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Noncoding DNA - once called “junk” has revealed itself to be full of function. Technology 
development has allowed researchers to gather genome-scale data pointing towards complex 
regulatory regions, expression and function of noncoding RNA genes, and conserved elements. 
Variation in these regions has been tied to variation in biological function and human disease. This 
PSB session tackles the problem of handling, analyzing and interpreting the data relating to 
variation in and interactions between noncoding regions through computational biology. We 
feature an invited speaker to how variation in transcription factor coding sequences impacts on 
sequence preference, along with submitted papers that span graph based methods, integrative 
analyses, machine learning, and dimension reduction to explore questions of basic biology, cancer, 
diabetes, and clinical relevance. 
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1. Introduction

The majority of the human genome is comprised of noncoding DNA. Estimating the
percentage of noncoding DNA that comprises functional elements is somewhat controversial, 
depending heavily on definitions used, specific assays, and cell type or other biological contexts 
explored. However, we can all agree that it’s not zero. Unlike protein-coding sequences where a 
biologically active function can be relatively readily assigned through standard experimental 
techniques, most noncoding sequences largely remain as functional black boxes. Even for those 
noncoding sequence variants confidently linked to variation in a biological trait (i.e. via GWAS), 
the mechanism of precisely how they exert an effect on the phenotype often remains unclear.  
Identifying the potential and most relevant relationships or functions in the absence of an a priori 
biological hypothesis requires the intersection of big data, computing, and creativity.  

Noncoding DNA includes RNA genes (miRNA, lncRNA, piRNA), regulatory regions 
(transcription factor binding sites, eQTL-associated SNPs, promoters, enhancers, insulators), 
epigenetic mark associated regions, repetitive elements (LINEs, transposons, Alu elements, 
telomeres), pseudogenes, and structural elements among others. With this diversity of potential 
function, largely incomplete annotation, and substantial degree of sequence variation between 
individuals, defining even common canonical motifs at the resting state is challenging. 
Recognizing these needs, several international efforts such as ENCODE, GTEX, NIH 
Epigenomics Roadmap, and the International Epigenome Consortium have been established. 
These researchers use high throughput technologies and systematic approaches to start developing 
regulatory maps and begin learning about “genomic grammar”, or, the rules that govern meaning 
as a cell or protein “reads” through DNA. With these international projects along with many other 
academic laboratories generating vast quantities of genome-scale data from sequence, expression, 
ChIP-Seq, CHIA-PET, ATAC-Seq and other new technologies [1], there also emerges a need to 
develop methods for appropriate data handling, integration, and analysis. 

 Thus, there arises a unique opportunity for computational biologists to identify network and 
systems properties of noncoding DNA, linking evidence from biochemical assays, genetics, and 
evolutionary biology with other datasets. These can predict downstream biology, functional 
convergence, and impacted mechanisms that ultimately lead to disease. In addition to novel basic 
science insights, understanding the mechanisms perturbed by variation in noncoding DNA can 
implicate new pathophysiological mediators and unveil new therapeutic targets. The 
computational tools that have been created by researchers to handle these data have been complex, 
innovative, and some great work has been done by data-generating scientists and research 
parasites alike, leading to unexpected discovery and new research questions. As a result, we 
believe that a PSB session devoted to the topic of non-coding DNA would be timely, interesting 
and yield some excellent paper submissions.  
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2. Sessions summary

2.1.  Invited Talk 

We have the privilege to have the participation of a guest speaker, Dr. Martha Bulyk from the 
Division of Genetics at Harvard, also an Associate Member of the Broad Institute. Dr Bulyk has 
made a name for herself with work at interface between DNA sequence and protein binding 
specificity to explore cis regulatory motifs. She invented a high throughput method for detecting 
transcription factor binding preferences via a novel protein binding microarray, and developed 
integrated computational approaches to interpret these data, with an eye towards TF binding site 
clustering, combinatorial co-occurrences, and cross-species conservation.   

2.1.1.  Her talk is entitled “Survey of coding variation in human transcription factors reveals 
prevalent DNA binding changes”  

Invited talk abstract: Sequencing of exomes and genomes has revealed abundant 
genetic variation affecting the coding sequences of human transcription factors (TFs), 
but the consequences of such variation remain largely unexplored. We developed a 
computational, structure-based approach to evaluate TF coding variants for their 
impact on DNA-binding activity and used universal protein binding microarrays 
(PBM) to assay sequence-specific DNA-binding activity across reference and variant 
alleles found in individuals of diverse ancestries and families with Mendelian diseases. 
We found variants that affect DNA-binding affinity or specificity and identified 
thousands of rare alleles likely to alter the DNA-binding activity of human sequence-
specific TFs.  Altered sequence preferences correlated with changes in genomic TF 
occupancy (ChIP-Seq peaks) and gene expression of the associated target genes. Our 
results suggest that most individuals have unique repertoires of TF DNA-binding 
activities, which may contribute to phenotypic variation. 

2.2.  Papers 

2.2.1.  Evaluating relationships between pseudogenes and genes: from pseudogene evolution 
to their functional potentials 

Johnson et al. developed a novel approach integrating graph analysis, sequence alignment and 
functional analysis to classify pseudogene-gene relationships. They identified ~15,000 
pseudogenes from the Human GENCODE release 24 using cufflinks gffread. Every pseudogene 
was then aligned to the best consensus sequence of ~3200 gene families using pairwise ClustalW. 
Finally, they mined the resulting network of pseudogene-gene edges jointly with gene-Gene 
Ontology terms to impute the former function of poorly characterized pseudogenes.  These 
observations extend on previous work [2], and may lead to new insight on families of pseudogenes 
and to characterize the potential function of new pseudogenes in cancer. 
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2.2.2.  Convergent downstream candidate mechanisms of independent intergenic 
polymorphisms between co-classified diseases implicate epistasis among noncoding elements 

Han et al.  characterize convergent downstream candidate mechanisms of distinct intergenic SNPs 
across distinct diseases within the same clinical classification by conducting an integrative 
analysis of four networks: disease class to disease annotations, GWAS disease-SNP associations, 
eQTL SNP-mRNA associations, and Gene Ontology (GO) gene-mechanisms annotations. At 
FDR≤5%, they  prioritize 167 intergenic SNPs, 14 classes, 230 mRNAs, and 134 GO mechanisms. 
They expand on their previous study [3] and observe that co-classified SNP were more likely to be 
prioritized in the same mechanisms as compared to those of distinct classes (odds ratio ~3.8). The 
SNPs prioritized to the same GO mechanisms were also enriched in regions bound to the 
same/interacting transcription factors and/or interacting in long-range chromatin interactions 
suggestive of epistasis (odds ratio ~ 2,500). Such network of genetic epistasis associated to 
candidate biological mechanisms has the potential to reposition medications that target proteins 
within downstream mechanisms of intergenic SNPs associated to disease risks, the latter generally 
considered undruggable before this study.  

2.2.3.  Pan-cancer analysis of expressed single nucleotide variants in long intergenic non-
coding RNAs 

Ching et al. analyzed 6118 primary tumor samples of 12 distinct cancers from TCGA and 
detected 94,700 somatic mutations in lincRNAs, and 15.5 million germline variants in lincRNAs. 
They further built machine-learning models to impute sensitive regions to mutations and variants 
of lincRNAs, suggesting that some nucleotide positions within lincRNA are more likely to gain 
somatic mutations than other positions. Non-coding but not trivial, the authors extend our 
understanding of polymorphisms and mutations in lincRNAs, increasing their contributions to 
"non-coding but not trivial" lincRNAs [4].  

2.2.4.  Leveraging putative enhancer-promoter interactions to investigate two-way epistasis in 
Type 2 diabetes GWAS 

Manduchi et al. utilized evidence for enhancer-promoter interactions from functional genomics 
data in order to build biological filters to narrow down the search space for two-way Single 
Nucleotide Polymorphism (SNP) interactions in Type 2 Diabetes (T2D) Genome Wide 
Association Studies (GWAS). They confirmed the validity of the method by identifying a 
statistically significant pairs of type 2 diabetes SNPs in statistical epistasis [5] and replicated in an 
independent datasets. Their framework, that accounts for epistasis, expands substantially on 
GWAS analyses as the current paradigm consists on linear additive analyses of GWAS. 
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