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Abstract. The concept of fitness is central to evolutionary biology. Models of evolutionary 
change typically use some quantity called “fitness” which measures an organism’s 
reproductive success. But what exactly does it mean that fitness is such a measure? In what 
follows, we look at the interplay between abstract evolutionary models and quantitative 
measures of fitness and develop a measurement-theoretic perspective on fitness in order to 
explore what makes certain measures of fitness significant. 
 
 
1 Introduction 
 
The concept of fitness is central to evolutionary biology. Fitness is a measure of an organism’s 
reproductive success and is thus a crucial element of the theory of natural selection. But what 
exactly does it mean that fitness is such a measure? 
 
The aim of this paper is to develop a measurement-theoretic perspective on fitness in order 
to explore what makes certain measures of fitness significant. We are hereby guided by the 
pioneering work of Wagner (2010),1 who writes that 

Fitness is not a primary observable feature of organisms, such as their weight, color, and 
chemical composition that are defined independently of any further biological insight. 
Fitness is a concept that plays a role in explaining evolutionary dynamics ... For that reason 
the definition, measurement and the mathematical properties of fitness cannot be 
considered separately from the theory of natural selection. In particular, the quantitative 
concept of fitness only makes sense if it can be inserted into mathematical models to 
predict or explain evolutionary change. The mathematical theory of evolution and the 
measurement of fitness are mutually dependent. 

Here, Wagner refers to the well-known interplay between theory and measurement. 
Measurements of quantities are not performed in a theoretical vacuum. Rather, there is a 
coevolution between the development of theory and measurement practice. Theory 
development guides the design of measurement apparatuses, and increased experience with 
measurement instruments and their outcomes feeds back on theories and models. Once a 
theory is well-developed and has reached a (at least temporary) reflective equilibrium, 
measurement can be viewed from the perspective of that theory (see van Fraassen, 2008, for 
a more detailed discussion). The concepts used in measurement have a definite meaning 
within a theory and cannot be understood properly without the theoretical context. 
 
In what follows we study the interplay between evolutionary models and quantitative 
measures of fitness. Our approach is inspired by the method of dimensional analysis in physics 
(Krantz et al., 1971). The basic idea of dimensional analysis is that how certain quantities are 
combined in equations puts coherence constraints on them. The equations we are going to 
consider are models of evolution. Such models typically involve some quantity called “fitness” 

 
1 For a general discussion of measurement theory in biology see Houle et al. (2011). For measurement theory 
more generally see Krantz et al. (1971), Suppes et al. (1989), Luce et al. (1990), and Hand (2010). 
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that influences the dynamical behavior of the system. We are interested in the following 
question: what are the properties of the dynamics that ought to be preserved in order to have 
a useful model of evolutionary change? As we shall see, depending on the properties that 
ought to be preserved, we get more or less stringent requirements on the measures of fitness 
used in models of evolutionary change. 
 
 
2 Measurement Theory 
 
In all evolutionary models, fitness is represented by a number. Although their familiarity often 
belies this fact, numbers have an enormous amount of structure that can sometimes imply 
stronger empirical claims than intended. To use a familiar example, if I say “it is twice as hot 
today as yesterday,” I am saying something meaningless. If it is 30 degrees Fahrenheit today 
and yesterday it was 15F does not imply that it is meaningful to say today is “twice as hot” as 
yesterday. This is easily illustrated by the fact that 30F is approximately -1C and 15F is 
approximately -9.5C. So the statement “it is twice as hot today as yesterday” is true under 
one valid temperature scale but not under another equally valid scale. Some parts of the 
numerical structure of Fahrenheit (or Celsius) imply more than we are entitled to say. 
 
This example illustrates that numbers can be assigned to empirical objects in completely 
arbitrary ways. In science, there must be constraints on how numbers are interpreted, since 
numerical assignments are supposed to capture something about empirical reality. 
Otherwise, results of measurements or models may just be due to the mathematical 
structures we use and have nothing to do with the empirical reality we are really interested 
in. In the case of fitness, we are interested in how much structure our theoretical apparatus 
requires, and in the subsequent sections we will turn to that. But, first, we need to quickly 
review how these questions are addressed. 
 
The theory of measurement offers a systematic approach to the study of the properties of 
numbers used in measurement. Measurement theory goes back to at least von Helmholtz 
(1887), and has made significant advances in the second half of the 20th century. Of particular 
importance is the representational theory of measurement, which was developed mainly in 
mathematical psychology (Krantz et al., 1971; Suppes et al., 1989; Luce et al., 1990). The 
representational theory of measurement aims at identifying qualitative axioms—i.e. 
principles that do not involve numbers—that capture a measurement concept, and then 
trying to establish that there exists a numerical representation of the concept that reflects its 
qualitative properties. Well known examples are the measurement of physical quantities like 
length, mass, or time (Hölder, 1901). 
 
The representational theory of measurement does not give answers to all philosophically 
significant aspects surrounding measurement.2 We set these issues aside here. What is 
important for our project is that the representational theory of measurement is very well 
suited for exploring the relationship between invariance and measurement. This relation was 
discussed extensively by Stevens (1946), who identified a number of scale types. These scale 

 
2 For discussions see Chang (2004) and van Fraassen (2008). See Baccelli (forthcoming) for an analysis of the 
role of the representational theory. 



types identify what parts of numerical structure correspond to empirical claims and what 
parts of the structure should be ignored. This work was later substantially extended by 
measurement theorists (Narens, 2002). 
 
The three most common scale types are ordinal scales, interval scales, and ratio scales. Each 
one is based on an assignment of real numbers to objects that are ordered according to a 
binary weak ordering relation (i.e. a relation that is connected and transitive). “At least as 
long as” is one canonical example. A numerical assignment that captures just the order is an 
ordinal scale. More precisely, suppose 𝑅 is a weak ordering of a set of objects; 𝑎𝑅𝑏 means 
that object 𝑎 is not ranked above object 𝑏. Then an ordinal scale, 𝑠, assigns numbers to all 
objects such that 𝑠(𝑎) ≤ 𝑠(𝑏) if and only if 𝑎𝑅𝑏. This is the sense in which the scale s 
represents the relation 𝑅. 
 
Given a particular 𝑠 that represents 𝑅, one can ask how 𝑠 might be transformed into another 
numerical assignment 𝑠′ while continuing to represent 𝑅. In the case of an ordinal scale, any 
strictly monotonic transformation of 𝑠 is an admissible representation of 𝑅. As a result, ordinal 
scales are unique only up to strictly monotonically increasing transformations. This implies 
that, in order to be meaningful, numerical statements must be invariant relative to 
monotonically increasing scale transformations. In other words, numerical statements must 
be true about all ordinal scales that represent 𝑅. Otherwise, they go beyond how 𝑅 orders 
empirical objects and rely on a particular choice of scale.3 For instance, ordinal scales do not 
allow the calculation of expected fitness since the values of expected fitness can be changed 
arbitrarily under strictly monotonic transformations. 
 
Interval scales have more structure than ordinal scales. In addition to representing the 
ordering relation, they preserve ratios of differences. This implies that interval scales are 
unique up to positive affine transformations. Starting with any scale 𝑠, we can multiply 𝑠 with 
an arbitrary positive number and add an arbitrary number to get another admissible scale. An 
example of an interval scale is the measurement of temperature in Celsius or Fahrenheit. This 
is why statements like “twice as hot” are meaningless, because that comparison is not 
invariant over positive affine transformations. 
 
Positive affine transformations correspond to choosing different zero and units of a scale. 
Ratio scales have a natural zero, so the only conventional aspect is choosing a unit. Thus, a 
ratio scale is unique up to multiplication by a positive number. This implies that ratios of scale 
values are invariant across all scales. Examples of ratio scales are length or weight. 
 
There are scales with no transformations that turn it into another admissible scale, such as 
counting the number of objects in some set. They are known as absolute scales. For absolute 
scales all numerical statements are invariant. 
 
In their famous development of utility scales, von Neumann and Morgenstern provide a 
strategy for transforming ordinal preferences over lotteries into an interval scale (von 
Neumann and Morgenstern, 1944). The underlying idea is that if we take a series of objects 

 
3 The role of invariance in discussions of meaningfulness is investigated in Narens (2002). Mitteroecker and 
Huttegger (2009) and Huttegger and Mitteroecker (2011) discuss invariance and meaningfulness in a biological 
context. See also Houle et al. (2011). 



and also a randomizing device, and if people obey a set of “consistency” axioms, we can 
extract more information that allows us to utilize an interval scale.  
 
Traditional economics has, for some time, built itself on von Neumann–Morgenstern utility. 
Modern economic game theory is no exception, and the fundamental predictions of game 
theory are invariant over legitimate transformations of utility. If one identifies all the Nash 
equilibria of a game for players with particular utility functions, those Nash equilibria are 
invariant over all positive affine transformations of the players’ utilties. Traditional economic 
game theory does not step beyond the limitations imposed by the utility theory on which it is 
based. 
 
So far we have begun with a scale—ordinal, interval, or ratio—and discussed what scientific 
claims would be regarded as meaningful on those scales. We can also go in the reverse 
direction: we can begin with a scientific theory where we designate certain classes of claims 
as meaningful and then ask: what scales would be required for the fundamental quantities to 
underwrite our claims of meaningfulness? This mode of inquiry allows one to determine the 
commitments that a scientific theory makes regarding the structure of its fundamental parts. 
 
By way of illustration, we could begin with traditional game theory and designate that all Nash 
equilibria are “meaningful.” We could then ask, what is the weakest scale for the utilities that 
would warrant those claims of meaningfulness? In this case, the answer would be the interval 
scale. Utility could not be an ordinal scale because some monotonic transformations of the 
underlying utility functions would alter the location of mixed strategy Nash equilibria. 
 
Game theory was imported into biology by Maynard Smith and Price (1973) and the first 
formal model of evolutionary change in game theory was presented by Taylor and Jonker 
(1978). The move from economics to biology appears straight-forward: the concept of utility 
is replaced by fitness and the concept of maximization by rational choice is replaced with the 
optimizing force of evolution by natural selection. As we will see, things are slightly more 
complicated. 
 
3 Evolutionary Dynamics 
 
The basic evolutionary model we are going to consider is known as the replicator dynamics in 
evolutionary game theory and as Wright’s selection equation in population genetics (Taylor 
and Jonker, 1978; Hofbauer and Sigmund, 1998; Wagner, 2010). We focus on the continuous-
time version of this dynamics, but the discrete time version can be treated in the same way.4 
 
Suppose there are 𝑛 traits, 𝑠*, … , 𝑠-, in a population. Traits may be behavioral strategies or 
other phenotypic characteristics. In population genetics they represent alleles. We denote 
the relative frequency of individuals having trait 𝑖 by 𝑥0. The population state is given by the 
vector of relative frequencies 𝒙 = (𝑥*, … , 𝑥-). Let 𝑓0(𝒙) be the fitness of trait 𝑖 if the 
population is in state 𝒙. We make the standard assumption that 𝑓0  is a linear function of the 
basic fitness type 𝑖 gets from interaction with type 𝑗, that is, 𝑓0(𝒙) = ∑ 𝑓0(𝑗)𝑥66 . For now, we 
don’t know what exactly fitness is. All we assume is that it is some real-valued function. 

 
4 Although the conclusions for the discrete time version will be different. 



 
According to the replicator dynamics, the rate of change in trait 𝑖 is given by the following 
system of ordinary differential equations: 
 
 �̇�0 = 𝑥0 8𝑓0(𝒙) − 𝑓(̅𝒙);, (1) 
 
where 𝑓̅(𝒙) = ∑ 𝑥0𝑓0(𝒙)0  is the average fitness in the population. The replicator dynamics is 
a particular instance of the idea that traits with above average fitness increase in frequency, 
whereas traits with below average fitness decrease, which is the fundamental idea of natural 
selection. 
 
A common variant of the replicator dynamics is the adjusted replicator dynamics (Maynard 
Smith, 1982): 
 

 �̇�0 =
<=8>=(𝒙)?>̅(𝒙);

>̅(𝒙)
 (2) 

 
 
The dynamics (2) results from the replicator dynamics by re-scaling with the average fitness. 
We will see below that the invariance properties of the replicator and the adjusted replicator 
dynamics can be quite distinct. 
 
We will also consider the two-population replicator dynamics. The number 𝑥0  represents the 
relative frequency of individuals with trait 𝑖 in population one, and the number 𝑦0  represents 
the relative frequency of individuals with trait 𝑗 in population two. The state of the system is 
given by 𝒙 = (𝑥*, … , 𝑥-) and 𝒚 = (𝑦*, … , 𝑦B), where 𝑛 and 𝑚 are the number of traits in 
populations one and two, respectively. The two populations interact with one another, giving 
rise to the system 
 
 �̇�0 = 𝑥0 8𝑓0(𝒚) − 𝑓̅(𝒙, 𝒚); (3) 

�̇�0 = 𝑦0 8𝑓6(𝒙) − 𝑓(̅𝒚, 𝒙); 
 
Here, 𝑓0(𝒚) is the fitness of trait 𝑖 in population one if population two is in state 𝒚, 𝑓6(𝒙) is the 
fitness of trait 𝑗 in population two if population one is in state 𝒙, and 𝑓̅(𝒙, 𝒚), 𝑓̅(𝒚, 𝒙) are the 
respective average fitness in populations one and two. 
 
The replicator dynamics has been widely used in population genetics and evolutionary game 
theory. Besides obvious applications in evolutionary biology, it is also an important in studies 
of cultural evolution (Weibull, 1995; Hofbauer and Sigmund, 1998). 
 
The replicator dynamics models a selection process in an explicitly dynamical way. Often, 
researchers prefer to identify the evolutionarily stable states of a population. In the present 
setting, a state 𝒙 is evolutionarily stable if the following two conditions hold: 
 

(i) 𝑓(𝒙, 𝒙) > 𝑓(𝒚, 𝒙) 
(ii) If 𝑓(𝒙, 𝒙) = 𝑓(𝒚, 𝒙), then 𝑓(𝒙, 𝒚) > 𝑓(𝒚, 𝒚) 



 
The first condition says that 𝒙 is a best response to itself (i.e., it is a symmetric Nash 
equilibrium). Thus, in a majority 𝒙 population, no other trait does better against the majority. 
The second condition says that if there is an alternative best response 𝒚, 𝒙 has a higher fitness 
when interacting with 𝒚. Hence, a population that mainly consists of 𝒙 individuals cannot be 
invaded by a small number of individuals that exhibit an alternative best response 𝒚, assuming 
the population is large and interactions are uncorrelated. 
 
Evolutionarily stable states are asymptotically stable rest points of the replicator dynamics 
(1), but the converse is not true (Hofbauer and Sigmund, 1998). Thus, already at the level of 
the replicator dynamics evolutionary stability does not capture every type of stable rest point. 
For this and other reasons, the concept of evolutionary stability should be used with caution 
(Huttegger and Zollman, 2013; Rubin, 2016). But despite limitations, evolutionary stability is 
a useful and influential concept in evolutionary biology. 
 
 
4 Invariance and Evolutionary Dynamics 
 
We are now in a position to study fitness as used in the replicator dynamics in terms of 
invariance. Okasha (2018, §6.6) discusses fitness functions along broadly similar lines, but we 
will provide a more thorough analysis here. 
 
Models in the biological and social sciences, unlike models in physics and chemistry, are often 
not supposed to provide precise numerical predictions. Instead, the predictions of 
evolutionary models are often thought of as qualitative, in that they predict end states or 
directions of evolution, but not necessarily the state of a given population at a particular time. 
Thus the idea of the invariances governing models such as the replicator dynamics has to be 
modified. We need to clarify which aspects of a dynamical model should be preserved. We 
will consider several possibilities. Once the invariances have been determined, we then show 
what constraints this places on the fitness function used in the model. 
 
We start with the one-population replicator dynamics. The system (1) defines a set of 
trajectories on a simplex of dimension 𝑛 − 1 (𝑛 is the number of strategies of the underlying 
game). There are various aspects of that system that we might want to preserve: 
 

1. The solution trajectories should be preserved together with the velocity with which 
they are traversed. 

2. Only solution trajectories should be preserved. 
3. Certain qualitative features, such as the location of rest points and their stability 

properties, should be invariant. 
 
The first case is the most restrictive. Suppose the fitness functions in (1) are changed in some 
way. Then the trajectories will be altered unless the change involves only multiplication of 
fitnesses by a positive real number.5 That is, if we multiply fitnesses by 𝑎 > 0, we have 
 

 
5 Multiplication by a negative real number would leave the trajectories intact, but switch their direction. 



 �̇�0 = 𝑎𝑥0 8𝑓0(𝒙) − 𝑓(̅𝒙);, (4) 
 
This system has the same trajectories as the original one, but the trajectories are traversed 
slower or faster depending on whether a is less than or larger than 1. To see why, notice that 
multiplying with a leaves the direction of the vectors in the vector field generated by (1) the 
same (Weibull, 1995, §3.1.2), but the length of the vectors is determined by the difference in 
fitness which will be altered by 𝑎. Thus, if we want to preserve the trajectories and the 
velocity, then the fitness function 𝑓 has to be an absolute scale. 
 
Consider the simple coordination game pictured in Figure 1a. The trajectories and speed of 
change are pictured in Figure 1b. If fitness is multiplied by a constant 0 < 𝑎 < 1, the 
trajectories remain the same, but the speed of motion is reduced. Conversely if they are 
multiplied by 𝑎 > 1, the speed of motion is increased. 
 

 A B 
A 1,1 0,0 
B 0,0 1,1 

 
(a) A simple two strategy coordination game 

 

 
 

(b) An illustration of the trajectories and speed for the one-population replicator dynamics. The x-
axis represents the proportion of the population playing A. The y-axis represents the rate of change 
of the population. 

 
Figure 1: An example of the change in speed of evolution as fitness is multiplied by a positive 
constant 𝑎 > 0. 

 
The situation is different in the adjusted replicator dynamics (2). If f is a ratio scale, then not 
just the trajectories but also the time scale factor are invariant. This follows since the scaling 
factor 𝑎 > 0 appears in both the numerator and the denominator of (2). The velocity at which 
the system moves along the orbits is the same for all admissible scales. Thus, what is invariant 
under an evolutionary dynamics depends on the evolutionary model. 
 
Therefore, if we are interested in preserving both the trajectories and the speed of evolution, 
the replicator dynamics requires that fitness represents an absolute scale, while the adjusted 
replicator dynamics requires only a ratio scale. 
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Suppose that we are not concerned with the speed at which trajectories are traversed. Then 
𝑓 can be multiplied by a positive real number without having an inadmissible numerical 
representation of fitness. Fitness is being measured on a ratio scale for both dynamics. As we 
have just seen, in this situation all admissible numerical representations leave the trajectories 
of the system invariant. This has important consequences. Not only does a change of scale 
not affect the number, location, and stability properties of rest points or other regions of state 
space (such as periodic orbits), but it is also true that the basins of attraction, and thus their 
sizes, are preserved. Statements such as claiming that one basin of attraction is larger than 
another are thus meaningful for ratio-scaled fitness. 
 
For fitness measured on a ratio scale, then, the trajectories of the replicator dynamics are 
invariant under admissible scale transformations up to a change of time scale, and the 
adjusted replicator dynamics is fully invariant under admissible scale transformations. If 𝑓 is 
an interval scale, the trajectories of the replicator dynamics are again invariant under 
admissible scale transformations. This follows since 
 

𝑥0 H𝑎𝑓0(𝒙) + 𝑏 −J 𝑎𝑓0(𝒙)
0

− 𝑏K = 𝑎 8𝑓0(𝒙) − 𝑓̅(𝒙);, 

 
so that the same trajectories are traversed at a different velocity after a change of scale. 
Hence, for the invariance properties of the replicator dynamics it doesn’t matter if the fitness 
function is a ratio scale or an interval scale. For the adjusted replicator dynamics, however, it 
does. Consider the change of scale to 𝑓L = 𝑎𝑓0 + 𝑏, where 𝑎 > 0. Then (2) becomes 
 

�̇�0 =
𝑥0 8𝑓0(𝒙) − 𝑓(̅𝒙);

𝑓̅(𝒙)
=
𝑎𝑥0(𝑓0(𝒙) − 𝑓(̅𝒙))

𝑎𝑓̅(𝒙) + 𝑏
=
𝑥0(𝑓0(𝒙) − 𝑓(̅𝒙))

𝑓(̅𝒙) + 𝑏𝑎
. 

 
The term N

O
 in the denominator can change the evolutionary dynamics significantly. If 𝑏 is 

negative and is of significantly larger magnitude than 𝑎 it may even happen that 
 

𝑓̅(𝒙) +
𝑏
𝑎 

 
is negative for some 𝒙, in which case the scale transformation would partially invert the 
direction of vectors in the vector field. Changes in 𝑏 can radically alter the dynamic 
trajectories and rest points (see Figure 2). 
 

    
 



  (a) Coordination game with 𝑎 = 1 and 𝑏 = 0 (b) Coordination game with 𝑎 = 1 and 𝑏 = −0.4 
 

      
 
  (c) Coordination game with 𝑎 = 1 and 𝑏 = −0.75 (d) Coord. game with 𝑎 = 1 and 𝑏 = −1.25 

 
Figure 2: Illustration of the sensitivity of the adjusted replicator dynamics to the addition of a 
negative constant to all fitness values 

 
This result also qualifies the well-known fact that the orbits of the replicator dynamics and 
the adjusted replicator dynamics are the same, up to a change of time scale (Cressman, 2003, 
§2.1). We see that this is true only if fitness is measured on an absolute or on a ratio scale. 
 
This also shows how complicated the relationship is between the two dynamics. If we want 
to preserve both the trajectories and the speed with which they are traversed, the adjusted 
replicator dynamics is more permissive—it requires less from our fitness measurements than 
does the replicator dynamics. On the other hand, if we only care about the trajectories, but 
not the speed of traversal, the adjusted dynamics is less permissive—it requires more from 
our fitness measurements relative to the replicator dynamics. 
 
Ordinal scales have weaker invariance properties since they are associated with a larger class 
of transformations. This is reflected in evolutionary theory. Let’s look at the concept of 
evolutionary stability first. Recall that in the definition of evolutionary stability, only the 
ordering of fitness plays a role. But it is not quite correct that it is enough to measure fitnesses 
on an ordinal scale. As long as we only compare the fitnesses of pure strategies, it is true that 
an ordinal scale is sufficient. But as soon as we introduce mixed strategies (which is 
unavoidable in evolution), we need to be able to calculate expected payoffs. This requires 
fitness to be measurable on at least an interval scale. 
 
For the same reasons there seem to be no interesting invariance properties of the replicator 
dynamics and the adjusted replicator dynamics for ordinal scales. Nash equilibria, and thus 
the rest points of both types of replicator dynamics, are not invariant under admissible scale 
transformations. Also, stability properties of rest points can change due to the arbitrariness 
of expected payoff calculations in the context of ordinal scales. These conclusions are slightly 
different when fitness is frequency-independent, i.e. when the fitness of a strategy does not 
depend on the population composition. In this case, ordinal scales do preserve rest points 
and their stability properties, though the trajectories and the speed at which they are 
traversed can change. 



Consider for example the two games pictured in figure 3.6 In this example, an ordinal-rank-
preserving transformation affects the stability of a mixed rest point while also completely 
removing another. In this example the point (1/2, 1/2, 0) is a Nash equilibrium in the original 
game which is an asymptotically stable rest point in the replicator dynamics. After 
transformation, that point remains a rest point in the replicator dynamics, but it is no longer 
a Nash equilibrium and is therefore unstable. 
 

 A B C 
A 0 10 0 
B 10 0 0 
C 7 2 1 

 
(a) A three strategy game with a stable 
rest point at (1/2, 1/2, 0) 

 A B C 
A 0 10 0 
B 10 0 0 
C 7 6 1 

 
(b) A three strategy game which is an ordinal 
transformation of the game to the left, but 
with an unstable rest point at (1/2, 1/2, 0)

 

     
(c) An illustration of the replicator dynamics 
for the game (a) 

(d) An illustration of the replicator dynamics for 
the game (b)

 
Figure 3: An example of two games where one is an ordinal transformation of the other but where 
the stability properties of a rest point are altered through changing the Nash equilibria. 

 
Even if we restrict ourselves to situations where the monotonic transformation preserves the 
location of Nash equilibria, we can change their stability properties. Consider the two 
variations of the classic game Rock-Paper-Scissors pictured in Figure 4. Each game is a 
monotonic transformation of the other and both games feature unique Nash equilibria at 
(1/3, 1/3, 1/3). However, in the left hand game, the equilibrium is unstable and in the right 
hand game the equilibrium is asymptotically stable and a global attractor. 
 

 R P S 
R 0.25 -1 1 
P 1 0.25 -1 
S -1 1 0.25 

 

 
6 The simplex for Figures 3, 4, and 5 were created with the Dynamo software package (Sandholm, 2012). 

(a) A version of Rock-Paper-Scissors 
where the mixed strategy Nash equilibri-
um is unstable 

 R P S 
R -0.25 -1 1 
P 1 -0.25 -1 



S -1 1 -0.25 
 

(b) A version of Rock-Paper-Scissors where 
the mixed strategy Nash equilibrium is asym-
ptotically stable and a global attractor

 

  
(c) An illustration of the replicator dynamics 
for the game (a) 

(d) An illustration of the replicator dynamics for 
the game (b)

 
Figure 4: An example of two games where one is an ordinal transformation of the other but where 
the stability properties of a Nash equilibrium are altered. 

 
If there are good reasons to restrict the class of ordinal transformations in certain ways, there 
are more interesting invariances. Consider game dynamics of the form 
 

�̇�0 = 𝑥0𝑔0(𝒙), 
 
where the functions 𝑔0  are continuously differentiable and generate a dynamics in the 
simplex. The function 𝑔0  is called the growth rate of 𝑖. Consider the class of all transformations 
that preserve the order of growth rates. This leads to the class of payoff monotonic dynamics 
(Hofbauer and Sigmund, 1998, §8.2.). Every payoff monotone dynamics has the same rest 
points as the replicator dynamics. Payoff monotone dynamics share many stability properties 
of the replicator dynamics, such as that strict Nash equilibria are asymptotically stable. 
 
Importantly, however, payoff monotone dynamics don’t all generate the same trajectories. 
Hence basins of attraction can change under admissible changes of the dynamics. This can 
significantly impact the conclusions that we draw from a model. A rest point with a large basin 
of attraction is usually interpreted as being significant since it attracts a large set of initial 
condition; if initial conditions are chosen at random, such a rest point will be observed more 
often than others with a smaller basin of attraction. If the underlying fitness function gives 
rise to a payoff monotone dynamics, no such conclusions are justified.  
 
In two population models things are a bit different. Consider ratio scales. Changing the scale 
in population one by a factor of 𝑎* > 0 and in population two by a factor of 𝑎U > 0 results in 
the system 
 

�̇�0 = 𝑎*𝑥0(𝑓0(𝒚) − 𝑓̅(𝒙, 𝒚)), 
 

�̇�6 = 𝑎U𝑦6 8𝑓6(𝒙) − 𝑓̅(𝒚, 𝒙);. 



 
Since the two populations interact with each other, this does not just lead to a change in time 
scale of the overall dynamics. Consider a two-population, two-strategy game. In this case, the 
two-population replicator dynamics (3) is two-dimensional: 
 

�̇� = 𝑥 8𝑓(𝑦) − 𝑓̅(𝑥, 𝑦); 

�̇� = 𝑦 8𝑓(𝑥) − 𝑓(̅𝑦, 𝑥); 
 
The direction and rate of change is determined by the ratio �̇�/�̇�. This ratio depends on the 
factors 𝑎*, 𝑎U, since in general 
 

𝑥 8𝑓(𝑦) − 𝑓(̅𝑥, 𝑦);

𝑦 8𝑓(𝑥) − 𝑓(̅𝑦, 𝑥);
≠
𝑎*𝑥(𝑓(𝑦) − 𝑓(̅𝑥, 𝑦))
𝑎U𝑦(𝑓(𝑥) − 𝑓̅(𝑦, 𝑥))

 

 
As a consequence, a change of ratio scale in the two population replicator dynamics can 
change the trajectories of the system.7 
 
Thus, basins of attraction are not invariant under those changes. However, close to rest points 
the effects of 𝑎U, 𝑎U diminish, and so the stability of rest points will not be affected. For 
interval scales the same is true, since the additive factors in the change of scale cancel out 
when taking the payoff difference between the expected fitness of a strategy and the average 
fitness in the population. 
 
As an example, consider the two versions of the “Chain-Store game” pictured in Figure 5. Each 
game is constructed by multiplying the row players fitness by a constant (either 0.1 or 10). 
This game features one asymptotically stable Nash equilibrium and a connected set of Nash 
equilibria. As can be seen by the phase portraits, the basins of are substantially altered by 
multiplying the row player’s fitness by a positive constant. 
 

 L R 
U (0,1) (0,1) 
D (-1,-1) (1,0) 

 
(a) The Chain Store Game 
 

 L R 
U (0,1) (0,1) 
D (-0.1,-1) (0.1,0) 

 
(b) The Chain Store Game where row's 
payoffs have been multiplied by 0.1

 

 
7 Cf. the work of Bergstrom and Lachmann (2003) and Bruner (2019) and O’Connor and Bruner (2017). 



      
 
(c) An illustration of the two population 
replicator dynamics for the game (a) 

 
(d) An illustration of the two population 
replicator dynamics for the game (b)

 
Figure 5: An example of how multiplication of one players payoffs by a positive constant alters 
trajectories and the relative sizes of basins of attraction for a game. For illustration, the trajectories 
plotted in (c) and (d) start at identical points. 

 
In sum, then, for ratio scales and interval scales only certain qualitative features of the 
dynamics remain invariant under the two-population replicator dynamics. The same is not 
true for the two-population adjusted replicator dynamics8 in the case of ratio scales, since the 
factors 𝑎*, 𝑎U cancel out in each population. For interval scales, the two-population adjusted 
replicator dynamics can exhibit a wide variety of behaviors depending on the choice of scale. 
 
This result is especially concerning for some uses of the two population replicator dynamics. 
While the joint outcomes can may be on an interval scale, the individual outcomes of each 
population cannot be measured using scales that are independent of one another. When the 
two-population replicator dynamics is used to model two groups in a single species, this may 
be appropriate. If, however, the two populations are two distinct species one might worry 
about the appropriateness of this assumption. 
 
 
5 Inclusive Fitness 
 
A type of transformation that does not correspond neatly to a category of scale type is the 
transformation of personal, or neighbor-modulated, fitness into inclusive fitness. To calculate 
neighbor-modulated fitness one simply sums up all the fitness effects an organism is expected 
to have from their social interactions (relevant to the trait of interest). Then, to arrive at 
inclusive fitness, rather than multiplying or adding a constant to a measurement of fitness, 
one subtracts and adds fitness effects in a more complicated way (Hamilton, 1964; Frank, 
2013). 
 

 
8 For that dynamics, just divide the right hand sides of (3) by the respective average population payoffs. 



We can look at a simple example to see how this works. Inclusive fitness calculations are often 
used to determine when altruistic traits are favored by selection. These are traits where there 
is some cost, 𝑐, incurred by an organism and some benefit, 𝑏, conferred to another organism. 
The neighbor-modulated fitness of altruism and non-altruism are: 
 
 𝑓O = 𝑓Y + 𝑃(𝐴?0|𝐴0) ∙ 𝑏 − 𝑐 (5) 
 
 𝑓- = 𝑓Y + 𝑃(𝐴?0|𝑁0) ∙ 𝑏 (6) 
 
where 𝑃(𝐴?0|𝐴0) is the conditional probability that an altruist interacts with another altruist 
and 𝑃(𝐴?0|𝑁0) is the conditional probability that a non-altruist interacts with an altruist—
these capture the probability each type receives a benefit. Further, 𝑓Y is the baseline fitness 
that an organism receives. By contrast, the inclusive fitness of these traits (using 𝑤 now to 
distinguish from neighbor-modulated fitness) are: 
 
 𝑤O = 𝑓Y + [𝑃(𝐴?0|𝐴0) − 𝑃(𝐴?0|𝑁0)] ∙ 𝑏 − 𝑐 (7) 
 
 𝑤- = 𝑓Y (8) 
 
where 𝑃(𝐴?0|𝐴0) − 𝑃(𝐴?0|𝑁0) is the ‘relatedness’, 𝑅, between two organisms. 
 
In this case, the transformation first strips all components which are due to the individuals’ 
social environment (the terms consisting of 𝑏 and the probability of receiving it) then 
augments each fitness calculation by the relatedness-weighted benefit or harm the individual 
causes to their social partners’ fitness (𝑅 ∙ 𝑏 for the altruists, who cause a benefit, and 0 for 
the non-altruists who do not affect their social partner’s fitness). In the end, this essentially 
amounts to subtracting the term ‘𝑃(𝐴?0|𝑁0) ∙ 𝑏’ from both neighbor-modulated fitness 
calculations. 
 
This changes fitness in a non-constant way—the exact effect will depend on the population 
composition, as 𝑃(𝐴?0|𝑁0) will generally change with the number of altruists—but in certain 
cases the evolutionary trajectories will be invariant under this sort of transformation. Under 
certain assumptions, namely actor’s control and weak additivity,9 this transformation can be 
shown to give the same prediction for the direction of evolutionary change as the original 
neighbor-modulated fitness payoffs (Queller, 1992; Birch, 2016).10 Thus, the location of rest 
points and their stability properties are preserved. In the context of the replicator dynamics 
with two possible traits, it has been proven further that (given the above assumptions) both 
the solution trajectories and the speed at which they are traversed are unaltered by this 
transformation, when relatedness is constant (Van Veelen, 2011) or when there are pairwise 
interactions (Rubin, 2018). 
 

 
9 Roughly, these two conditions correspond to requiring that the fitness effects on the recipient do not depend 
on the recipient’s genotype/phenotype and fitness effects from all an organism’s social interactions can simply 
be added up (Birch, 2016). 
10 These proofs make use of the Price equation, not the continuous time replicator dynamics, but the two 
dynamics are equivalent when there are a finite number of traits (Rubin, 2018). 



This is somewhat surprising because neighbor-modulated fitness and inclusive fitness are not 
positive affine transformations of one another, but they are monotonic transformations of 
one another. This might lead one to think of neighbor-modulated and inclusive fitness as on 
the same ordinal, but not interval, scale. However, it turns out that more of the structure of 
the replicator dynamics is preserved than with an ordinal scale. In particular, when it comes 
to the replicator dynamics, it looks more like an interval or even an absolute scale. 
 
Consider a simple example first discussed by Skyrms (1994). Imagine a population where two 
individuals are paired to interact at random. If an altruist is initially paired with an altruist, the 
two interact. Any individual (altruist or non-altruist) who initially pairs with a non-altruist can 
refuse and seek another pairing. They are then paired again, but they cannot refuse the 
second pairing. This introduces a certain level of correlation. But the exact values of 
𝑃(𝐴?0|𝐴0) and 𝑃(𝐴?0|𝑁0) will depend on the proportion of altruists in the population. In 
particular: 
 

𝑃(𝐴?0|𝐴0) = 𝑝 +
(𝑝 − 𝑝U)(1 − 𝑝)

1−𝑝U  

 

𝑃(𝐴?0|𝑁0) =
𝑝 − 𝑝U

1 − 𝑝U 

 
With this simple example, it is clear that inclusive fitness and neighbor-modulated fitness are 
not equivalent. Figure 6 shows how the fitness of altruists and non-altruists compare for 
various population proportions. 

 

  
 

(a) Inclusive fitness                                 (b) Neighbor-modulated fitness 
 

Figure 6: An example of how neighbor-modulated and inclusive fitness change as the population 
composition changes. In this example, 𝑓Y = 0, 𝑏 = 9, and 𝑐 = 3. The blue line represents the 
fitness of the altruistic type and the yellow line represents the fitness of the non-altruistic type. 
The x-axis is the proportion of altruists in the population, 𝑝. 

 
Despite the fact that the scales are obviously different from one another, they nonetheless 
generate identical evolutionary histories in the replicator dynamics (see figure 7).11 This is 
because the difference between altruists’ and non-altruists’ fitness is the same regardless of 
which one uses neighbor-modulated or inclusive fitness for all population compositions. So, 
even though we are performing a transformation which is inadmissible when using an 

 
11 For a discussion see Rubin (2018). 



absolute scale, evolutionary predictions based on the replicator dynamics have the same 
invariance properties as when fitness is measured using an absolute scale. 
 

 
Figure 7: The replicator dynamics for both inclusive fitness and neighbor-modulated fitness in the 
example where 𝑓Y = 0, 𝑏 = 9, and 𝑐 = 3. 

 
Additionally, since inclusive fitness enters into the dynamics in the same way as any other 
calculation of fitness (namely, it is used to calculate fitness of each strategy and the average 
fitness of the population, which are then plugged into the dynamical equations), whatever 
invariance there is in the dynamics, this invariance exists when fitness is thought of as 
inclusive fitness. For instance, with the replicator dynamics, one can add or multiply inclusive 
fitness by any number without changing the solution trajectories. Further, the choice of 𝑓Y (or 
whether to include it at all) is irrelevant to the evolutionary trajectories as one can add any 
constant without changing the solution trajectories or the speed at which they are traversed. 
If one is using the adjusted replicator dynamics, on the other hand, the background fitness 
can have important effects on the evolutionary trajectories. 
 
 
6 Conclusion 
 
Let’s return to our main question: Given that we wish to preserve certain features of an 
evolutionary dynamics, what constraints does this put on the underlying fitness function? 
 
Our results entail the following. Consider the standard one population replicator dynamics. 
In case we wish to preserve both the trajectories and the time scale, fitness must be measured 
on an absolute scale. If we wish to preserve the trajectories but not the time scale, it is 
sufficient that fitness be measured on a ratio or an interval scale. Ordinal scales don’t give 
rise to any interesting invariances, unless there is a way to restrict admissible scales to those 
that respect the ordering given by expected fitness. In the two-population replicator 
dynamics the invariance of trajectories requires an absolute fitness scale. For ratio and 
interval scales, trajectories and basins of attraction may change. 
 
The situation is different in the adjusted replicator dynamics. If we wish to preserve both the 
trajectories and the time scale of the dynamics, it is enough that fitness be measured on a 
ratio scale. On the other hand, interval scales don’t lead to any interesting invariance. They 
may even lead to changes of basic qualitative features of the dynamics, such as the direction 
of the vector field. 
 
Not every transformation biologists’ use in describing evolutionary change can be captured 
by one of these measurement scales. In the case of inclusive fitness, described in section 5, 



one transforms personal fitness functions in a non-constant way. Yet, in certain cases, this 
can lead to invariances in the evolutionary dynamics. What assumptions are needed to prove 
these invariances (and how restrictive they are) depends on whether one cares only about 
the location and stability of rest points or if one cares additionally about the speed at which 
the trajectories are traversed. 
 
Many applications of evolutionary theory use an absolute measure of fitness, namely the 
number of offspring or the expected number of offspring. This leads of course to very strong 
invariance properties. The disadvantage is that just counting offspring or calculating the 
expected number of offspring is a very crude concept of fitness in situations in which we wish 
to determine the contribution of specific traits or strategies to fitness. For instance, Wagner 
(2010) has proposed a measure of fitness that captures the competitive ability of traits. His 
approach is based on Luce’s theory of choice probabilities (Luce, 1959). Wagner develops an 
analogous theory for evolution, where probabilities reflect a trait’s propensity to out-
compete other traits. He proves that under certain conditions this gives rise to a ratio scale 
measure of fitness. As we have seen, this is associated with strong invariance properties in 
one-population replicator dynamic models, and preserves qualitative features in two-
population models. 
 
In cultural evolution one usually does not have access to measures of fitness with strong scale 
invariance properties. Applications in economics usually assume that fitness is a standard 
utility function, hence an interval scale. In these cases, the replicator dynamics has reasonable 
invariance properties. In applications of evolutionary game theory outside of economics it is 
often not so clear what fitness is. The dangerous case is that fitness is only thought of as an 
ordering of outcomes. As mentioned above, without any special restrictions this does not lead 
to any interesting conclusions regarding the significance of certain population states. 
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