
East Tennessee State University East Tennessee State University

Digital Commons @ East Tennessee Digital Commons @ East Tennessee

State University State University

Electronic Theses and Dissertations Student Works

8-2019

Automation of State Climate Office Processes & Products: Automation of State Climate Office Processes & Products:

Developing Efficient Approaches for Data Dissemination Developing Efficient Approaches for Data Dissemination

Michael Shoop
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

 Part of the Geographic Information Sciences Commons

Recommended Citation Recommended Citation
Shoop, Michael, "Automation of State Climate Office Processes & Products: Developing Efficient
Approaches for Data Dissemination" (2019). Electronic Theses and Dissertations. Paper 3626.
https://dc.etsu.edu/etd/3626

This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @
East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please
contact digilib@etsu.edu.

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F3626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=dc.etsu.edu%2Fetd%2F3626&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Automation of State Climate Office Processes & Products: Developing Efficient Approaches for

Data Dissemination

A thesis

presented to

the faculty of the Department of Geosciences

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Geosciences

by

Michael Shoop

 August 2019

Andrew Joyner, Ph.D., Chair

Ingrid Luffman, Ph.D.,

William Tollefson.

Keywords: Python, Automation, GIS, Climate, web application, Tennessee, GDAL, Arcpy

2

ABSTRACT

Automation of State Climate Office Processes & Products: Developing Efficient Approaches for

Data Dissemination

by

Michael Shoop

State Climate Offices (SCO’s) in the United States are critical conduits for improving weather

and climate data in local communities. Two states do not have a state-recognized SCO:

Tennessee and Massachusetts. Efforts are underway at East Tennessee State University to

develop the Tennessee Climate Office (TCO). Currently, climate services and products are

severely lacking across Tennessee. This thesis provides an improved methodology for an

existing TCO product and outlines the development of a new product using Python scripting.

Daily storm reports within the monthly climate report are automated and a Weather Forecasts

Hazard Index (WFHI) web application is developed. Both products utilize data from the National

Oceanic and Atmospheric Administration (NOAA), with the automated daily storm reports

providing substantial time savings and the WFHI providing a high resolution web application for

emergency managers and others to interpret potentially hazardous forecasts for extreme

temperatures, high winds, snowfall/ice accumulation, and tornado/hail events.

3

ACKNOWLEDGEMENTS

I have a lot of people to thank for completing this thesis. I should start by thanking my

advisor Dr. Andrew Joyner for helping me so much in developing this thesis, and believing in

what I was doing. A great deal of thanks needs to go out to Vincent Thompson who spent many

hours helping me through technical difficulties. A thanks to my committee for meticulously

reviewing my work. To my parents Nancy and Jeff Shoop for supporting me. To my sister Sara

Graham and my cousin Leah Bailey for helping me believe I could go to graduate school and

succeed. Finally to Kim Blazzard for always being there for me through thick and thin on this

journey.

4

TABLE OF CONTENTS

Page

ABSTRACT .. 2

ACKNOWLEDGEMENTS .. 3

LIST OF TABLES .. 7

LIST OF FIGURES .. 8

LIST OF ABBREVIATIONS ... 10

CHAPTER 1. INTRODUCTION ... 11

Background ... 11

Motivation ... 23

Organization and Contribution by Chapter ... 24

Chapter 1: Introduction.. 24

Chapter 2: Python .. 24

Chapter 3: Methodology and Products .. 25

Chapter 4: Results, Discussion and Conclusion .. 25

CHAPTER 2. PYTHON ... 26

Introduction ... 26

Variables, Types, and Classes ... 26

Modules ... 27

Lists, Dictionaries, and Tuples .. 29

Looping ... 30

Decision Structures ... 32

Batch Files and Task Scheduler .. 33

5

CHAPTER 3. METHODOLOGY AND PRODUCTS ... 36

SPC Storm Reports Description .. 36

SPC Storm Reports .. 36

Automation of SPC Storm Reports ... 38

Designing the Weather Forecast Hazard Index Webapp... 39

Data.. 42

Downloading Data from the NDFD Website .. 44

GRIB2 data converted to vector polygons .. 46

Creating a Hazard Index .. 50

Posting Data to ArcGIS Online ... 54

Setting up a Dashboard Webapp in ArcGIS Online .. 55

Task Scheduler and Batch Files .. 56

CHAPTER 4. RESULTS, DISCUSSION AND CONCLUSION .. 57

SPC Storm Report Results .. 57

Weather Forecast Hazard Index Results ... 58

SPC Storm Report Discussion ... 66

Hazard Index Discussion ... 67

Other Challenges ... 69

Limiting Factors .. 70

Future Research and Product Development .. 71

Product Continuity & Preservation ... 72

Conclusion ... 73

6

REFERENCES ... 75

APPENDIX ... 84

Appendix A: Tennessee State Climate Office Mission Statement .. 84

Appendix B: July 2018 Tennessee Climate Summary .. 86

Appendix C: Python Script Automation ... 113

Python Script for Automation of Daily Storm Reports: .. 113

Python Scripts for Automation of Hazard Index Web Application: 123

Appendix D: Former Scripts ... 152

Former Script for Automation of Daily Storm Reports: ... 152

Former Script for Downloading data from the NDFD website script: 166

Former Script for GRIB2 data converted to vector polygons script: 172

Former Script for Creating a Hazard Index Script: ... 183

VITA ... 189

7

LIST OF TABLES

Table Page

1. Most modules used in product development are listed and described in this table 28

2. Weather elements pulled from the NDFD for product development .. 44

3. Conversion table of SPC Categorical Outlook Legend risk levels to NDFD categorical outlook

values. Please note moderate and high conversions are based on documentation from

documents from 2009 and are not completely verified .. 61

8

LIST OF FIGURES

Figure Page

1. National weather/climate data services hierarchy ... 13

2. RCC regions and the location of RCC offices .. 15

3. SCO status across the United States ... 17

4. Screenshot of the Severe Storm Reports Tool taken on 03/17/2019 .. 18

5. Screenshot of Kentucky mesonet agriculture application taken on 04/01/2019 19

6. Screenshot from the Oklahoma SCO agriculture essentials tool .. 20

7. New trigger dialog within Task Scheduler ... 33

8. New Action dialog within Task Scheduler ... 34

9. Sample Batch file used in argument in Task Scheduler ... 35

10. Model of Automation of SPC Storm Reports ... 38

11. Image of DWHI showing low to moderate risk of snow in northern Delaware on

03/03/2019 .. 40

12. Screenshot of WFHI with low to high risk levels for wind gusts on April 19, 2019 41

13. Model of NDFD data transfer ... 45

14. Model of WFHI data conversion to vector polygons.. 46

15. Model of WFHI vector polygons being used to create a hazard index 51

16. Storm report for June 05, 2019 showing one instance of wind in Tennessee 57

18. Screenshot of maximum apparent temperature taken on June 22, 2019................................. 60

19. Example of NDFD data used to check final values for the combined feature class 61

20. Convection category data from the combined feature class. This image was taken on June 22,

2019... 62

9

21. SPC Day 1 Convection Outlook showing pattern and values from Figure 4.5 63

22. SPC Day 2 Convection Outlook ... 64

23. SPC Day 3 Convection Outlook ... 65

10

LIST OF ABBREVIATIONS

Acronym Compoud Term Acronym Compoud Term

AASC American Association of State Climatologists NASA National Aeronautics and Space Administration

ACIS Applied Climate Information System NCDC National Climate Data Center

AGOL ArcGIS Online NCEI National Centers for Environmental Information

ARSCO AASC Recognized State Climate Office NCEP National Centers for Environmental Prediction

ASCII American Standard Code for Information
Interchange

NDFD National Digital Forecast Database

AWIPS Advanced Weather Interactive Processing System NDGD National Digital Guidance Database

CEMA Center for Environmental Monitoring & Analysis NOAA National Oceanic and Atmospheric Administration

COOP Cooperative Observer Program NWS National Weather Service

CSD Climate Services Division RCC Regional Climate Center

DBOFS Delaware Bay Operational Forecast System SCO State Climate Office

DOS Disk Operating Systems SPC Storm Prediction Center

DWHI Delaware Weather Hazard Index SQL Structured Query Language

EF Enhanced Fujita Scale SRCC Southern Regional Climate Center

FTP File Transfer Protocol TCO Tennessee Climate Office

GMT Greenwich Mean Time TDL Techniques Development Laboratory

GPS Global Positioning System TIFF Tagged Image File Format

GRIB General Regularly-distributed Information in Binary TVA Tennessee Valley Authority

IFPS Interactive Forecast Preparation System URL Uniform Resource Locator

LSR Local Storm Report USGS United States Geological Survey

MDL Meteorological Development Laboratory UTC Universal Coordinated Time

MPH Miles Per Hour WFHI Weather Forecast Hazard Index

MRCC Midwest Regional Climate Center WFO Weather Forecast Office

MXD Map Exchange Document WGS84 World Geodetic System 1984

NAD83 North American Datum 1983 WMO World Meteorological Organization

WRCC Western Regional Climate Center

11

CHAPTER 1

INTRODUCTION

Background

Improving access to climate and weather data is essential for short- and long-term

planning, emergency response, hazard mitigation, and multi-sector impact awareness (Arzberger

et al. 2004, Coletti et al. 2013, Sawale and Gupta 2013). State Climate Offices (SCO’s) in the

United States are critical conduits for improving data access, providing context for local weather

events and trends, better understanding of climate impacts on the state’s economy, and data-

informed product development that helps improve decision-making in local communities

(AASC… 2019). Rapidly evolving hardware and software technologies greatly increase SCO-

level value-added product development and dissemination. Climate and weather data can now be

processed and analyzed more efficiently than ever, allowing SCO’s to fulfill their National

Climate Services Partnership core mission areas of extension, research, and education with

greater precision and flexibility that support local communities across the state (Brooks 2013,

Climate Service Partners 2018).

While a SCO utilizes both climate and weather data, it is important to distinguish the

difference between the two terms and to distinguish the difference between a National Weather

Service (NWS) Weather Forecast Office (WFO) and a SCO. Weather describes short-term

atmospheric events or patterns, including current conditions (e.g., raining, 55°F, northeast winds

at 10 mph) and near-term forecast (e.g., 7-day outlook). We most often associate ‘weather’ with

forms of media such as our local news station broadcast meteorologists or the Weather Channel.

Climate describes long-term patterns, trends, and anomalies – essentially a culmination of

multiple weather events and conditions over a long period of time. NWS WFO’s primarily focus

12

on short-term weather forecasts and weather event preparedness (e.g., for an approaching

hurricane, warnings are issued with specific storm surge and wind details along with evacuation

advisement and other messages). A SCO and WFO often collaborate on projects that require

both weather and climate data analysis.

Within climate science, comparisons are often made in a historical context. For example,

based on 30-year climate records (called ‘normals’), the average high temperature in November

at a given location should be 60°F and the average low temperature should be 40°F, but on a

given day the high/low temperatures may be 50°/30°, indicating below average temperatures on

that day. Climate data analysis allows us to evaluate how short-term conditions (weather)

deviate from long-term patterns and conditions (climate) (e.g., was this year wetter than

average?) (e.g., Jones et al. 2009, Karl et al. 2012). Climate also describes long-term patterns

beyond those of just temperature and precipitation. SCO’s and climatologists study a wide

variety of phenomena including long-term tornado patterns (e.g., Dixon et al. 2011, Dixon et al.

2014), drought anomalies (e.g., Cook et al. 2011, Karl et al. 2012, Logan et al. 2010, McCabe et

al. 2008), tropical cyclone landfall patterns (e.g., Keim et al. 2007, Moore et al. 2011, Nogueira

et al. 2011, Nogueira et al. 2013, Needham et al. 2014), teleconnection patterns like El Niño/La

Niña (e.g., Hoerling et al. 1997, Müller et al. 2008, Stoner et al. 2009) and the Atlantic Multi-

decadal Oscillation (Dima et al. 2007), and local and regional rainfall return periods (e.g., Faiers

et al. 1994, Powell et al. 2015). Without climate data analysis and services, engineers would not

know how to design a bridge to withstand a 1% rainfall/flood event (i.e., a 100-year event)

because they would not know the 1-hour and 24-hour rainfall return periods (e.g., Bonnin et al.

2004). Additionally, engineers and planners would not know when those thresholds were

exceeded without in-depth climatological analyses of weather events.

13

Beyond climate and weather differences, it is important to understand the general

hierarchy of climate data services from the federal level to the state/local level (Figure 1).

Figure 1. National weather/climate data services hierarchy

At the federal level, nearly all climate data are developed and maintained by the National

Oceanic and Atmospheric Administration (NOAA). Other agencies provide some climate data

services and analysis such as the National Aeronautics and Space Administration (NASA) and

the United States Geological Survey (USGS), but for the purpose of this thesis, NOAA is

recognized as the primary federal climate data curator and provider. Within NOAA, many

divisions and departments focus on climate and weather. The National Centers for

Environmental Information (NCEI, formerly the National Climate Data Center (NCDC)),

National Centers for Environmental Prediction (NCEP), and the NWS provide the bulk of

climate and weather data and services. NCEI, located in Asheville, North Carolina, “is

14

responsible for preserving, monitoring, assessing, and providing public access to the Nation's

treasure of climate and historical weather data and information” (NOAA NCEI Mission

Statement). NCEI maintains the world’s largest climate data archive, impacting nearly every

sector of the U.S. economy via services, partnerships, and product development. NCEP is

composed of nine centers across the U.S. and is responsible for providing weather guidance,

forecasts, warnings, and analyses to partners and users. Collectively, the centers form part of the

NWS, which itself represents 122 WFO’s, 13 River Forecast Centers, nine National Centers, and

other support offices across the country. The NWS collects and analyzes more than 76 billion

observations and releases about 1.5 million forecasts and 50,000 warnings each year. All three

entities (NCEI, NCEP, NWS) share substantial resources to develop the National Digital

Forecast Database (NDFD), which is a suite of products generated by the NWS using data from

regional WFOs and the NCEP (National Oceanic and Atmospheric Administration 2019).

Regional Climate Centers (RCC) (NCEI partners) are managed by NCEI. The RCCs are

partnered with NWS’s Climate Services Division (CSD) and work with organizations such as the

American Association of State Climatologists (AASC). The RCC program was initiated in 1978

under the National Climate Program Act. The first formally designated RCC was the Western

Regional Climate Center (WRCC) in Reno, Nevada, established in 1986. By 1990 all six RCCs

were established. Of the six regional climate centers, five evolved out of State Climate Programs

(Degaetano 2010). State-level RCC alignment is shown in Figure 2.

15

Figure 2. RCC regions and the location of RCC offices

RCCs accomplish two important National Climate Services roles. The first role is the

provision or development of customer-specific products from collected data. The West Nile

Virus Risk Model developed by the Midwestern Regional Climate Center (MRCC) is one

example of this type of product (Degaetano 2010). Another is the Tropical Desk web application

developed by the Southern Regional Climate Center (SRCC). Which shows historical and

current Atlantic basin tropical cyclone activity (Interactive… 2007). A final example is the

Climate Perspective (CLIMPER) tool developed by the Southeast Regional Climate Center

16

(SERCC). This tool shows current or forecast precipitation and recent temperature in relation to

historical data for that same time of year (Climate…2019).

The second important role is maintenance of a computer-based infrastructure for

managing and disseminating data. An example of this is the Applied Climate Information System

(ACIS) maintained by the RCCs. This system is designed to manage and disseminate collected

climate data from federal, regional, state, and local networks. These data represent a combination

of historical and near-real time climate data. ACIS uses multiple data sources to produce

products for end users (ACIS 2017). RCCs also develop and operate the primary data

management software for the National Weather Service Cooperative Observer Program (COOP).

The daily climate observations collected by the COOP are a primary source of weather data in

the United States (ACIS 2017).

Originally federally funded and a program of the NWS, the SCOs were disbanded in

1973 when each state government was asked to support a state climatologist at the local level to

provide the services eliminated by the NWS. Most SCOs re-established themselves immediately

or within a few years, often at public universities and sometimes at state agencies. Most

commonly, formal agreements or memorandums were signed between the university/agency,

state government (governor and/or legislature), and NOAA’s NCDC/NCEI. Currently, there are

49 SCOs in the United States, including one in Puerto Rico (Figure 3).

17

Figure 3. SCO status across the United States

 Two states do not have a state-recognized SCO: Tennessee and Massachusetts. Amongst

the 49 SCOs, there are excellent examples of state and local weather and climate data products

and services that drastically improve the state’s access to weather and climate data. This enables

these states to use refined, local data for planning, emergency response, economic assessment,

agricultural impacts, and more. Some states have established extensive mesonet systems – a

collection of well-distributed, very high accuracy automated weather stations. This allows states

to provide several valuable data services. Mesonet systems are able to capture “meso” scale

climate differences in localized areas that are not recorded from coarser climate data. This leads

18

to improved weather forecasting for these smaller areas and improved climate data for long term

analysis (Mesonet Essentials… 2019).

A good example of a product produced by an SCO is the Severe Storm Reports tool

developed by the North Carolina SCO. This tool shows the climate history of severe weather in

North Carolina using the validated severe storm reports originally from the National Weather

Service offices (see Figure 4) (Severe Storm Reports Tool… 2019).

Figure 4. Screenshot of the Severe Storm Reports Tool taken on 03/17/2019

The Kentucky mesonet agriculture application is an example of a mesonet capturing

meso-scale weather and climate differences in localized areas. This application shows current,

past, and forecast weather in the area surrounding the weather stations (Kentucky Mesonet

Agriculture Tool… 2019).

19

Figure 5. Screenshot of Kentucky mesonet agriculture application taken on 04/01/2019

Another example is the Oklahoma SCO Mesonet Agriculture Essentials tools. This is a

suite of tools showing climate conditions such as drought as well as weather forecasting such as

the Cattle Comfort Advisor (see Figure 6) (Agriculture Essentials… 2019).

20

Figure 6. Screenshot from the Oklahoma SCO agriculture essentials tool

A final example is the Delaware Weather Hazard Index (DWHI), developed by the

Center for Environmental Monitoring & Analysis (CEMA) which houses the Office of the

Delaware State Climatologist. This web application was the inspiration for the second product of

this thesis, which is covered in more detail in section 3.2 (Callahan 2014).

As mentioned previously, Tennessee is one of two states lacking a state-recognized SCO.

However, efforts are underway at East Tennessee State University to develop an official SCO.

Currently there is an ‘acting’ SCO and the two primary products that this thesis will describe are

21

project initiatives of the unofficial Tennessee Climate Office (TCO). Tennessee's climate varies

greatly from west to east and has wide-ranging impacts on many parts of the state’s economy.

The SCO for Tennessee was originally established under the direction of the Tennessee Valley

Authority (TVA), however it ceased operations in 2006. Over ten years later in 2017,

researchers at East Tennessee State University began to re-establish the TCO. The mission of

the TCO is to provide climate-related services (e.g., weekly drought monitor advisement,

monthly climate summaries, historical climate data for hazard mitigation planning, etc.) to state,

local and federal agencies, businesses, and the citizens of Tennessee. The TCO partners with the

four NWS WFOs serving Tennessee, multiple state agencies, and regional climate data

representatives at the University of Tennessee Institute of Agriculture, the University of

Tennessee-Martin, and Vanderbilt University. For additional information about the TCO’s

mission, see Appendix A: Mission Statement.

Without a long SCO history, climate services and products are severely lacking across

Tennessee. Only recently (October 2017), statewide monthly climate reports started production

and in November 2017, members of the TCO began to participate in the weekly U.S. Drought

Monitor discussion, providing input on the expansion and reduction of drought in areas across

the state (https://droughtmonitor.unl.edu/CurrentMap/StateDroughtMonitor.aspx?TN). This was

identified as a critical gap for Tennessee by meteorologists at the NWS-Morristown WFO

(personal communication). The monthly reports constitute the first core product of the TCO.

Within the report are several analysis summaries of climate data for the month. The first

summary describes the monthly temperature summary compared to normal temperature for the

month based on historical climate data. There are similar summaries for monthly precipitation,

soil moisture, and stream flow. A summary of the drought monitor is also included as well as the

22

top ten warmest, coldest, wettest, and driest monitoring stations in Tennessee, and a

miscellaneous section that covers topics such as crop and potential fire conditions. Lastly, the

storm reports for the month are combined in a map that incorporates the locations of reported

extreme storm conditions for each day of the month. An example Tennessee monthly climate

report can be found in Appendix B. The monthly climate report is sent to the Southern Regional

Climate Center (SRCC) no later than the 5th of the following month, where it is then synthesized

and sent to NCEI to become a part of the national monthly climate report

(https://www.ncdc.noaa.gov/climate-information/analyses/monthly-us-climate-reports). The

goal of monthly climate reports (at the state, regional, and national levels) is to place climate

conditions and significant events into historical perspective.

For the TCO, short- and long-term goals center around two questions: 1) How can the

monthly climate report be improved upon and produced more efficiently? and 2) What value-

added, data-driven products should the TCO develop based on local and statewide needs? To

help accomplish the TCO goals based on those two questions, a Python script was written to

automate the production of daily storm report maps that are generated by the TCO. A Weather

Forecast Hazard Index (WFHI) web application product was also created using the Python

scripting language for the TCO.

Automation and processing of ‘big data’ are key elements in addressing TCO goals. One

important way of harnessing the power of computer technology to improve existing products and

develop new products for the TCO is through the use of programming languages. The Python

scripting language was developed in the early 1990’s as a successor of the ABC language

(Rossum & Drake 2003). It is an interpreted, object-oriented, high-level programming language.

Additional details will be provided in Chapter 2. Today it is widely used by professional and

https://www.ncdc.noaa.gov/climate-information/analyses/monthly-us-climate-reports

23

amateur programmers and in the development of standalone programs and scripting applications

for a host of different domains (e.g., Boeing 2017, Brown 2014, Brown et al. 2017, Roberts et al.

2010, Granger et al. 2011). Using Python to automate processes is one of its key benefits. It

greatly increases productivity, reduces the chance of error, and provides the ability to execute

large, complex processes in a greatly reduced amount of time. Use of the Python programming

language is applied in this thesis to provide partial or complete automation of several potential

TCO services.

Motivation

The process of producing daily storm report maps was chosen as an automation project

for this thesis since it has the greatest impact on the production time of the monthly climate

reports outside of writing. This thesis will explain in detail which processes were automated and

how they were automated using Python scripting. Issues encountered during the building of the

automation script will also be discussed along with plans for additional automation scripting for

the monthly climate reports in the future.

While building a relevant data-driven product for statewide needs, several ideas were

proposed. These ideas are based on existing SCO products in other states or products in

development. The WFHI web application is based on the Delaware Weather Hazard Index

(DWHI),

Development of a similar ‘weather hazard index’ product was chosen for various reasons.

The immediate impact of a hazard index for forecasted weather for Tennessee provides very high

value by improving decision-making in local communities, specifically for emergency managers.

It provides long-term value in being a scalable service that can be built for counties and many of

the processes within the primary script can be reused for other weather-related products.

24

Additionally, the technical nature of scripting a web application that automatically updates every

6-12 hours is appealing and provides an avenue for developing advanced Python scripting

abilities.

This thesis will explain in detail what the hazard index web application is, how it

functions, and how it was built and automated using Python scripting. Issues that were

encountered during the building of the hazard index web application will also be outlined along

with future plans for additions to the web application.

Organization and Contribution by Chapter

 This thesis has four chapters in total. These chapters together should clearly outline how

the objectives for this thesis were fulfilled and what additional work could be accomplished.

Chapter 1: Introduction

 This chapter introduces the reader to the importance of climate and weather data. It

explains the general hierarchy of climate data services from the federal level to the state/local

level. It then describes efforts to develop a Tennessee SCO, the current goals in this effort, and

how the objectives of this thesis can help achieve those goals.

Chapter 2: Python

 This chapter introduces the reader to the Python scripting language so they will

understand later chapters. The chapter discusses the most basic of Python scripting concepts such

as variables, classes, and modules. It then progresses to more complicated ideas such as lists,

dictionaries, tuples, looping, and decision structures. The chapter ends with a brief discussion of

writing batch files for automation.

25

 Chapter 3: Methodology and Products

 This chapter describes the process of building the monthly storm reports and how part of

that process is automated. It then details the data used in the automation process, and the

automation process methodology. It goes on to describe and explain the hazard index web

application. The methodology for building and automating the hazard index web application with

Python is then explained.

Chapter 4: Results, Discussion and Conclusion

 This chapter presents the challenges faced while building the automated daily storm

report maps and hazard index and implementing full automation using batch files and task

scheduler. Limitations of the scripts and products are then discussed, followed by an outline of

future research priorities and goals.

26

CHAPTER 2

PYTHON

Introduction

To explain the methodology of automation in this thesis it is important to have a basic

understanding of the language used to automate processes. That language is Python. This is a

brief overview of the language to help in understanding the next two chapters, which will

describe two products developed via Python scripts and tools. There are several versions of

Python. Python version 3 is primarily referenced. When Python version 2 is used it will be

stated. Python is a high level language as opposed to low-level languages such as machine

languages that have instructions written in binary (Python… 2019). Python is also a scripting

language. This means that it does not compile before running the code that has been written.

Compiling means that what has been written in the language is turned into machine language for

use on the computer before executing what was written. Python interprets what has been written.

Interpreting means that the program goes line by line through what has been written, translating

it into machine language and executing it (Python… 2019). The programs that are written in

Python are referred to as scripts. Python is an object oriented language. When we define a

variable as an object type, such as the number 3 being an integer, it has attributes with which it is

associated. Attributes for an object may include a unique ID or location in the computer’s

memory, properties describing the object, and methods or tasks that the object can complete

(Quinn & Dutton 2019).

Variables, Types, and Classes

 Variables mentioned previously represent objects and are stored for use within a given

script. There are many different object types. Two object types that will be used frequently in

27

this thesis are strings and integers. Strings are an array of characters such as a word (Germain

2019). Integers are numerical variables such as the number 3. Below are some examples of string

and integer object variables written in Python.

 A special group of object types are known as a class object. The attributes that these

objects have are defined by its class. It is a map of the properties that describe it, and the

methods or things the object can execute. One way to introduce additional object classes to

scripts, is to import them through modules using the import statement (Quinn & Dutton 2019).

Modules

There are a number of modules that will be imported for these projects. Table 1 will

briefly describe what each module is and an example of what it does.

28

Table 1. Most modules used in product development are listed and described in this table

 Modules are a script or collection of scripts that allow access to not only additional

classes but also a collection of tools to manipulate objects. These tools are called functions.

There are many functions used in this paper from modules and they provide a host of services.

An example of a function is the os module function, used to create a directory (file folder). The

code for this function is shown below. This is the os module function with variable ‘newfolder’

designating the location to create the new folder and the name of it:

Import Name Full Name Description Function Example

os Miscellaneous operating system
interfaces

Allows the use of operating system
dependant functionality

creating a file folder

sys
System specific parameters and

functions

Allows access to variables of
interpreter and functions that interact

with it.

list path that script
originated from

time Time access and conversions Allows access to time related
functions

returns a string of
local time

datetime Basic date and time types provides classes for manipulating
dates and times

return string of date
minus 1 day

dateutil dateutils provides additional functionality for
datetime module

return string of date
minus 1 month

shutil High-level file operations provides funtions for copying and
removal

copy the contents of
file to target

arcpy arcpy
provides functions for geographic

data analysis, data conversion, data
management, and map automation

convert raster to ascii
file

arcgis arcgis
provides an information model for
GIS hosted within ArcGIS Online

or ArcGIS Enterprise

update data on
ArcGIS Online

csv CSV File Reading and Writing implements classes to read and
write tabular data in CSV format

read a csv file

gdal Geospatial Data Abstraction
Library

two libraries for manipulating raster
and vector data.

counting the number
of rasters

urllib.request
extensible library for opening

URLs

provides functions and classes
which help in opening URLs

(Python version 3)

Open URL network
object for reading

29

 Another example of this would be the extract subdataset function from the arcpy module

used to extract data from multidimensional array files in this thesis. The extract subdataset

function has two variables ‘ndfd_data’ and ‘suboutpath’ included in the example representing

paths for input and output data and the variable ‘numa’ represents a number.

Lists, Dictionaries, and Tuples

 Lists, dictionaries, and tuples are data types used for storing multiple strings and integers.

Each has advantages and disadvantages depending on what script is being written.

 Lists are used throughout this project and are designated by using brackets. See below for

an example:

 Each of the variables shown within the brackets is indexed, meaning there is a number

associated with them. Indexing starts at 0. This would mean in the example above that

‘myinterstates’ has an index of 0, while ‘myTNBorder’ has an index of 2.

Tuples are, in a sense, lists that cannot be changed. This is known as being immutable.

Tuples are immutable and lists are mutable meaning they can be changed. Tuples are designated

by using parentheses and are indexed just like lists. An example of a tuple is shown below:

 Dictionaries are another way of storing multiple pieces of data. Unlike lists, dictionaries

have no index. Instead they have a key value they use to reference items. This is known as a key

value pair. A key word is used to pull values from the dictionary much like an index can be used

30

to pull data in a list. Dictionaries are designated by using curly braces. An example of this can be

seen below (Quinn & Dutton 2019):

 The major advantage of using a dictionary is the key value pair. Data can be associated to

other data through the use of a dictionary. In the script above, ‘myinterstates’ is paired with

string ‘US-81.’

 These three data types can be used within each other as well as themselves. The first

examples of this below would be lists within a list. The second example is a dictionary within a

dictionary. The third example below shows lists within a tuple.

Looping

 A loop is a piece of script that repeats a set of actions (Quinn & Dutton 2019). There are

two types of loops. There is the ‘for loop’ statement and the ‘while loop’ statement. ‘For loops’

are often used to perform the same functions and statements over and over on each individual

variable in a list, dictionary, or tuple. A ‘for loop’ statement appears in the example below.

31

 In this ‘for loop’ statement, each individual variable that is represented by the variable

shape in the list, tuple, or dictionary, which is presented by the variable shapefilelist, will have

the ‘create thiessen polygons’ function from the module arcpy performed on it.

 ‘While loops’ are slightly different than ‘for loops’ and execute whatever script has been

built for them until a condition is met (Quinn & Dutton 2019). ‘While loops’ usually involve the

use of a counter to determine when a condition has been met. A ‘while loop’ statement appears

in the example below.

 In the ‘while loop’ statement we see the variable ‘numa’ is set to 0. Every time that

‘create thiessen polygons’ is executed the value of the numa variable is increased by 1. Once the

numa variable reaches 5 the ‘while loop’ stops.

 Loops can be nested. This means that you can have a loop inside of a loop. An example

of this is the example below.

 In the nested loops shown in the example above, each individual variable that is

represented by the variable ‘shape’ in the list, tuple, or dictionary, which is presented by the

variable shapefilelist, is iterated through. In this case there are variables within shape. As the first

‘for loop’ goes through each individual variable it will perform the second ‘for loop’ which will

iterate through the variables within the first ‘for loops’ variables.

32

Decision Structures

Decision structures are used to provide conditional logic to scripts. ‘If and else’

statements are used often to set up a Boolean decision structure. The example below shows what

a typical ‘if and else’ statement looks like in Python.

 In the script above, the ‘for loop’ goes through the variable shapefilelist testing each

variable shape to see if it is named myinterstates. If the variable is named myinterstates then the

function ‘create thiessen polygons’ is executed. If the variable is not named myinterstates then

the function CalculateField is executed.

 Not all decision structures have to be Boolean. Instead of using an ‘else’ with an ‘if’

statement, an ‘elif’ statement can be used. An ‘elif’ statement allows for multiple decisions to be

made. An example of this can be found below.

 In the script above, the ‘for loop’ goes through the variable shapefilelist testing each

variable shape to see if it is named myinterstates. If the variable is named myinterstates then the

variable forecast is ‘wg_’. Else if the variable is named mycities then the variable forecast is

‘tp_’. Else if the variable is named myTNBorder then the variable forecast is ‘sn_’.

 ‘Try and except’ are similar to the decision structures already discussed but they serve as

an alternative to script failing. A ‘try and except’ used often in this thesis is shown below.

33

 In the script above, the ‘try’ statement is used for the function to make a new file folder.

If for some reason the file folder cannot be made in that location, instead of cancelling the entire

script the script moves on to the ‘except.’ In this case it executes the function ‘print.’

Batch Files and Task Scheduler

To fully automate Python scripts, Task Scheduler is used. Task Scheduler is a tool that

allows actions to be executed when a trigger condition is met. Trigger conditions can be many

different things. For this thesis only a trigger linked to a schedule is used (see Figure 7).

Figure 7. New trigger dialog within Task Scheduler

 The trigger is used to execute an action. There are several different types of actions but

this thesis uses the type ‘start a program.’ With this type of action a script can be set to execute.

For this thesis the action settings are set up as follows. The Program/script, designates the

34

version of Python to be used. An argument is added that is a path to a batch file (see figure 8).

Once this basic set up is complete with minor additional changes, the batch file should run at the

scheduled time set up as the trigger to execute the action.

Figure 8. New Action dialog within Task Scheduler

Batch file is the term used for a disk operating systems (DOS) script file that is written to

execute a list of commands in DOS. By listing the path to individual scripts in the batch file in

executable order, all the scripts for a process can be tied to one Task Scheduler action. This

thesis uses a sophisticated approach by listing the preferred Python executable in front of the

path to the Python script (see Figure 9).

35

Figure 9. Sample Batch file used in argument in Task Scheduler

36

CHAPTER 3:

METHODOLOGY

SPC Storm Reports Description

Creation of the Tennessee monthly climate report requires completion of three broad

steps each month. Monthly data must be analyzed, a summary of findings made, and maps

generated. Automation of daily storm reports reduces, and in some cases eliminates, the manual

process of generating maps for daily storm events for inclusion in the monthly report, resulting in

a streamlined and efficient process.

To produce daily storm report maps for the monthly climate reports, the following

process is executed weekly. Daily storm report data are downloaded from the NOAA Storm

Prediction Center (SPC) website. Data are used to generate point shapefiles representing recent

extreme storm events. If any storm report locations are within the state of Tennessee, a daily

storm report is created for those days. Data within the state of Tennessee are extracted and

placed within a map exchange document (.mxd). Within the .mxd, the number of weather

occurrences are changed in the legend to match the daily data. On the top center of each map the

date is changed to reflect the day of the occurrences. A portable network graphic (PNG) are then

created from the .mxd.

The production efficiency from generating one daily storm report map versus using the

automated process is small. However, used every day over months and years the value of this

efficiency becomes much more significant.

 SPC Storm Reports

 The NOAA Storm Prediction Center (SPC), which is a part of the National Weather

Service (NWS) and the National Centers for Environmental Prediction (NCEP) (SPC…2019),

37

produces storm reports in real time (updated every 10 minutes) and maintains archives of major

events as far back as the 1950s. The SPC provides forecasts for extreme weather such as severe

thunderstorms, tornadoes, and hazardous winter weather. It also provides daily (summary) storm

reports of weather events. These are collected from local storm reports (LSRs) that are produced

by local NWS offices. If there is no LSR for weather or if it takes more than 10 days for an LSR

to be created, then that weather event will not appear on the SPC storm report (Storm Prediction

Center… 2019).

 Daily summary storm reports cover the previous day and are split into three separate

reports: tornado reports, hail reports, and wind reports. They can be downloaded in a .csv format

for viewing and analysis. There are several fields contained within the storm reports file.

Tornado storm reports include Time, EF Scale, Location, County, State, Latitude, Longitude, and

Comments. Time is shown in Universal Coordinated Time (UTC), also called Greenwich Mean

Time (GMT) (Storm Prediction Center… 2019). EF Scale is the rank that the tornado was

assigned on the Enhanced Fujita scale. This scale measures the speed of a tornado based on

damage caused to structures and ranges from EF0 to EF5 (Fujita… 2019). Location is the general

address of the occurrence. County and State are self-explanatory. Latitude and Longitude

describe the GPS coordinates of the event. The datum they represent is North American Datum

1983 (NAD83). Comments is for general comments and may contain a three letter ID that

represents the local NWS office that created the LSR. The hail report has similar fields except

the EF Scale field is replaced by a Size field. Size records hail size in 1/100 of an inch

increments. The wind report is similar to the other two reports with the exception that Speed is

included instead of EF Scale or Size. Speed refers to the speed of wind gusts and is measured in

miles per hour (mph) (Storm Prediction Center… 2019).

38

Automation of SPC Storm Reports

One script (Figure 10) automates ‘pulling’ the SPC storm report data, building storm

report feature classes, and exporting a map to a .png format. A ‘for loop’ goes through a list of

urls for accessing the storm report data. At the beginning of the ‘for loop,’ the module

urllib.request requests and opens the storm report data urls. Immediately afterwards, the csv

module is used to read the .csv at the SPC storm report data url. The .csv file is then written to

the local computers working directory. The module os is used to designate this working directory

which is also an archive directory.

Figure 10. Model of Automation of SPC Storm Reports

 An ‘if and elif statement’ differentiates between the tornado, hail, and wind storm reports.

The headers for each field within the .csv file are then identified and two modules built within

the script are called with the field’s headers as variables.

 The first module creates a feature class and then adds fields named according to the

headers that it receives in the ‘if, elif’ statements. An additional field ‘Date’ is added to the

shapefile. The second module then uses the arcpy module ‘Insert Cursor’ function to add data to

feature class fields from the .csv file.

 The feature class is then clipped to a feature class of the Tennessee state boundary. The

Date field for the original feature class file, the clipped feature class, and the state boundary

39

feature class are then calculated. The calculation fills in a time as the full month name, the day

and the year with century. This is done so the field can be inserted into the title of the storm

report map using dynamic text within an ArcGIS Pro project. The original feature class and the

clipped feature class are copied to a working folder for the storm report map. The time stamp is

removed allowing these feature classes to replace the feature classes with the same names from

the previous day. These feature classes are referenced in the storm report map ArcGIS Pro

project used to publish maps of daily storm reports. The Arcpy module function ‘ArcGISProject’

references the ArcGIS Pro project. The arcpy module ‘mapping export to png’ exports the map

created in the ArcGIS Pro project to a png.

Designing the Weather Forecast Hazard Index Webapp

The Weather Forecast Hazard Index (WFHI) web application is based on the Delaware

Weather Hazard Index (DWHI), developed by the Center for Environmental Monitoring &

Analysis (CEMA), which houses the Office of the Delaware State Climatologist. The goal of the

DWHI is to complement and enhance the warnings from the local NWS WFO. The DWHI

provides a multi-faceted approach to potential hazards and incorporates local geographic

influences when predicting potential hazards (Callahan 2014).

Potential hazards include extreme temperatures (heat index, wind chill), maximum wind

gust, precipitation, snow, ice, convection outlook, and coastal water level. Forecast data are

downloaded from the National Digital Forecast Database (NDFD) with the exception of the

coastal water level which is acquired from the Delaware Bay Operational Forecast System

(DBOFS). The forecasting length is approximately two days (48 hours) and the index is updated

after the release of new forecast data every 12 hours. The hazard risk level is represented by a 5

40

km2 raster cell. With color coding representing the level of hazard (see figure 11) (Callahan

2014).

Figure 11. Image of DWHI showing low to moderate risk of snow in northern Delaware on
03/03/2019

The Weather Forecast Hazard Index (WFHI) webapp is a dashboard web application

developed using ArcGIS Online (AGOL). This web application is updated every 12 hours using

the latest forecast weather data. It shows the most extreme weather forecast for the next 72 hours

in discreet polygons that cover the state of Tennessee. These squares are typically 5 x 5 km

polygons from a scale of 1:290,000 and outward, and typically 2.5 x 2.5 km polygons from a

41

scale of 1:290,000 and inward. Each polygon is color-coded to show a forecast for singular or

multiple weather conditions that are classified as hazardous in the polygon’s area (figure 12).

Figure 12. Screenshot of WFHI with low to high risk levels for wind gusts on April 19, 2019

The primary weather elements examined for hazardous conditions include minimum

apparent temperature, maximum apparent temperature, wind gust, ice accumulation, snow

accumulation, maximum quantitative precipitation over 6 hours, and categorical convection.

Hazardous classifications for each weather type are shown at the bottom right of the dashboard.

 Clicking on an individual polygon activates a popup showing the extreme forecast

weather condition or conditions that are classified as a hazard. It also shows a list of

measurements for all monitored weather extremes over the 72-hour period. Widget indicators

have been added to the Dashboard to show the average in extreme weather at the scale and

location of the viewers’ choosing. These are shown on the top left of the Dashboard. At the top

right of the map, an address locator and basemap switcher can be found.

42

 In addition to the main WFHI map, the Dashboard web application also contains

individual maps of each of the extreme weather forecast datasets being monitored, allowing for

individual, granular analysis of forecast weather.

Data

The primary source of national weather forecast data is the National Digital Forecast

Database (NDFD). The NDFD was created by the Meteorological Development Laboratory

(MDL), formally known as the Techniques Development Laboratory (TDL). The MDL is under

the Office of Science and Technology within the National Weather Service (NWS) (US

Department of Commerce 2018). Data provided by the NDFD includes weather forecasts from

WFOs with the addition of data from the National Digital Guidance Database (NDGD). The

WFO’s use the Interactive Forecast Preparation System (IFPS) software on an Advanced

Weather Interactive Processing System (AWIPS) to produce geospatially referenced digital

forecast data (Dion et al. 2019). The NDGD is used to validate NDFD data (MDL… 2018).

Raster data collected from the NDFD comes in a format called General Regularly-

distributed Information in Binary (GRIB) form. Specifically, it comes in the GRIB2 format.

GRIB is the data format chosen by the World Meteorological Organization (WMO) for

exchanging and storing gridded data. The three main reasons this format is used are its smaller

size relative to normal binary files, self-describing fields that result in a small database of

metadata, and general format as an open files source that meets international standards (GRIB…

2019).

The GRIB2 files collected from NDFD represent a multidimensional array that shows

measurements of an element such as temperature or snow over different time periods. NDFD

stores GRIB2 files showing forecast data for 1-3 days, 4-7 days and 8-450 days. Within those

43

forecast data time periods, data are split into the multidimensional array of rasters representing a

period of hours within the forecast data time periods. An example of this would be the 1-3 day

temperature GRIB2 file. Within the GRIB2 file are hourly temperature forecasts for the first 36

hours. After that, the remaining 36 hours will have a temperature reading every 3 hours. For files

with forecasts past 72 hours there is a temperature reading for every 6 hours up to 168 hours

(Dion et al. 2019). This will differ for some files. Snow and ice accumulation have forecasts for

new accumulation every 6 hours. The 1-3 day data will be utilized in this thesis for product

development.

There are raster files covering the entire continental US and subsections of the US. For

this thesis the data file for the entire continental US was chosen. Tennessee is located in two

subsections, the Mid Atlantic and Central Mississippi Valley subsections. Clipping data to the

extent required was the simplest solution to obtain data for our case study. The size of each cell

in the GRIB2 file is 2.5 square kilometers. The horizontal datum used is the World Geodetic

System 1984 (WGS84). The vertical datum used is WGS84 geoid. The projection type used is

Lambert Conformal Conic (Spatial Reference System… 2019).

Weather elements ‘pulled’ from the NDFD were the most common weather phenomenon.

Below in table 2 all elements pulled from the NDFD database are listed.

44

Table 2. Weather elements pulled from the NDFD for product development

Downloading Data from the NDFD Website

 The first script built for this process downloads GRIB2 data to a local folder. To

automate a download of the GRIB2 data from NDFD to a local file folder, a web module was

chosen from several options. NDFD has a file transfer protocol (FTP) site enabling data to be

loaded from that site using FTPlib. For the http site, urllib.request could be used to download the

data. The module httplib was considered but more coding would be involved. Ultimately due to

previous exposure to urllib.request’s predecessors urllib and urllib2 in Python version 2,

urllib.request was chosen to download the GRIB2 data. Modules used in the script were os, time,

and urllib.request. The following is a general explanation of how the script is built.

 A timestamped file folder is created using the time and os module. A ‘try and except’

statement was written to build the timestamped file folder. This ensures that if the file folder is

already created the script will not fail. Instead, the print function will execute, stating that the

directory has already been created.

A ‘for loop’ was constructed to go through a list of variables, each representing an

individual NDFD GRIB2 file name. Each file name is then merged with the general url path to

Element Native units GRIB units GRIB2 File Name Description

Apparent
Temperature

deg Fahrenheit deg Kelvin ds.apt.bin
perceived temperature either wind

chill or heat index

Snow Accumulation inches meters ds.snow.bin
total accumulated new snow over a 6

hour period.

Ice Accumulation inches kgm-2 ds.iceaccum.bin
total accumulated new ice over a 6

hour period.

Wind Gust knots ms-1 ds.wgust.bin
3 second wind speed forecast to

occur within a 2 min interval

Wind Speed knots ms-1 ds.wspd.bin
3 second wind speed forecast to

occur within a 2 min interval
Quantitative
Precipitation

inches kgm-2 ds.qpf.bin
total accumulated liquid precipitation

over a 6 hour period.
Convective Hazard

Outlook
categorical forecast categorical forecast ds.conhazo.bin

categorical forecast of the potential
for severe thunderstorms

45

create a full path to each GRIB2 file. The full path is then used with urllib.request functions

‘Request’ and ‘urlopen’ to access the data. The data are then written into the working directory

folder.

The os module is used to set the working directory for the script. This causes the data to

be written directly to the timestamped file folder created at the beginning of the script. A

generalized diagram of this process can be seen below in figure 13. It is important to note that

the use of lists and for loops built into this script will allow easy additions of GRIB2 data

requests from different parts of the NDFD database with minimal script changes.

Figure 13. Model of NDFD data transfer

46

GRIB2 data converted to vector polygons

After the GRIB2 data are obtained, they are converted to vector tiles. There are two

reasons they are not kept as a binary raster. The first is related to the complexity of setting up an

enterprise server. This is pivotal in posting rasters to ArcGIS Online (AGOL). Without it you can

only post a tiled map service. This format has very restricted functionality. The second relates to

the difficulty in finding a way to show a grid with each grid containing a list of attributes. Below

in figure 14 is a flowchart of the general process used to convert GRIB2 files to vector tiles.

Figure 14. Model of WFHI data conversion to vector polygons

A timestamped file folder is created using the time and os module. A ‘try and except’

statement was created around the building of the timestamped file folder. This folder is designed

to contain converted raster files. A ‘for loop’ was created to process GRIB2 files copied to the

47

timestamped file folder created in the previous script. File names were saved in a list and each

file was then merged with the general url path to create a full path to each GRIB2 file. Within the

‘for loop,’ the module gdal used the functions open and rastercount to count how many rasters

are in each GRIB2 array since the number of rasters within the GRIB2 file fluctuate. The module

gdal is a translator library for raster and vector geospatial formats (osgeo… 2018). Using ‘if’ and

‘else’ statements, individual GRIB2 files are sorted between files with only one raster and files

with more than one. If only one raster is contained within the GRIB2 file, conversion will begin

on the file. ‘Else’ multiple rasters are contained within the GRIB2 file and the arcpy module

function Extract Subdataset management is used to remove each raster so it can be converted

individually. This is done using a raster count provided by the gdal function ‘rastercount.’ A ‘for

loop’ is built into the ‘else’ statement which runs the loop for numbers up to the number

provided by the ‘rastercount’ function. A variable representing the number ‘0’ was created

outside of the ‘for loop’ and it increases by one every time a loop is completed. This is used to

tell the function ‘extract subdataset management’ which raster to pull from the GRIB2 file and

be converted.

The area of interest for each of these rasters is extracted from the data using the arcpy

‘extract by mask’ tool. This provides three benefits. The first is that the reduced number of raster

cells reduces the overall space needed to store our final dataset. The second is that it reduces

processing time after this has been completed. The third is that using ‘extract by mask’, all

rasters from the GRIB 2 files are resampled to have the identical cell coordinates and alignment

as the other rasters from NDFD.

Raster conversion consists of using the arcpy module function ‘raster to ascii conversion’

to convert the binary GRIB2 rasters into an American Standard Code for Information

48

Interchange (ASCII) (Pattis 2019) file. The arcpy module function ‘ascii to raster conversion’ is

then used to convert to a Tagged Image File Format (TIFF).

During the use of the function ‘raster to ascii conversion,’ the original projection of

Lambert Conformal Conic and horizontal datum of WGS84 for the raster is lost. After the

conversion to a TIFF file the arcpy function ‘redefine projection’ is used to define the projection

and datum for the raster. This definition is recorded from the original GRIB2 raster file before

the conversion to ascii and saved for use in the ‘redefine projection’ function.

After all rasters from one of the GRIB2 multidimensional arrays are converted to a TIFF

and the projection is defined, the rasters for that GRIB2 file can be merged together into one

single raster file. To do this, a list of rasters made when the ASCII file is converted to a TIFF file

is used in the arcpy module function ‘mosaic to new raster management’. The if, elif, and else

statements are used here to sort by name so specific mosaic parameter methods depending on the

weather element are used to produce specific mosaic rasters of weather elements. If the weather

element is temperature, two separate mosaics are performed. This is the maximum and minimum

temperature for the cells in the merged rasters. With this, the forecast maximum and minimum

apparent temperature for a raster cell over the next 72 hours can be shown. The wind gust,

quantitative precipitation over 6 hours, and categorical convection element rasters are mosaicked

together to show each of their maximum forecasts for the next 72 hours. For snow accumulation

and ice accumulation the sum is given when mosaicked. This provides a forecasted estimate of

accumulation of each weather element over a 72 hour period. This completes the original for

loop with all GRIB2 weather files pulled from NDFD being processed to TIFF files.

A list of all the mosaicked TIFF files is created right after the ‘MosaicToNewRaster’

function. A new ‘for loop’ is then created for the mosaicked TIFF files and the TIFF files are

49

then converted to US measurement standards. One if, several elif, and one else statement are

used to sort TIFF files with the proper conversion. Up to this point, temperature is shown in

Kelvin (K). Kelvin is the international standard for scientific temperature measurement

(Kelvin… 2018). The formula applied to the mosaicked raster is as follows.

 Fahrenheit unit = (Kelvin unit -273.15) * (9/5) + 32

Wind gust is represented as meters per second (m s-1). This is an international system of

units (Meters per second… 2018). The formula below converts the meters per second

measurements to miles per hour within the mosaicked raster.

Miles per hour = m/s unit * 2.236936271

Ice accumulation and quantitative precipitation is shown in kilogram per square meter

(kg/m2). This is the pressure exerted by one kilogram of force applied to an area of one square

meter. This was converted to inches of water table which is the pressure exerted by a 1 inch high

column of water at a given temperature (Kilogram force… 2018). The formula for this

conversion is shown below.

In H2O = kg/m2*0.039370

Snow accumulation is shown in meters (m). This is converted to inches. Below is the

formula used for this conversion (Meters to Inches… 2018).

Inches unit = metric unit * 39.370

 This ends the ‘for loop’ converting the mosaicked TIFF files to US measurement

standards. Any single raster TIFF files from NDFD data are extracted to an area of interest. This

is beneficial for the same three reasons stated during the extraction to an area of interest for the

multiple raster GRIB2 files. Testing showed that single raster GRIB2 files such as the tornado

and hail percent probability rasters have slightly different raster cell locations from the weather

50

element data currently used in this thesis. During the extract by mask process, TIFF rasters from

the single raster GRIB2 files are resampled to have the identical cell coordinates and alignment

as the other rasters from NDFD. A ‘for loop’ processes both TIFF files which have a list built

during their conversion from ASCII to TIFF files.

 A new ‘for loop’ is now written to convert from raster data to vector data using a new list

created after the conversion to US measurement standards for the mosaicked TIFF files and after

the ‘extract by mask’ function for the single raster TIFF files. To begin with, the center of each

cell in a raster is converted to a vector point. To do this, the arcpy module function ‘raster to

point’ is used. The arcpy module function ‘create Thiessen polygons’ is then used to generate

vector polygons from the vector point files created. The Thiessen polygons will always be closer

to its origin point than to any other point (Thiessen… 2019). Due to points being generated from

the center of raster cells, vector polygons were created that match the original cell size. Points

that are on the edge of the study area represent an exception. Here they are much larger

polygons. To address this issue, the Thiessen polygons are clipped to the study area boundary

using the arcpy module function ‘clip.’ This will cause many of the Thiessen polygons on the

boundary to be smaller than the standard size of 6.25 km2 but insure that few polygons will be

exceed that.

Creating a Hazard Index

With the data in a vector polygon format, a hazard index can be created. This process of

creating a hazard index can be seen in the flowchart in figure 15.

51

Figure 15. Model of WFHI vector polygons being used to create a hazard index

Variables are identified containing strings of Structured Query Language (SQL)

statements. These statements are used to identify whether the weather attributes of each

individual vector polygon should be defined as a low, medium, or high hazard index. A data

dictionary is then defined. The key for this dictionary is the name of each weather vector

polygon created. Another dictionary is the value of this key. Within this dictionary the key is the

variable for the SQL statements mentioned above. The value corresponding to this key is a text

string of low, medium, or high.

 A ‘for loop’ is used to go through the weather vector polygon keys and values. If and else

statements are used to create two lists of weather vector polygons at 5 x 5 km and 2.5 x 2.5 km

resolutions. If and elif statements are then used to assign variables for names based on the

weather vector polygon key. An example of this would be if the weather vector polygon key

52

starts with temp_max. If this is the case then one variable will be named maximum temperature

while another will be named temp_max.

Several fields are then added to each weather vector polygon. These will be our hazard

index fields. One is for weather values in each vector polygon which is partially named by the

variables in the previous if and elif statement. This field will have a name that reflects the

weather vector polygon where it is created. For discussion, this field will be referred to as its

variable name (gridname). This field is important in providing field clarity after all the weather

vector polygons are merged together. The second field added appears as a text string to show the

hazard level of a weather element. This field will be referred to as its variable name (hazname).

The third field shows the hazard index as a number of 0 for no hazard, 3 for low, 4 for medium,

or 5 for high. This will be referred to by its variable name (haznum). The arcpy module function

‘calculate field’ is used to calculate the values for the gridname field based on the weather values

field within the weather vector polygon.

A ‘nested for loop’ is used within the ‘for loop’ used to go through the weather vector

polygon keys and values. This ‘for loop’ cycles through the keys that are the variables for the

SQL statements. As it goes through each variable, the arcpy module function ‘select layer by

attribute management’ is used. This function selects only attributes within the weather vector

polygon that match the SQL statement represented by the variable. The arcpy module ‘calculate

field’ is then used to insert a string text value associated with the variable for the SQL statement

key into the hazname field along with the name of the weather element. This field is used in

AGOL to identify the weather elements that are at a low, medium, or high hazard index value.

 If, elif, and else statements are used to define the level within the hazard index based on

the numbers for the haznum field. The module arcpy function ‘calculate field’ is then used to

53

calculate values for the haznum field. This completes the ‘for loop’ cycling through the keys that

are the variables for the SQL statements. The module arcpy function ‘select layer by attribute

management’ is used to select vector polygons with a hazname field value of null. The module

arcpy function ‘calculate field’ is then used to generate a number of 0 for the field haznum. This

is important later when the haznum fields of all the weather vector polygons are added together.

Null values can not be added to integer values so the number 0 has to be generated for vector

polygons with no hazard. This ends the ‘for loop’ used to go through the weather vector polygon

keys and values.

 A list is then created containing two sub lists. The first sub list contains a variable

representing the list of weather vector polygons that are 2.5 x 2.5 km polygons and a variable

representing the destination and name of a feature class we want to create. The second sub list is

a mirror of the first sublist but contains the list of weather vector polygons that were created to

be 5 x 5 km polygons and a slightly different name for the feature class.

 A ‘for loop’ then cycles through each sub list within the list. The arcpy module function

‘Intersect’ takes the list of weather vector polygons and merge the polygons into one polygon.

All fields are kept during this process. The new merged feature class is then added as the field

‘haz_index.’ The module arcpy function ‘select layer by attribute management’ is used to select

all records and the function ‘calculate field’ adds all haznum fields together. This field will now

symbolize hazard levels. As stated before, a number of 0 represents no hazard, 3 represents low,

4 represents medium, and 5 represents high. Anything higher than 5 represents multiple hazards

in an area.

 To help with functionality, extra fields in the merged feature classes are deleted. This is

done by using a ‘for loop’ to go through the fields in the merged feature classes. If and elif

54

statements are used to select fields to be included in a new list. At the conclusion of the ‘for

loop’ the arcpy module function ‘delete fields’ is used to delete all fields included in the new list.

This completes all for loops and the script generating a hazard index in 2.5 x 2.5 km polygons

and 5 x 5 km polygons.

Posting Data to ArcGIS Online

 The data are now posted to ArcGIS Online. There are several steps to doing this. The first

is a one time nonscripting process. The hazard index polygons are added into an ArcGIS Pro

project. The symbology is built and the data projection is adjusted to match the base map

coordinate system. A feature template was also created for both polygons. The hazard index

polygons are then shared to AGOL using the ‘share as web map’ function. This creates a hosted

feature layer made up of two layers of the data.

 The second step in this process uses a script found on the ESRI ArcGIS Blog to automate

updates from the ArcGIS Pro project to ArcGIS Online (Hibma 2017). Only minor changes were

made to the script. The script starts by using the arcpy module function ‘ArcGIS Project.’ This

allows access to the ArcGIS Pro project. Two more arcpy module functions are then used. These

functions are create web layer SDDraft and stage service server. The first ‘create web layer

SDDraft’ creates a service definition draft (SDDraft) of the hazard index polygons. The second

‘stage service server’ converts the SDDraft of the hazard index polygons into a service

definition. The arcgis.gis module ‘object GIS’ then sets up an entry connection with AGOL. The

url connecting to AGOL is provided, as well as the login credentials and password. The

arcgis.gis module ‘content.search’ accesses the content manager and search for the web feature

layer created, our user name, and the item type, which is service definition. The function

‘update’ from the arcgis.gis module is used to update the service definition. The function

55

arcgis.gis module function ‘publish’ sets an environmental overwrite for the hazard index

polygons located in AGOL. Lastly, the arcgis.gis module function ‘share’ is used to set up

sharing within AGOL.

Setting up a Dashboard Webapp in ArcGIS Online

 In AGOL, a webmap of the feature layer created in ArcGIS Pro was built. This is

required to build the Dashboard web application. To adjust the popup information for when

individual vector polygons are selected, the popup configuration is used. With this the popup

attributes were edited to only show certain fields and the field name was rewritten to be easier to

read. Popup configuration was also used to list hazard indexes above low risk for specific

weather. This was done using the hazname field generated during the building of the hazard

index.

 Visibility range and transparency were also set in the webmap. Visibility was set to show

the 5 x 5 km polygons from a visibility range of 1:290,000 to a world view. The 2.5 x 2.5 km

polygons were set to have a visibility of 1:290,000 down to room view. Transparency for both

polygon layers was set at 50%.

 With these webmap settings, several additional webmaps were created each representing

a weather element. A new legend for each weather element was created. From the original

webmap ‘share’ was used to create a dashboard operations webapp.

 In the Dashboard operations webapp, the additional webmaps representing weather

elements were added. Indicators of average weather were also added and tied into the hazard

index webmap. This results in the indicators showing the average weather where the user is

zoomed into. An address locator, map embedded legends, links websites, and the ability to

change base maps were also added to the Dashboard operations webapp.

56

Task Scheduler and Batch Files

 To fully automate the process of updating the hazard index webapp, a batch file was built

(see Appendix C). This batch file references the path to the four scripts that update the hazard

index web application. Each of the four scripts referenced have a path listed back to the

execution file for Python 3.

 Task scheduler is then used to activate the batch file at a designated time. The trigger was

set at 10a.m. and 10p.m. daily. The action was program/script referencing the Python version 3

executable and the argument being the batch file. Conditions were set to wake the computer to

run this task. The task was also set to run with the highest privileges and run whether the user is

logged on or not.

57

CHAPTER 4

RESULTS, DISCUSSION & CONCLUSION

SPC Storm Report Results

The storm report script generates a dated storm report map showing the location and

count of wind, tornados and hail events in and around the state of Tennessee for the day previous

to when the script is run. The current output of the storm report map is in a png format.

Figure 16. Storm report for June 05, 2019 showing one instance of wind in Tennessee

Inspection of the data generated from the SPC storm reports shows the script to be

functioning properly. Point shapefiles produced are identical to the Longitude and Latitude

provided in the CSV file. Additional information provided in the SPC storm reports CSV file

appear in the shapefile attribute table. The png maps generated by the script show the correct

storm report data for Tennessee, the correct date and count of events. The objective of the script

to produce the daily storm report maps with increased efficiency was successful.

 The storm report script and associated batch file will continue to produce storm reports

until triggers or actions are canceled in task scheduler. Moving the script or batch file and still

using them effectively require changes to location variables to reflect new locations to associated

58

feature classes and the locations of input and output data. A change of computers requires the

new computer to have the module arcpy version 3.6.6 or higher installed. The current task

scheduler settings for this script can be set for any time required. Currently the script is being

executed at 8pm every night.

Weather Forecast Hazard Index Results

 The Weather Forecast Hazard Index web application shows the maximum extreme

forecast weather for the next 72 hours in the state of Tennessee. At a visibility range of

1:290,000 to a world view, the 5 x 5 km color coded polygons representing level of risk are seen

covering the state of Tennessee. At a visibility of 1:290,000 down to room view the 2.5 x 2.5 km

polygons showing the level of risk are visible. Clicking on an individual polygon opens a popup.

At the top of this popup the weather elements with a risk level are labeled. In addition, the popup

shows the forecast maximum extreme weather measurements for all weather elements in that

polygon. The legend showing color coding for risk level is in the upper right. Below the web

application legend is a short explanation of the measurements each risk level represents. Widgets

on the left provide the average of extreme weather elements for the area that has been zoomed to.

59

Figure 17. Screenshot of Weather Forecast Hazard Index taken on June 22, 2019

The main tab shows the Weather Forecast Hazard Index. The additional tabs show

individual extremes of forecast weather for minimum apparent temperature, maximum apparent

temperature, snow accumulation, ice accumulation, maximum wind gust, quantitative

precipitation and convection categories for the next 72hours.

60

Figure 18. Screenshot of maximum apparent temperature taken on June 22, 2019

The Weather Forecast Hazard Index successfully downloads data from the NDFD

website. Each GRIB2 file in the time stamped folder created by the first script shows the time it

was downloaded which reflects the trigger time set within task scheduler. The GRIB2 data being

mosaicked and converted to vector polygons was qualitatively confirmed to be accurate by

comparing the data represented in the combined feature class to data shown at the National

Weather Service (National Weather Service Corporate Image Web Team… 2019).

61

Figure 19. Example of NDFD data used to check final values for the combined feature class

This can be seen in the following figures comparing categorized convection forecast by

the weather forecast hazard index and the storm prediction center 1-3 day forecast. The values

shown are different but translate to the same data. A table is provided below to show the

conversion between the NDFD data and the storm prediction center 1-3 day forecast.

Table 3. Conversion table of SPC Categorical Outlook Legend risk levels to NDFD categorical
outlook values. Please note moderate and high conversions are based on documentation
from documents from 2009 and are not completely verified

SPC Convection NDFD categorical Outlook value
TSTM(light green) Grid value of 2

1: Marginal risk(dark green) Grid value of 3
2: Slight risk (yellow) Grid value of 4
3: Enhanced risk (orange) Grid value of 5
4: Moderate (red) Grid value of 6-7
5: High (magenta) Grid value of 8-10

62

In figure 19, convection categories of three and four can be seen. The category of three is

represented as a light tan color while the category of four is shown as a dark red. The pattern

created by these two categories can be seen projected on the day one forecast from the storm

prediction center below for the state of Tennessee. This is due to the storm prediction center day

one forecast slight category being higher than the day two and day three forecasts. For

comparison, the 1-, 2-, and 3-day convection forecasts from the NWS site are shown in figures

20-23.

Figure 20. Convection category data from the combined feature class. This image was taken on
June 22, 2019

63

Figure 21. SPC Day 1 Convection Outlook showing pattern and values from Figure 4.5

64

Figure 22. SPC Day 2 Convection Outlook

65

Figure 23. SPC Day 3 Convection Outlook

The scripts provided and associated batch file require changes to location variables to

reflect new locations if changes are made to associated feature classes or the locations of input

and output data. A change of computers requires the new computer to have the module arcpy

version 3.6.6 or higher installed as well as gdal 2.3.3. The current task scheduler settings for this

script can be set for any time required. Currently the script is triggered to be executed two times

a day. The first trigger is 10am and the second trigger is 10pm.

66

SPC Storm Report Discussion

During the initial building of this script the process to write the csv files to a local file

folder was unsuccessful. To resolve this problem, completed point shapefiles of the daily storm

report data were used to generate csv files of the data from the SPC website. How to correctly

write to a local file using the urllib.request module was learned during the production of the

script for downloading data from the NDFD website. The initial script was written as the final

for an independent study to learn Python and was written much earlier than other scripts within

this thesis. The script while functional contains many inelegant pieces of code (see Appendix D).

An example of this is the use of three ‘insert.cursor’ functions from the arcpy module at the

bottom of the script to replace the Avalon module built at the top of the script. This was done due

to the variable wizard needing to change for each csv file. A rework of the script addressed the

problem of the ability to write the csv files to a local folder directly as well as fixing the issue

stopping the Avalon module from functioning.

Other issues outside of the script existed that had to be resolved. A count of storm report

incidents within Tennessee was created in the original mxd map template for the daily storm

reports and this needed to show count of storm report types in the state for that day. A similar

issue that was encountered when setting up dynamic text of the date for the original mxd map

template. The storm report data was for the day before the current date. To solve this problem

several steps were taken. The first was the transfer of the original mxd map template to an

ArcGIS Pro project. Dynamic text within an ArcGIS Pro project is much more dynamic and

allowed the setup of dynamic text for the counts based on rows of data for each of the clipped

feature classes. Dynamic text for the date of the storm report was created using the Date field

that is updated in the Boundary feature class.

67

Hazard Index Discussion

In the first script downloading data from the NDFD website included data for not only

the continental United States but also the Mid-Atlantic and Central Mississippi Valley

subsections (see Appendix D). Ultimately due to the reasons briefly explained in the Hazard

Index web application data section and concerns about processing time only the code to pull data

for the continental United States remained in the final script.

Originally data downloaded using urllib.request was downloaded to the location of the

script. The os module was used to read items in the home folder of the script as a list. A ‘for

loop’ was constructed to go through that list. Inside of the ‘for loop,’ an ‘if’ statement was used

to identify GRIB2 files. The shutil module was then used to copy GRIB2 files from the home

folder of the script to the timestamped file folder created for the data. This was removed in the

last version of this script when the setting the working directory using the os module was

discovered.

The first challenge in the second script was finding a way to look at the measurements of

each raster within the GRIB2 file and to manipulate those rasters. There were several ways this

could possibly be done. The module ‘gdal’ is able to manipulate GRIB2 files but a method to

extract individual rasters with this module was not discovered. The module ‘pygrib’ was also

investigated. This method was not used due to the technical issues involved in running this

module on a Windows computer (Whitaker 2014). This lead to using the arcpy module function

‘extract subdataset management.’ The function ‘extract subdataset’ was not able to pull rasters

out of all the GRIB2 files.

Another challenge arose when the arcpy module function extract subdataset management

began to pull rasters out of the GRIB2 files. During the ‘for loop’ if a number in the raster in the

68

GRIB2 array was requested that didn’t exist the script would shut down. Use of the arcpy

functions ‘list rasters’ and ‘count’ would not show the true count of rasters within the GRIB2

file. The use of ‘try and except’ also did not prevent the script from shutting down. This was

when the ‘gdal’ module was advised for use from representatives at MDL and SRCC. Learning

to install modules took some time and during this time the concepts of using the ‘conda’ and

‘pip’ Python installers were introduced. The ‘gdal’ module successfully counts the number of

rasters within the GRIB2 files. Version control became important due to the current version of

the ‘gdal’ module being unable to count the number of rasters within the GRIB2 files.

The script had to be updated on multiple occasions. The first was due to the tornado and

hail probability rasters having slightly different cell alignments from the other GRIB2 files. This

caused the final product in the hazard index web application to contain large numbers of polygon

slivers. To address this the arcpy module ‘extract by mask’ was used to not only clip the data to

the boundaries of Tennessee but to also resample the data to mirror the cell dimensions and

placement of the maximum temperature TIFF.

 The second update came from suggestions for improvements to the hazard index web

application. Originally only the 2.5 x 2.5 km polygons were used. These polygons had difficulty

loading in ArcGIS Online, often resulting in many vector polygons not becoming visible when

zoomed to the extent of the state. To improve the presentation of the hazard index web

application it was suggested that 5 x 5 km polygons should be used for smaller scale views of the

data. With this in mind, resampling of the TIFF files before they were converted to vector

polygons was coded into the script.

 The third update was a change in GRIB2 files being used in this thesis and the

rearrangement a critical process (see Appendix D). The arcpy module ‘extract by mask’ was

69

moved to execute directly after the ‘extract subdataset management.’ Its original location was

after the GRIB2 files were mosaicked back to together. Moving the execution of this module to

an earlier date in the script greatly increased the overall speed of the second script.

 The original third script was completed with few challenges (see Appendix D). A review

of the initial hazard index web application by climatologists at NWS-Morristown and the SRCC

and planners/emergency managers at the Tennessee Department of Transportation and ETSU

resulted in several suggestions for improvements. One suggestion was for weather conditions

forecast to cause a hazard to be clearly listed. Another was that if multiple hazards were present

in a polygon then that should be color-coded. To do this, most of the script was rewritten with

more advanced Python coding implemented such as nested dictionaries and lists. The original

script only applied a hazard index to the final intersected polygon as opposed to the current script

which applies the hazard index to all weather condition polygons. While rewriting the script, the

code for deleting extra fields was also rewritten. The new script uses a series of ‘startswith’

statements. To build a list of fields within the final polygons to delete. The original just had the

names of the fields written in a list.

Other Challenges

A challenge faced by both the Storm Report script and several of the Hazard Index scripts

was the batch file accessing the Python 3 executable. This was resolved by adding the path of the

executable in front of the path to the scripts. Task scheduler not running during its scheduled

time also posed a challenge. This was solved by changing the way the task was set up. Instead of

a direct path to the script in program/script field, the path to the python executable was placed

there and the path to the script was added to the ‘Add arguments’ field.

70

Limiting Factors

There were several limiting factors in creating the Storm Reports script and the Hazard

Index script. The first was a limited knowledge of Python scripting. An independent study that

was an introduction to Python was taken in the spring of 2018 and an advanced Python course

was taken in the spring of 2019. Minimal code development help was available due to a dearth

of Python scripting experience within the Department of Geosciences.

 Late in the thesis project it was learned that rasters could not be transferred to ArcGIS

Online without having originated from an enterprise server. Partly due to a limited knowledge of

servers and specifically enterprise servers, vector polygons were used in the final web

application. This turned out to be more practical due to the ability to use the attribute table of the

vector polygons to list large amounts of data.

 Looking at the Delaware web application, the representation of measurements on the

right panel clearly show forecast weather conditions. A presentation similar to this and outside of

ArcGIS Online would have been preferred but the building of a site like this requires Javascript.

This is a scripting language that will be learned in the future. Time constraints did not allow for

this during the creation of the thesis scripts.

 Time was the single biggest limiting factor of this thesis. This is probably the biggest

limiting factor for most theses. This thesis was started in August of 2018 due to technical

problems with the previous thesis topic that focused on 3D interior mapping. The window for

graduation was the summer of 2019. Research had to be performed, new Python modules,

functions and statements had to be learned, and scripts had to be written quickly.

71

Future Research and Product Development

There are several processes to add to the Storm Reports and the Hazard Index web

application that would improve automation performance or product functionality. A few new

automation of processes and products can also be built.

Automation of the daily storm reports can be expanded to compile the data being pulled

from the SPC Storm Reports starting at the beginning of the month and ending on the last day of

the month into one shapefile. This shapefile can then be used to generate the total monthly storm

reports map pdf. A similar concept to compiling the daily storm reports is showing all the storm

report data for the state over a longer period of time such as five or ten years with current data

that are added into a web application every day. This is similiar to a product produced and

maintained by the state of North Carolina called the Severe Storm Reports Tool (Severe Storm

Reports Tool 2004).

A partial or full automation of the observed mean temperatures and precipitation maps

for the month could also be developed. The modules ‘urllib2’ or ‘urllib.request’ could be used to

pull the data from the University of Oregon PRISM website. Subsequently, a similar process to

the automation of the daily storm report maps could be used to generate the observed weather

(see Appendix B). Percent Normal weather would require raster math of the monthly data against

the normal. It is unclear yet how the tables for these maps would be changed.

Currently the full process for updating the Hazard Index web application takes 15-20

minutes to run. Several ideas have been considered to reduce this time. Most of this long

processing time occurs during the ‘for loop’ extracting, converting, and merging the GRIB2

rasters. To reduce this time, we will attempt to use the module multiprocessing to run multiple

GRIB2 files through the ‘for loop’ simultaneously by using multiple individual processors to

72

each run that part of the script using a different GRIB2 file. This should reduce the processing

time of updating the Hazard Index web application by about 40%.

With an established automated system for updating the hazard index web application,

incorporating more complex hazards could increase the overall value of the product. The first

two complex hazards being examined are heat index and wind chill. Even though these data are

available from NDFD, the formula for each is relatively simple. More complex formulas could

be built to show more accurate measurements for this hazard for the state of Tennessee. A

separate web application for drought index reusing large portions of the script used to automate

the hazard index web application has been considered. This could be a valuable product that

would require a low amount of production time.

A product that could generate additional interest in the hazard index web application is an

automated email that is delivered to a user of the product if the address provided falls within an

area forecast to contain a hazard. Currently the automated email coding is being built into each

script to alert faculty of script errors. Using risk polygons to identify address points containing

email data is a project that will require additional research. This idea came from a patent filed for

a GIS-based automated weather alert notification system (Sznaider et al. 2004).

Product Continuity & Preservation

This thesis provides two major product deliverables. For the automated script for daily

storm reports the Python script is shown here (see Appendix C). It will also be downloaded onto

a designated Department of Geosciences, ETSU computer along with an updated storm report

ArcGIS Pro project and a batch file. The batch file will be set to run in Task Scheduler at a time

designated by faculty. In addition, a preliminary Dashboard web application was developed for a

73

possible future product similar to the North Carolina SCO Severe Storm Reports Tool (Severe

Storm Reports Tool… 2019).

 The WFHI Dashboard web application will be available on ArcGIS Online. The Python

scripts for automating the Hazard Index are shown in this thesis (see Appendix C). Like the

automated script for the daily storm reports, the Python scripts will also be downloaded onto a

designated department computer with the ArcGIS Pro project tied to the web feature layer. A

batch file will be set up to run in Task Scheduler at a time designated by faculty. All paths for

both projects will be changed to reflect the new location of items in the department computer in

which they are placed.

Conclusion

The TCO has short- and long-term goals focused around two questions: 1) How can the

monthly climate report be improved upon and produced more efficiently? and 2) What value-

added, data-driven products should the TCO develop based on local and statewide needs? These

were addressed in the following manner:

• The automation of daily storm report maps meet goals focused around the first question.

• The development of the Weather Forecast Hazard Index web application product meets

goals centered around the second question. Most importantly, it provides value in

helping decision-makers improve their understanding of potentially dangerous forecasted

weather that could effect communities of the state.

Overall this thesis has covered the following:

• Explained the importance of climate and weather data.

• Explained the general hierarchy of climate data services.

• Provided information about the efforts to develop the TCO.

74

• Provided a brief overview of the Python scripting language.

• Explained in detail how daily storm report maps within the monthly climate report were

automated.

• Explained what the hazard index web application is, how it functions, how it was built,

and how it was automated using Python scripting.

• Explained challenges encountered during the building of the script to automate the daily

storm reports and the scripts for the hazard index web application. This is to give the

reader an idea of problems that maybe encountered when repeating the work described

here.

• Discussed the limitations encountered when completing both of these projects.

• Discussed future work on both the automation of the daily storm reports and the scripts

for the hazard index web application as well as products and automation similar to the

work discussed in this Thesis that would add additional value to the TCO.

 The WFHI allows the TCO to provide a valuable service to the state in the form of giving

decision makers an easily readable tool defining forecast hazards for the state of Tennessee.

Perhaps more importantly, Python scripting gives a framework for building additional products

in the future with this thesis acting as a guide. The same can also be said for the automation of

the daily storm reports script. Not only does it automate a time-consuming process but it

provides a framework for automating additional processes.

75

REFERENCES

2.6. Statements and Expressions [Internet]. c2019. Runestone Interactive. [cited 2019 Apr 1].
Available from:
https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/State
mentsandExpressions.html

AASC Recognized State Climate Office [Internet]. 2015. American Association of State
Climatologists; [cited 2019 Mar, 10]. Available from http://stateclimate.org/arsco

About MDL: History [Internet]. 2018. US Department of Commerce & NOAA. [cited 2018 Dec
10]. Available from: https://www.weather.gov/mdl/about_history

About the SPC [Internet]. 2015. National Weather Service. [cited 2019 Mar 10]. Available from

https://www.spc.noaa.gov/misc/aboutus.html

ACIS [Internet]. c2017. Applied Climate Information System [cited 2019 Mar, 10] Avaible from

http://www.rcc-acis.org/aboutacis_overview.html

Agriculture Essentials [Internet]. c1994-2019. Oklahoma Mesonet [cited 2019 Mar, 17].
Available from http://www.mesonet.org/index.php/agriculture/monitor

Aizenman, H, Michael Grossberg, David Jones, Nick Barnes, Jason Smerdon, Kevin
Anchukaitis, and Julien Emile Geay 2015. Web Based Visualization Tool for Climate
Data Using Python [Internet] [cited 2019 June 9]. Available from:
https://www.researchgate.net/profile/Michael_Grossberg/publication/267245402_Web_B
ased_Visualization_Tool_for_Climate_Data_Using_Python/links/5592795e08ae47a3491
0fb17.pdf

Arzberger P., Schroeder P., Beaulieu A., Bowker G., Casey K., Laaksonen L., … Wouters P.
2004. Promoting Access to Public Research Data for Scientific, Economic, and Social
Development. Data Science Journal [Internet] [cited 2018 Nov 3]; 135–152. Available
from: http://doi.org/10.2481/dsj.3.135

Barreira C., Mer F., Ines A. V. M., Baethgen W. E., Berterretche M., Souza J. S., … Han E.
2018. SIMAGRI: An agro-climate decision support tool. Computers and Electronics in
Agriculture [Internet] [cited 2019 Jan 10]. 0–1. Available from:
http://doi.org/10.1016/j.compag.2018.06.034

Basic date and time types [Internet]. c2001-2019. Python Software Foundation. [cited 2019 Mar
20]. Available from: https://docs.python.org/3/library/datetime.html

Beazley D. M. 2009. Python Essential Reference. Fourth Edition. Addison-Wesley Professional.

Boeing G. 2017. OSMnx: New methods for acquiring, constructing, analyzing, and visualizing
complex street networks. Computers, Environment and Urban Systems[Internet] [cited
2019 Jan 10]. 65: 126–139. Available from:
http://doi.org/10.1016/j.compenvurbsys.2017.05.004

https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/StatementsandExpressions.html
https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/StatementsandExpressions.html
http://stateclimate.org/arsco
https://www.weather.gov/mdl/about_history
https://www.spc.noaa.gov/misc/aboutus.html
http://www.rcc-acis.org/aboutacis_overview.html
http://www.mesonet.org/index.php/agriculture/monitor
https://www.researchgate.net/profile/Michael_Grossberg/publication/267245402_Web_Based_Visualization_Tool_for_Climate_Data_Using_Python/links/5592795e08ae47a34910fb17.pdf
https://www.researchgate.net/profile/Michael_Grossberg/publication/267245402_Web_Based_Visualization_Tool_for_Climate_Data_Using_Python/links/5592795e08ae47a34910fb17.pdf
https://www.researchgate.net/profile/Michael_Grossberg/publication/267245402_Web_Based_Visualization_Tool_for_Climate_Data_Using_Python/links/5592795e08ae47a34910fb17.pdf
http://doi.org/10.2481/dsj.3.135
http://doi.org/10.1016/j.compag.2018.06.034
http://doi.org/10.1016/j.compenvurbsys.2017.05.004

76

Bonnin G. M., Martin D., Lin B., Parzybok T., & Riley D. 2004. NOAA Atlas 14: Precipitation-
Frequency Atlas of the United States. 1: 1–7.

Brooks M. S. 2013. Accelerating Innovation in Climate Services: the 3E’s for climate service
providers. Bulletin of the American Meteorological Society [Internet] [cited 2019 Jan
10]. Available from: http://doi.org/10.1175/bams-d-12-00087 130219081617002

Brown J. L. 2014. SDMtoolbox: A python-based GIS toolkit for landscape genetic,
biogeographic and species distribution model analyses. Methods in Ecology and
Evolution [Internet] [cited 2019 Jan 10]; 5(7): 694–700. Available from:
http://doi.org/10.1111/2041-210X.12200

Brown J. L., Bennett J. R., & French C. M. 2017. SDMtoolbox 2.0: The next generation Python-
based GIS toolkit for landscape genetic, biogeographic and species distribution model
analyses [Internet] [cited 2019 Jan 10]. Peer J. Available from:
doi:10.7287/peerj.4095v0.2/reviews/2

Callahan C. 2014. Developing the Delaware Weather Hazard Index (DWHI). [Internet] [cited
2018 Sept 12]. Available from: https://www.ag.ndsu.edu/cpasw/documents/program-
pdfs/session-2/05-callahan-cpasw18-tuesdaysession2-de.pdf

Changnon S. A., Lamb P. J., & Hubbard K. G. 1990. Regional Climate Centers: New Institutions
for Climate Services and Climate-Impact Research. Bulletin of the American
Meteorological Society [Internet] [cited 2019 Jan 10]; 71(4): 527-537. Available from:
doi:10.1175/1520-0477(1990)0712.0.co;2

Climate Perspectives Tutorial [Internet]. c2007. Southeast Regional Climate Center. [cited 2019
Mar 31]. Available from: http://www.sercc.com/perspectives_tutorial.php

Climate Service Partners [Internet]. 2018. US Department of Commerce & NOAA. [cited 2019
Mar 10]. Available from: https://www.weather.gov/climateservices/partners

Coletti A., Howe P. D., Yarnal B., & Wood N. J. 2013. A support system for assessing local

vulnerability to weather and climate. Natural Hazards [Internet] [cited 2019 Feb 15];
65(1): 999–1008. Available from: http://doi.org/10.1007/s11069-012-0366-3

Cook B. I., Seager R., & Miller R. L. 2011. Atmospheric circulation anomalies during two
persistent North American droughts: 1932–1939 and 1948–1957. Climate Dynamics.
36:11-12. 2339-2355.

Create Thiessen Polygons [Internet]. n.d.. ESRI. [cited 2019 Jan 5]. Available from:
https://pro.arcgis.com/en/pro-app/tool-reference/analysis/create-thiessen-polygons.htm

CSV File Reading and Writing [Internet]. c2001-2019. Python Software Foundation. [cited 2019
Mar 20]. Available from: https://docs.python.org/3/library/csv.html

Dateutil - powerful extensions to datetime [Internet]. c2016. [cited 2018 Nov 15]. Available from
https://dateutil.readthedocs.io/en/stable/

http://doi.org/10.1175/bams-d-12-00087
http://doi.org/10.1111/2041-210X.12200
https://www.ag.ndsu.edu/cpasw/documents/program-pdfs/session-2/05-callahan-cpasw18-tuesdaysession2-de.pdf
https://www.ag.ndsu.edu/cpasw/documents/program-pdfs/session-2/05-callahan-cpasw18-tuesdaysession2-de.pdf
http://www.sercc.com/perspectives_tutorial.php
https://www.weather.gov/climateservices/partners
http://doi.org/10.1007/s11069-012-0366-3
https://pro.arcgis.com/en/pro-app/tool-reference/analysis/create-thiessen-polygons.htm

77

Degaetano A. T., Brown T. J., Hilberg S. D., Redmond K., Robbins K., Robinson P., . . .
Mcguirk M. 2010. Toward Regional Climate Services. Bulletin of the American
Meteorological Society. 91(12): 1633-1644. doi:10.1175/2010bams2936.1

Dima M., & Lohmann G. 2007. A hemispheric mechanism for the Atlantic Multidecadal
Oscillation. Journal of Climate. 20(11). 2706-2719.

Dion E., Young D., & Tew M. 2019. NATIONAL DIGITAL FORECAST DATABASE and
LOCAL DATABASE DESCRIPTION and SPECIFICATIONS. National Weather
Service (US). Issue brief No: 10-201. Available from:
https://www.nws.noaa.gov/directives/sym/pd01002001curr.pdf

Dixon P. G., Mercer A. E., Grala K., & Cooke W. H. 2014. Objective identification of tornado
seasons and ideal spatial smoothing radii. Earth Interactions [Internet] [cited 2019 Mar
17]; 18(2): 1-15. Availiable from:
https://journals.ametsoc.org/doi/full/10.1175/2013EI000559.1
doi:10.1175/2013EI000559.1

Dixon P. G., Mercer A. E., Choi J., & Allen J. S. 2011. Tornado risk analysis: Is Dixie alley an
extension of tornado alley?. Bulletin of the American Meteorological Society [Internet]
[cited 2019 Mar 17]; 92(4): 433-441. Availiable from:
https://journals.ametsoc.org/doi/abs/10.1175/2010BAMS3102.1
doi:10.1175/2010BAMS3102.1

Dutton J., & O'Brien J. c2018. GEOG 489 - Advanced Python Programming for GIS.
Pennsylvania State University [Internet] [cited 2019 Mar 17]. Available from:
https://www.e-education.psu.edu/geog489/home.html

Faiers G. E., Grymes III J. M., Keim B. D., & Muller R. A. 1994. A reexamination of extreme
24-hour rainfall in Louisiana, USA. Climate Research [Internet] [cited 2019 Mar 15];
4(4): 25-31. Available from:
https://pdfs.semanticscholar.org/581d/0f2282303fb5adc240cdfce21d0e90acedc5.pdf

Forecasts and Service [Internet]. 2017. US Department of Commerce & NOAA. [cited 2019 Mar
10]. Available from: https://www.weather.gov/about/forecastsandservice

Germain H. J. n.d.. Strings. University of Utah [Internet] [cited 2019 Mar 20]. Available from:

https://www.cs.utah.edu/~germain/PPS/Topics/strings.html

GIS [Internet]. c2016-2019. ESRI. [cited 2019 Jan 5]. Available from:
https://esri.github.io/arcgis-python-api/apidoc/html/arcgis.gis.toc.html

Granger B. E., & Hunter J. D. 2011. Python: An Ecosystem for Scientific Computing.
Computing in Science & Engineering [Internet] [cited 2019 Apr 25]; 13–21. Available
from:
https://pdfs.semanticscholar.org/e53e/c3a7325cdef1c654009df7108f016668a6e2.pdf

https://www.nws.noaa.gov/directives/sym/pd01002001curr.pdf
https://journals.ametsoc.org/doi/full/10.1175/2013EI000559.1
https://journals.ametsoc.org/doi/abs/10.1175/2010BAMS3102.1
https://pdfs.semanticscholar.org/581d/0f2282303fb5adc240cdfce21d0e90acedc5.pdf
https://www.weather.gov/about/forecastsandservice
https://www.cs.utah.edu/%7Egermain/PPS/Topics/strings.html
https://pdfs.semanticscholar.org/e53e/c3a7325cdef1c654009df7108f016668a6e2.pdf

78

GRIB Data Format used for the COSMO-Model System [Internet]. 2013. Consortium for Small
Scale Modeling. [cited 2018 Oct 10]. Available from http://www.cosmo-
model.org/content/model/documentation/grib/grib_features.htm

Hibma K. 2017 Mar 14. Updating your hosted feature services with ArcGIS Pro and the ArcGIS
API for Python. ESRI [Internet] [cited 2019 Mar 19]. Available from:
https://www.esri.com/arcgis-blog/products/api-python/analytics/updating-your-hosted-
feature-services-with-arcgis-pro-and-the-arcgis-api-for-python/

Hoerling M. P., Kumar A., & Zhong M. 1997. El Niño, La Niña, and the nonlinearity of their
teleconnections. Journal of Climate [Internet] [cited 2019 Mar 15]; 10(8): 1769-1786.
Available from: https://journals.ametsoc.org/doi/full/10.1175/1520-
0442%281997%29010%3C1769%3AENOLNA%3E2.0.CO%3B2 doi:10.1175/1520-
0442(1997)010<1769:ENOLNA>2.0.CO;2

Houston T. n.d.. Regional Climate Centers. National Oceanic and Atmospheric Administration.
[Internet] [cited 2019 Feb 15]. Available from: https://www.ncdc.noaa.gov/customer-
support/partnerships/regional-climate-centers

Interactive Map tracking tropical storms [Internet]. 2019. SRCC. [cited 2019 Mar10]. Available
from: https://www.srcc.lsu.edu/tropical_desk

Jones, D. A., Wang, W., & Fawcett, R. 2009. High-quality spatial climate data-sets for Australia.
Australian Meteorological and Oceanographic Journal [Internet] [cited 2019 Mar 15]; 58:
233–248. Available from:
https://pdfs.semanticscholar.org/e407/6004f330b2f2130ca86402a35c2c732b803d.pdf

Karl T. R., Gleason B. E., Menne M. J., McMahon J. R., Heim Jr R. R., Brewer M. J., ... &
Groisman P. Y. 2012. US temperature and drought: Recent anomalies and trends. Eos,
Transactions American Geophysical Union [Internet] [cited 2019 Mar 15]; 93(47): 473-
474. Available from:
https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2012EO470001
doi:10.1029/2012EO470001

Keim B. D., Muller R. A., & Stone G. W. 2007. Spatiotemporal patterns and return periods of

tropical storm and hurricane strikes from Texas to Maine. Journal of climate [Internet]
[cited 2019 Mar 15]; 20(14): 3498-3509. Available from:
https://journals.ametsoc.org/doi/full/10.1175/JCLI4187.1 doi:10.1175/JCLI4187.1

Kelvin to Fahrenheit [Internet]. 2018. Wight Hat Ltd. [cited 2018 Oct 15]. Available from:
https://www.metric-conversions.org/temperature/kelvin-to-fahrenheit.htm

Kentucky Mesonet Agriculture Tool [Internet]. n.d.. Kentucky State Climate Office. [cited 2019
April 1]. Available from: http://kymesonet.org/ag.html

Kilogram force per square meter to Inches of Water conversion [Internet]. 2018. Wight Hat Ltd.
[cited 2018 Oct 15]. Available from: https://www.metric-
conversions.org/pressure/kilogram-force-per-square-meter-to-inches-of-water.htm

http://www.cosmo-model.org/content/model/documentation/grib/grib_features.htm
http://www.cosmo-model.org/content/model/documentation/grib/grib_features.htm
https://www.esri.com/arcgis-blog/products/api-python/analytics/updating-your-hosted-feature-services-with-arcgis-pro-and-the-arcgis-api-for-python/
https://www.esri.com/arcgis-blog/products/api-python/analytics/updating-your-hosted-feature-services-with-arcgis-pro-and-the-arcgis-api-for-python/
https://journals.ametsoc.org/doi/full/10.1175/1520-0442%281997%29010%3C1769%3AENOLNA%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/full/10.1175/1520-0442%281997%29010%3C1769%3AENOLNA%3E2.0.CO%3B2
https://doi.org/10.1175/1520-0442(1997)010%3C1769:ENOLNA%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010%3C1769:ENOLNA%3E2.0.CO;2
https://www.ncdc.noaa.gov/customer-support/partnerships/regional-climate-centers
https://www.ncdc.noaa.gov/customer-support/partnerships/regional-climate-centers
https://www.srcc.lsu.edu/tropical_desk
https://pdfs.semanticscholar.org/e407/6004f330b2f2130ca86402a35c2c732b803d.pdf
https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2012EO470001
https://journals.ametsoc.org/doi/full/10.1175/JCLI4187.1
https://doi.org/10.1175/JCLI4187.1
http://kymesonet.org/ag.html

79

Klein W. H. 2018. the precipitation program of the Techniques Development Laboratory.
Bulletin of the American Meteorological Society [Internet] [cited 2019 Mar 15]; 48(12):
890–895. Available from: https://journals.ametsoc.org/doi/abs/10.1175/1520-0477-
48.12.890 doi:10.1175/1520-0477-48.12.890 T

Kumar N. 2019, February 22. GET and POST requests using Python. Geeks for geeks [Internet]
[cited 2019 Feb 22]. Available from: https://www.geeksforgeeks.org/get-post-requests-
using-python/

Library of Congress. 2009 Sep 28. Sustainability of Digital Formats: Planning for Library of
Congress Collections. Library of Congress. [Internet] [cited 2019 Mar 20]. Available
from https://www.loc.gov/preservation/digital/formats/fdd/fdd000022.shtml

Logan K. E., Brunsell N. A., Jones A. R., & Feddema J. J. 2010. Assessing spatiotemporal
variability of drought in the US central plains. Journal of Arid Environments. [Internet]
[cited 2019 Apr 10]; 74(2): 247-255. Available from:
https://www.sciencedirect.com/science/article/pii/S0140196309002572 doi:
10.1016/j.jaridenv.2009.08.008

McCabe G. J., Betancourt J. L., Gray S. T., Palecki M. A., & Hidalgo H. G. 2008. Associations
of multi-decadal sea-surface temperature variability with US drought. Quaternary
International [Internet] [cited 2019 Apr 10]; 188(1): 31-40. Available from:
https://www.sciencedirect.com/science/article/pii/S1040618207002017
doi:10.1016/j.quaint.2007.07.001

Mesonet Essentials: An introduction to mesonets, their value, and how they work [Internet]
c2019. Campbell Scientific. [cited 2019 Apr 1]. Available from:
https://www.campbellsci.com/mesonets

Meters per second to Miles per hour [Internet]. 2018. Wight Hat Ltd. [cited 2018 Oct 15].
Available from: https://www.metric-conversions.org/speed/meters-per-second-to-miles-
per-hour.htm

Meters to Inches [Internet]. 2018. Wight Hat Ltd. [cited 2018 Oct 15]. Available from:

https://www.metric-conversions.org/length/meters-to-inches.htm

Modules [Internet]. c2001-2019. Python Software Foundation. [cited 2019 Mar 20]. Available
from: https://docs.python.org/3/tutorial/modules.html

Moore T. W., & Dixon R. W. 2011. Climatology of tornadoes associated with Gulf Coast‐
landfalling hurricanes. Geographical Review. [Internet] [cited 2019 Apr 10]; 101(3): 371-
395. Available from:
https://www.jstor.org/stable/41303640?seq=1#metadata_info_tab_contents

Müller W. A., Frankignoul C., & Chouaib N. 2008. Observed decadal tropical Pacific–North
Atlantic teleconnections. Geophysical Research Letters [Internet] [cited 2019 Mar 10];
35(24): Available from:
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008GL035901

https://journals.ametsoc.org/doi/abs/10.1175/1520-0477-48.12.890
https://journals.ametsoc.org/doi/abs/10.1175/1520-0477-48.12.890
http://doi.org/10.1175/1520-0477-48.12.890
https://www.loc.gov/preservation/digital/formats/fdd/fdd000022.shtml
https://www.sciencedirect.com/science/article/pii/S0140196309002572
https://doi.org/10.1016/j.jaridenv.2009.08.008
https://doi.org/10.1016/j.jaridenv.2009.08.008
https://www.sciencedirect.com/science/article/pii/S1040618207002017
https://www.campbellsci.com/mesonets
https://www.metric-conversions.org/speed/meters-per-second-to-miles-per-hour.htm
https://www.metric-conversions.org/speed/meters-per-second-to-miles-per-hour.htm
https://www.jstor.org/stable/41303640?seq=1#metadata_info_tab_contents
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008GL035901

80

doi:10.1029/2008GL035901

Multidimensional Raster Types [Internet]. c2016. ESRI. [cited 2019 Jan 5]. Available from:
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-
images/multidimensional-raster-types.htm

National Digital Forecast Database (NDFD) [Internet]. n.d.. National Centers for Environmental
Information. [cited 2018 Mar 19]. Available from: https://www.ncdc.noaa.gov/data-
access/model-data/model-datasets/national-digital-forecast-database-ndfd

National Oceanic and Atmospheric Administration (NOAA) - National Climatic Data Center
[Internet]. c2018. Federal Laboratory Consortium for Technology Transfer. [cited 2019
Mar 10]. Available from: https://www.federallabs.org/labs/national-oceanic-and-
atmospheric-administration-noaa-national-climatic-data-center

National Weather Service Corporate Image Web Team. n.d.. “Graphical Forecasts - Tennessee.”
NOAA Graphical Forecast for Tennessee. National Weather Service [Internet] [cited
2019 Mar 20]. Available from: https://graphical.weather.gov/sectors/tennessee.php.

NDFD Spatial Reference System [Internet]. n.d.. US Department of Commerce & NOAA. [cited
2019 Mar 18]. Available from: https://www.weather.gov/mdl/ndfd_srs

Needham H. F., & Keim B. D. 2014. Correlating storm surge heights with tropical cyclone winds
at and before landfall. Earth Interactions [Internet] [cited 2019 Feb 20]; 18(7): 1-26.
Available from: https://journals.ametsoc.org/doi/full/10.1175/2013EI000527.1
doi:10.1175/2013EI000527.1

Nogueira R. C., & Keim B. D. 2011. Contributions of Atlantic tropical cyclones to monthly and
seasonal rainfall in the eastern United States 1960–2007. Theoretical and Applied
Climatology [Internet] [cited 2019 Mar 20]; 103(1-2): 213-227. Available from:
https://www.researchgate.net/publication/252455669_Contributions_of_Atlantic_tropical
_cyclones_to_monthly_and_seasonal_rainfall_in_the_eastern_United_States_1960-2007
doi:10.1007/s00704-010-0292-9

Nogueira R. C., Keim B. D., Brown D. P., & Robbins K. D. 2013. Variability of rainfall from
tropical cyclones in the eastern USA and its association to the AMO and ENSO.
Theoretical and applied climatology [Internet] [cited 2019 Mar 20]; 112(1-2): 273-283.
Available from:
https://www.researchgate.net/publication/257449475_Variability_of_rainfall_from_tropi
cal_cyclones_in_the_eastern_USA_and_its_association_to_the_AMO_and_ENSO
doi:10.1007/s00704-012-0722-y

Os - Miscellaneous operating system interfaces [Internet]. c2001-2019. Python Software
Foundation. [cited 2019 Mar 20]. Available from:
https://docs.python.org/3/library/os.html

Package osgeo [Internet]. 2018 Apr 20. gdal. [cited 2019 Mar 18]. Available from:
https://gdal.org/python/

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/national-digital-forecast-database-ndfd
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/national-digital-forecast-database-ndfd
https://www.federallabs.org/labs/national-oceanic-and-atmospheric-administration-noaa-national-climatic-data-center
https://www.federallabs.org/labs/national-oceanic-and-atmospheric-administration-noaa-national-climatic-data-center
https://graphical.weather.gov/sectors/tennessee.php
https://journals.ametsoc.org/doi/full/10.1175/2013EI000527.1
https://doi.org/10.1175/2013EI000527.1
https://www.researchgate.net/publication/252455669_Contributions_of_Atlantic_tropical_cyclones_to_monthly_and_seasonal_rainfall_in_the_eastern_United_States_1960-2007
https://www.researchgate.net/publication/252455669_Contributions_of_Atlantic_tropical_cyclones_to_monthly_and_seasonal_rainfall_in_the_eastern_United_States_1960-2007
https://www.researchgate.net/publication/257449475_Variability_of_rainfall_from_tropical_cyclones_in_the_eastern_USA_and_its_association_to_the_AMO_and_ENSO
https://www.researchgate.net/publication/257449475_Variability_of_rainfall_from_tropical_cyclones_in_the_eastern_USA_and_its_association_to_the_AMO_and_ENSO

81

Pattis R. E. n.d.. ASCII Table. Carnegie Mellon University [Internet] [cited 2019 Apr 1].
Available from: https://www.cs.cmu.edu/~pattis/15-1XX/common/handouts/ascii.html

Pimpler E. 2017. Programming ArcGIS Pro with Python: Automate your ArcGis Pro
geoprocessing tasks with Python. Boerne (TX): Geospatial Training Services.

Powell E. J., & Keim B. D. 2015. Trends in daily temperature and precipitation extremes for the
southeastern United States: 1948–2012. Journal of Climate [Internet] [cited 2019 Mar
20]; 28(4): 1592-1612. Available from:
https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-14-00410.1 doi:10.1175/JCLI-D-
14-00410.1

Quinn S., & Dutton J. 2019. GIS Programming and Software Development. Pennsylvania State
University [Internet] [cited 2019 Mar 18]. Available from: https://www.e-
education.psu.edu/geog485/node/91

Reading GRIB Files [Internet]. n.d.. National Oceanic and Atmospheric Administration. [cited
2018 Nov 10]. Available from:
https://www.cpc.ncep.noaa.gov/products/wesley/reading_grib.html

Reaney S., & Wells P. 2016 Jan 20. Web based SCIMAP. Durham University [Internet] [cited
2018 Dec 10]. Available from: https://community.dur.ac.uk/sim.reaney/?p=500

Regional Climate Centers: Hubs of Local Expertise [Internet]. 2018 Aug 23. National Oceanic
and Atmospheric Administration. [cited 2019 Mar 20]. Available from:
https://www.ncei.noaa.gov/news/regional-climate-centers-hubs-local-expertise

Roberts J. J., Best B. D., Dunn D. C., Treml E. A., & Halpin P. N. 2010. Marine Geospatial
Ecology Tools: An integrated framework for ecological geoprocessing with ArcGIS,
Python, R, MATLAB, and C++. Environmental Modelling and Software [Internet] [cited
2019 Dec 10]; 25(10): 1197–1207. Available from:
http://doi.org/10.1016/j.envsoft.2010.03.029 doi:10.1016/j.envsoft.2010.03.029

Rossum G. V., & Drake F. L. 2003. Python language reference manual. Bristol: Network
Theory.

Sawale G. J., & Gupta S. R. 2013. Use of Artificial Neural Network in Data Mining For Weather
Forecasting. International Journal of Computer Science and Applications [Internet] [cited
2019 Apr 20]; 6(2): 383–387. Available from:
https://pdfs.semanticscholar.org/d3b2/928d0ef70808329a6b3e8dd0b33bbb9674ba.pdf

Severe Storm Reports Tool [Internet]. n.d.. North Carolina Climate Office. [cited 2019 Mar 17].
Available from: http://climate.ncsu.edu/climate/storm_reports

Shutil - High-level file operations [Internet]. c2001-2019. Python Software Foundation. [cited
2019 Mar 20]. Available from: https://docs.python.org/3/library/shutil.html

https://www.cs.cmu.edu/%7Epattis/15-1XX/common/handouts/ascii.html
https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-14-00410.1
https://doi.org/10.1175/JCLI-D-14-00410.1
https://doi.org/10.1175/JCLI-D-14-00410.1
https://www.cpc.ncep.noaa.gov/products/wesley/reading_grib.html
https://community.dur.ac.uk/sim.reaney/?p=500
https://www.ncei.noaa.gov/news/regional-climate-centers-hubs-local-expertise
http://doi.org/10.1016/j.envsoft.2010.03.029
https://pdfs.semanticscholar.org/d3b2/928d0ef70808329a6b3e8dd0b33bbb9674ba.pdf
http://climate.ncsu.edu/climate/storm_reports

82

Snow A. D., Christensen S. D., Swain N. R., Nelson E. J., Ames D. P., Jones N. L., … Zsoter E.
2016. A High-Resolution National-Scale Hydrologic Forecast System from a Global
Ensemble Land Surface Model. Journal of the American Water Resources Association
[Internet] [cited 2019 Apr 20]; 52(4): 950–964. Available from:
http://doi.org/10.1111/1752-1688.12434 doi:10.1111/1752-1688.12434

State Members [Internet]. n.d.. American Association of State Climatologists. [cited 2019 Mar
10]. Available from: http://stateclimate.org/

Stoner A. M. K., Hayhoe K., & Wuebbles D. J. 2009. Assessing general circulation model
simulations of atmospheric teleconnection patterns. Journal of Climate [Internet] [cited
2019 Feb 10]; 22(16): 4348-4372. Available from:
https://doi.org/10.1175/2009JCLI2577.1 doi:10.1175/2009JCLI2577.1

Storm Prediction Center Frequently Asked Questions (FAQ) [Internet]. 2019. National Weather
Service. [cited 2018 Dec 10]. Available from: https://www.spc.noaa.gov/faq/#6.1

sys - System-specific parameters and functions [Internet]. c2001-2019. Python Software

Foundation. [cited 2019 Mar 20]. Available from:
https://docs.python.org/3.4/library/sys.html

Sznaider R. J., Chenevert D. P., Hugg R. L., Reece C. F., & Block J. H. 2004. GIS-based
automated weather alert notification system. [Internet]. [cited 2019 Apr 20]. Washington
(DC): U.S. U.S. Patent and Trademark Office. Patent No. US6753784B1. Available
from: https://patents.google.com/patent/US6753784B1/en

The Enhanced Fujita Scale (EF Scale) [Internet]. 2014. National Weather Service. [cited 2018
Dec 10]. Available from: https://www.spc.noaa.gov/efscale/

Time - Time access and conversions [Internet]. c2001-2019. Python Software Foundation. [cited
2019 Mar 20]. Available from: https://docs.python.org/3/library/time.html

The Python Programming Language [Internet]. c2019. Runestone Interactive. [cited 2019 Apr 1].
Available from:
https://runestone.academy/runestone/books/published/thinkcspy/GeneralIntro/ThePython
ProgrammingLanguage.html

Waclena K. n.d.. Introduction to Python: Class 7: Python on the Web. University of Chicago.
[cited 2019 Mar 18]. Available from:
https://www2.lib.uchicago.edu/keith/courses/python/class/7/

Warmerdam F. 2019 July 5. GDAL/OGR in Python. Python Software Foundation [Internet]
[cited 2018 Nov 20]. Available from: https://pypi.org/project/GDAL/

What is Python? Executive Summary [Internet]. c2001-2019. Python Software Foundation.
[cited 2019 Mar 20]. Available from: https://www.python.org/doc/essays/blurb/

http://doi.org/10.1111/1752-1688.12434
http://stateclimate.org/
https://www.spc.noaa.gov/faq/#6.1
https://patents.google.com/patent/US6753784B1/en
https://www.spc.noaa.gov/efscale/
https://docs.python.org/3/library/time.html
https://runestone.academy/runestone/books/published/thinkcspy/GeneralIntro/ThePythonProgrammingLanguage.html
https://runestone.academy/runestone/books/published/thinkcspy/GeneralIntro/ThePythonProgrammingLanguage.html
https://pypi.org/project/GDAL/

83

What's the difference between Scripting and Programming Languages? [Internet]. n.d.. Geeks for
geeks. [cited 2019 Jan 21]. Available from: https://www.geeksforgeeks.org/whats-the-
difference-between-scripting-and-programming-languages/

Whitaker J. 2014 Dec 29. Module pygrib. Github [Internet] [cited 2018 Nov 15]. Available from:
https://jswhit.github.io/pygrib/docs/

Working with dynamic text [Internet]. c2016. ESRI. [cited 2019 Apr 25]. Available from:
http://desktop.arcgis.com/en/arcmap/10.3/map/page-layouts/working-with-dynamic-
text.htm

https://www.geeksforgeeks.org/whats-the-difference-between-scripting-and-programming-languages/
https://www.geeksforgeeks.org/whats-the-difference-between-scripting-and-programming-languages/
https://jswhit.github.io/pygrib/docs/
http://desktop.arcgis.com/en/arcmap/10.3/map/page-layouts/working-with-dynamic-text.htm
http://desktop.arcgis.com/en/arcmap/10.3/map/page-layouts/working-with-dynamic-text.htm

84

APPENDIX

Appendix A: Tennessee State Climate Office Mission Statement

Proposed Mission Statement:

Tennessee has a diverse climate attributable to its size and landscape and is often
geographically and culturally defined by three “grand divisions:” East Tennessee (Appalachian
Mountains, Cumberland Mountains, and the ridge-and-valley region), Middle Tennessee (rolling
hills), and West Tennessee (flat topography part of the Gulf Coastal Plain). As the climate of the
state varies greatly from west to east, it has wide-ranging impacts on many parts of our economy
daily. The state climate office for Tennessee was originally established under the direction of the
Tennessee Valley Authority (TVA), however it ceased operations in 2006. Over ten years later in
2017, we are attempting to re-establish the office at East Tennessee State University as the
Tennessee Climate Office (TCO). Climate influences various sectors of our state economy
including agriculture, transportation, tourism, recreation, and the environment. The mission of the
TCO is to provide climate-related services to state, local and federal agencies, businesses, and the
citizens of Tennessee.

The TCO will initially be housed in the Geosciences complex within Ross Hall on the main
campus of East Tennessee State University, where university researchers, government agencies,
and private industries come together and create a unique environment for interaction and
advancement.

It is expected that the TCO will be actively involved in research that enhances its
capabilities to provide public service. Examples include analyses of climate hazards in Tennessee,
seasonal weather forecast dissemination, drought monitoring, El Niño/La Niña effects on
Tennessee weather and climate, agricultural and water resource management, air quality and
environmental management, and natural hazard risk assessment and mitigation. The TCO derives
its expertise from the Department of Geosciences at East Tennessee State University, the
University of Tennessee Institute of Agriculture, the Department of Agriculture, Geosciences, and
Natural Resources at the University of Tennessee-Martin, and the Department of Civil and
Environmental Engineering at Vanderbilt University. Undergraduate and graduate students from
different universities will participate in the research and extension activities at the TCO every year.

Partnerships with the following agencies are anticipated/expected: TVA, Tennessee Wildlife
Resources Agency, Tennessee Emergency Management Agency, Tennessee Department of
Transportation, Tennessee Department of Environment and Conservation, Oak Ridge National
Laboratory, National Weather Service (all four locations serving TN), Southern Regional Climate
Center, Southeast Regional Climate Center, the National Centers for Environmental Information,
Association of American State Climatologists, and the Federal Emergency Management Agency.
This is a tentative list and is not intended to be comprehensive at this point in time. Interaction
with these organizations enhance our outreach activities.

Mission Areas:

1) Extension

Provide the most accurate climate information to the citizens of Tennessee.

85

Assist Tennessee state agencies in climate-environment interaction issues and related
applications.

Establish, operate, and maintain an extensive meteorological network across Tennessee
and archive and disseminate data to the public in a timely fashion.

Assist other extension scientists by integrating climate information into applications such
as agricultural and environmental models.

Increase public awareness of variations in Tennessee climate and environment to aid in
long-range planning.

2) Research

Study Tennessee’s climate and its interaction with the environment.

Investigate the effects of climatic variations on agriculture, air pollution, and natural
resources and develop forecasts that assist in resource management.

3) Education

Interact with K-12 schools, community college and university teachers and students, and
with other community organizations on different aspects of Tennessee climate and
environment.

86

Appendix B: July 2018 Tennessee Climate Summary

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

Appendix C: Python Script Automation

Python Script for Automation of Daily Storm Reports:

Automation of Daily Storm Reports script:

import urllib.request

import os

import time

import csv

from datetime import timedelta, datetime

#Modules

def Oz(FileName, stump, Time, F_Scale, Location, County, State, Lat, Lon, Comments):

 arcpy.CreateFeatureclass_management(bombsite, FileName, "POINT", "", "", "", spatialref)

 arcpy.AddField_management(stump, Time, "SHORT")

 arcpy.AddField_management(stump, F_Scale, "TEXT")

 arcpy.AddField_management(stump, Location, "TEXT")

 arcpy.AddField_management(stump, County, "TEXT")

 arcpy.AddField_management(stump, State, "TEXT")

 arcpy.AddField_management(stump, Lat, "FLOAT")

 arcpy.AddField_management(stump, Lon, "FLOAT")

 arcpy.AddField_management(stump, Comments, "TEXT", "", "", fieldlength)

 arcpy.AddField_management(stump, "Date", "TEXT")

114

 arcpy.AddField_management(stump, "Count", "SHORT")

def Avalon(Tango, Stump, Time, F_Scale, Location, County, State, Lat, Lon, Comments,

Wizard):

 with arcpy.da.InsertCursor(Stump, ("SHAPE@XY", Time, F_Scale, Location, County, State,

Lat, Lon, Comments))as wizard:

 for players in Tango:

 Timez = players[0]

 TimeInt2 = int(Timez)

 F_Scalez = players[1]

 Countyz = players[3]

 State = players[4]

 Latz = players[5]

 numLat = float(Latz)

 Lonz = players[6]

 numLon = float(Lonz)

 Commentsz = players[7]

 Locationz = players[2]

 wizard.insertRow(((float(numLon), float(numLat)), TimeInt2, F_Scalez, Locationz,

Countyz, State, numLat, numLon, Commentsz))

#time setup

115

timestream = datetime.now() - timedelta(days= 1)

timestr = timestream.strftime("%m%d%y")

propmonth = timestream.strftime('%B')

propday = timestream.strftime('%d')

propyear = timestream.strftime('%Y')

dytextdate = propmonth + ' ' + propday + ', ' + propyear

begin_time = time.time()

#add day of week at beginning?

#Variables

placeholder_spot =

r"E:\Grad_School\Archive_2\Thesis\State_Climate_Office\TCO_Automation\NOAA_DATA_P

ULL"

basicurl = r"http://www.spc.noaa.gov/climo/reports"

torncsv = 'yesterday_torn.csv'

hailcsv = 'yesterday_hail.csv'

windcsv = 'yesterday_wind.csv'

tornrawscv = 'yesterday_raw_torn.csv'

weatherlistOne = [torncsv, windcsv, hailcsv, tornrawscv]

weatherlist = [torncsv, windcsv, hailcsv]

spatialsurogate =

r"E:\Grad_School\Archive_2\Thesis\State_Climate_Office\TCO_Automation\NOAA_DATA_P

ULL\SpatialReference\SpatialReference.shp"

116

spatialref = arcpy.Describe(spatialsurogate).spatialReference

fieldlength = 300

partarch =

r'E:\Grad_School\Archive_2\Thesis\State_Climate_Office\TCO_Automation\NOAA_DATA_P

ULL\Archive'

bombsite = partarch + '\\' + 'SPC_Daily_' + timestr

boundary =

r'E:\Grad_School\Archive_2\Thesis\State_Climate_Office\TCO_Automation\NOAA_DATA_P

ULL\Boundary\TNBoundary.shp'

#Folder creation

try:

 os.mkdir(bombsite)

 print('folder created')

except:

 print('folder already made')

#Set workspace environment for Arcpy and os

curdir = os.getcwd()

print(curdir)

newdir = os.chdir(bombsite)

curdir = os.getcwd()

print(curdir)

117

arcpy.env.workspace = bombsite

arcpy.env.overwriteOutput = True

#Pulling data from SPC website

for climateOne in weatherlistOne:

 stringcobbleone = basicurl + '/' + climateOne

 print(stringcobbleone)

 req = urllib.request.Request(stringcobbleone)

 reqopen = urllib.request.urlopen(req)

 output = open(climateOne, 'wb')

 output.write(reqopen.read())

 output.close

#Setting up to read csv files

for climate in weatherlist:

 newstringcobble = bombsite + '\\' + climate

 print(newstringcobble)

 climatestr = climate.replace('.csv', '')

 newreader = open(newstringcobble, 'r')

 print(newreader)

 csvreader = csv.reader(newreader, delimiter= ',')

 print(csvreader)

 header = csvreader.__next__()

118

 print(header)

 filenameT = climatestr + "_" + timestr + ".shp"

 filenameTclip = climatestr + '_clip_' + timestr + '.shp'

 print(filenameT)

 shortnameT = climatestr + ".shp"

 shortnameTclip = climatestr + '_clip_' + ".shp"

 print(shortnameT)

 fullpath = bombsite + '\\' + filenameT

 fullpathclip = bombsite + '\\' + filenameTclip

 print(fullpath)

 branchT = placeholder_spot + '\\' + shortnameT

 branchTclip = placeholder_spot + '\\' + shortnameTclip

 print(branchT)

 #establishing file headers and providing input for modules & running them

 if climate == torncsv:

 Time = "Time"

 F_Scale = "F_Scale"

 Location = "Location"

 County = "County"

 State = "State"

 Lat = "Lat"

 Lon = "Lon"

119

 Comments = "Comments"

 wizard = "gandalf"

 Time1 = header.index("Time")

 F_Scale1 = header.index("F_Scale")

 Location1 = header.index("Location")

 County1 = header.index("County")

 State1 = header.index("State")

 Lat1 = header.index("Lat")

 Lon1 = header.index("Lon")

 Comments1 = header.index("Comments")

 Oz(filenameT, fullpath,Time, F_Scale, Location, County, State, Lat, Lon, Comments)

 print ("oz1")

 Avalon(csvreader, fullpath, Time,F_Scale, Location, County, State, Lat, Lon, Comments,

wizard)

 print("Avalon1")

 elif climate == hailcsv:

 TimeH = "Time"

 Size = "Size"

 LocationH = "Location"

 CountyH = "County"

 StateH = "State"

120

 LatH = "Lat"

 LonH = "Lon"

 CommentsH = "Comments"

 wizard = "warlock"

 Time2 = header.index("Time")

 F_Scale2 = header.index("Size")

 Location2 = header.index("Location")

 County2 = header.index("County")

 State2 = header.index("State")

 Lat2 = header.index("Lat")

 Lon2 = header.index("Lon")

 Comments2 = header.index("Comments")

 Oz(filenameT, fullpath, TimeH, Size, LocationH, CountyH, StateH, LatH, LonH,

CommentsH)

 print ("oz2")

 Avalon(csvreader, fullpath, TimeH, Size, LocationH, CountyH, StateH, LatH, LonH,

CommentsH, wizard)

 print("Avalon2")

 elif climate == windcsv:

 TimeW = "Time"

 Speed = "Speed"

121

 LocationW = "Location"

 CountyW = "County"

 StateW = "State"

 LatW = "Lat"

 LonW = "Lon"

 CommentsW = "Comments"

 wizard = "mage"

 Time3 = header.index("Time")

 F_Scale3 = header.index("Speed")

 Location3 = header.index("Location")

 County3 = header.index("County")

 State3 = header.index("State")

 Lat3 = header.index("Lat")

 Lon3 = header.index("Lon")

 Comments3 = header.index("Comments")

 Oz(filenameT, fullpath, TimeW, Speed, LocationW, CountyW, StateW, LatW, LonW,

CommentsW)

 print("oz complete")

 Avalon(csvreader, fullpath, TimeW, Speed, LocationW, CountyW, StateW, LatW, LonW,

CommentsW, wizard)

 print("Avalon complete")

 newreader.close

122

 #clip, calculate, copy without date

 arcpy.analysis.Clip(fullpath, boundary, fullpathclip, None)

 print('clip complete')

 SPC_fields = arcpy.ListFields(fullpathclip)

 time_expr = '"{}"'.format(dytextdate)

 arcpy.management.CalculateField(boundary, 'Date', time_expr, 'PYTHON3')

 arcpy.management.CalculateField(fullpathclip, 'Date', time_expr, 'PYTHON3')

 arcpy.management.CalculateField(fullpath, 'Date', time_expr, 'PYTHON3')

 arcpy.MakeFeatureLayer_management(fullpathclip, "myfeatures")

 result = arcpy.GetCount_management("myfeatures")

 result_expr = '"{}"'.format(result)

 arcpy.management.CalculateField(fullpathclip, 'Count', result_expr, 'PYTHON3')

 print('field calculations complete')

 arcpy.Copy_management(fullpath, branchT)

 arcpy.Copy_management(fullpathclip, branchTclip)

 print('copy for presentation in map')

#printing out stormreport map

maploc = placeholder_spot + '\StormReport_v2.aprx'

stormproject = arcpy.mp.ArcGISProject(maploc)

storm_report_map = stormproject.listLayouts("Storm_Report_Map*")[0]

PNG_date = 'Storm_Report_' + timestr + '.png'

123

PNG_spot = placeholder_spot + '\StormReport_pdf' + '\\' + PNG_date

storm_report_map.exportToPNG(PNG_spot, resolution = 600)

print('Map has successfully printed.')

print ('%s total seconds' % (time.time() - begin_time))

Batch File Code:

cd "C:\Users\ZMJS5\AppData\Local\ESRI\conda\envs\my_arcgispro-py3"

"C:\Users\ZMJS5\AppData\Local\ESRI\conda\envs\my_arcgispro-py3\python.exe"

"E:\Grad_School\Archive_2\Thesis\State_Climate_Office\TCO_Automation\NOAA_DATA_P

ULL\NOAA_Scriptcsv_merge_060319_v2.py"

Python Scripts for Automation of Hazard Index Web Application:

Downloading data from the NDFD website script:

#script for Python3

#import requests

import os

import time

import arcpy

import urllib.request

import urllib.error

124

print ('imports successful')

timestr = time.strftime('%m%d%y')

#GRIB2 data names and variables

ndfd_dsapt = 'ds.apt.bin'

ndfd_dsconhazo = 'ds.conhazo.bin'

ndfd_dscritfireo = 'ds.critfireo.bin'

ndfd_dsdryfireo = 'ds.dryfireo.bin'

ndfd_dsiceaccum = 'ds.iceaccum.bin'

ndfd_dsmaxrh = 'ds.maxrh.bin'

ndfd_dsmaxt = 'ds.maxt.bin'

ndfd_dsminrh = 'ds.minrh.bin'

ndfd_dsmint = 'ds.mint.bin'

ndfd_dsphail = 'ds.phail.bin'

ndfd_dspop12 = 'ds.pop12.bin'

ndfd_dsptornado = 'ds.ptornado.bin'

ndfd_dsptotsvrtstm = 'ds.ptotsvrtstm.bin'

ndfd_dsptotxsvrtstm = 'ds.ptotxsvrtstm.bin'

ndfd_dsptstmwinds = 'ds.ptstmwinds.bin'

ndfd_dspxhail = 'ds.pxhail.bin'

ndfd_dspxtornado = 'ds.pxtornado.bin'

125

ndfd_dspxtstmwinds = 'ds.pxtstmwinds.bin'

ndfd_qpf = 'ds.qpf.bin'

ndfd_dsrhm = 'ds.rhm.bin'

ndfd_dssky = 'ds.sky.bin'

ndfd_dssnow = 'ds.snow.bin'

ndfd_dstcwspdabv34c = 'ds.tcwspdabv34c.bin'

ndfd_dstcwspdabv34i = 'ds.tcwspdabv34i.bin'

ndfd_dstcwspdabv50c = 'ds.tcwspdabv50c.bin'

ndfd_dstcwspdabv50i = 'ds.tcwspdabv50i.bin'

ndfd_dstcwspdabv64c = 'ds.tcwspdabv64c.bin'

ndfd_dstcwspdabv64i = 'ds.tcwspdabv64i.bin'

ndfd_dstd = 'ds.td.bin'

ndfd_dstemp = 'ds.temp.bin'

ndfd_dswaveh = 'ds.waveh.bin'

ndfd_dswdir = 'ds.wdir.bin'

ndfd_dswgust = 'ds.wgust.bin'

ndfd_dswspd = 'ds.wspd.bin'

ndfd_dswwa = 'ds.wwa.bin'

ndfd_dswx = 'ds.wx.bin'

ndfd_lsl = 'ls-l'

ndfd_lslt = 'ls-lt'

126

ndfd_conus =

r'http://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003'

#continuous US

print('variables set')

superlist = [ndfd_dsiceaccum, ndfd_qpf, ndfd_dsconhazo, ndfd_dssnow,

 ndfd_dsapt, ndfd_dswgust, ndfd_dsptornado]

ndfd_conusf =

r'E://Grad_School//Archive_2//Thesis//State_Climate_Office//TCO_Automation//ndfd_conus' +

timestr

#Dated folder creation

try:

 os.mkdir(ndfd_conusf)

except:

 print('folder already exists')

#Assigning where data will be copied to

curdir = os.getcwd()

print(curdir)

newdir = os.chdir(ndfd_conusf)

127

curdir = os.getcwd()

print(curdir)

#Download of data

for load in superlist:

 stringCoble = str(ndfd_conus + '/' + str(load))

 print (stringCoble)

 filer = urllib.request.Request(stringCoble)

 responseapt = urllib.request.urlopen(filer)

 print('this is were im telling it to go', responseapt)

 print('were we actually go', responseapt.geturl())

 output = open(load, 'wb')

 output.write(responseapt.read())

 output.close

print('hahahahaha yes!')

GRIB2 data converted to vector polygons script

import arcpy

import os

import time

from arcpy.sa import*

arcpy.CheckOutExtension("Spatial")

128

import gdal

#Variables, folder making, time and overwrite

homefile = r'E://Grad_School//Archive_2//Thesis//State_Climate_Office//TCO_Automation'

boundary =

r'E://Grad_School//Archive_2//Thesis//State_Climate_Office//TCO_Automation//Transfer_file.g

db//TNBoundary'

transfer_file =

r'E://Grad_School//Archive_2//Thesis//State_Climate_Office//TCO_Automation//Transfer_file_

newvariables.gdb'

tifflist = []

mergeraster = []

clippedgroup = []

singlegroup = []

vectorgroup = []

binlist = ['ds.apt.bin', 'ds.snow.bin', 'ds.wgust.bin', 'ds.qpf.bin','ds.conhazo.bin', 'ds.iceaccum.bin']

timestr = time.strftime("%m%d%y")

binpaths =

r'E://Grad_School//Archive_2//Thesis//State_Climate_Office//TCO_Automation//ndfd_conus' +

timestr

bombsite = homefile + '//' + 'NDFD_Daily_Rasters_' + timestr

print('imports and variables setup')

129

begin_time = time.time()

fehrclip = homefile + '//' + 'temp_max_TNfehr.tif'

arcpy.env.snapRaster = fehrclip

try:

 os.mkdir(bombsite)

 print('folder created')

except:

 print('file already made')

arcpy.env.workspace = bombsite

arcpy.env.overwriteOutput = True

arcpy.CreateFileGDB_management(bombsite, 'NDFD_resample_' + timestr)#these used? need

time gdb

resamplelocation = bombsite + '//' + 'NDFD_resample_' + timestr + '.gdb' #these used? need time

gdb

#GRIB2 pulling out rasters and converting to mosaicked tiffs

for weather in binlist:

 ndfd_data = binpaths + '//' + weather

 if weather == 'ds.wgust.bin':

 forcast = 'wg_'

130

 elif weather == 'ds.apt.bin':

 forcast = 'apt_'

 elif weather == 'ds.snow.bin':

 forcast = 'sn_'

 elif weather == 'ds.iceaccum.bin':

 forcast = 'ic_'

 elif weather == 'ds.wspd.bin':

 forcast = 'wsp_'

 elif weather == 'ds.qpf.bin':

 forcast = 'ra_'

 elif weather == 'ds.conhazo.bin':

 forcast = 'con_'

 gdalopen = gdal.Open(ndfd_data, gdal.GA_ReadOnly)

 numero = gdalopen.RasterCount

 print(numero)

 numa = 0

 merge_name = forcast + '.tif'

 if numero <= 1:

 print('only one record in ' + weather)

 subout = forcast + str(numa)

 suboutpath = bombsite + '//' + subout

 castle = arcpy.Describe(ndfd_data)

131

 keep = castle.spatialReference

 print(subout + ' created')

 asciioutput = bombsite + '//' + forcast + str(numa) + '_ascii.txt'

 arcpy.RasterToASCII_conversion(ndfd_data, asciioutput)

 print('raster to ascii worked')

 tiffnopath = forcast + str(numa) + '_ti.tif'

 tiffoutput = str(bombsite) + '//' + tiffnopath

 arcpy.ASCIIToRaster_conversion(asciioutput, tiffoutput)

 print('ascii to raster worked')

 arcpy.DefineProjection_management(tiffoutput, keep)

 print(tiffnopath + ' proj. defined')

 singlegroup.append(tiffnopath)

 else:

 for num in range(numero):

 print(numa)

 subout = forcast + str(numa)

 suboutpath = bombsite + '//' + subout

 arcpy.ExtractSubDataset_management(ndfd_data, suboutpath, numa)

 print(str(numa) + 'extract completed')

 castle = arcpy.Describe(suboutpath)

 keep = castle.spatialReference

 remask = arcpy.sa.ExtractByMask(suboutpath, fehrclip)

132

 print('extract done')

 test_save = suboutpath + '_clip'

 remask.save(test_save)

 asciioutput = bombsite + '//' + forcast + str(numa) + '_ascii.txt'

 arcpy.RasterToASCII_conversion(test_save, asciioutput)

 print('raster to ascii done')

 tiffnopath = forcast + str(numa) + '_ti.tif'

 tiffoutput = str(bombsite) + '//' + tiffnopath

 tifflist.append(tiffoutput)

 arcpy.ASCIIToRaster_conversion(asciioutput, tiffoutput, "FLOAT")

 print('ascii to raster done')

 arcpy.DefineProjection_management(tiffoutput, keep)

 numa += 1

 if weather == 'ds.apt.bin':

 m_temp_min = 'temp_min.tif'

 m_temp_max = 'temp_max.tif'

 try:

 arcpy.MosaicToNewRaster_management(tifflist, bombsite, m_temp_max, '#',

'32_BIT_FLOAT', '#', '1', 'MAXIMUM', 'FIRST')

133

 arcpy.MosaicToNewRaster_management(tifflist, bombsite, m_temp_min, '#',

'32_BIT_FLOAT', '#', '1', 'MINIMUM', 'FIRST')

 mergeraster.append(m_temp_min)

 mergeraster.append(m_temp_max)

 except:

 print('ds file failed')

 elif weather == 'ds.wgust.bin' or weather == 'ds.wspd.bin' or weather == 'ds.qpf.bin' or

weather == 'ds.conhazo.bin':

 try:

 arcpy.MosaicToNewRaster_management(tifflist, bombsite, merge_name, '#',

'32_BIT_FLOAT', '#', '1', 'MAXIMUM', 'FIRST')

 mergeraster.append(merge_name)

 except:

 print('ds file failed')

 else:

 arcpy.MosaicToNewRaster_management(tifflist, bombsite, merge_name, '#',

'32_BIT_FLOAT', '#', '1', 'SUM', 'FIRST')

 mergeraster.append(merge_name)

 print(weather + ' merged')

 del tifflist[:]

print('giant mergers done')

134

print('now for general cleaning up')

print('......')

print('......')

print(mergeraster)

Converting tiffs from international measurements to US measurements

for TN in mergeraster:

 if TN.startswith('temp_min') or TN.startswith('temp_max'):

 fullblister = bombsite + '//' + TN

 fehr = Raster(fullblister)

 heit = (fehr-273.15) * (9/5) + 32

 notiff = TN.replace('.tif', '')

 notifffehr = notiff + 'fehr.tif'

 addfehr = bombsite + '//' + notifffehr

 heit.save(addfehr)

 clippedgroup.append(notifffehr)

 vectorgroup.append(notifffehr)

 print(TN + ' converted to F')

 #kg/m2 to inches

 elif TN.startswith('ic_'):

 icetransfer = bombsite + '//' + TN

 frozen = Raster(icetransfer)

 iceconvert = frozen * 0.039370

135

 icestrip = TN.replace('.tif', '')

 notiffice = icestrip + 'inch.tif'

 addice = bombsite + '//' + notiffice

 iceconvert.save(addice)

 clippedgroup.append(notiffice)

 vectorgroup.append(notiffice)

 print(TN + ' converted to inches from kgm2')

 #meters to inches

 elif TN.startswith('sn_'):

 snowtransfer = bombsite + '//' + TN

 snowman = Raster(snowtransfer)

 snowconvert = snowman * 39.370

 snowstrip = TN.replace('.tif', '')

 notiffsnow = snowstrip + 'inch.tif'

 addsnow = bombsite + '//' + notiffsnow

 snowconvert.save(addsnow)

 clippedgroup.append(notiffsnow)

 vectorgroup.append(notiffsnow)

 print(TN + ' converted from meters to inches')

 #ms-1 to mph

 elif TN.startswith('wg_') or TN.startswith('wsp_'):

 windtransfer = bombsite + '//' + TN

 windgust = Raster(windtransfer)

136

 windconvert = windgust * 2.236936271

 windstrip = TN.replace('.tif', '')

 notiffwind = windstrip + 'mph.tif'

 addwind = bombsite + '//' + notiffwind

 windconvert.save(addwind)

 clippedgroup.append(notiffwind)

 vectorgroup.append(notiffwind)

 print(TN + ' converted from ms-1 to mph')

 #kg/m2 to inches

 elif TN.startswith('ra_'):

 raintransfer = bombsite + '//' + TN

 rain = Raster(raintransfer)

 rainconvert = rain * 0.039370080320721

 rainstrip = TN.replace('.tif', '')

 notiffrain = rainstrip + 'inches.tif'

 addrain = bombsite + '//' + notiffrain

 rainconvert.save(addrain)

 clippedgroup.append(notiffrain)

 vectorgroup.append(notiffrain)

 print(TN + ' converted from kg/m2 to inches')

 else:

 clippedgroup.append(TN)

 vectorgroup.append(TN)

137

 print(TN + 'clipped to TN boundary')

print('......')

print('......')

for single in singlegroup:

 singlestrip = single.replace('.tif', '')

 resampler = singlestrip + 'clipp.tif'

 singleoutput = bombsite + '//' + resampler

 singlepath = bombsite + '//' + single

 singlemask = arcpy.sa.ExtractByMask(singlepath, fehrclip)

 print(single + ' extracted by mask')

 singlemask.save(singleoutput)

 clippedgroup.append(resampler)

 vectorgroup.append(resampler)

print('singles now are ready to convert with multi rasters')

for clgr in clippedgroup:

 clgrpath = bombsite + '//' + clgr

 clgrstrip = clgr.replace('.tif', '')

 clgradd = clgrstrip + '5'

 clgroutraster = resamplelocation + '//' + clgradd

 arcpy.management.Resample(clgrpath, clgroutraster, "5000 5000", "NEAREST")

138

 vectorgroup.append(clgradd)

arcpy.env.workspace = transfer_file

arcpy.env.overwriteOutput = True

#Converting tiffs to vector polygons

for vec in vectorgroup:

 if vec.endswith('5'):

 TN_clippedfull = resamplelocation + '//' + vec

 TN_point_strip = vec

 else:

 TN_clippedfull = bombsite + '//' + vec

 TN_point_strip = vec.replace('.tif', '')

 TN_point_path = transfer_file + '//' + TN_point_strip

 arcpy.conversion.RasterToPoint(TN_clippedfull, TN_point_path, "Value")

 print(TN_point_strip + ' done')

 TN_poly = TN_point_strip + 'poly'

 TN_poly_path = transfer_file + '//' + TN_poly

 arcpy.analysis.CreateThiessenPolygons(TN_point_path, TN_poly_path, "ALL")

 print(TN_poly + ' done')

139

 TN_polyclip = TN_point_strip + 'polyclip'

 TN_polyclip_path = transfer_file + '//' + TN_polyclip

 arcpy.analysis.Clip(TN_poly_path, boundary, TN_polyclip_path, None)

 print(TN_polyclip + ' done')

arcpy.CheckInExtension("Spatial")

print('all done with raster conversions and editing :)')

print ('%s total seconds' % (time.time() - begin_time))

Creating a Hazard Index Script:

import arcpy

import os

import time

#Variables

origin =

r'E:\Grad_School\Archive_2\Thesis\State_Climate_Office\TCO_Automation\Transfer_file_new

variables.gdb'

140

archive =

r'E:\Grad_School\Archive_2\Thesis\State_Climate_Office\TCO_Automation\Archive.gdb'

intersectlist = []

haznumlist = []

intersectlistre = []

deletefields = []

timestr = time.strftime("%m%d%y")

##

###################################

#SQL statements for selecting hazard index data

lowhitemp = '"temp_max_grid" BETWEEN 100 AND 104.999'

midhitemp = '"temp_max_grid" BETWEEN 105 AND 114.999'

highhitemp = '"temp_max_grid" >= 115'

lowlowtemp = '"temp_min_grid" BETWEEN 0 AND -9.999'

midlowtemp = '"temp_min_grid" BETWEEN -10 AND -19.999'

highlowtemp = '"temp_min_grid" <= -20'

lowwgust = '"wg__grid" BETWEEN 40 AND 49.999'

midwgust = '"wg__grid" BETWEEN 50 AND 59.999'

highwgust = '"wg__grid" >= 60'

141

lowrainfall = '"ra__grid" BETWEEN 1 and 2.999'

midrainfall = '"ra__grid" BETWEEN 3 and 4.999'

highrainfall = '"ra__grid" >= 5'

lowsnowfall = '"sn__grid" BETWEEN 2 AND 3.999'

midsnowfall = '"sn__grid" BETWEEN 4 AND 7.999'

highsnowfall = '"sn__grid" >= 8'

lowiceaccum = '"ic__grid" BETWEEN 0.01 AND 0.099'

midiceaccum = '"ic__grid" BETWEEN 0.1 AND 0.249'

highiceaccum = '"ic__grid" >= 0.25'

lowwspd = '"wsp__grid" BETWEEN 40 AND 49.999'

midwspd = '"wsp__grid" BETWEEN 50 AND 59.999'

highwspd = '"wsp__grid" >= 60'

lowcon = '"con__grid" BETWEEN 3 AND 5'

midcon = '"con__grid" BETWEEN 5.99 AND 6'

highcon = '"con__grid" BETWEEN 6.99 AND 10'

Nada = 'haz_index IS NULL'

142

##

#Nested Dictionary with SQL statements

weatherlist = {'ic_inchpolyclip': {lowiceaccum: 'low,', midiceaccum: 'medium,', highiceaccum:

'high,'},

 'sn_inchpolyclip': {lowsnowfall: 'low,', midsnowfall: 'medium,', highsnowfall: 'high,'},

 'temp_maxfehrpolyclip': {lowhitemp: 'low,', midhitemp: 'medium,', highhitemp:

'high,'},

 'temp_minfehrpolyclip': {lowlowtemp: 'low,', midlowtemp: 'medium,', highlowtemp:

'high,'},

 'wg_mphpolyclip': {lowwgust: 'low,', midwgust: 'medium,', highwgust: 'high,'},

 'ra_inchespolyclip': {lowrainfall: 'low,', midrainfall: 'medium,', highrainfall: 'high,'},

 'con_polyclip': {lowcon: 'low,', midcon: 'medium', highcon: 'high,'},

 'ic_inch5polyclip': {lowiceaccum: 'low,', midiceaccum: 'medium,', highiceaccum:

'high,'},

 'sn_inch5polyclip': {lowsnowfall: 'low,', midsnowfall: 'medium,', highsnowfall: 'high,'},

 'temp_maxfehr5polyclip': {lowhitemp: 'low,', midhitemp: 'medium,', highhitemp:

'high,'},

 'temp_minfehr5polyclip': {lowlowtemp: 'low,', midlowtemp: 'medium,', highlowtemp:

'high,'},

 'wg_mph5polyclip': {lowwgust: 'low,', midwgust: 'medium,', highwgust: 'high,'},

 'ra_inches5polyclip': {lowrainfall: 'low,', midrainfall: 'medium,', highrainfall: 'high,'},

 'con_5polyclip': {lowcon: 'low,', midcon: 'medium', highcon: 'high,'}}

143

##

#Creation of hazard index fields and using SQL statements to define measurement within hazard

index

arcpy.env.workspace = origin

arcpy.env.overwriteOutput = True

print('modules and variables done')

for weather, dictindex in weatherlist.items():

 clearday = weather.replace('polyclip', '')

 path = origin + '\\' + weather

 if clearday.endswith('5'):

 intersectlistre.append(path)

 else:

 intersectlist.append(path)

 if weather.startswith('temp_max'):

 conname = ' maximum temperature'

 namestrip = 'temp_max'

 elif weather.startswith('temp_min'):

 conname = ' minimum temperature'

 namestrip = 'temp_min'

 elif weather.startswith('ra'):

144

 conname = ' rain in 6 hours'

 namestrip = 'ra_'

 elif weather.startswith('con'):

 conname = ' categorical convection'

 namestrip = 'con_'

 elif weather.startswith('sn'):

 namestrip = 'sn_'

 conname = ' snowfall'

 elif weather.startswith('ic'):

 conname = ' ice accumulation'

 namestrip = 'ic_'

 elif weather.startswith('wg'):

 namestrip = 'wg_'

 conname = ' wind gust'

 elif weather.startswith('wsp'):

 namestrip = 'wsp_'

 conname = ' max wind speed'

 gridname = namestrip + '_grid'

 hazname = namestrip + '_index'

 haznum = namestrip + '_num'

 haznumlist.append(haznum)

 arcpy.management.AddField(path, gridname, 'DOUBLE')

 arcpy.management.AddField(path, hazname, 'TEXT')

145

 arcpy.management.AddField(path, haznum, 'LONG')

 arcpy.management.CalculateField(path, gridname, '!grid_code!', 'PYTHON3')

 hdfd_HI_individuals = arcpy.ListFields(path)

 arcpy.MakeFeatureLayer_management(path, 'weather')

 for ind in dictindex:

 arcpy.SelectLayerByAttribute_management('weather', 'NEW_SELECTION', ind)

 ind_haz_index = dictindex[ind] + conname

 ind_haz_fullquote = '"{}"'.format(ind_haz_index)

 arcpy.management.CalculateField('weather', hazname, ind_haz_fullquote, 'PYTHON3')

 print(ind_haz_index + ' calculated for haz_index')

 if ind_haz_index.startswith('high'):

 haznumber = 5

 elif ind_haz_index.startswith('medium'):

 haznumber = 4

 elif ind_haz_index.startswith('low'):

 haznumber = 3

 else:

 haznumber = 0

 arcpy.management.CalculateField('weather', haznum, haznumber, 'PYTHON3')

 print(str(haznumber) + ' calculated for haz_num')

 Nado = hazname + ' IS NULL'

 arcpy.SelectLayerByAttribute_management('weather', 'NEW_SELECTION', Nado)

146

 arcpy.management.CalculateField('weather', haznum, 0, 'PYTHON3')

 arcpy.Delete_management('weather')

 print(weather + ' has field' + gridname + ' added')

print('weatherlist fields built')

##

#Merging the vector polygons together, deleting extra fields and archiving

intersect_vector = origin + '\\' + 'hdfd_HI_data'

intersectre_vector = origin + '\\' + 'hdfd_HI_data_5'

listforintersect = [[intersectlist, intersect_vector], [intersectlistre, intersectre_vector]]

for inter in listforintersect:

 enterlist = inter[0]

 interfile = inter[1]

 arcpy.analysis.Intersect(enterlist, interfile, 'ALL', None, 'INPUT')

 arcpy.management.AddField(interfile, 'haz_index', 'LONG')

 arcpy.env.workspace = interfile

 hdfd_HI_datafields = arcpy.ListFields(interfile)

 arcpy.MakeFeatureLayer_management(interfile, 'hazardindex')

 expression = '!ic__num!' ' + ' '!sn__num!' ' + ' '!temp_max_num!' ' + ' '!temp_min_num!' ' + '

'!ra__num!' ' + ' '!wg__num!' ' + ' '!con__num!'

 arcpy.SelectLayerByAttribute_management('hazardindex', 'NEW_SELECTION', Nada)

 arcpy.management.CalculateField('hazardindex', 'haz_index', expression, 'PYTHON3')

147

 arcpy.Delete_management("hazardindex")

 for java in hdfd_HI_datafields:

 if java.name.startswith('FID'):

 deletefields.append(java.name)

 elif java.name.startswith('Input'):

 deletefields.append(java.name)

 elif java.name.startswith('point'):

 deletefields.append(java.name)

 elif java.name.startswith('grid'):

 deletefields.append(java.name)

 arcpy.management.DeleteField(interfile, deletefields)

 splittwo = os.path.basename(interfile)

 uniontwo = os.path.join(archive,splittwo)

 archivefile = uniontwo + timestr

 arcpy.CopyFeatures_management(interfile, archivefile)

print('All done and ready for transfer')

Posting data to ArcGIS Online Script:

coding: utf-8

148

In[]:

import arcpy

import os, sys

from arcgis.gis import GIS

prjPath = r'E:\Grad_School\Archive_2\Thesis\State_Climate_Office\Final

scripts\VectorTile.aprx'

#sd_fs_name = 'Hazard_Index48hrs_WFL1'

sd_fs_name = ['Hazard_Index48hrs_WFL1', 'Updated_HazardIndex_WFL1']

portal = 'http://www.arcgis.com'

user = 'mshoop'

password = 'mom2468392'

shrOrg = True

shrEveryone = False

shrGroups = ''

relPath = sys.path[0]

sddraft = r'E:\Grad_School\Archive_2\Thesis\State_Climate_Office\Final

scripts\WebUpdate.sddraft'

149

sd = r'E:\Grad_School\Archive_2\Thesis\State_Climate_Office\Final scripts\WebUpdate.sd'

print('Creating SD file')

arcpy.env.overwriteOutput = True

prj = arcpy.mp.ArcGISProject(prjPath)

mp = prj.listMaps()[0]

for stan in sd_fs_name:

 arcpy.mp.CreateWebLayerSDDraft(mp, sddraft, stan, 'MY_HOSTED_SERVICES',

'FEATURE_ACCESS', '', True, True)

 arcpy.StageService_server(sddraft, sd)

 print('Connecting to {}'.format(portal))

 gis = GIS(portal, user, password)

 print('Search for original SD on portal..')

 sdItem = gis.content.search('{} AND owner:{}'.format(stan, user), item_type= 'Service

Definition')[0]

 print('Found SD: {}, ID: {} n Uploading and overwriting...'.format(sdItem.title, sdItem.id))

 sdItem.update(data=sd)

 print('Overwriting existing feature service..')

 fs = sdItem.publish(overwrite=True)

150

 if shrOrg or shrEveryone or shrGroups:

 print('Setting sharing options..')

 fs.share(org=shrOrg, everyone=shrEveryone, groups=shrGroups)

 print('Finished updating: {} - ID: {}'.format(fs.title, fs.id))

Batch File Code:

cd "C:\Users\ZMJS5\AppData\Local\ESRI\conda\envs\my_arcgispro-py3"

"C:\Users\ZMJS5\AppData\Local\ESRI\conda\envs\my_arcgispro-py3\python.exe"

"E:\Grad_School\Archive_2\Thesis\State_Climate_Office\TCO_Automation\NDFD_reducedpul

l_Conus_only_Py3_Rev_3.py"

"C:\Users\ZMJS5\AppData\Local\ESRI\conda\envs\my_arcgispro-py3\python.exe"

"E:\Grad_School\Archive_2\Thesis\State_Climate_Office\TCO_Automation\GRIB_to_VectorTi

le5_resample_rev4_TNGIC.py"

"C:\Users\ZMJS5\AppData\Local\ESRI\conda\envs\my_arcgispro-py3\python.exe"

"E:\Grad_School\Archive_2\Thesis\State_Climate_Office\TCO_Automation\HazardIndex_Vect

orTile7_1302019_TNGIC.py"

151

"C:\Users\ZMJS5\AppData\Local\ESRI\conda\envs\my_arcgispro-py3\python.exe"

"E:\Grad_School\Archive_2\Thesis\State_Climate_Office\TCO_Automation\Autopost_jupyterty

ped2_NewNDFD.py"

152

Appendix D: Former Scripts

Former Script for Automation of Daily Storm Reports:

import arcpy

import csv

try:

 import urllib

 import urllib2

except:

 import urllib.request

 import urllib.error

import os

import time

from datetime import timedelta

from datetime import datetime

#import requests

print("Time to make the chimichagas")

def Avalon(Tango, Stump, Time, F_Scale, Location, County, State, Lat, Lon, Comments):

 with arcpy.da.InsertCursor(Stump, ("SHAPE@XY", Time, F_Scale, Location, County, State,

Lat, Lon, Comments))as wizard:

 for players in Tango:

 Timez = players[0]

153

 TimeInt2 = int(Timez)

 F_Scalez = players[1]

 Countyz = players[3]

 State = players[4]

 Latz = players[5]

 numLat = float(Latz)

 Lonz = players[6]

 numLon = float(Lonz)

 Commentsz = players[7]

 Locationz = players[2]

 print(players)

 wizard.insertRow(((float(numLon), float(numLat)), TimeInt2, F_Scalez, Locationz,

Countyz, State, numLat, numLon, Commentsz))

def Oz(FileName,stump,Time,F_Scale, Location, County, State, Lat, Lon, Comments):

 arcpy.CreateFeatureclass_management(Placeholder_Spot, FileName, "POINT", "", "",

"",spatialref)

 arcpy.AddField_management(stump, Time, "SHORT")

 arcpy.AddField_management(stump, F_Scale, "TEXT")

 arcpy.AddField_management(stump, Location, "TEXT")

 arcpy.AddField_management(stump, County, "TEXT")

 arcpy.AddField_management(stump, State, "TEXT")

 arcpy.AddField_management(stump, Lat, "FLOAT")

154

 arcpy.AddField_management(stump, Lon, "FLOAT")

 arcpy.AddField_management(stump, Comments, "TEXT", "", "",fieldlength)

timestream = datetime.now() - timedelta(days= 1)

timestr = timestream.strftime("%m%d%y")

#Variables

WeatherReport = r"http://www.spc.noaa.gov/climo/reports/yesterday_torn.csv"

hailReport = r"http://www.spc.noaa.gov/climo/reports/yesterday_hail.csv"

windReport = r"http://www.spc.noaa.gov/climo/reports/yesterday_wind.csv"

Weathercsv = 'yesterday_torn.csv'

hailcsv = 'yesterday_hail.csv'

windcsv = 'yesterday_wind.csv'

#CloudCity = r"Y:\TCO\GIS_Data\Monthly_Precip_Obs\2018_03\files_StormReportMap"

CloudCity =

r"E:\Grad_School\Archive_2\Thesis\State_Climate_Office\NOAA_Daily\Test_Data"

Lando = os.path.join(str(CloudCity), "StormReportMap" + "_" + timestr +".pdf")

TN_border =

r'E:\Grad_School\Archive_2\Thesis\State_Climate_Office\NOAA_Daily\TN_Border\DataShoop

_TNBorder_Lab.shp'

155

spatialsurogate =

r"E:\Grad_School\Archive_2\IndependantStudyPython\Lesson4\Project_data\SpatialReference.s

hp"

spatialref = arcpy.Describe(spatialsurogate).spatialReference

Placeholder_Spot =

r"E:\Grad_School\Archive_2\Thesis\State_Climate_Office\NOAA_Daily\Test_Data"

arcpy.env.workspace = Placeholder_Spot

arcpy.env.overwriteOutput = True

adventure = urllib2.urlopen (WeatherReport)

#wildstory = open(Weathercsv, 'wb')

#wildstory.write(adventure.read())

#wildstory.close

print (adventure)

halo = urllib2.urlopen (hailReport)

#masterchief = open(hailcsv, 'wb')

156

#masterchief.write(halo.read())

#masterchief.close

print (halo)

Djinn = urllib2.urlopen (windReport)

#Genie = open(windcsv, 'wb')

#Genie.write(Djinn.read())

#Genie.close

print (Djinn)

Story = [adventure,halo,Djinn]

csvreader = csv.reader(adventure, delimiter= ',')

print (csvreader)

csvreaderhalo = csv.reader(halo, delimiter= ',')

print (csvreaderhalo)

csvreaderDjinn = csv.reader(Djinn, delimiter= ',')

157

print (csvreaderDjinn)

cvss = [csvreader,csvreaderhalo,csvreaderDjinn]

header = csvreader.next()

print (header)

headerhalo = csvreaderhalo.next()

print (headerhalo)

headerDjinn = csvreaderDjinn.next()

print (headerDjinn)

#with open(Weathercsv, 'w') as f: f.write(adventure.read()) #This doesnt seem to load anything

print("csv stuff done")

fieldlength = 300

#Fields Tornado

Time = "Time"

F_Scale = "F_Scale"

Location = "Location"

County = "County"

State = "State"

158

Lat = "Lat"

Lon = "Lon"

Comments = "Comments"

#Fields Hail

TimeH = "Time"

Size = "Size"

LocationH = "Location"

CountyH = "County"

StateH = "State"

LatH = "Lat"

LonH = "Lon"

CommentsH = "Comments"

#Fields Wind

TimeW = "Time"

Speed = "Speed"

LocationW = "Location"

CountyW = "County"

StateW = "State"

LatW = "Lat"

LonW = "Lon"

CommentsW = "Comments"

159

Time1 = header.index("Time")

F_Scale1 = header.index("F_Scale")

Location1 = header.index("Location")

County1 = header.index("County")

State1 = header.index("State")

Lat1 = header.index("Lat")

Lon1 = header.index("Lon")

Comments1 = header.index("Comments")

Time2 = headerhalo.index("Time")

F_Scale2 = headerhalo.index("Size")

Location2 = headerhalo.index("Location")

County2 = headerhalo.index("County")

State2 = headerhalo.index("State")

Lat2 = headerhalo.index("Lat")

Lon2 = headerhalo.index("Lon")

Comments2 = headerhalo.index("Comments")

Time3 = headerDjinn.index("Time")

F_Scale3 = headerDjinn.index("Speed")

Location3 = headerDjinn.index("Location")

160

County3 = headerDjinn.index("County")

State3 = headerDjinn.index("State")

Lat3 = headerDjinn.index("Lat")

Lon3 = headerDjinn.index("Lon")

Comments3 = headerDjinn.index("Comments")

#Naming Shapefiles and excel

FileNameT = "YesterdayTorn" + ".shp"

FileNameH = "YesterdayHail" + ".shp"

FileNameW = "YesterdayWind" + ".shp"

ShortNameT = "YesterdayTorn" + timestr + ".shp"

ShortNameH = "YesterdayHail" + timestr + ".shp"

ShortNameW = "YesterdayWind" + timestr + ".shp"

#csvtpath = os.path.join(str(Placeholder_Spot), csvT)

#csvhpath = os.path.join(str(Placeholder_Spot), csvH)

#csvwpath = os.path.join(str(Placeholder_Spot), csvW)

#Pathing Data

161

stumpT = os.path.join(str(Placeholder_Spot), FileNameT)

stumpH = os.path.join(str(Placeholder_Spot), FileNameH)

stumpW = os.path.join(str(Placeholder_Spot), FileNameW)

branchT = os.path.join(str(CloudCity), ShortNameT)

branchH = os.path.join(str(CloudCity), ShortNameH)

branchW = os.path.join(str(CloudCity), ShortNameW)

superstump = [stumpT, stumpH, stumpW]

#superbranch = [branchT, branchH, branchW]

#Oz module

Oz(FileNameT,stumpT,Time,F_Scale, Location, County, State, Lat, Lon, Comments)

print ("oz1")

Oz(FileNameH,stumpH,TimeH,Size, LocationH, CountyH, StateH, LatH, LonH, CommentsH)

print ("oz2")

Oz(FileNameW,stumpW,TimeW,Speed, LocationW, CountyW, StateW, LatW, LonW,

CommentsW)

print("oz complete")

162

#Failed Avalon module

#Avalon(csvreader, stumpT, Time,F_Scale, Location, County, State, Lat, Lon, Comments)

#print("Avalon1")

#Avalon(csvreaderhalo, stumpH, TimeH, Size, LocationH, CountyH, StateH, LatH, LonH,

CommentsH)

#print("Avalon2")

#Avalon(csvreaderDjinn, stumpW, TimeW, Speed, LocationW, CountyW, StateW, LatW,

LonW, CommentsW)

#manual Avalon run

with arcpy.da.InsertCursor(stumpT, ("SHAPE@XY", Time, F_Scale, Location, County, State,

Lat, Lon, Comments))as wizard:

 for players in csvreader:

 Timez = players[0]

 TimeInt2 = int(Timez)

 F_Scalez = players[1]

 Countyz = players[3]

 State = players[4]

 Latz = players[5]

 numLat = float(Latz)

 Lonz = players[6]

 numLon = float(Lonz)

163

 Commentsz = players[7]

 Locationz = players[2]

 print(players)

 wizard.insertRow(((float(numLon), float(numLat)), TimeInt2, F_Scalez, Locationz,

Countyz, State, numLat, numLon, Commentsz))

print("Avalon1")

with arcpy.da.InsertCursor(stumpH, ("SHAPE@XY", TimeH, Size, LocationH, CountyH,

StateH, LatH, LonH, CommentsH))as Warlock:

 for players in csvreaderhalo:

 Timez = players[0]

 TimeInt2 = int(Timez)

 F_Scalez = players[1]

 Countyz = players[3]

 State = players[4]

 Latz = players[5]

 numLat = float(Latz)

 Lonz = players[6]

 numLon = float(Lonz)

 Commentsz = players[7]

 Locationz = players[2]

 print(players)

164

 Warlock.insertRow(((float(numLon), float(numLat)), TimeInt2, F_Scalez, Locationz,

Countyz, State, numLat, numLon, Commentsz))

print("Avalon2")

with arcpy.da.InsertCursor(stumpW, ("SHAPE@XY", TimeW, Speed, LocationW, CountyW,

StateW, LatW, LonW, CommentsW))as Mystic:

 for players in csvreaderDjinn:

 Timez = players[0]

 TimeInt2 = int(Timez)

 F_Scalez = players[1]

 Countyz = players[3]

 State = players[4]

 Latz = players[5]

 numLat = float(Latz)

 Lonz = players[6]

 numLon = float(Lonz)

 Commentsz = players[7]

 Locationz = players[2]

 print(players)

 Mystic.insertRow(((float(numLon), float(numLat)), TimeInt2, F_Scalez, Locationz,

Countyz, State, numLat, numLon, Commentsz))

165

print("Avalon complete")

#Copies for mxd

#arcpy.CopyFeatures_management(stumpT, branchT)

#arcpy.CopyFeatures_management(stumpH, branchH)

#arcpy.CopyFeatures_management(stumpW, branchW)

mxd =

arcpy.mapping.MapDocument(r"E:\Grad_School\Archive_2\IndependantStudyPython\Final_Pro

ject\Storm_Report_Map.mxd")

#arcpy.mapping.ExportToPDF(mxd,Lando)

#Round about way to build csv from csv pull since dont have permissions

#arcpy.TableToExcel_conversion(stumpT, csvtpath)

#arcpy.TableToExcel_conversion(stumpH, csvhpath)

#arcpy.TableToExcel_conversion(stumpW, csvwpath)

tester = arcpy.ListFeatureClasses()

for ndated in tester:

 datedloc = Placeholder_Spot + '\\' + ndated

 stripped = ndated.replace('.shp', '')

166

 clipped = Placeholder_Spot + '\\' + stripped + '_TNclipped.shp'

 if ndated.startswith('Yesterday'):

 arcpy.analysis.Clip(datedloc, TN_border, clipped)

 else:

 pass

print("and that is how you do it")

Former Script for Downloading data from the NDFD website script:

import urllib

import urllib2

import requests

import shutil

import os

import time

import arcpy

print ("imports successful")

timestr = time.strftime("%m%d%y")

ndfd_dsapt = 'ds.apt.bin'

ndfd_dsconhazo = 'ds.conhazo.bin'

167

ndfd_dscritfireo = 'ds.critfireo.bin'

ndfd_dsdryfireo = 'ds.dryfireo.bin'

ndfd_dsiceaccum = 'ds.iceaccum.bin'

ndfd_dsmaxrh = 'ds.maxrh.bin'

ndfd_dsmaxt = 'ds.maxt.bin'

ndfd_dsminrh = 'ds.minrh.bin'

ndfd_dsmint = 'ds.mint.bin'

ndfd_dsphail = 'ds.phail.bin'

ndfd_dspop12 = 'ds.pop12.bin'

ndfd_dsptornado = 'ds.ptornado.bin'

ndfd_dsptotsvrtstm = 'ds.ptotsvrtstm.bin'

ndfd_dsptotxsvrtstm = 'ds.ptotxsvrtstm.bin'

ndfd_dsptstmwinds = 'ds.ptstmwinds.bin'

ndfd_dspxhail = 'ds.pxhail.bin'

ndfd_dspxtornado = 'ds.pxtornado.bin'

ndfd_dspxtstmwinds = 'ds.pxtstmwinds.bin'

ndfd_qpf = 'ds.qpf.bin'

ndfd_dsrhm = 'ds.rhm.bin'

ndfd_dssky = 'ds.sky.bin'

ndfd_dssnow = 'ds.snow.bin'

ndfd_dstcwspdabv34c = 'ds.tcwspdabv34c.bin'

ndfd_dstcwspdabv34i = 'ds.tcwspdabv34i.bin'

ndfd_dstcwspdabv50c = 'ds.tcwspdabv50c.bin'

168

ndfd_dstcwspdabv50i = 'ds.tcwspdabv50i.bin'

ndfd_dstcwspdabv64c = 'ds.tcwspdabv64c.bin'

ndfd_dstcwspdabv64i = 'ds.tcwspdabv64i.bin'

ndfd_dstd = 'ds.td.bin'

ndfd_dstemp = 'ds.temp.bin'

ndfd_dswaveh = 'ds.waveh.bin'

ndfd_dswdir = 'ds.wdir.bin'

ndfd_dswgust = 'ds.wgust.bin'

ndfd_dswspd = 'ds.wspd.bin'

ndfd_dswwa = 'ds.wwa.bin'

ndfd_dswx = 'ds.wx.bin'

ndfd_lsl = 'ls-l'

ndfd_lslt = 'ls-lt'

ndfd_midAt =

r'http://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.midatlan/VP.001-003'

ndfd_crmissvy =

r'http://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.crmissvy/VP.001-003'

ndfd_conus =

r'http://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003'

#continuous US

#for stuff in os.listdir(ndfd):

169

 #print (stuff)

 #dirlist.append(stuff)

#print(dirlist)

regionlist = [ndfd_crmissvy, ndfd_midAt]

test_site = r'E://Grad_School//Archive_2//Thesis//State_Climate_Office//Bin_Test_Site'

test_site2 =

r'E://Grad_School//Archive_2//Thesis//State_Climate_Office//Bin_Test_Site//crmissvy'

print("destinations correct")

superlist = [ndfd_dsapt, ndfd_dsconhazo, ndfd_dscritfireo, ndfd_dsdryfireo, ndfd_dsiceaccum,

ndfd_dsmaxrh, ndfd_dsmaxt, ndfd_dsminrh, ndfd_dsmint, ndfd_dsphail, ndfd_dspop12,

ndfd_dsptornado, ndfd_dsptotsvrtstm, ndfd_dsptotxsvrtstm, ndfd_dsptstmwinds, ndfd_dspxhail,

ndfd_dspxtornado, ndfd_dspxtstmwinds, ndfd_qpf, ndfd_dsrhm, ndfd_dssky, ndfd_dssnow,

ndfd_dstcwspdabv34c, ndfd_dstcwspdabv34i, ndfd_dstcwspdabv50c, ndfd_dstcwspdabv50i,

ndfd_dstcwspdabv64c, ndfd_dstd, ndfd_dstemp, ndfd_dswaveh, ndfd_dswdir, ndfd_dswgust,

ndfd_dswspd, ndfd_dswwa, ndfd_dswx, ndfd_lsl, ndfd_lslt]

170

ndfd_crmissvyf =

'E://Grad_School//Archive_2//Thesis//State_Climate_Office//Bin_Test_Site//ndfd_crmissvy' +

timestr

ndfd_midAtf =

'E://Grad_School//Archive_2//Thesis//State_Climate_Office//Bin_Test_Site//ndfd_midAt' +

timestr

try:

 os.mkdir(ndfd_crmissvyf)

except:

 pass #already exists

try:

 os.mkdir(ndfd_midAtf)

except OSError:

 pass #already exists

try:

 arcpy.CreateFileGDB_management(str(ndfd_crmissvyf), 'ndfd_crmissvy' + timestr)

except:

 pass #already exists

try:

 arcpy.CreateFileGDB_management(str(ndfd_midAtf), 'ndfd_midAtf' + timestr)

except:

 pass #already exists

171

for region in regionlist:

 if region == ndfd_crmissvy:

 arcpy.env.workspace = ndfd_crmissvyf

 else:

 arcpy.env.workspace = ndfd_midAtf

 for load in superlist:

 stringCoble = str(ndfd_midAt + '/' + str(load))

 print (stringCoble)

 filer = urllib2.Request(stringCoble)

 responseapt = urllib2.urlopen(filer)

 print("this is were im telling it to go", responseapt)

 print("were we actually go", responseapt.geturl())

 workspace = test_site2

 output = open(load, 'wb')

 output.write(responseapt.read())

 output.close

 #renamer = str(strip) + timestr + '.bin'

 for stuff in os.listdir(test_site):

 if stuff.endswith('.bin'):

172

 first_name = str(test_site + '//' + str(stuff))

 #strip = load.replace('.bin', '')

 if region == ndfd_crmissvy:

 namer = 'ndfd_crmissvy' + timestr

 gdb = 'ndfd_crmissvy' + timestr + '.gdb'

 else:

 namer = 'ndfd_midAt' + timestr

 gdb = 'ndfd_midAt' + timestr + '.gdb'

 final_name = str(test_site + '//' + namer + '//' + stuff)

 shutil.copy(first_name, final_name)

 else:

 pass

 #arcpy.management.CopyRaster(first_name, final_name, None, None, -1.797693e+308,

"NONE", "NONE", None, "NONE", "NONE", "GRID", "NONE")

print('hahahahaha yes!')

Former Script for GRIB2 data converted to vector polygons script:

import arcpy

import os

import time

173

from arcpy.sa import*

arcpy.CheckOutExtension("Spatial")

import gdal

homefile = r'E://Grad_School//Archive_2//Thesis//State_Climate_Office//Final scripts'

boundary = r'E://Grad_School//Archive_2//Thesis//State_Climate_Office//Final

scripts//Transfer_file.gdb//TNBoundary'

transfer_file = r'E://Grad_School//Archive_2//Thesis//State_Climate_Office//Final

scripts//Transfer_file.gdb'

tifflist = []

mergeraster = []

clippedgroup = []

singlegroup = []

binlist = ['ds.temp.bin', 'ds.snow.bin', 'ds.wgust.bin',

'ds.ptornado.bin','ds.iceaccum.bin','ds.phail.bin']

timestr = time.strftime("%m%d%y")

binpaths = r'E://Grad_School//Archive_2//Thesis//State_Climate_Office//Final

scripts//ndfd_conus' + timestr

bombsite = homefile + '//' + 'NDFD_Daily_Rasters_' + timestr

print('imports and variables setup')

try:

174

 os.mkdir(bombsite)

 print('folder created')

except:

 print('file already made')

arcpy.env.workspace = bombsite

arcpy.env.overwriteOutput = True

for weather in binlist:

 ndfd_data = binpaths + '//' + weather

 if weather == 'ds.wgust.bin':

 forcast = 'wg_'

 elif weather == 'ds.temp.bin':

 forcast = 'tp_'

 elif weather == 'ds.snow.bin':

 forcast = 'sn_'

 elif weather == 'ds.iceaccum.bin':

 forcast = 'ic_'

 elif weather == 'ds.ptornado.bin':

 forcast = 'to_'

 elif weather == 'ds.phail.bin':

 forcast = 'ha_'

175

 #elif weather == 'ds.qpf.bin':

 #forcast = 'ra_'

 gdalopen = gdal.Open(ndfd_data, gdal.GA_ReadOnly)

 numero = gdalopen.RasterCount

 print(numero)

 numa = 0

 merge_name = forcast + '.tif'

#look into putting clip before raster to ascii

 if numero <= 1:

 print('only one record in ' + weather)

 subout = forcast + str(numa)

 suboutpath = bombsite + '//' + subout

 castle = arcpy.Describe(ndfd_data)

 keep = castle.spatialReference

 print(subout + ' created')

 asciioutput = bombsite + '//' + forcast + str(numa) + '_ascii.txt'

 arcpy.RasterToASCII_conversion(ndfd_data, asciioutput)

 print('raster to ascii worked')

 tiffnopath = forcast + str(numa) + '_ti.tif'

 tiffoutput = str(bombsite) + '//' + tiffnopath

 arcpy.ASCIIToRaster_conversion(asciioutput, tiffoutput)

 print('ascii to raster worked')

176

 arcpy.DefineProjection_management(tiffoutput, keep)

 print(tiffnopath + ' proj. defined')

 singlegroup.append(tiffnopath)

 else:

 for num in range(numero):

 print(numa)

 subout = forcast + str(numa)

 suboutpath = bombsite + '//' + subout

 arcpy.ExtractSubDataset_management(ndfd_data, suboutpath, numa)

 castle = arcpy.Describe(suboutpath)

 keep = castle.spatialReference

 print('subset ' + subout + ' created')

 asciioutput = bombsite + '//' + forcast + str(numa) + '_ascii.txt'

 arcpy.RasterToASCII_conversion(suboutpath, asciioutput)

 print('raster to ascii worked')

 tiffnopath = forcast + str(numa) + '_ti.tif'

 tiffoutput = str(bombsite) + '//' + tiffnopath

 tifflist.append(tiffoutput)

 arcpy.ASCIIToRaster_conversion(asciioutput, tiffoutput, "FLOAT")

 print('ascii to raster worked')

 arcpy.DefineProjection_management(tiffoutput, keep)

 print(tiffnopath + ' proj. defined')

177

 numa += 1

 print('while subsets for ' + weather + ' worked')

 if weather == 'ds.temp.bin':

 m_temp_min = 'temp_min.tif'

 m_temp_max = 'temp_max.tif'

 try:

 arcpy.MosaicToNewRaster_management(tifflist, bombsite, m_temp_max, '#',

'32_BIT_FLOAT', '#', '1', 'MAXIMUM', 'FIRST')

 print('temp minimum done')

 arcpy.MosaicToNewRaster_management(tifflist, bombsite, m_temp_min, '#',

'32_BIT_FLOAT', '#', '1', 'MINIMUM', 'FIRST')

 print('temp maximum done')

 mergeraster.append(m_temp_min)

 mergeraster.append(m_temp_max)

 except:

 print('ds file failed')

 elif weather == 'ds.wgust.bin':

 try:

178

 arcpy.MosaicToNewRaster_management(tifflist, bombsite, merge_name, '#',

'32_BIT_FLOAT', '#', '1', 'MAXIMUM', 'FIRST')

 mergeraster.append(merge_name)

 print(merge_name + ' merged using maximum')

 print('wgust merged')

 except:

 print('ds file failed')

 else:

 arcpy.MosaicToNewRaster_management(tifflist, bombsite, merge_name, '#',

'32_BIT_FLOAT', '#', '1', 'SUM', 'FIRST')

 mergeraster.append(merge_name)

 print(merge_name + ' mergered using sum')

 del tifflist[:]

 print(tifflist)

print('giant mergers done')

print('now for general cleaning up')

print('......')

print('......')

print(mergeraster)

179

for TN in mergeraster:

 TN_raster = bombsite + '//' + TN

 TN_strip = TN.replace('.tif', '')

 TN_clipped = TN_strip + '_TN.tif'

 TN_clippedfull = bombsite + '//' + TN_clipped

 #arcpy.management.Clip(TN_raster, "427735.804551858 1124048.01885298

1233262.83569153 1367916.69433694", TN_clippedfull, boundary)

 arcpy.env.snapRaster = boundary

 remask = arcpy.sa.ExtractByMask(TN_raster, boundary)

 remask.save(TN_clippedfull)

 print('clipped ' + TN)

 #Kelvin to Fehr

 if TN.startswith('temp_min') or TN.startswith('temp_max'):

 fullblister = bombsite + '//' + TN_clipped

 fehr = Raster(fullblister)

 heit = (fehr-273.15) * (9/5) + 32

 notiff = TN_clipped.replace('.tif', '')

 notifffehr = notiff + 'fehr.tif'

 addfehr = bombsite + '//' + notifffehr

 heit.save(addfehr)

 clippedgroup.append(notifffehr)

 print(TN_clipped + ' converted to F')

 #kg/m2 to inches

180

 elif TN_clipped.startswith('ic_'):

 icetransfer = bombsite + '//' + TN_clipped

 frozen = Raster(icetransfer)

 iceconvert = frozen * 0.039370

 icestrip = TN_clipped.replace('.tif', '')

 notiffice = icestrip + 'inch.tif'

 addice = bombsite + '//' + notiffice

 iceconvert.save(addice)

 clippedgroup.append(notiffice)

 print(TN_clipped + ' converted to inches from kgm2')

 #meters to inches

 elif TN_clipped.startswith('sn_'):

 snowtransfer = bombsite + '//' + TN_clipped

 snowman = Raster(snowtransfer)

 snowconvert = snowman * 39.370

 snowstrip = TN_clipped.replace('.tif', '')

 notiffsnow = snowstrip + 'inch.tif'

 addsnow = bombsite + '//' + notiffsnow

 snowconvert.save(addsnow)

 clippedgroup.append(notiffsnow)

 print(TN_clipped + ' converted from meters to inches')

 #ms-1 to mph

 elif TN_clipped.startswith('wg_'):

181

 windtransfer = bombsite + '//' + TN_clipped

 windgust = Raster(windtransfer)

 windconvert = windgust * 2.236936271

 windstrip = TN_clipped.replace('.tif', '')

 notiffwind = windstrip + 'mph.tif'

 addwind = bombsite + '//' + notiffwind

 windconvert.save(addwind)

 clippedgroup.append(notiffwind)

 print(TN_clipped + ' converted from ms-1 to mph')

 else:

 clippedgroup.append(TN_clipped)

 print(TN_clipped + 'clipped to TN boundary')

print('......')

print('......')

fehrclip = bombsite + '//' + 'temp_max_TNfehr.tif'

arcpy.env.snapRaster = fehrclip

for single in singlegroup:

 singlestrip = single.replace('.tif', '')

 resampler = singlestrip + 'clipp.tif'

 singleoutput = bombsite + '//' + resampler

 singlepath = bombsite + '//' + single

 singlemask = arcpy.sa.ExtractByMask(singlepath, fehrclip)

182

 print(single + ' extracted by mask')

 singlemask.save(singleoutput)

 clippedgroup.append(resampler)

print('singles now are ready to convert with multi rasters')

arcpy.env.workspace = transfer_file

arcpy.env.overwriteOutput = True

for clgr in clippedgroup:

 TN_clippedfull = bombsite + '//' + clgr

 TN_point_strip = clgr.replace('.tif', '')

 TN_point_path = transfer_file + '//' + TN_point_strip

 arcpy.conversion.RasterToPoint(TN_clippedfull, TN_point_path, "Value")

 print(TN_point_strip + ' done')

 TN_poly = TN_point_strip + 'poly'

 TN_poly_path = transfer_file + '//' + TN_poly

 arcpy.analysis.CreateThiessenPolygons(TN_point_path, TN_poly_path, "ALL")

 print(TN_poly + ' done')

 TN_polyclip = TN_point_strip + 'polyclip'

183

 TN_polyclip_path = transfer_file + '//' + TN_polyclip

 arcpy.analysis.Clip(TN_poly_path, boundary, TN_polyclip_path, None)

 print(TN_polyclip + ' done')

arcpy.CheckInExtension("Spatial")

print('all done with raster conversions and editing :)')

Former Script for Creating a Hazard Index Script:

import arcpy

origin = r'E:\Grad_School\Archive_2\Thesis\State_Climate_Office\Final

scripts\Transfer_file.gdb'

weatherlist = ['ha_0_ticlipppolyclip', 'ic__TNinchpolyclip', 'sn__TNinchpolyclip',

'temp_max_TNfehrpolyclip', 'temp_min_TNfehrpolyclip', 'to_0_ticlipppolyclip',

'wg__TNmphpolyclip']

intersectlist = []

arcpy.env.workspace = origin

arcpy.env.overwriteOutput = True

print('modules and variables done')

184

for weather in weatherlist:

 path = origin + '\\' + weather

 intersectlist.append(path)

 if weather.startswith('temp'):

 namestrip = weather.replace('_TNfehrpolyclip', '')

 elif weather.endswith('_ticlipppolyclip'):

 namestrip = weather.replace('_ticlipppolyclip', '')

 elif weather.endswith('_TNinchpolyclip'):

 namestrip = weather.replace('_TNinchpolyclip', '')

 elif weather.endswith('_TNmphpolyclip'):

 namestrip = weather.replace('_TNmphpolyclip', '')

 gridname = namestrip + '_grid'

 arcpy.management.AddField(path, gridname, 'DOUBLE')

 arcpy.management.CalculateField(path, gridname, '!grid_code!', 'PYTHON3')

 print(weather + ' has field' + gridname + ' added')

print('weatherlist done')

intersect_vector = origin + '\\' + 'hdfd_HI_data'

arcpy.analysis.Intersect(intersectlist, intersect_vector, 'ALL', None, 'INPUT')

print('Intersect added')

arcpy.management.AddField(intersect_vector, 'haz_index', 'TEXT')

arcpy.env.workspace = intersect_vector

185

hdfd_HI_datafields = arcpy.ListFields(intersect_vector)

print('fields listed and haz_index field added')

deletefields = ['FID_ha_0_ticlipppolyclip', 'Input_FID, pointid, grid_code',

'FID_ha_0_ticlipppolyclip_1', 'Input_FID_1', 'pointid_1', 'grid_code_1', 'ha_0_grid_1',

'FID_ic__TNinchpolyclip',

 'Input_FID_12', 'pointid_12', 'grid_code_12', 'FID_sn__TNinchpolyclip',

'Input_FID_12_13', 'pointid_12_13', 'grid_code_12_13', 'FID_temp_max_TNfehrpolyclip',

'Input_FID_12_13_14',

 'pointid_12_13_14', 'grid_code_12_13_14', 'FID_temp_min_TNfehrpolyclip',

'Input_FID_12_13_14_15', 'pointid_12_13_14_15', 'grid_code_12_13_14_15',

'FID_to_0_ticlipppolyclip',

 'Input_FID_12_13_14_15_16', 'pointid_12_13_14_15_16',

'grid_code_12_13_14_15_16', 'FID_wg__TNmphpolyclip', 'Input_FID_12_13_14_15_16_17',

'pointid_12_13_14_15_16_17',

 'grid_code_12_13_14_15_16_17', 'Input_FID', 'pointid', 'grid_code']

arcpy.management.DeleteField(intersect_vector, deletefields)

print('fields deleted')

hazardindexfield = 'Haz_Index'

186

#SQL statements for selecting hazard index data

lowhitemp = '"temp_max_grid" BETWEEN 100 AND 104.999'

midhitemp = '"temp_max_grid" BETWEEN 105 AND 114.999'

highhitemp = '"temp_max_grid" >= 115'

lowlowtemp = '"temp_min_grid" BETWEEN 0 AND -9.999'

midlowtemp = '"temp_min_grid" BETWEEN -10 AND -19.999'

highlowtemp = '"temp_min_grid" <= -20'

lowwgust = '"wg__grid" BETWEEN 40 AND 49.999'

midwgust = '"wg__grid" BETWEEN 50 AND 59.999'

highwgust = '"wg__grid" >= 60'

#lowrainfall = '"ra__grid" BETWEEN 1 and 2'

#midrainfall = '"ra__grid" BETWEEN 3 and 4'

#highrainfall = '"ra__grid" >= 5'

lowsnowfall = '"sn__grid" BETWEEN 2 AND 3.999'

midsnowfall = '"sn__grid" BETWEEN 4 AND 7.999'

highsnowfall = '"sn__grid" >= 8'

lowiceaccum = '"ic__grid" BETWEEN 0.01 AND 0.099'

187

midiceaccum = '"ic__grid" BETWEEN 0.1 AND 0.249'

highiceaccum = '"ic__grid" >= 0.25'

tornado = 'NOT "to_0_grid" = 0'

hail = 'NOT "ha_0_grid" = 0'

Nada = 'haz_index IS NULL'

#Start selection and attribute generation

lowlist = [lowhitemp, lowlowtemp, lowwgust, lowsnowfall, lowiceaccum]

midlist = [midhitemp, midlowtemp, midwgust, midsnowfall, midiceaccum]

highlist = [highhitemp, highhitemp, highwgust, highsnowfall, highiceaccum, tornado, hail]

arcpy.MakeFeatureLayer_management(intersect_vector, 'hazardindex')

arcpy.SelectLayerByAttribute_management('hazardindex', 'NEW_SELECTION', Nada)

arcpy.management.CalculateField('hazardindex', 'haz_index', '"no risk"', 'PYTHON3')

print('none calculated for haz_index')

for low in lowlist:

 arcpy.SelectLayerByAttribute_management('hazardindex', 'NEW_SELECTION', low)

 arcpy.management.CalculateField('hazardindex', 'haz_index', '"low"', 'PYTHON3')

188

 print(low + ' calculated for haz_index')

for mid in midlist:

 arcpy.SelectLayerByAttribute_management('hazardindex', 'NEW_SELECTION', mid)

 arcpy.management.CalculateField('hazardindex', 'haz_index', '"medium"', 'PYTHON3')

 print(mid + ' calculated for haz_index')

for high in highlist:

 arcpy.SelectLayerByAttribute_management('hazardindex', 'NEW_SELECTION', high)

 arcpy.management.CalculateField('hazardindex', 'haz_index', '"high"', 'PYTHON3')

 print(high + ' calculated for haz_index')

arcpy.Delete_management("hazardindex")

print('"your a nerd" written by my 12yr old nephew')

189

VITA

MICHAEL SHOOP

Education: Public Schools, Kingsport, TN

B.S. Geography, East Tennessee State University, Johnson City,

TN, 2001

M.S. Geosciences, Geospatial Analysis Concentration, East

Tennessee State University, Johnson City, TN 2019

Professional Experience: Lead GIS Analyst, Bechtel, Infrastructure, Frederick, MD April
2015-March 2017

Lead GIS Analyst, Bechtel Western Australia pty ltd, Perth, WA
January 2012-April 2015

GIS Analyst, Bechtel, Oil Gas & Chemicals, Houston, TX
November 2008-January 2012

GIS Technician, Harris County Flood Control District, Houston,
TX July 2008-October 2008

GIS Analyst, EnSoCo Inc., Houston, TX September 2006-May
2008

Presentations: East TNGIC Conference, Kingsport, TN 2018

 NETGIS meeting, Kingsport, TN 2019

 TNGIC conference, Chattanooga, TN 2019

 AASC conference, Santa Rosa, CA 2019

	Automation of State Climate Office Processes & Products: Developing Efficient Approaches for Data Dissemination
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1
	Background
	Motivation
	Organization and Contribution by Chapter
	Chapter 1: Introduction
	Chapter 2: Python
	Chapter 3: Methodology and Products
	Chapter 4: Results, Discussion and Conclusion

	CHAPTER 2
	Introduction
	Variables, Types, and Classes
	Modules
	Lists, Dictionaries, and Tuples
	Looping
	Decision Structures
	Batch Files and Task Scheduler

	CHAPTER 3:
	SPC Storm Reports Description
	SPC Storm Reports
	Automation of SPC Storm Reports

	Designing the Weather Forecast Hazard Index Webapp
	Data
	Downloading Data from the NDFD Website
	GRIB2 data converted to vector polygons
	Creating a Hazard Index
	Posting Data to ArcGIS Online
	Setting up a Dashboard Webapp in ArcGIS Online
	Task Scheduler and Batch Files

	CHAPTER 4
	SPC Storm Report Results
	Weather Forecast Hazard Index Results
	SPC Storm Report Discussion
	Hazard Index Discussion
	Other Challenges
	Limiting Factors
	Future Research and Product Development
	Product Continuity & Preservation
	Conclusion

	REFERENCES
	APPENDIX
	Appendix A: Tennessee State Climate Office Mission Statement
	Appendix B: July 2018 Tennessee Climate Summary
	Appendix C: Python Script Automation
	Python Script for Automation of Daily Storm Reports:
	Automation of Daily Storm Reports script:
	Batch File Code:

	Python Scripts for Automation of Hazard Index Web Application:
	Downloading data from the NDFD website script:
	GRIB2 data converted to vector polygons script
	Creating a Hazard Index Script:
	Posting data to ArcGIS Online Script:
	Batch File Code:

	Appendix D: Former Scripts
	Former Script for Automation of Daily Storm Reports:
	Former Script for Downloading data from the NDFD website script:
	Former Script for GRIB2 data converted to vector polygons script:
	Former Script for Creating a Hazard Index Script:

	VITA

