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Abstract  16 

Background and aims: Root niche partitioning among trees/shrubs and grasses facilitates their 17 

coexistence in savannas, but little is known regarding root distribution patterns of co-occurring 18 

woody plants, and how they might differ on contrasting soils.  19 

Methods: We quantified root distributions of co-occurring shrubs to 2 m on argillic and non-20 

argillic soils. 21 

Results: Root biomass in the two shrub communities was 3- to 5- fold greater than that in the 22 

grassland community. Prosopis glandulosa, the dominant overstory species was deep-rooted, 23 

while the dominant understory shrub, Zanthoxylum fagara, was shallow-rooted (47% vs. 25 % of 24 

root density at depths > 0.4 m). Shrubs on argillic soils had less aboveground and greater 25 

belowground mass than those on non-argillic soils. Root biomass and density on argillic soils was 26 

elevated at shallow (< 0.4 m) depths, whereas root density of the same species on non-argillic soils 27 

were skewed to depths > 0.4 m. Root density decreased exponentially with increasing distance 28 

from woody patch perimeters.  29 

Conclusions: Belowground biomass (carbon) pools increased markedly with grassland-to-30 

shrubland state change. The presence/absence of a restrictive barrier had substantial effects on root 31 

distributions and above- vs. belowground biomass allocation. Differences in root distribution 32 

patterns of co-occurring woody species would facilitate their co-existence.  33 

Key words: root distribution, soil profile, Prosopis glandulosa, argillic horizon, woody patches, 34 

interspecific competition, subtropical savanna parkland, woody plant encroachment.   35 



Introduction 36 

The proliferation of woody species in grass-dominated ecosystems has occurred in many 37 

arid and semi-arid regions around the world during the past century (van Auken 2000; Archer et 38 

al. 2001; Stevens et al. 2017). This geographically extensive land cover change appears to be 39 

driven largely by chronic livestock grazing, fire suppression, rising atmospheric CO2 40 

concentrations, and their interactions (Wigley et al. 2010; Archer et al. 2017; Brunsell et al. 2017; 41 

Devine et al. 2017; Venter et al. 2018), and has the potential to alter grassland biodiversity, 42 

hydrology, biogeochemistry, and landscape evolution (Boutton et al. 1999; Huxman et al. 2005; 43 

Ratajczak et al., 2012; Zhou et al. 2017a, 2018a, b).  44 

In the Rio Grande Plains of southern Texas, C3 trees and shrubs have formed multispecies 45 

patches within the original C4 grassland matrix, resulting in a subtropical savanna parkland 46 

landscape (Archer 1995; Boutton 1996; Archer et al. 2001). Upland soils of this area are sandy 47 

loams characterized by a laterally continuous argillic (Bt) horizon interspersed with patches where 48 

the argillic horizon is absent (Archer 1995; Zhou et al. 2017a). Previous studies in this region 49 

showed that the development of woody patches is initiated by the colonization of N2-fixing 50 

Prosopis glandulosa, which then facilitate the recruitment of a diverse assemblage of other shrub 51 

species under their canopies to form small discrete clusters (< 100 m2) (Archer et al. 1988, 2001; 52 

Archer 1995). Where non-argillic inclusions are present, discrete clusters expand laterally and 53 

coalesce to form large groves (> 100 m2) (Archer 1995; Bai et al. 2012; Zhou et al. 2017a). 54 

However, where the argillic horizon is present, woody clusters remain relatively small and isolated 55 

within the grassland matrix and do not fuse with other clusters. This suggests that the 56 

presence/absence of the argillic horizon is influencing vegetation dynamics and landscape 57 

evolution, perhaps by affecting root distribution patterns of the encroaching woody species. 58 



Root architecture and distribution are, in part, genetically determined, but are also 59 

influenced by soil properties (e.g. texture and bulk density) and soil resources (e.g. water and 60 

nutrients) (Valverde-Barrantes et al. 2013; Wachsman et al. 2015; Morris et al. 2017; Fan et al. 61 

2017). The impact of temporally and spatially heterogeneous soil resources on root distribution 62 

patterns of individual or coexisting species has long been studied (Walter 1971; Parrish and Bazzaz 63 

1976) and reviewed recently (Hutching et al. 2003; Hodge 2004; de Kroon et al. 2012; Ward et al. 64 

2013). Site-specific soil physical attributes such as texture can also significantly influence root 65 

distribution (e.g., Schenk and Jackson 2005; Xu and Li 2009). Several studies have reported 66 

negative correlations between soil clay content and root density (Strong and Roi 1985; Plante et 67 

al. 2014), likely a result of reduced soil porosity, hydraulic conductivity, shrink/swell shearing 68 

forces and/or increased soil resistance, all of which can inhibit root growth and elongation 69 

(Lodovici 2004). In addition, the formation of clay-rich subsurface soil horizons (e.g. argillic 70 

horizons) has been shown to affect vertical root distribution (Macinnis-Ng et al. 2010). For 71 

example, Sudmeyer et al. (2004) found that where argillic horizons were present, tree root densities 72 

were high in the coarse-textured surface soil, but decreased sharply below the subsurface clay-rich 73 

argillic horizon.    74 

Root distribution patterns of coexisting species affect vegetation dynamics and landscape 75 

evolution by influencing interspecific competition for resources (Parrish and Bazzaz 1976; Tilman 76 

1985; Schenk 2006; Ratajczak et al. 2011; Zhou et al. 2018c). During stand development, for 77 

example, early successional species often have a significantly greater proportion of roots occurring 78 

deeper in the soil profile than late successional species (Gale and Grigal 1987), ostensibly enabling 79 

them to exploit larger volumes of soil with limited water and nutrients. Shallow-rooted species 80 

appearing at later successional stages are better adapted to exploit resources that have accumulated 81 



over time in the surface soil, thereby facilitating their establishment and coexistence with earlier 82 

successional species via reduced interspecific competition. Numerous studies in savanna 83 

ecosystems have used differences in root distribution between trees and grasses to explain their 84 

coexistence via niche partitioning of water uptake (e.g. Walter 1971; Sankaran et al. 2004; 85 

February and Higgins 2010; Holdo 2013; Zhou et al. 2018c). However, few studies have quantified 86 

root distribution patterns of co-occurring trees and shrubs in multispecies woody patches in 87 

savanna ecosystems, especially in response to contrasting soils.   88 

The purpose of this study was to quantify root distribution patterns of co-occurring woody 89 

plants in small, discrete clusters on soils with a well-developed argillic horizon (hereafter argillic 90 

soils), and in groves that occur on soils lacking an argillic horizon (hereafter non-argillic soils) in 91 

a subtropical savanna parkland where the abundance of woody species has increased substantially 92 

during the past century (Archer 1995; Boutton et al. 1998; Bai et al. 2009; Zhou et al. 2017a). 93 

Specific objectives were to quantify: (1) the influence of the presence or absence of an argillic 94 

horizon on root distribution; (2) the vertical root distributions of co-occurring woody plant species; 95 

(3) patterns of belowground vs. aboveground biomass allocation of woody plants on argillic and 96 

non-argillic soils; and (4) the extension of woody plant lateral roots beyond cluster perimeters. 97 

Results from these investigations were then used to explain observed vegetation dynamics and 98 

patterns of landscape development in this subtropical savanna parkland.  99 

Methods and materials  100 

Study site  101 

This study was conducted at the Texas A&M AgriLife La Copita Research Area (27˚40̍ N, 102 

98˚12̍ W) located in the Rio Grande Plains of southern Texas, approximately 65 km west of Corpus 103 



Christi. Climate of this region is subtropical, with mean annual temperature and precipitation of 104 

22.4 ˚C and 680 mm, respectively. Annual rainfall is bimodal with peaks in May and September. 105 

Soil moisture to a depth of 1.2 m ranges from 2 to 10 % (gravimetric soil water content) during 106 

the growing season (unpublished data). Elevation ranges from 75 to 90 m above sea level. 107 

Topography consists of uplands with slopes of 1-3% surrounded by lower-lying intermittent 108 

drainages. Upland portions of the landscape where this study was conducted classify as fine-loamy, 109 

siliceous, hyperthermic, Typic Argiustolls (Boutton et al. 1998) and are characterized by a well-110 

developed, nearly continuous clay-rich argillic (Bt) horizon. However, on some portions of the 111 

upland landscape, there are patches where the argillic horizon is absent, and these soils classify as 112 

coarse-loamy, siliceous, hyperthermic, Pachic Haplustolls (Boutton et al. 1998). Soil pH was 113 

neutral at the surface, increased slightly (max = 7.8) with depth to 1.2 m, and did not differ between 114 

argillic and non-argillic soils (Zhou et al. 2017b). Prior to the colonization of woody plants, 115 

nitrogen and phosphorus content of argillic and on non-argillic soils to a depth of 1.2 m were 116 

comparable (Zhou et al. 2018b). The presence/absence of the argillic horizon in upland soils is a 117 

strong determinant of vegetation cover, as discussed below. The region, including the La Copita 118 

Research Area, has been grazed continuously by domestic livestock since the mid- to late-1800s. 119 

Grazing pressure at the La Copita has been light to moderate since it was designated as a research 120 

area in 1981, and no fires have been documented for at least the past 50 yrs.    121 

Evidence from sequential aerial photography, tree ring analyses, vegetation dynamics 122 

modeling, and the isotopic composition of soils all indicate that this region was once relatively 123 

open grassland and that woody plant encroachment into those grasslands has occurred over the 124 

past 150 yrs, apparently in response to livestock grazing and fire suppression (Archer et al., 1988, 125 

2001, 2004; Boutton et al., 1998, 1999). Our prior research at this site shows that woody 126 



encroachment into grassland is initiated by the establishment of Prosopis glandulosa (honey 127 

mesquite, hereafter Prosopis), a N2-fixing legume (Zitzer et al. 1996; Soper et al. 2015) with an 128 

arborescent growth form. P. glandulosa then serves as a nurse plant facilitating the recruitment of 129 

other fruticose shrub species beneath its canopy, resulting in the formation of small (< 100 m2) 130 

discrete woody clusters (Archer et al. 1988). Where the argillic horizon is absent, these shrub 131 

clusters expand laterally and fuse to form larger (> 100 m2) groves (Archer 1995; Bai et al. 2012; 132 

Zhou et al. 2017a). Therefore, upland portions of this landscape currently consist of discrete 133 

clusters and groves scattered within a matrix of remnant C4 grassland (Figure 1), which is similar 134 

to the two-phase vegetation pattern described by Whittaker et al. (1979) for this region. Discrete 135 

clusters and groves have similar plant species composition, with an overstory dominated by 136 

Prosopis and an understory dominated by Zanthoxylum fagara (lime prickly ash, hereafter 137 

Zanthoxylum) (Liu et al. 2013). See Appendix S1 for a listing of other common understory woody 138 

species. Perennial grasses, including Paspalum setaceum, Setaria geniculata, Bouteloua 139 

rigidiseta, and Chloris cucullata, dominate the remnant grassland matrix. Species names follow 140 

Hatch et al (1990). 141 

Field sampling 142 

Two discrete clusters and two groves located within a 260 x 200 m upland grazing exclosure 143 

established in 1984 were selected (Figure 1). A vegetation inventory was conducted in May of 144 

1991 prior to excavating trenches for quantifying root distribution patterns (Table S1). Location, 145 

species, height, and canopy diameter of each woody plant were recorded for each discrete cluster, 146 

and in a 4 m wide belt immediately overlying the planned trench locations in each grove. 147 

Aboveground biomass was quantified in plots (0.5 m × 0.5 m) spaced evenly along the center-line 148 

of the planned trenches in each discrete cluster (n=3/cluster) and grove (n=5/grove). Shrubs were 149 



cut at ground level and biomass sorted by species, oven-dried (60 ˚C) to constant weight, and 150 

weighed. Age of Prosopis occurring within the harvested plots was estimated by counting annual 151 

rings (Flinn et al. 1994).  152 

Four main trenches (1 m wide × 2 m deep) were carefully excavated in June 1991, using a 153 

backhoe to quantify vertical and horizontal root distribution patterns. The trench through discrete 154 

cluster 1 was oriented north-south, while that for discrete cluster 2 was oriented east-west. 155 

Trenches for the two groves were oriented the same as those for clusters and extended from their 156 

canopy perimeters to their centers.  157 

Short secondary trenches perpendicular to main trenches of each discrete cluster were 158 

excavated to determine the magnitude of lateral root extension beyond woody canopy boundaries 159 

(Figure S1). One of the secondary trenches was placed with the inner face 1 m from the edge of 160 

the cluster canopy; the other was excavated at the opposite end of the main trench with the inner 161 

face 3 m from the edge of cluster canopy edge. Data on shrub root density at 1, 2, 3, and 4 m 162 

beyond the edge of cluster canopies were thus generated (Figure S1). 163 

Roots were exposed by removing 3-5 mm of soil from trench faces with a small-toothed 164 

scraper after wetting with a garden sprayer. This procedure ensured that roots obscured by backhoe 165 

excavation were accounted for. Root density was quantified during June through August 1991 by 166 

placing a gridded frame (0.2 x 0.2 m cells) against the trench face and counting the number of 167 

roots in three diameter classes (1-3 mm, 3-10 mm, and >10 mm) in each grid cell. These root 168 

diameter classes were chosen to facilitate parameterization of CENTURY model (Parton et al. 169 

1992). Root density was quantified continuously from the soil surface to a depth of 2 m along the 170 

entirety of all trench faces in clusters and groves. Shrub roots were visually distinct from grass and 171 



herbaceous dicot roots and were identified to species using a key based on physical characteristics, 172 

such as color, texture and morphology (Appendix S1). Roots of some species had black or brown 173 

sheaths that distinguished them from other species, but no features that allowed us to distinguish 174 

them from each other. Accordingly, we lumped species with ‘black’ or ‘brown’ roots that could 175 

not identified to species. We made no attempt to distinguish between live and dead roots. 176 

Root biomass was quantified within 0.2 m × 0.2 m × 0.2 m soil blocks arrayed continuously 177 

from the soil surface to a depth of 2 m (Figure S2). This sampling was conducted at 1 m horizontal 178 

intervals along the trench faces in discrete clusters, and at 2 m intervals in groves. Coarse woody 179 

plant roots were removed by hand from each soil block, sorted by species and diameter class (1-3 180 

mm, 3-10 mm and > 10 mm), and washed gently in water to remove adhering soil particles. Roots 181 

not identified to species were recorded as black or brown. Then, 300 cm3 subsamples from each 182 

soil block were used to isolate fine roots (< 1 mm) using a hydropneumatic elutriation system 183 

(Gillison’s Variety Fabrication, Inc., Benzonia, MI) with primary (760 μm) and secondary (410 184 

μm) sieves (Smucker et al., 1982). Non-root organic matter was separated manually from fine roots 185 

following elutriation. Fine roots could not be identified to species. All root samples were oven-186 

dried (60 ˚C) to a constant weight for biomass determination.  187 

Subsamples from each soil block were analyzed to determine both wet and dry Munsel color 188 

(Pendleton and Nickerson 1951; Owens and Rutledge 2005). Munsel colors were used in 189 

conjunction with other soil attributes to map soil horizons (Table S2). In addition, subsamples of 190 

soil from selected blocks (Block C and E for both discrete clusters, Block A, I and Q for grove 1, 191 

and Block A, K, and U for grove 2, see Figure S2) were analyzed for soil texture using the 192 

hydrometer method (Sheldrick and Wang 1993) (Table S3).   193 



We were also interested in determining the extent to which root biomass in the shrub 194 

communities on argillic and non-argillic sites differed from that of the herbaceous matrix within 195 

which they were embedded. To quantify root biomass in the herbaceous area surrounding groves 196 

and clusters, we drove 5 cm diameter cores to a depth of 1.2 m using a pneumatic hammer. Cores 197 

were then partitioned into depth increments (0-20, 20-40, 40-60, 60-80, 80-100, and 100-120 cm). 198 

Root biomass within soil cores was determined as described above. There were no remnant 199 

grassland patches on non-argillic soils.  200 

Data analysis  201 

Root density and root biomass for cluster and grove data sets were standardized as the 202 

number of roots counted per m2 of trench face (roots m-2), and as grams per m2 (g m-2), respectively. 203 

Both root numbers and root biomass were summed over 1 m horizontal by 0.4 m vertical 204 

increments to a depth of 2 m to achieve a degree of spatial integration. Preliminary data analysis 205 

indicated correlations between means and standard deviations, so a natural logarithm 206 

transformation was applied to all data for subsequent statistical analyses (McDonald 2014).  207 

Root density was analyzed using the General Linear Models procedure for multivariate 208 

analysis of variance (ANOVA). The dependent variable was root density, and the multivariate was 209 

depth (0.0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, and 1.6-2.0 m). Independent variables were soil type 210 

(argillic vs. non-argillic soil), root diameter class (1-3, 3-10 and > 10 mm), replication (1 or 2), 211 

trench face (left or right), relative horizontal position (exterior = outside cluster canopy perimeters, 212 

edge = within 1 m (discrete clusters) or 4 m (groves) of the canopy perimeter, and interior = all 213 

other data under canopy), and plant species. For lateral root extension analysis, independent 214 

variable distance (1, 2, 3, or 4 m from the canopy perimeter) and block (relative horizontal position 215 



along perpendicular trench (1-4)) were also included. Significance was tested at α = 0.05. The 216 

Bonferroni correction (α = 0.05/n) was used for each of n pairwise comparisons, to achieve an 217 

experiment wide error rate of α = 0.05. All analyses were performed on SAS 6.07 software 218 

(SAS Institute, Cary, NC, USA). 219 

Results  220 

Shrub cluster and grove vegetation and soil properties  221 

A total of 403 plants representing 18 woody species were inventoried in the two discrete 222 

clusters and the two 4 m wide belt transects in groves (Table S1). Both discrete clusters and groves 223 

contained 10-15 woody species, and plant densities were greater in discrete clusters (5.4 m-2) than 224 

in groves (1.7 m-2) (Table 1).  Prosopis was the largest plant with respect to aboveground biomass, 225 

height, and canopy area. Based on annual ring counts, the largest Prosopis in groves (74.0 years) 226 

were older than the largest Prosopis in discrete clusters (61.5 years). Prosopis and Zanthoxylum 227 

dominated the overstory-understory aboveground biomass, respectively, of both discrete clusters 228 

and groves, accounting for ~ 85% of the total.  229 

Soils in discrete clusters and the perimeter of groves were similar and were characterized by the 230 

presence of an argillic horizon (Bt) and distinct structure and horizon boundaries (Figure S2).  231 

Toward the interior of groves, the argillic horizon gradually disappeared, and horizon boundaries 232 

became less distinct. In both clusters and groves, sand content decreased from the surface to a 233 

depth of 2 m, while silt content remained relatively constant and clay content gradually increased 234 

(Table 1).  However, clay content in the 0.8-1.2 m depth increment in the interior of both groves 235 

(20-28%) was sharply reduced compared to values near the canopy perimeter (34-38%), reflecting 236 

the absence of the argillic horizon beneath groves (Table S3). 237 

Root distribution patterns in shrub clusters and groves 238 



Results from multivariate ANOVA of root density showed a significant depth × soil type 239 

interaction, indicating that the presence or absence of the argillic horizon significantly influenced 240 

root densities in the vertical plane (Table S4). Compared to non-argillic soils, root densities on 241 

argillic soils were significantly greater above 0.4 m depths, but similar or significantly lower at 242 

depths > 0.4 m (with the exception of 1-3 mm diameter roots at 0.4 - 0.8 m depth) (Figure 2). There 243 

was also a significant depth × root diameter interaction, reflecting the fact that small roots (1-3 and 244 

3-10 mm diam.) decreased exponentially with depth, whereas declines in large roots (> 10 mm 245 

diam.) were more monotonic with depth (Table S4, Figure 2). 246 

When plant species were included in the multivariate ANOVA, significant depth × species 247 

interactions were obtained for both argillic and non-argillic soils, indicating significant differences 248 

in root vertical distribution among species (Table S5). More specifically, Prosopis was the deepest-249 

rooted species on each soil type, with root densities below 0.4 m accounting for > 47 % and 59 % 250 

of the total root density on argillic vs. non-argillic soils, respectively (Figure 3). Only Prosopis 251 

had roots > 10 mm diameter at depths > 0.4 m (Figure 3). Compared to Prosopis plants on argillic 252 

soils, those on non-argillic soils had higher root densities in all size classes (Figure 3).  253 

Zanthoxylum, a relatively shallow-rooted species with > 75 % of its total roots occurring above 254 

0.4 m on both soil types, dominated the density of small-to-medium root diameter classes on 255 

argillic soils, and was second only to Prosopis on non-argillic soils (Figure 3). In contrast to 256 

Prosopis, Zanthoxylum had higher root densities on argillic soils than on non-argillic soils (Figure 257 

3).  258 

Excluding black and brown roots that we could not identify to species, Prosopis and 259 

Zanthoxylum together accounted for ~ 80 % of total root density in non-argillic soils compared to 260 

49 % in argillic soils. This was especially true for 1-3 mm diameter roots on argillic soils where 261 



other woody genera (Lycium, Schaefferia, Celtis, and Opuntia) comprised ~ 60 % of the total 262 

(Figure 3). Differences between Prosopis and other understory species in root biomass distribution 263 

patterns were also evident (Figure S3).  264 

Root biomass and plant biomass allocation in shrub clusters and groves  265 

Mean total root biomass to a depth of 2 m among shrubs on argillic soils (2712 g m-2) was 266 

higher than that of shrubs on non-argillic soils (1740 g m-2) (Figure 4 and Table 2). Root biomass 267 

in the upper 0.4 m accounted for 69% of the total root biomass on argillic soils, compared to 38% 268 

on non-argillic soils (Figure 4). Root biomass for all diameter classes on argillic soils was 269 

significantly higher than that on non-argillic soils at depths < 0.4 m.  However, at depths > 1.2 m, 270 

root biomass on non-argillic soils was higher than that on argillic soils, especially for roots > 3 271 

mm diameter.  272 

Biomass allocation above- and belowground was strongly affected by the presence/absence 273 

of an argillic horizon. The mean belowground to aboveground biomass ratio (root: shoot ratio) on 274 

argillic soils was ~3X greater than that on non-argillic soils (0.57 vs. 0.20) (Table 2). This was 275 

also true for the dominant overstory (Prosopis glandulosa) and understory (Zanthoxylum fagara) 276 

species (Table 2).  277 

Root extension beyond discrete cluster perimeters  278 

Contour maps of root density along trench faces within the discrete clusters showed an 279 

inverted cone-shape distribution (Figure 5). Root densities were highest near the center and 280 

gradually decreased towards the cluster canopy/grassland interface. Root penetration was deepest 281 

near discrete cluster centers and decreased toward cluster perimeters. Multivariate ANOVA 282 



showed a significant interaction between horizontal position and soil depth (Tables S4 and S5), 283 

confirming the root distribution patterns visually apparent in Figure 5.  284 

Moving beyond the discrete cluster boundary into the surrounding grasslands, root density 285 

typically decreased exponentially with increasing distance from cluster canopy perimeters (Figure 286 

6). The amount of variation in root density explained by distance from discrete cluster perimeters 287 

generally declined with increasing soil depth and root diameter. Results from the multivariate 288 

ANOVA revealed a significant depth × distance interaction which was a consequence of 289 

decreasing rooting depth with increasing distance from the cluster perimeter (Table S6). The root 290 

diameter × distance interaction term was also significant, reflecting the fact that distance-from-291 

cluster effects diminished with increases in root size (Figure 6).  292 

Root biomass in grasslands, shrub clusters and groves 293 

Total root biomass in each of these patch types was highest in the upper 40 cm and declined 294 

markedly with depth to 1.2 m (Figure 7).  The root biomass in cluster and grove communities at 295 

each depth was substantially greater than that in the grassland community. Summarized over all 296 

depths, root biomass in the two shrub communities was 3 - to 5- fold greater than that of the 297 

grassland community (ranging from 1.4 - to 7.3- fold greater, depending on depth). 298 

Discussion   299 

Edaphic influences on root distribution and biomass partitioning  300 

The ability to identify roots to species for the predominant and co-occurring woody plants 301 

in this system afforded unique and novel perspectives on plant-plant and plant-soil relationships 302 

in this savanna parkland. Differences in root distribution with depth on soils with and without a 303 



well-developed argillic horizon (Figure 2 and 4) ostensibly reflect the combined effect of physical 304 

restrictions to root penetration, resource availability and plant genetic potential. Soil clay content 305 

is often correlated negatively with root density and root growth (Strong and Roi 1985; Plante et al. 306 

2014). This may result from increased soil strength and reduction in soil aeration which inhibit 307 

root growth and metabolism (Gerard et al. 1982; Clark et al. 2003; Bengough et al., 2006; Haling 308 

et al., 2011). Bulk density > 1.5 g cm3 [similar to those of the argillic horizon on this site (Zhou et 309 

al. 2017b)], can generally reduce root growth through reduced pore spaces (Clark et al. 2003; 310 

Lodovici 2004; Xu and Li 2009; Plante et al. 2014). Accordingly, we observed an abrupt decrease 311 

in root density and biomass below 0.4 m in shrub clusters where the argillic horizon begins (Figure 312 

2 and 4). This is consistent with several other studies reporting that the presence of a concentrated 313 

clay hardpan in subsoils had strong influences on root vertical distribution patterns (Dracup et al. 314 

1992; Sudmeyer et al. 2004; Macinnis-Ng et al. 2010).  315 

Except where physical restrictions occur, roots are known to proliferate in zones of high 316 

moisture availability (Eissenstat and Caldwell 1988; Schenk and Jackson, 2002; Metcalfe et al. 317 

2008; Fan et al. 2017). Thus, perching of water above and retention of water within the argillic 318 

horizon, coupled with limited recharge of subsoil moisture (Archer 1995), likely contributed to 319 

enhanced root production in surficial soils while simultaneously inhibiting root penetration and 320 

retarding growth in deeper soil. However, it should be noted that the proportion of Zanthoxylum 321 

root biomass and density in the upper 0.4 m of soil was comparable on argillic and non-argillic 322 

soils (> 68% for both variables). Rooting patterns of Prosopis were also relatively consistent on 323 

both soils (> 47% and > 59 % of roots below 0.4 m when the argillic horizon was present and 324 

absent, respectively). These data suggest that Zanthoxylum and Prosopis are intrinsically and 325 



genetically shallow- and deep-rooted, respectively, and that soil physical properties are of 326 

secondary importance in influencing their vertical root distribution patterns.  327 

Root: shoot ratios are an indicator of photosynthate allocation priorities. The ratios observed 328 

at this site (Table 2) generally fell within global range for subtropical dry woodlands (0.26-0.72, 329 

Mokany et al. 2006). Root: shoot ratios are affected by a variety of factors related to stand 330 

development. As noted in Mokany et al. (2006), root: shoot ratios generally decrease with a variety 331 

of factors all of which are consistent with our data: increasing stand age (61.5 vs. 74.0 years for 332 

largest Prosopis in discrete clusters and groves), height (3.5 vs. 4.7 m), and mean basal diameter 333 

(11.1 vs. 15.9 cm), and decreasing plant density (5.4 vs 1.7 m-2). In addition, edaphic 334 

characterizations in this study compliment those of Loomis (1989), Stokes (1999), and Zhou et al 335 

(2017b) on this site and further substantiate that patches of grassland and discrete clusters of woody 336 

plants occur where there is a well-developed argillic horizon and that large groves of woody plants 337 

have developed where soils are coarse-textured throughout the profile. Our data illustrating the 338 

larger size of Prosopis in groves relative to discrete clusters (Table 1) agree with more extensive 339 

surveys (Archer 1995; Boutton et al. 1998) and indicate that upland soil inclusions lacking an 340 

argillic horizon are more productive sites for woody plants. We hypothesize that a greater 341 

abundance of soil moisture, associated with receipt of surface runoff and subsurface interflow from 342 

portions of landscape with a continuous argillic horizon, has enabled woody plants in groves to 343 

support greater aboveground biomass with substantially less investment in root biomass.  344 

Depth distribution of root density and biomass revealed that small roots (< 10 mm) on both 345 

argillic and non-argillic soils decreased exponentially with depth, whereas large roots (> 10 mm) 346 

on argillic soils presented different vertical patterns compared to those on non-argillic soils 347 

(Figures 2 and 4). Accordingly, multivariate ANOVA of root density showed a significant soil 348 



type × root diameter interaction (Table S4) at depths > 0.4 m. As discussed above, non-argillic 349 

soils are more productive for woody plants (Archer 1995; Boutton et al. 1998) and support larger 350 

woody plants compared to argillic soils (Table1), potentially resulting in more large roots (> 10 351 

mm) in non-argillic soils, especially at depths > 0.4 m. More large roots in non-argillic soils then 352 

contributed to the lower root: shoot ratios in grove communities (Table 1).  353 

Species rooting patterns and plant succession 354 

Root systems of co-occurring plant species often overlap substantially, but differences in 355 

distribution, turnover rates, activity, phenology and size may be sufficient to affect competitive 356 

interactions and resource partitioning (Walker 1971; Seghieri 1995; Hipondoka et al. 2003; 357 

Sankaran et al. 2004; Schenk 2006; February and Higgins 2010; Stokes and Archer 2010; Zhou et 358 

al. 2018c). Extensive intermingling of species root systems was observed in this subtropical 359 

savanna ecosystem, but contrasting patterns were evident for key co-occurring species (Figure 3). 360 

Prosopis, the pioneer species in discrete cluster development that facilitates the subsequent ingress 361 

and establishment of subordinate shrub species (Archer 1990 and 1995), was deep-rooted with 47 362 

% and 59 % of roots present below 0.4 m in discrete clusters and groves, respectively. This deep 363 

rooting system not only enhances the survival of Prosopis during the critical seedling 364 

establishment phase by reducing competition with grasses for water (Brown and Archer 1990; 365 

Ansley et al. 2014), but also facilitates subsequent recruitment of subordinate shrub species by 366 

providing nutrient-enriched soil conditions (Hibbard et al. 2001; Zhou et al. 2018a and 2018b). 367 

Prosopis is known to form symbiotic associations with N-fixing bacteria, and plants at this site do 368 

nodulate and fix N (Zitzer et al. 1996; Soper et al. 2015). As a result, soil N in the upper 30 cm of 369 

the profile is greater under Prosopis canopies than adjacent herbaceous zones (Archer 1995; 370 

Hibbard et al. 2001; Boutton and Liao 2010; Zhou et al. 2018a). In addition, deep-rooted Prosopis 371 



transfers phosphorus (P) from deeper soil layers and enlarges the P pool in the upper soil layers 372 

where it is more actively cycled (Zhou et al. 2018b).  373 

Zanthoxylum is among the first shrub species to colonize beneath Prosopis canopies, and 374 

typically dominates the understory layer (Archer et al.1988; Archer1990). Although the precise 375 

mechanisms of this facilitation have not yet been fully addressed experimentally, the shallow root 376 

systems of these early arrivals (Figure 3) would make them well-suited to take advantage of (1) 377 

N- and P-enriched surface soils resulting from the establishment and growth of Prosopis (Hibbard 378 

et al. 2001; Zhou et al. 2018a and 2018b); and (2) redistribution of soil moisture from deep to 379 

surface horizons that might occur as the result of hydraulic redistribution, as has been shown on 380 

this site (Zou et al. 2005). In addition, the dense shallow root systems of these early arrivals 381 

underneath Prosopis canopies may contribute to the observed, significant declines in shallow-382 

rooted grasses and forbs by intensifying competition for soil resources while simultaneously 383 

reducing light levels. This, in turn, may create opportunities for the establishment of shade-tolerant 384 

understory woody species appearing later during woody patch development. 385 

Different root distribution patterns among shrub species would diffuse competition and 386 

enable the dynamic co-existence of woody species in discrete clusters and groves. For example, 387 

the natural abundance of 2H and 18O in stem water indicates that shallow-rooted understory species 388 

such as Zanthoxylum are closely coupled to availability of surface soil moisture, while deep-rooted 389 

Prosopis acquires water from deeper soil layers (Boutton et al. 1999). However, as the size and 390 

density of understory species increases over time, co-existence appears to give way to asymmetric 391 

competition (Archer 1989, 1995), as field observations indicate that the overstory Prosopis in 392 

about 25 % of discrete clusters have died. One explanation supported by experimental evidence is 393 

that roots of Zanthoxylum and other shallow-rooted shrubs sequester water and nutrients that might 394 



otherwise percolate to depths where Prosopis roots dominate and adversely impact Prosopis 395 

growth (Barnes and Archer 1999). Since the demise of the central Prosopis is less common in 396 

groves on non-argillic soils, we hypothesize that these competitive effects would be most 397 

pronounced in discrete clusters on soils with a well-developed argillic horizon, where near-surface 398 

understory root densities and biomass are higher (Figure 2 and 4) and where the clay-rich argillic 399 

horizon restricts percolation of water and nutrients to deeper soil layers (Archer et al. 1988 and 400 

Archer 1995).  401 

Root extension and landscape development 402 

The current two-phase landscape (woody clusters and groves interspaced within a grassland 403 

matrix, Figure 1) on the upland portions of this study site has been hypothesized to represent an 404 

intermediate stage in landscape development from open grassland to monophasic woodland 405 

(Archer et al. 1988; Archer 1995; Boutton et al. 1996, 1998; Zhou et al. 2017b). Within this two-406 

phase landscape, 95% of woody clusters are within 15 m of another, and seedlings of Prosopis 407 

occur in high densities in the grassland matrix (Archer 1988), suggesting the potential for cluster 408 

formation through the aforementioned vegetation succession. This hypothesis presumes that 409 

interactions between woody clusters are minimal and that as new clusters form and grow, 410 

coalescence will occur.  411 

However, cluster coalescence may not occur if intense competition from laterally extensive 412 

root systems of existing clusters significantly reduces the survival probability of Prosopis 413 

seedlings in the grassland matrix or limits subsequent cluster formation and development. Our data 414 

showed that root density decreased exponentially with increasing distance from cluster perimeters 415 

and that few roots extended more than 1 m beyond cluster perimeters, especially at soil depths 416 



below 0.4 m (Figure 5 and 6). These results indicate that Prosopis seedlings in the grassland matrix 417 

likely receive no or limited competition from existing woody plants and have the potential to grow 418 

and recruit understory species to form discrete clusters. Indeed, a chronological sequence of aerial 419 

photos at this site spanning the period 1930 to 2016 documents the active formation of discrete 420 

clusters and their expansion and coalescence (Archer et al. 2001; Bai et al. 2009; Zhou et al. 421 

2017b), providing direct evidence to support this hypothesis. Therefore, our results suggest that 422 

succession to monophasic woodland may occur on upland portions of this study site, with the rate 423 

being mediated by edaphic heterogeneity and the nature of future climate and disturbance (e.g. 424 

grazing and fire) regimes.  425 

Belowground consequences of woody plant proliferation in grassland 426 

Shrub clusters and groves in this subtropical system have developed on former grasslands 427 

(Archer 1995, Bouton et al 1998). The consequences for this change with respect to aboveground 428 

biomass, primary production and near-surface (upper 20 cm) soil carbon pools and fluxes have 429 

been summarized in earlier work (e.g., Archer et al 2001, Hibbard et al. 2003, McCulley et al. 430 

2004, Boutton and Liao 2010). Here, we show that the change in community structure from grass 431 

to woody plant dominance has profoundly increased the magnitude of the carbon pool associated 432 

with plant roots to depths of 1.2 m (3- to 5-fold, Figure 7). Our ability to predict how root biomass 433 

might change with changes in growth form/life form composition presently relies on a ‘space-for-434 

time substitution’ approach. For example, if a tropical savanna transitioned to a tropical evergreen 435 

forest or a tropical deciduous forest, we could use data such as that presented in Jackson et al. 436 

(1996) to predict the consequences for below ground biomass with depth. The veracity of this 437 

prediction would be predicated on the strength of the assumption that such a space-for-time 438 

substitution is accurate and robust. Although our data is also based on a space-for-time approach, 439 



it is at more local scale which might make the results more germane to developing accurate 440 

predictions. In any case, global budgets for root biomass, surface area and nutrient content (e.g. 441 

Jackson et al. 1997) will be challenged to take into account shifts from grass to woody plant 442 

dominance and how such shifts will play out on various soil types. To further complicate things, 443 

root longevity, turnover and decay likely vary with species, size (diameter) and depth to determine 444 

the dynamics of this substantial belowground carbon pool.  445 

Conclusions and Implications 446 

Edaphic characteristics strongly influenced root distribution patterns and biomass allocation 447 

of co-occurring woody plants in this subtropical savanna parkland. Root density and biomass in 448 

soils with a well-developed argillic horizon were generally greater above a depth of 0.4 m and 449 

lower below 0.8 m of the profile compared to similar depths in soils where the argillic horizon was 450 

absent. Woody plants maintained greater aboveground biomass with substantially less root 451 

biomass on soils lacking an argillic horizon. The dominant overstory species Prosopis was deep-452 

rooted with a high proportion of its total roots below 0.4 m. In contrast, the dominant understory 453 

shrub Zanthoxylum and other subordinate species were relatively shallow-rooted, facilitating their 454 

early co-existence with Prosopis -- by minimizing interspecies competition during the formation 455 

of woody clusters and groves -- but later forming the basis for asymmetric competition that may 456 

hasten the demise of the Prosopis overstory. Root density decreased exponentially with increasing 457 

distance from cluster perimeters, and few woody plant roots extended > 1 m beyond cluster 458 

canopies, thus minimizing the potential for density dependent constraints on future cluster 459 

development. The ability to identify roots to species for the predominant and co-occurring woody 460 

plants in this system afforded unique and novel perspectives on plant-plant and plant-soil 461 



relationships and provide valuable insights for explaining vegetation dynamics and landscape 462 

development of this subtropical savanna parkland.  463 

Root distribution datasets of co-occurring woody species, such as those presented in this 464 

study, are comparatively rare and novel, as the savanna literature has focused primarily on rooting 465 

differences between woody plants and grasses. The patterns of species-specific root distribution 466 

revealed in this study and have relevance to understanding plant succession and landscape 467 

development. Our data provide potential insights into the structure-function relationships of grass-468 

woody, shrub-shrub and shrub-tree growth forms and life forms in savanna, parkland and 469 

woodland settings. Our results show the broad range of rooting patterns occurring in dryland 470 

woody plants and challenge prevailing generalization that they deep rooted and/or that they have 471 

extensive shallow lateral root systems. We clearly demonstrate how edaphic factors affecting water 472 

regimes are critical in shaping biomass partitioning (Tomlinson et al. 2012) and hence global 473 

patterns of rooting depth distribution (Fan et al. 2017). Furthermore, root biomass in shrub cluster 474 

and grove communities to a depth of 1.2 m were 3- to 5-times greater than that of the grasslands 475 

they ostensibly replaced (Figure 7), suggesting belowground carbon inputs can increase 476 

dramatically when woody plants proliferate in grasslands. This substantive change in the 477 

magnitude of belowground C pools would markedly influence assessments of C-sequestration 478 

potential and source-sink relationships (Barger et al. 2011). Accordingly, improvements in our 479 

understanding rooting patterns of dryland woody species is paramount to advancing our ability to 480 

predict species interactions, vegetation dynamics, and responses of mixed growth form/life form 481 

systems to future environmental conditions.  482 
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Figure legends 695 

Figure 1 Aerial photograph of the grazing exclosure at the Texas A&M AgriLife La Copita 696 

Research Area. This upland landscape consisted of discrete woody clusters and groves embedded 697 

within a grassland matrix.  Green areas represent woody vegetation, while light gray areas indicate 698 

the grassland matrix.  699 

Figure 2 Mean root densities (roots m-2) for root diameter classes 1-3 mm (A), 3-10 mm (B), and 700 

> 10 mm (C) throughout the soil profile. Asterisks indicate significant (p < 0.05) differences in 701 

root density between argillic soils and non-argillic soils within a depth interval. Values are mean 702 

± SE. 703 

Figure 3 Relative root densities (mean percentage of root density in each depth interval to total 704 

root density from the ground surface to a depth of 2 m) by species and root diameter classes on 705 

argillic (A, B, and C) and non-argillic soils (D, E, and F). Values to right of bars are mean (± SE) 706 

total root densities (roots m-2) for each plant species. 707 

Figure 4 Mean (± SE) root biomass (g m-2) for root dimeter classes < 1 mm (A), 1-3 mm (B), 3-708 

10 mm (C), and > 10 mm (D) to a depth of 2 m. Asterisks indicate significant (p < 0.05) differences 709 

between argillic soils and non-argillic soils within a depth interval.  710 

Figure 5 Contour maps of root densities (roots m-2) along trench faces for discrete clusters 1 (A) 711 

and 2 (B). Values are the mean of both trench faces. Solid black horizonal line denotes top of 712 

argillic horizon (Fig. S2); dashed vertical lines denote location of shrub cluster canopy perimeters. 713 

Figure 6 Mean (± SE) root densities (roots m-2) at 0, 1, 2, 3 and 4 m beyond discrete cluster canopy 714 

perimeters for root diameter classes 1-3 mm, 3-10 mm, and > 10 mm. Bars with different letters 715 

are significantly different (p < 0.05). Exponential decay functions were fitted to the means of root 716 

density vs. the distances from cluster canopy perimeters for each root diameter class. Panels 717 



without equations indicate failed fit with exponential decay functions. Results from depths > 1.2 718 

m in the soil profile are not presented, as there were no significant differences in root densities 719 

with distance from cluster canopy perimeters, but can be found in Table S8. 720 

Figure 7 Mean (± SE) total root biomass with depth (to 1.2 m) for clusters on argillic soils (n =13), 721 

groves on non-argillic soils (n = 20), and grassland on argillic soils (n = 10) (data not available for 722 

grassland on non-argillic soil).  723 
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Table 1 738 

Summary of the aboveground inventory of plants and soil texture [mean (SE); n=2)] for discrete 739 

cluster and grove communities.  740 

 Discrete clusters Groves 

Number of plants 82.0 (2.0) 119.5 (4.5) 

Number of species 13.0 (2.0) 11.5 (1.5) 

Largest Prosopis stem age (years) 61.5 (4.5) 74.0 (9.0) 

Largest Prosopis basal diameter (cm) 11.1 (1.8) 15.9 (3.4) 

Plant density (plants m-2)   

     Prosopis  0.17 (0.07) 0.06 (0.01) 

     Zanthoxylum  2.0 (0.8) 0.8 (0.2) 

     Total (all species) 5.4 (1.3) 1.7 (0.2) 

Aboveground biomass (g m-2)   

     Prosopis  2490 (1682) 7362 (2717) 

     Zanthoxylum  1554 (587) 494 (25) 

     Total (all species) 4750 (2660) 8584 (2299) 

Plant height (m)   

     Prosopis  3.5 (0.5) 4.7 (0.3) 

     Zanthoxylum  0.8 (0.0) 1.1 (0.2) 

     All other species 0.7 (0.1) 0.9 (0.1) 

Canopy Diameter (m)   

     Prosopis  5.6 (0.2) 5.2 (0.6) 

     Zanthoxylum  0.5 (0.0) 0.7 (0.2) 

     All other species 0.7 (0.1) 0.7 (0.1) 

 

Soil texture (%) 

  

     Depth (m) Sand Silt Clay Sand Silt Clay 

        0.0-0.4  67 (1) 12 (0) 21 (1) 69 (2) 10 (2) 21 (0) 

        0.4-0.8  60 (1) 13 (1) 28 (1) 64 (0) 11 (0) 25 (0) 

        0.8-1.2  50 (1) 14 (2) 37 (1) 55 (4) 13 (1) 32 (3) 

        1.2-1.6  46 (4) 16 (2) 39 (3) 51 (5) 14 (2) 35 (4) 

        1.6-2.0  44 (4) 16 (2) 40 (2) 50 (5) 15 (1) 35 (4) 

  741 



Table 2 742 

Mean belowground and aboveground biomass and associated ratios of belowground to 743 

aboveground biomass (root: shoot ratios) by soil types and species. Values in parentheses are 744 

standard errors.  745 

Soil type Species Belowground biomass (g m-2) Aboveground 

biomass (g m-2) 

Root: 

shoot ≥ 1 mm < 1mm total 

Argillic 

soil 

Prosopis  696 (249) NA NA 2490 (1682) 0.28† 

Zanthoxylum 627 (225) NA NA 1554 (587) 0.40† 

All 2149 (621) 563 (100) 2712 (697) 4750 (2660) 0.57 

       

Non-

argillic 

soil 

Prosopis  942 (187) NA NA 7362 (2717) 0.13† 

Zanthoxylum 134 (37) NA NA 494 (25) 0.27† 

All 1322 (291) 418 (33) 1740 (205) 8583 (2299) 0.20 

NA indicates that data is not available  746 

†The ratios of belowground to aboveground biomass were based on coarse (diameter ≥ 1mm) roots 747 

only  748 


