 
the evaluation function, the root node will call the eval­
uation function of all of its children and those primitives 
will call the evaluation functions of their children. This 
process will continue until the the leaf nodes have been 
reached where the primitives evaluation functions do not 
depend on other primitives to be resolved (e.g. a primitive 
which is a constant, a primitive which reads from a file, 
etc.). It is important to note that it does not matter where 
each primitive is placed in a distributed system as HPX 
will resolve its location and properly call its eval function 
as well as return the primitive's result to the caller. 

As the leaf primitives are reached and their values, 
held in futures, are returned to their parents the tree will 

unravel at the speed of the critical path through the tree. 
The results from each primitive satisfy one of the inputs 
of its parent node. After the root primitive finishes its 
execution, the result of the entire tree is then ready to be 
consumed by the calling function. 

D. Instrumentation

Application performance analysis is a critical part of
developing a parallel application. Phylanx enables perfor­
mance analysis by providing performance counters to pro­
vide insight into its intrinsics. Time performance counters 
show the amount of time that is spent executing code in 
each subtree of the execution tree, and count performance 
counters show how many times an execution tree node 
is executed. This data aides in identifying performance 
hotspots and bottlenecks, which can either be directly 
used by the users or fed into APEX [26] for adaptive load 
balancing. The data can also be used by the visualization 
tools described in the next section. 

E. Visualization

Embedding annotations and measurements for visu­
alizations and performance analysis within the runtime 
provides a way to determine where performance bottle­
necks are occurring and to gain insight into the resource 
management within the machines. We show an example of 
Phylanx's visualization capabilities in Figure 2. This tree 
shows the execution tree from a test run of the factorial 
algorithm, implemented in Python. In the tree, nodes are 
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Fig. 3. Phylanx program flow. Phylanx frontend generates AST 
(PhySL) of the decorated Python code. The AST could be directly 
passed to the compiler to generate the execution tree or, optionally, 
fed to the optimizer first and then the compiler. Once the Kernel is 
invoked, Phylanx triggers the evaluation of the the execution tree on 
HPX. After finishing the evaluation, the result is returned in Python. 

Phylanx primitives and edges show parent/child relation­
ships regarding how the child was called. The nodes are 
colored purple for the inclusive time, the total time spent 
executing that primitive and its children. A switch in the 
toolbox in the upper left corner allows for the user to 
switch from inclusive time to exclusive time, the time spent 
executing only that primitive. This allows for identification 
of hotspots in the tree. Each primitive can be executed 
asynchronously or synchronously in the parent thread. 
This distinction is shown in dotted versus solid circles for 
nodes in the tree. The tree is interactive, allowing users to 
drill down and focus by expanding or collapsing tree nodes 
and hover for more details. The visualization is linked 
with a code view showing the Python source code (the 
corresponding PhySL is shown as well). Hovering over a 
node or line in one will highlight the corresponding line or 
node in the other. 

V. EXPERIMENTS 

This section details the performance comparison of 
PhySL to a corresponding Python implementation utiliz­
ing multiple cores on top of NumPy using OpenBlas for 
BLAS/LAPACK routines. We used reference implementa-

tions of Alternating Least Squares [27] and Binary Logistic 
Regression [28] algorithms to analyze the performance of 
equivalent code written in PhySL. The Logistic Regres­
sion coupled with Alternating Least Squares provides a 
wide variety of computationally intensive operations which 
makes them useful for experimentation and are also used 
as benchmarks for the Intel MKL Library [29]. 

A. Experimental Testbed

We ran our experiments on LSU's Rostam cluster.
These experiments were performed on a node consisting 
of Intel(R) Xeon(R) CPU ES-2660 v3 clocked at 2.6GHz, 
with 10 cores (20 threads), and 128 GB DDR4 Mem­
ory. All Experiments were performed on HPX vl.2 com­
mit 9182ac6182, Phylanx v0.l commit 116c46a8 Python 
v3.5.1, NumPy vl.15.0 , OpenBlas v0.3.2 and Blaze v3.3. 

B. LRA

We implemented the Binary Logistic Regression al­
gorithm in Python and used the Phylanx decorator to 
generate the corresponding PhySL code. In order to test 
the performance of the two implementations of the Lo­
gistic regression algorithm, we created a custom binary 
classification dataset with 10,000 features and 10,000 ob­
servations. 

Figure 5 shows the performance of the Python and 
PhySL codes in terms of the execution time. Our ex­
periments show that on a single thread both PhySL and 
Python perform on par with each other. However, PhySL 
scales faster up to eight cores and plateaus afterwards 
while Python scales at a lower rate but up to 20 cores. 

C. Alternating Least Squares

Alternating Least Squares is a method used in collabora­
tive filtering based on matrix factorization [27]. Collabora­
tive filtering as a recommender system is utilized to predict 
a user's interest in a set of items based on other users in­
teraction with those items, and also the user's interactions 
with other items. In order to test the implementation of 
the Alternating Least Squares algorithm in Phylanx, we 
implemented the algorithm in Python using NumPy and 
generated the corresponding PhySL implementation using 
the Phylanx decorator . The two implementations of the 
algorithms were tested on MovieLens-20M dataset [30], 
which is a collection of 20 million ratings gathered by 
138,000 users over 27,000 movies. 

Figure 6 shows the execution times of the PhySL and 
Python versions of Alternating least squares. Both ver­
sions were run with number of factors set to 40 while 
the number of movies were set to 5,000, 10,000 and 
20,000. The PhySL version of the ALS algorithm starts 
to outperform the Numpy/Python version as the number 
of threads increases. The fastest time for the Phylanx 
implementation is seen using 16 threads and the number of 
movies set to 20,000. When the number of movies were set 
to 10,000, the fastest time was seen using 12 threads. There 
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is a noticeable difference in execution time between the 

Python and the PhySL implementation when the number 

of threads is set to one. In this configuration the Phylanx 

version is much slower than the Python implementation. 

Such behavior is not seen with the Logistic Regression 

example. This behavior is currently under investigation. 

Figure 4 shows the speedup of the Phylanx implemen­

tation of the Alternating least square using the Python 

implementation's performance as the baseline. Both im­

plementations were run with the number of factors set 

to 10, 20 and 40. while the number of movies were set 

to 5,000, 10,000, and 20,000. It is seen that the Phylanx 

implementation outperforms the Python implementation 

as the number of threads are increased on wide variety of 

problem sizes. 

VI. CONCLUSION 

Despite the solutions provided by current machine 

learning frameworks, better methodologies are needed to 

process the large amounts of data consumed by cutting 

edge machine learning applications in a timely manner. 

These new tools need to be accessible to the domain 

scientists who currently use them as well as efficient with 

the computational resources provided to them. 

In this paper, we have introduced a novel approach 

for transformation and execution of high-productivity lan­

guages on top of the highly performant, low-level HPX 

runtime system. We have implemented our approach along 

with a suit of performance and visualization tools in the 

Phylanx array processing toolkit. Phylanx enables auto­

matic generation of asynchronous task graphs from regular 

Python code and facilitates finer grain configurability. 

Our early experiments on representative applications and 

datasets demonstrate the performance benefits of our 

methods on a single node. However, we expect that the real 

benefits of our approach will manifest in a distributed run­

time environment. Here the asynchronous execution and 



locality abstractions provided by HPX stand to benefit 
users immensely by drastically decreasing execution times 
with little effort from the user. 

VII. FUTURE WORK 

As the Phylanx technology matures we intend focus on 
two major goals: first, to improve the performance of single 
node runs and second to extend the framework to auto­
matically run user supplied codes in distributed settings. 
Improving single node runs will entail implementing more 
basic algorithms utilized by the machine learning commu­
nity and using that experience to improve the underlying 
toolkit. We anticipate that we will be able to uncover 
performance bugs as well as opportunities to improve the 
performance of our toolkit from this experience. One such 
opportunity is the support for hardware accelerators such 
as GPUs. 

Phylanx plans to enable users to execute their existing 
Python code on clusters. This provides them with the 
ability to handle large data sets and achieve better scaling. 
While Phylanx is built with distributed runs in mind 
( execution trees can span across several nodes and eval­
uation is done using features from HPX), distributed runs 
will require extensions to the current toolkit to determine 
optimal data layout and data tiling given the algorithms 
provided by the user. We also intend to look at using code 
transformations to replace slower user-written algorithms 
with more efficient ones. While these goals present a 
research challenge, we believe that the support provided 
by the HPX runtime system will substantially reduce the 
barriers to providing distributed execution capabilities. 
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APPENDIX 

A. Abstract

The appendix contains the information on how to build and

run the experiments presented in the paper "Asynchronous 

Execution of Python Code on Task-Based Runtime Systems". 

We provide the list of compilers and libraries used to build 

HPX and Phylanx as well as instructions to build and run the 

experiments. 

B. Description

1) Check-list ( artifact meta information):

• Program: HPX , Phylanx
• Compilation: GCC 8.1
• Data set: MovieLens, Custom Dataset
• Hardware: Intel(R) Xeon(R) CPU ES-2660, 128 G DDR4

Memory
• Experiment workflow: Range of input sizes, number of 

threads 
• Publicly available?: Yes

2) How software can be obtained:

HPX can be obtained from https://github.com/ 

STEllAR-GROUP/hpx, and Phylanx from https: 

//github.com/STEllAR-GROUP/phylanx 

3) Software dependencies:

• HPX

• Blaze

• Pybindl l  

• hwloc

• OpenBlas

• NumPy

4) Datasets:

MovieLens dataset: https://grouplens.org/datasets/movielens/ 

Custom dataset: http://stellar.cct.lsu.edu/files/espm2_2018/ 

custom_dataset_l 0kx 1 0k.tar.gz 

C. Installation

Please refer to Phylanx wiki for build instructions, found

at: https://github.com/STEllAR-GROUP/phylanx/wiki/Build­

Instructions 

D. Experiment workfiow

For Phylanx LRA, set the environment variable

OMP _NUM_THREADS to 1 and Run lra_csv from the 

bin directory of phylanx with the following command line 

options 

--hpx:threads=num_threads_you_want_to_run_with 

--data_csv=/path/to/MovieLens/dataset 

--hpx:bind=balanced 

--hpx:numa-sensitive 

--iterations= l 

--f= {40,20,10} 

--row_stop=700 

--col_stop= {20000, 10000, 5000) 

For Python LRA, set the environment variable 

OMP _PLACES to cores and OMP _NUM_THREADS 

to the number of threads you want to run the python example 

with. Run the python example by varying the number of 

threads for 10000 iterations. 

For Python ALS, set the environment variable 

OMP _PLACES to cores and OMP _NUM_THREADS 

to the number of threads you want to run the python example 

with. Run the python example by varying the number of 

threads. Also vary the number of factors and number of 

movies. In the paper, experiments were performed with 

number of factors set to 10, 20 and 40 whereas the number 

of movies were set to 5000, 10000 and 20000. 

E. Evaluation and expected result

The execution time obtained from both the Phylanx runs

and the Python runs should be compared. The expected 

result should look like the one in the graphs presented in the 

paper. In order to test whether the output is correct, the last 

seven values printed by the alternating least square phylanx 

implementation for number of factors set to 40, and number 

of movies set to 20000 should be as follows: 

-0.00167161, 0.000985893, -0.00264197, -0.00110344,

0.00372654, 0.00290297, 0.00105101

Similarly, the last seven values printed in case of Logistic

Regression Phylanx implementation when run for 10000

iterations with the custom dataset should be as follows:

-1.19866, 1.32052, 0.0529683, -0.790137, -1.09337, -1.12403

, -1.30093

--hpx:threads=num_threads_you_want_to_run_with 

--data_csv=/path/to/custom/dataset 

--hpx:bind=balanced 

--hpx:numa-sensitive 

--n= l0000 

--row_stop=l0000 

--col_stop=l0000 

For Phylanx ALS, set the environment variable 

OMP _NUM_THREADS to 1 and Run als_csv_instrumented 

from the bin directory of phylanx with the following command 

line options 
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