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1 Introduction

Bacterial suspensions exhibit remarkable macroscopic properties due to the emergence 
of self-organization among its components. In particular, interesting effective proper­
ties such as enhanced diffusivity, the formation of sustained whorls and jets, and the 
ability to extract useful work among other results have been recently observed for sus­
pensions of bacteria, such as Bacillus subtilis (Wu and Libchaber 2000; Sokolov et al. 
2007, 2010; Leptos et al. 2009; Cisneros et al. 2011). The striking experimental obser­
vations on the effective viscosity provide the motivation for studying a suspension’s 
effective properties, namely the observation of a sevenfold reduction in the effective 
viscosity of a suspension of swimming B. subtilis (Sokolov and Aranson 2009). This 
reduction is observed below 2% volume fraction typically referred to as the dilute 
regime where bacteria are far apart and essentially interact with the background fluid 
only. With the assumption of no interbacterial interactions, this regime has been stud­
ied analytically in recent works (e.g„ Saintillan 2010; Haines et al. 2009, 2008, 2012). 
In these works, bacterial tumbling was introduced in order for the formula to predict 
a decrease in the effective viscosity Haines et al. (2012). However, in the absence of 
tumbling (e.g„ for anaerobic bacteria) the decrease is still observed experimentally 
(Sokolov and Aranson 2009). It was shown recently in Ryan et al. (2011) that interbac­
terial interactions substantially contribute to effective viscosity and an estimate for this 
contribution was given. Rigorous analysis of this contribution and its corresponding 
effect on the effective viscosity of the suspension is the main component of this paper.

We begin with an individual-based model (IBM) previously introduced in Ryan et al. 
(2011, 2013), which has been successfully used to capture the decrease in the effec­
tive viscosity and other collective phenomena. Such suspensions, where interbacterial 
interactions play an important role and are modeled as a sum of pairwise interac­
tions, are referred to as semi-dilute. Our goal is to identify the underlying mechanisms 
that contribute to the decrease in the effective viscosity in this concentration regime. 
The main tool we employ is a kinetic theory derived from this IBM. A kinetic theory 
approach has become a popular tool for studying large systems of many particles in the 
life sciences (e.g„ Ahn et al. 2013; Bearon and Briinbaum 2008; Bellouquid and Deli- 
tala 2006; Couzin et al. 2002; Eftimie 2012; Motsch and Tadmor 2011). For a thorough 
review of recent work in this field, please consult the article (Bellomo et al. 2013).

The purpose for employing a kinetic approach is to replace a large system of coupled 
differential equations by a single continuum partial differential equation with respect 
to a probability distribution of bacteria positions and orientations. Note that it is natural 
to consider probabilistic quantities since the main focus of this work is the study of 
the effective properties. The main computational advantage of the kinetic approach is 
that the number of bacteria N does not increase the complexity of the problem (Spohn 
1991; Berlyand et al. 2014). Namely, the PDE could be solved numerically with a fixed 
spatial or temporal grid independent of A. In addition to the ability to consider many 
different initial conditions at once, another advantage to introducing this probabilistic 
framework is to consider the limiting regime as N oo, the so-called mean field limit. 
More information on kinetic equations can be found in the seminal works of the 1970s 
(Neunzert and Wick 1974; Braun and Hepp 1977; Dobrushin 1979) or more contem­
porary reviews (Carrillo et al. 2010; Jabin et al. 2000; Perthame 2004; Degond 2004).



 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

 
 
 

 
 
 
 

 
 
 
 
 

Significant difficulty in the analysis conies from the incorporation of interactions. 
First, they appear in the kinetic equation as a non-local term due to the fact that the 
suspension of interacting bacteria is generally described analytically by configurations 
of all bacteria. Second, the main interactions that are taken into account are hydrody­
namic, which diverge as bacteria approach one another as the square of the inverse of 
their distance verified experimentally in Drescher et al. (2011). This results in a sin­
gular kernel in this non-local term. Thus, the kinetic equation consists of a non-local, 
nonlinear PDE due to the presence of interactions.

Using a kinetic approach, the main result of this paper is an explicit asymptotic 
formula for the effective viscosity with interbacterial interactions taken into account. 
The formula reveals the physical mechanisms necessary for the decrease in effec­
tive viscosity observed experimentally. To achieve this result, we first find the steady 
state solution of the kinetic equation and then use this solution to compute the effec­
tive viscosity. For completeness, we also establish the well posedness of the kinetic 
equation.

This paper is organized as follows. Section 2 begins by introducing the IBM under 
consideration for a semi-dilute bacterial suspension. From this, the kinetic equation for 
the orientation distribution is formally derived. The reason we begin with an individual- 
based microscopic model is that the effective properties of a suspension are derived 
from knowledge of microscopic configurations, which is transferred from the IBM to 
the kinetic model. In Sect. 3, we introduce the main conditions under which we derive 
the asymptotic formula for the effective viscosity and discuss their physical signifi­
cance. Section 4 contains the derivation of the asymptotic steady state solution to the 
kinetic equation for the orientation distribution in the limit of small non-sphericity. The 
effective viscosity from the asymptotic formula is then compared to the same quantity 
computed from direct simulations of the IBM in Sect. 5. The important physical mech­
anisms for the decrease in viscosity are identified, and the orientation distribution is 
compared to the results of previous works in the dilute case. In addition, the normal 
stress differences and relaxation time are considered. The existence, uniqueness, and 
regularity properties of a solution to the kinetic PDE are proven in Sect. 6. Finally, we 
formulate our conclusions and outline potential future investigations in Sect. 7.

2 Model for Semi-dilute Bacterial Suspensions

We begin by introducing the coupled PDE/ODE system governing the fluid and bac­
teria dynamics, respectively. Each bacterium is represented as a point force dipole. 
One force represents the bacterium’s propulsion mechanism (e.g., flagellar motion), 
and the other is the opposing viscous drag exerted by the bacterium’s body on the 
fluid. This approximation has been experimentally verified by observing the flow due 
to a bacterium (e.g., B. subtilis) in a fluid and comparing it to that of a force dipole 
(Drescher et al. 2011). The point dipole model works well in modeling long-range 
interactions, but breaks down near the bacterium’s body; however, excluded volume 
interactions (e.g., collisions) are the dominant force at such a short range. We take a 
minimal approach in that we do not resolve the bacterial flagella explicitly. The effec­
tive viscosity is a quantity which depends on the applied stress independent of the



 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

specific form of the propulsion mechanism and should be measured in a suspension 
with many bacteria. Thus, we opt for a minimal model for each individual allowing 
for simulations containing up to 100,000+ bacteria. We refer to Tournus et al. (2015) 
where a novel accurate model was introduced to elucidate the role of flagella flexibility 
on the dynamics of an individual bacterium.

As a bacterium swims through the fluid, its trajectory may be altered through 
interactions with other bacteria and the background flow. At every moment in time, a 
bacterium propels itself in the direction in which it is oriented. If one bacterium comes 
into close contact with another, then a collision can occur altering the bacterium’s 
position. This is modeled by an excluded volume potential. Finally, the flow itself has 
an impact on a bacterium trajectory through the ambient background flow and the sum 
of flows induced from the propulsion of all the other bacteria on its position. To make 
these ideas more concrete, we now introduce an IBM, which governs a bacterium’s 
position and orientation.

We consider N bacteria with the position of the center of mass of the i th bacterium 
x' = U', y', z7) and orientation d' = (d[, rf7, dl3). A bacterium’s translational velocity 
is derived from a balance of forces due to self-propulsion, collisions, and the flow held 
acting on the position of the bacterium. A bacterium’s orientation velocity is derived 
from a balance of torques in the form of Jeffery’s equation for an ellipsoid in a linear 
how with additional terms due to the Hows generated by the other bacteria in the 
suspension (Jeffery 1922). Thus, the equations of motion for bacterial positions x and 
orientations d originally introduced from hrst principles in Ryan et al. (2011) are

x7 = Vod' + 22 (u' (x'’ d') + r' (x‘)) + “BG (x0 ’ (1)

where Vo is an individual bacterium’s swimming speed and B is the Bretherton constant 
which takes into account the geometry of the bacterium’s body (B <£ 1: near spherical, 
B 1: needle-like). We impose an external planar shear how with constant rate 
y, which contributes to each bacterium’s motion through the Huid velocity, uBG = 
(0, yx, 0)r, as well as its effect on a bacterium’s orientation through the vorticity 
wBG = Vx x uBG and rate of strain EBG = ^(VxuBG + (VxuBG)T). Here, W is a 
white noise, and we let D ~ B~ be the diffusion coefficient. This order of D will 
be used throughout this work and represents the idea that the random motion present 
in the system has a greater effect the more elongated a particle is. The velocity due 
to excluded volume forces, F< can be modeled using a purely repulsive force (e.g„ 
truncated Lennard-Jones potential as in Ryan et al. (2011, 2013) or the Yukawa 
exponential potential Wensick et al. 2012). For more information on its definition and 
its importance for global solvability, see Ryan et al. (2013).



 
 
 
 

 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 

 
 
 
 

 

Remark 1 With the inclusion of the term modeling tumbling, V2DW,Eq. (2)becomes 
a stochastic differential equation. Nevertheless, due to smallness of D, this term does 
not affect the formula for effective viscosity as shown in Sect. 5. Thus, the principal part 
of (2) does not contain stochasticity. This term is present to guarantee the regularity 
of the solution to the associated kinetic model, see Sect. 6.

Remark 2 The viscosity can alternatively be thought of as the rate of energy dissipation 
in the suspension. Therefore, we consider a flow where there is a nonzero rate of strain. 
Approximately viscosity is the ratio of stress to strain. If there is no background flow, 
then the strain is zero, and we are unable to compute the viscosity. Since we need 
to consider a background flow with nonzero strain, we consider the simplest linear 
flow, planar shear. Any linear flow can be broken down into a combination of planar 
shear flow and a purely straining flow, so the results herein provide a good estimate 
of viscosity for many different flows.

The additional terms in Jeffrey’s equation (2) beyond the contribution from the 
background flow are due to the vorticity vector w and rate of strain matrix E generated 
by the j th dipole on position of the z'th dipole

w(x) = Vx x utx), E(x) =

Each of these terms depends on the fluid velocity u(x), which is a function of the 
relative position between the two bacteria x' — x7 and governed by Stokes equation 
described in greater detail below.

Remark 3 The equations of motion (1) and (2) can be reduced to a 5N coupled system 
of ordinary differential equations using the constraint |d| = 1 [3D equation (2) and 
then can be rewritten as two ID equations with respect to orientation angles a and ft, 
see (10)]. This is compared to the dilute case studied in Haines et al. (2012) where 
there were only two ODEs governing the evolution of a single bacterium in an infinite 
medium (only depending on a single bacterium’s orientation). Thus, the semi-dilute 
system of equations adds a greater complexity than the dilute case previously studied.

The use of Stokes equation to model the fluid is justified by estimating the Reynold’s 
number. Based on the typical size f'o ~ I p,m and swimming speed Vo ~ 20p,m/s of 
a bacterium, in addition to the typical dynamic viscosity zyo ~ 10-3 Pas and density 
p ~ 103kg/m3 of the suspending fluid, the flow has a Reynolds number Re around 
2 x 10-5 1. Thus, inertial effects can be neglected.

The flow at the position of bacterium i due to bacterium j is given by u7 (x', d7) = 
u(x7 — x!, d7) where u(x, d) is a solution of the Stokes problem

?;oAxu(x. d) - Vxp(x, d) = Vx • [D(d)<5(x)], 
Vx utx, d) = 0, 
u(x, d) _>■ 0,

x e R3, 
x e K3,

oo.
(3)



 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 

where /70 is the ambient fluid viscosity and p is the pressure. The dipole tensor D = 
{Di„,} is given by

D/m(d) Uq
U0(>di d,„ Si,j I, m — 1,2,3 (4)

where Uo is the strength of the dipole referred to as the dipole moment. For pushers, 
bacteria that propel themselves from behind such as B. subtilis, Uo < 0. Equation (3) 
has an explicit solution:

1
Sttz/o

m*(x, d)
3 3

. f^/z„(d)Czr-/,m(x), (5)
/=! zn=l

where Gki(x) = + ^7) is the Oseen tensor.

Remark 4 In order to study the role of interactions in semi-dilute suspensions, it is 
natural to deal with a point representation of swimmers such that the whole suspension 
is modeled by points interacting in the fluid. In our paper, a swimmer is represented 
by a point force dipole with the dipole tensor (4). In general, for a given model of a 
swimmer, such a point representation can by found as the second order term in the 
multipole expansion, see Kim and Karrila (1991). We note that all results of this paper 
such as the asymptotic formula for orientation distribution and effective viscosity can 
be easily modified to semi-dilute suspensions with swimmers whose dipole tensor is 
different from (4).

In order to analyze the system (1) and (2), the associated kinetic theory for the 
probability density of bacterial configurations (positions and orientations of each bac­
terium) is studied. In general, to derive the corresponding kinetic equation one assumes 
that initial conditions are random. Then each sum in the equations of motion is a sum 
of identically distributed random variables. The key step in the formal derivation of the 
kinetic equation is replacing all sums in the equations of motion by their expectations 
(Poznyak 2000; Spohn 1991; Jabin 2014). This allows one to replace all the sums 
representing interactions by integrals with respect to a probability density function 
P(t, x, d) of finding a given bacterium at position x with orientation d.

By replacing the sums with integrals in the system (1) and (2) and enforcing con­
servation of probability, a standard Fokker-Planck equation describing the evolution 
of the density P is obtained

dtP + Vx ■ (VP) + Vd lS2P)-DAdP = 0, (6)

where the translational and orientation fluxes are defined by

V(x, d) := V0d +-^ / I uP(x'.d')dx'd5d-+uBG(x). (7)
\Vl\ Js'-Jvl

J2(x,d):=-^/ la + BE, P(x',d')) . d.Sd-+ «BG(d) + flEBG(d). (8) 
\Vl\Js-



 
 
 
 
 

 
 

 

 

 
 
 

 

 

Here, <■, •) denotes the duality with respect to the L2-norm, Vl ■= [—L, L]3, and we 
neglect the excluded volume term F described earlier due to the fact that collisions 
only play a small role at low concentrations. Including F in (1) and (2) is necessary to 
ensure that the bacterial trajectory solutions of the ODEs are well defined for all time 
as justified in Ryan et al. (2013). The functions u, co. and E under the integral sign 
depend onx-x'.d and d'. and they are defined as follows

u(x, d) := Vx ■ [(dd - I/3)0(x)],
87iri0

w(x,d,d'):=-;dx[Vxxn(x,d')], (9)

E (x, d, d') := —d x [d x Dx (u (x, d')) d],

where Dx(u) := |(Vxu + [Vxu]T) represents the symmetric gradient and I is the 
identity matrix. Also, <uBG(d) and EBG(d) are defined in the same way as (9), but with 
the fluid velocity u replaced with the background flow uBG.

Remark 5 Since w, E ~ ^JV|,, the integrals with respect to the spatial variables must 
be considered in the distributional or principal value sense (which are equivalent here). 
Namely,

I dm \ [' dll,
‘\^—^j = cij(A)<p(Q) + J g—Mx) - <p(0)) dx,

where
Ca (d) = lim UinidSx,

|xj=e

where n/ is the unit normal to the ball of radius e.

The orientation vector d e S2 can be represented by two independent angles in 
spherical coordinates

d := (cos a sin /I, sin a sin ft, cos /?) = (rfi, do, dj), (10)

for azimuthal angle a e [0, In) and polar angle ft e [0, n). Here, one must be careful 
to note that the divergence and the Laplacian in orientations (the Laplace-Beltrami 
operator) in (6) are taken over the unit sphere. In particular, for any field A = A(d) 
the following definition holds

Vd ■ A := -—- [9a(A„) + dp (sin fiAp)] 
sin L J

where Aa = A ■ a, Ap = A ■ f$, and Vj is the classical gradient using unit basis vectors 
a := (— sin a, cos a, 0) and ft := (cos a cos /J, sin a cos — sin /I), respectively.



 

 

 
 

 
 
 
 

 

 

 
 
 

2.1 Definition of the Effective Viscosity for a Suspension of Point Force Dipoles

To define the effective viscosity, consider the contributions to stress: (i) due to dipolar 
hydrodynamic interactions

r/ /j, 
'/hi (d) - E

1=1

^-(cl,ct,„-Slni/3), /.mj = 1,2,3,
ivil

depending only on each panicle's orientation (Batchelor 1970) and (ii) due to soft 
collisions (the excluded volume constraints)

/=i |Vd
/.MJ = 1.2,3,

depending only on the relative positions of each bacterium (Ziebert and Aranson 
2008). Here, F; is the 1 th component of the excluded volume repulsive force. Both are 
combined to form the total stress due to interactions first used in Ryan et al. (2011, 
2013). We assume that all bacteria are in the volume Vl at any instant of time. The 
bacterial configurations are denoted by x := (x1,..., xN) and d := (d1,..., d^).

The ultimate goal is to compute the effective viscosity due to hydrodynamic inter­
actions at low concentrations for comparison with experimental observation (Sokolov 
and Aranson 2009) and numerical simulations. At lower concentrations <f>, where the 
striking experimental decrease in the effective viscosity was observed, the contribution 
due to collisions is relatively small and for the proceeding analysis will be neglected 

27(x, d) = 27d(d) + 2?u(x) 2/(d), for (j> small. (12)

The exact concentration interval where the formula (12) works well will be determined 
later by comparison with direct numerical simulations of the suspension.

Thus, it is sufficient to restrict attention to the density of orientations denoted P<\ (d) 
defined as

Pa(d) := — I P(x, d)dx, where / Pa(d)dSa = 1. (13)
N JvL J s-

For comparison with experiment, the main quantity of interest is the shear viscosity or 
component 271212 of the fourth-order viscosity tensor relating the stress to the strain, 
henceforth denoted as fj. We define the effective viscosity as the averaged ratio of the 
corresponding components of the stress and strain tensors

/ — P(x.d)dxdSa = - [ ^2(d)Pd(d)dSd, (14) 
»?o iWvjs* y y Js2

as in Ryan et al. (2011, 2013). The relevant contribution to the effective viscosity is 
the stress in the shearing xy-plane contained in the 12 entry of the stress tensor S



 
 

 

 
 
 
 

 

 

 
 
 
 
 
 

 
 

defined in (12). Here, p = 7V/| Vl I is the mean concentration or number density and 
y is the shear rate of the background how. The following nonlinear, non-local integro- 
differential equation describes the evolution of the orientation density Pa(t, d)

9fPd(rd) = -Vd-((i2)xPd(?.d)), (15)

where (52)x = y &/’x(t. x)dx for Px(x) = fs2 P(x, d)dd. 52 contains the back­
ground how and interaction terms

52(f,x,d) = wbg + Ebg+—!— [ I («+BE, P (z. x',d'))dx'dd'.
N\Vl\Js2Jvl' V ”

Equation (15) is obtained by integrating (6) in x and dividing by N.

Remark 6 In this work, lower concentrations of bacteria are considered where the 
primary contribution to the effective viscosity from interactions is the dipolar compo­
nent of the stress, I?', which only depends on the set of bacterium orientations. Thus, 
the x equation will not factor into the final formula; however, F7 in (1) is the force 
associated with a truncated Lennard-Jones type potential imposing excluded volume 
constraints. This quantity still remains in the original coupled ODE system used for 
simulations to ensure that particles remain a finite distance apart avoiding an artificial 
divergence in the fluid velocity u ~ 1/|x' - x712 (see Sect. 5.3).

3 Conditions Imposed to Derive an Explicit Formula for the Effective 
Viscosity

To calculate the effective viscosity, we impose three conditions to make the system 
more amenable to mathematical analysis.

3.1 Factorization Ansatz for Pd(d)

In this paper only small concentrations are considered where collisions are not impor­
tant, yet the how of each bacterium affects all others. The bacteria are at large distances 
apart, and thus, since the background how provides the major contribution to bacterial 
motion, then distributions of positions and orientations become essentially indepen­
dent of one another. This can be justified from the experimental work of Aranson et 
al. (e.g., see Sokolov et al. 2007; Aranson et al. 2007). Henceforth, it is assumed that 
the positions and orientations are decoupled.
Condition (Cl): The density P(x, d) can be written as

P(x, d) = Px(x)Pd(d) (factorization). (16)

The orientation density Pd(d) remains a conserved quantity fs2 Pd(d)dSd = 1. Here, 
N is the number of bacteria, supp(Px(x)) c Vl, where the spatial density Px(x) 
can be found by Px(x) = f£2 P(x, d)dSd. Equivalently, the factorization ansatz (16)



 
 

 
 
 
 
 
 
 

 

 
 
 
 

 
 
 
 
 
 

 
 

can be reformulated using the function Px|D=d(x), which is the conditional spatial 
probability density given an orientation d (Devore and Berk 2012), depending only 
on x. In this case, Px\d=a(^) = Px(x).

This condition is used twice. First, the effective viscosity at low concentration only 
depends on the orientation (see Remark 6). Thus, using condition (Cl) an explicit 
equation for the evolution of the orientation distribution can be derived from (15). 
Second, V formally contains diverging integrals (e.g„ jj FdxdSa since F ~ |x|-12), 
which will no longer be present in the equation for the orientation distribution P<j(d) 
allowing for further mathematical analysis. It will be observed at the end of this work 
that the asymptotic expansion for P(i(d) depends on Px(x) through the coefficients; 
thus, all the information about spatial patterns is preserved.

3.2 Existence of a Steady State Pc|(d)

A steady state solution to (15) is defined as follows;

Definition 1 Pa(d) is called a steady state solution to (15) if it solves 

0 = -Vd ■ ((12)x Pd(d)) .

To compute time-independent effective viscosity, we impose the following condi­
tion.
Condition (C2): There exists a non-trivia! steady state solution to (15).

First, note that there is no trivial steady state unless B = 0 in which case we find the
uniform orientation distribution Pa (d) = jL. This can be obtained both in the limit as 
B —* 0 in the asymptotic results derived herein for Pa(d) and from observing that the 
trivial steady state would be a constant satisfying the constraint fs2 Pa(d)dSa = 1. 
One still needs to prove the existence of a steady state in the general case B ^ (). The 
condition (C2) can be formulated as a theorem, and its proof may be the topic of a 
future work. Here we remain focused on the study of the effective viscosity.

3.3 Px(x) is Constant in the z-Direction

We assume that Px(x) is constant in z for the case of the planar shear background flow 
under consideration in this work. This is consistent with past numerical observations 
by Ryan et al. (2011) and experimental observation in Sokolov et al. (2009) since the 
suspension remains below any critical concentration for three-dimensional collective 
motion. Also, collective motion even in full 3D experiments and simulations in planar 
shear flow has been observed to be essentially 2D in the shearing plane (Sokolov et al. 
2009). Thus, following experimental observation, we assume the same.
Condition (C3): The density Px(x) is constant in z.

The condition (C3) essentially follows from the physical setup of the quasi-2D
thin film suspension. In “Appendix 2”, we show that the condition (C3) leads to the 
following representation formula for the Fourier transform of the spatial distribution 
^[Pxl: ~



 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

(^[Px])2:=«5(*3)A22^i^'2). (17)

Here, k = (iq, fa, fa) is the Fourier variable, and Pn(k\, kj.) is a smooth function 
defined in k-space independent of fa.

4 Derivation of Asymptotic Expression for P,i for Small B

In this section, an expression for the orientation distribution Pa (d) is derived. Since 
(15) is a nonlinear integro-differential equation, it is challenging, in general, to find 
an analytical solution. Thus, we look for Pd(d) by asymptotic expansion in the limit 
of small non-sphericity (B 1). This will allow us to apply analytical techniques 
and derive an expression, which will provide physical insight into the mechanisms 
contributing to the decrease in the effective viscosity. Our work is motivated by sus­
pensions of rod-like bacteria such as B. subtilis with Bretherton constant B .9; 
however, our results still compare favorably with experiment and this work pro­
vides insight into how non-sphericity contributes to the decrease in the effective 
viscosity.

Rewrite the equation for the orientation density Pd(d) (15) as (the argument t is 
suppressed for simpler notation)

9/ Pd + Vd • [(«BG + BEbg) Pd] + J Vd • (fiP(x, d)) dx = 0, (18)

where
i?(x, d) + PE, Px (x'))v Pd (d') dSd'. 09)

Herein i? will denote the component of the orientational flux i? due to interactions. 
Observe that the w and E are functions of x - x', d, and d'.

Using Condition (Cl) defined in (16), we obtain a closed form equation for a steady 
state Pd(d) (provided that Px is given):

0 = Vd • [p!G + BEbg) Pd(d)]

+ TUUT [ I Vd - (i2(x,d,d/)Px(x)Pd(d))d^dx. (20)
N\Vl\JVlJS2 V ’ )

The first term in (20) is the contribution due to the background planar shear flow:

Vd- [(«BG(d) + BEBG(d))pd(d)] = -^-sin2£sin2aPd(d)

+ |-(1 + P cos 2a){9aPd(d))

yP
+ sin2a sin2^{3^Pd(d)). (21)

4

The second term in (20) is the contribution of hydrodynamic interactions between 
bacteria. Notice the convolution form of the non-local terms in the spatial variable. In



 
 
 
 

 
 
 

 

 
 
 

 

 
 

the next section, the Fourier transform will be utilized to compute quantities neces­
sary to derive the formula for the effective viscosity. Specifically, using tools such as 
Parseval’s Theorem, one can take the spatial integrals and consider them in Fourier 
space where they will prove easier to analyze. After using the separation of variables 
(16), the density will be expressed in terms of the Fourier frequencies k.

The main goal for the remainder of this section is to write the system in a con­
venient form for using the Fourier transform. This idea follows naturally from the 
aforementioned observation that all the interactions terms take the form of a convolu­
tion. Introduce the Fourier transform C(k) := J7! Px ](k):

Px(x) = —Uf f eik xC(k)dk. (22)
(2tt )3 J

Define H(x — x\ d. d') := w(x — x', d, d') + BE(x — x', d, d'), then the following 
equalities hold

(H*PX,PX)X= (5-[H*Px],5-[Px])k = (j-[H],(5-[Px])2)k, (23)

where * and T stand for convolution and Fourier transform, respectively. The first 
equality is Parseval’s identity, and the second is the fact that the Fourier transform of 
a convolution is the product of Fourier transforms. Thus, one can rewrite Eq. (20) in 
the following form

Vd ■ [(wBG + PEbg) P„(d)]

+ ^ Vd ■ {pd(d)Pd (d'J^IHim/^if-y d.Sd-=0. (24)

In order to compute JP[H], one must first understand how the Fourier transform acts 
on the fluid velocity u and its derivatives.

4.1 Evaluation of Fourier Transforms

In order to analyze (24), an analytical expression for the Fourier transform J7|H| = 
■P[«] + E] is needed. Both terms depend on the fluid velocity u defined by (3). 
Recall the dipolar stress

£(x, d) = D(d)<5(x) = t/0(dd* - //3)<5(x). (25)

Then the Stokes equation in (3) can be written as

— i/nd,u + Vxp = Vx - £(x. d), Vx • u = 0 (26)



 

 

Denote the Fourier transform of a funetion f(x) as

//(k) = D/J (k) = e_i(k'x’/(x)dx.

and compute the Fourier transform of u and the symmetric gradient Dx(u). 

Proposition 1 Let u be a solution of (3) and let X be defined by (25). Then

(i) T (d') = U0 (d'd* - //3) .

/ / kk*\ k<i0 i,k’=Ski (' - ikp) r,k’jii’ 07)
(Hi) JF[Dxlu)| =-----------r (|k|;rkk* -2kk*£kk* + |k|2kk*r). (28)

2z)o|k|4 V /

Here. * denotes the transpose.

Proof The part (i) follows from the fact that the Fourier transform of 5-function is 1. 
We split the proof of (ii) into two steps: First, we find the Fourier transform of the

pressure p. and then by using the first equation in (3) we find u.
Step 1: Evaluation of p = T7!/?] By taking the divergence of (26) in x. we obtain

4xp = VX-(VX-D, (29)

Observe that

= -|k|2p(k). ^[Vx • (Vx • DI = I 27 : V2e"'kxdx = -Dk) : kk*.

Substituting these formulas into (29), we obtain —|k|2p(k) = -Dk) : kk*. and 
thus, we find an expression for the Fourier transform of the pressure p:

p(k) = —^Dk) : kk*. (30)

Step 2: Evaluation ofu = u | Return to Stokes equation (26) and observe that

z/oD^xU] = —?7o|k|2u(k), DVxpl = zk/r(k), T [Vx ■ D = i X (k)k.

Using these relations, one finds that z?o I k 12u (k)+ikp (k) = i X (k)k. After rearranging 
the terms and using (30), we complete the proof of (ii).

To prove (iii), we first observe that Jr|/Jx(u)| = |(uk* + ku*). Plug the Fourier 
transform of u from (ii) into this expression to find

77[Dx(u)] = - (uk* + ku*)

2fin|k|2
(('-kkl’-)):<k,kk'-kk‘£lk’



 

 

 

 

 

 
 
 
 
 
 

Use the fact that Z is symmetric (J? = “*) to complete the proof of (iii).

Remark 7 It is easily seen that 7"[Z)x(u)| does not depend on |k|, since ^"[Z)x(u) ] can 
be rewritten as

1 - k k* 2 k k* - k k* k k* - 
JP[Dx(u)] = —s-----------------------a---------- 1-------------a.

% |k||k| ,70 |k| |k| |k||k| ,70|k| |k|

This subsection is concluded by summarizing the analytical expressions for the two 
main components of ^[H] = tP[w] + BJP[E]:

F [E] = —d x (d x T [Dx(u)] d) = T [Dx(u)] d - dd*JP [Dx(u)] d (31)
= - jd xP[Vsxu] = - jd x [-z'k x JP[u]], (32)

where J7! u | and tP| Z)x (u) ] are given by Proposition 1.

4.2 The Form of Asymptotic Expansion in B

Recall the steady state Liouville equation (24) with the background terms substituted 
in:

3vZf 9 y
0 =---- —- sin2 p sin2aPd(d) + ^-(1 + B cos 2a)3„Pd(d)

vB
+ -— sin 2a sin 2/13^ Pd(d)

4
+ W L Vd ■ lPd(d)Pd (d/) I5™’ ^p^k}dS^- (33)

We consider the asymptotic expansion in the Bretherton constant, B «; 1, for the 
orientation distribution, Pd(d), up to the second order:

Pd(a, P) = P'0)(a, P) + Pd(1)(a, P)B + pf\a. P)B~ + O(B3). (34)

Substituting (34) into (33), we get different equations at different orders of B. 
It is straightforward that P&\u, P) = ■& (surface area of the unit sphere is 4jt) 
solves the equation at order 0(1). We want to consider the asymptotic expansion 
about the uniform distribution because it has been extensively documented in theory 
and experiment that as the bacterium bodies become or spherical (B 0), then the 
distribution in angles is uniform (Ryan et al. 2011; Haines et al. 2012). In the next two 
subsections, the linear order term P^’fa, P) and quadratic order term Pd"’(of, P) are 
computed.



 
 

 

 

 
 

 

 
 

 
 
 
 
 
 

4.3 Contribution at O(B)

First, notice that Vd «(x—x'. d. d') = 0. Indeed, this follows from (11) since w d = 0 
and the classical divergence of <w with respect to d is zero (note that u> = d x A, where 
A = Vx x u does not depend on d). This observation implies Vd • JP, H ] = B Vd • ^[E].

Using this equality and expanding the divergence under the integral sign, we rewrite 
(33) as follows:

0 = ~ [P sin(2a) sin ft (cos fidpPa — 3 sin/lPd) + (1 + B cos(2a)) 3aPd]

+ TTiTTT I Pd(d')Pd(d)(vd-(5-[E(d)])(5-[Px])2) dS^
N\VL\JS2 \ Ik

+ ^7~[ Vd[Pd(d)]Pd (dz)/jP[H(d)] (JP[PX])2\ dSdo (35)

The hrst integral at O (B) is

itStWnXJ’- (36,

By switching the order of integration and noting fs2 = fS2 l/o[d'(d')* —
I/3]d Sd- = 0, we obtain that (36) is zero using (31) and (28).

Since both Vd[Pd(d)] and PE are of the order 0(B), the second integral in (35) 
at O(B} is 47rJ|V,L| JS2 VdPdl,(d)(Jr|w|(J7| Px|)2)iid.Sd- which is also zero due to 
/s2 [/0(d'(d')* -//3)dSd6 = 0.

Thus, the integral terms do not contribute to equation (35) at order 0(B), and it 
has the following form:

0 = 2 [_3Pd0) Sin(2a) Si"2 + 9“Pd1)] ■ (37)

After substituting Pd0) = and solving (37), one hnds that 

a
p\l\a, P) = — — sin2 p cos(2a). (38)

877

Since the integral terms are zeros at order 0(B), the contribution due to interactions 
does not appear at order 0(B) and thus the only contribution is due to the background 
flow.

It will be shown later that up to 0(B) the contribution to the effective viscosity by 
the bacteria is zero. This will shed light on the fact that interactions are necessary to 
see the decrease in the effective viscosity and the background flow alone is insufficient. 
Note that even though this is the contribution due to the background flow the strain 
rate y is not present. Therefore, the magnitude of the flow will not have an effect on 
the long-time limit of the effective viscosity at 0(B). However, once the terms at the 
next order are computed, one observes a competition develop between the background



 

 

 

 

flow and the flow due to interbacterial interactions. In this case, the magnitude of the 
shear / becomes important.

4.4 Contribution at £>(B2)

Consider terms in (35) of order O(P2):

0 = y sin(2a) sin fi cos pdpP^'\d) - sin(2a) sin2(fi)Pd1>(d)

+ ^3apf)(d) + ^cos(2a)3„P(<1,(d)

1 , J,v ,Vd- / (Z[E]^[Px]2>kp^»(dW 
4tt/V|V£| Jsi a

+ , i I Vd[P^’(d)](.F[«](:F[Px])2>kd.V 
TttjV | V/J J s'

+ a Jiv i I Vd[pj1,(d)](5-[E](5-[Px])2)kdSd,
47rN|VL|y52 Q

+ Vd[pj1,(d)]Pd<1,(d/)(5-[w](5-[Px])2)kdSdz. (39)

Denote the four integral terms in Eq. (39) by Ii, I2, I3 and I4, respectively. The 
following equalities hold:

/1 =
f/n

40tt%^|Vz.| 
l2 = h = 0,
, 3t/0/4 =

( A sin2 fi cost 2a) + C sin2 fi sin(2or)j .

D sin(2a ) sin* fi.
l(j7r»/o^V|Vz.|

where constants A. C. and D are defined as follows

A j sin2(20)Pf2it2ditdO, C / sin(4W)P,22it2ditd«,

D := cos(0) sin(0)P22(t2d/:d0. (40)

where P12 is from (17), and we use spherical coordinates in the Fourier space (k = 
|k|, 0, </>). The calculations of /, can be found in “Appendix 1”.

After substitution of the expressions for each It, we get the following equation for 
Pj2)(d):

0 = y sin(2a) sin fi cos^3^Pd'’(d) — sin(2a) sin2(J6)Pd1)(d) 

+ |3„P(i2’(d) + | cos(2a)3„Pd1)(d)



 

 

 
 
 
 
 
 

 
 

+

+ (41)

t/o
4OjT»,oN|Vtl 

3 t/o
l(Mo/WI

(A sin2 /i cos(2a) + C sin2 f) sin(2a)l 

Dsin2 (i sin(2a).

tf’OD:
Based on the form of the Eq. (41), the following representation is used to find 

d):

= C| sin4 f) cos(4a) + Ci sin2 /I cost 2a) + Cj sin2 fi sin(2a). (42)

In order to find each C, substitute (42) into (41):

0 =
3y
-f- -2yCi 8jt r 

-yCi +

sin(4a) sin4/! + 

t/oC

yCi + 

3t/0D

t/o A
4O,t)/o/V|Vz.|,

sin2 ft cos(2a)

40tti^N\Vl\ K}jrz/(,/V| V/J_
sin* ft sin(2a).

Since the factors are linearly independent, each coefficient is zero and, thus, we find 
the C,-’s:

c = _3_ c = t/0(C + 12£>) c = U0A
1 1677 ’ 2 40/77 z/pV Vl\’ 3 4Oy7TZ7o/V| Vl|

Using these coefficients, one obtains an explicit formula for the orientation distribution 
up to O(B3):

1 3 ,Pd(a, ^) = ------ — sin* /fcos(2a)P +
47T o77

-^-sin4/fcos(4a)
16tt

- t/o
C + 12D 

40yjrz/nN|Vz.l 
t/oA

sin*/(cos (2a)

4Oy7rz/o/V|V/.|
sin* ft sin (2a ) (43)B- + <?(fi’).

Formula (43) is the main result of Sect. 4. Since A, C, and D contain Pn, all the spatial 
information is embedded in these coefficients. In particular, we found the lowest order 
(in P) contribution of hydrodynamic interactions to the Pd(d) occurs at O(P2). In 
the following section, the contribution of hydrodynamic interactions to the effective 
viscosity is computed as well as the change in the effective normal stress coefficients. 
The combination of these two quantities will describe the total effect of hydrodynamic 
interactions on the rheological behavior of the bacterial suspension.

5 Explicit Formula for the Effective Viscosity

Using the expression for the orientation distribution, Pd(d) defined in (43), and the 
formula for the effective viscosity for dipoles in a suspension (14), we compute the 
contribution to the effective viscosity due to interactions:
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»70 15y2JTi]o

0. (44)

where A = -^A ~ 0(1) and the equality holds up to order P(B3). The quantity 
z?int = /j1212 behaves like p2 in concentration (cf. Batchelor and Green 1972 where an 
expansion for the effective viscosity to order two in concentration is derived for passive 
spheres corresponding to pairwise interactions). As an additional check of consistency, 
consider the dimensions of the final quantity. The dipole moment [Po] = both 
the Bretherton constant B and A are dimensionless, the concentration/number density 
Ip| = the ambient viscosity [po] = and the strain rate [/] = j resulting in 
?7int being dimensionless. In addition, the orientation distribution Pd(d) from (43) can 
be used to compute the effective Hrst and second dipolar normal stress coefficients 
Nn = 2 " and N23 = ^Yt 33 t0 investigate the effect of hydrodynamic inter­
actions. The main advantage of the mathematical model is that the computation of the 
effective normal stress coefficients is straightforward in contrast to experiment where 
its measurement can be quite complicated (Friedrich and Haymann 1988). These 
coefficients can provide important information about the suspension. For example, 
the ratio of the first normal stress to the viscosity determines the effective relaxation 
time (Friedrich and Haymann 1988). Also, phenomena such as extrudate swelling 
(Abdel-Khalik et al. 2004) and secondary flow (Ramachandran and Leighton 2008) 
are important in many technological applications. A simple calculation shows that

Pop ~ 2 2Pop(C + 12P)g2 
Y2 . 5 75/7rz)o

(45)

and
Pop N + Pop(C + 12P) fl2 
X2 |_5 75x^rfio (46)

The approximations are valid for B <g 1, so for pushers (Po < 0) TVn > 0 and 
N23 < 0 where as for pullers (Po > 0) N12 < 0 and N23 > 0. Both results are 
consistent with the predictions in Haines et al. (2012) and Saintillan (2010) while 
providing additional information about the concentration dependence. The effective 
normal stress coefficients grow linearly with concentration in the presence of inter­
acting bacteria; however, the fact that the normal stresses of active suspensions are 
nonzero in the case of a planar shear flow indicates the emergence of non-Newtonian 
behavior. One sees in (45) and (46) that as the shear rate y 00 the normal stresses 
approach zero indicating the dominance of the background flow on the suspension 
overwhelming any contribution from interactions.

5.1 Mechanisms Required for the Decrease in the Effective Viscosity

In this subsection, the mechanisms that lead to a decrease in the effective viscosity are 
investigated. These same mechanisms are shown in Ryan et al. (2013) to be responsible



 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

for collective motion and large-scale structure formation in suspensions of pushers. 
Our mathematical analysis provides insight beyond experiment. Formula (44) reveals 
that elongation of bacteria, self-propulsion, and interactions are all required to observe 
a decrease in the effective viscosity; namely, for spherical bacteria (B = 0) the net 
change in the effective viscosity is zero. In addition, active bacteria are required, 
since Uq ~ fp = 0 results in no change in the effective viscosity where fp is 
the propulsion force. Finally, if the spatial density Px(x) is near uniform, then A =

/ sin2(20)P12,dk = 0 resulting in no change in the effective viscosity.
In the limit y - oo, the contribution to motion of bacteria due to shear dominates

the contribution due to interactions with Pd(d) maximized at a = ■nf'l and fi = 7t/2 
(alignment with y-axis). This is analogous to the passive case where bacteria in a 
planar shear flow tend to align with the direction where the fluid exerts the least 
amount of torque on the bacterium body. Therefore, confirming our main conclusion 
that in order to exhibit a decrease in the effective viscosity active, elongated bacteria 
whose interactions result in a non-uniform distribution in space are needed.

5.2 Effective Noise Conjecture

In this subsection, the results herein involving a semi-dilute suspension of point force 
dipoles are compared to the previous result for a dilute suspension of prolate spher­
oids with propulsion modeled as a point force (Haines et al. 2012). Thus, the only 
contribution to bacterial motion is the background flow. In Haines et al. (2012), finite 
size bacteria are taken as spheroids with a point force (5 function) accounting for self­
propulsion. In addition, each bacterium experiences a random reorientation referred 
to as tumbling. Biologically tumbling corresponds to a reorientation of a bacterium by 
unbundling its flagellum. Tumbling can occur regardless of the surrounding media, but 
the tumbling rate is highly variable depending on a bacterium’s environment (Turner 
et al. 2000). The typical time between tumbling is long compared with tumbling itself. 
One example where the tumbling rate is large can be observed in a suspension of 
aerobic bacteria when the concentration of oxygen is low. Here, the bacterium’s usual 
run and tumble motion consists of more tumbles in search of an area with sufficient 
oxygen concentration. Thus, bacteria enter into a different state characterized by a 
lower swimming speed and an increased tumbling rate (Sokolov and Aranson 2012).

Since only the term containing A contributes to the effective viscosity, one can 
choose to match the coefficient of this term

P*"' = -1- - — cos(2a) sin2 B2 sin4 fi cos(4a)
47T o7T 167T

C ~h 12/? -j {/()/? A i i / ~i\
— UqP------------ B" sin" cost2a )--------------B"sin"/lsin(2a) + O IB )

TOym/o 4Oyjr;/o ' '

with the corresponding coefficient in the derivation by Haines et al. (2012), which is 
quadratic in the diffusion strength D. To make the formulas for the effective viscosity 
identical, the strength of the effective noise/diffusion (tumbling) is chosen to be



 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

„ -15z?oy2 + v/225z?5/4 - A2B-y2p2[/0-
D := ---------------- --------------------------------- -  > 0,

12ABpU0

(since Uo < 0 for pushers). Observe that D, chosen in this way, depends only on 
the physical parameters present in the problem and the same effective viscosity as 
the dilute case studied in Haines et al. (2012) is found. This D is referred to as the 
effective noise and the phenomenon where stochasticity arises from a completely 
deterministic system is called seif-induced noise. A future work may seek to explain 
this phenomenon rigorously using mathematical analysis. One heuristic idea is that 
the periodic (deterministic) Jeffery orbits are destroyed by interactions resulting in 
stochastic behavior.

Some conclusions about this effective noise can be made that ensure its consistency 
with physical reality. As bacteria become spheres B • 0, D 0 resulting in no 
change in the effective viscosity consistent with Haines et al. (2012). Also as the 
strain/shear rate y - oo, D • 0. This is physically intuitive, because as the shear 
rate becomes large its contribution dominates that due to hydrodynamic interactions 
resulting in behavior that resembles that of a passive suspension. Thus, the contribution 
to the effective viscosity due to hydrodynamic interactions is zero. Finally, we compare 
our results with direct simulations for the coupled PDE/ODE system composed of 
Stokes PDE (3) and (T) and (2).

5.3 Comparison to Numerical Simulations

In this section, the accuracy of the derived formula is tested by comparing it to recent 
numerical simulations. The numerical procedure is outlined in Ryan et al. (2011). 
These simulations are parallel in nature allowing them to be carried out on GPUs for 
greater efficiency. The effective viscosity is computed from the data gathered from each 
bacterium involved in the simulation. In particular, the effective viscosity is the ration 
of the applied stress from the bacteria over the strain rate fj Effy. The stress in the 
shear plane, 2?i2, is the sum of the individual stresses from each bacterium determined 
primarily by each individual's orientation [see (12)], and y is the constant shear rate of 
the background fluid. For further details about the numerical algorithm and numerical 
computation of the effective viscosity, see Ryan et al. (2011).

Figure 1 shows how both the formula and numerical computations of viscosity
change with bacterium shape as all other system parameters remain fixed. Here, shape

. 2 2
is accounted for through the Bretherton constant B = , where b is the length
of the major axis and a is the length of the minor axis of the ellipsoid representing 
a bacterium. First, notice that in both the formula and numerics the contribution to 
the effective viscosity due to hydrodynamic interactions decreases with B (increasing 
in magnitude). This is due to the fact that as bacteria become more asymmetrical as 
B —» 1 the interbacterial hydrodynamic interactions have a greater effect on alignment. 
This alignment increases the magnitude of the dipolar stress leading to an even bigger 
decrease in the effective viscosity. The agreement between the analytical formula 
and numerical simulations breaks down as B becomes large, but this is expected due



 
 
 

 
 

 
 

 
 

 
 
 

 
 
 

 
 

 

 

 
 
 
 
 
 

 
 
 
 

 

Fig. 1 Comparison of the 
formula for the effective 
viscosity with numerical 
simulations as bacterium shape 
changes through the Bretherton 
constant B for a fixed volume 
fraction <£ = .02 and shear rate 
y = .1. The vertical bars 
represent the error in the 
numerical approximation. Error 
in the analytical solutions comes 
from the numerical estimation of 
A

Fig. 2 Comparison of the 
formula for the effective 
viscosity with numerical 
simulations as the volume 
fraction <£* changes for a fixed 
shape B = .2 and shear rate 
Y =-l

to the fact that the asymptotic formula is valid in the regime where B « 1 (small 
non-sphericity).

Figure 2 shows how both the formula and numerical computations of viscosity 
change with the concentration of the suspension as all other system parameters remain 
fixed. It is seen that as concentration increases the effective viscosity decreases. This 
can easily be explained by the fact that as the concentration increases, the motion of 
bacteria begins to be dominated by interbacterial hydrodynamic interactions. This 
leads to collective motion of the bacteria in the suspension, which subsequently 
decreases the viscosity. The two results begin to diverge near volume fraction .02. 
The reason the numerical simulations do not decrease as much is that collisions are 
taken into account. It was shown in Ryan et al. (2011) that the stress due to col­
lisions is a positive contribution to the effective viscosity that is not captured by 
the formula. This contribution begins to become important beyond the dilute regime 
(0 > 2 %).

Figure 3 shows how both the formula and numerical computations of viscosity 
change with the shear rate of the background flow in the suspension as all other sys­
tem parameters remain fixed. As expected when the shear rate is large in both the



 
 
 

 
 
 

 
 
 
 
 
 
 
 

 
 

 

 
 
 

Fig. 3 Comparison of the 
formula for the effective 
viscosity with numerical 
simulations as the shear rate y 
changes for a fixed volume 
fraction = .02 and shape

= 2

Shear Rate, y

analytical formula and simulations, the decrease in viscosity due to hydrodynamic 
interactions is negligible. This is due to the fact that the background flow dominates 
motion of bacteria wiping out the effects of interbacterial interactions and stopping 
any collective structures from forming. When the shear rate is too small, the effective 
viscosity becomes unbounded. This makes sense given that at small shear rate the 
system becomes almost non-dissipative and thus the effective viscosity is not well 
defined. This can easily be seen by noting that the viscosity is the ratio of the stress 
over the strain and when the strain is essentially zero the effective viscosity becomes 
unbounded. All three plots show good qualitative agreement with each other, experi­
mental observation, and physical intuition.

6 Global Solvability of the Kinetic Equation

In this section, we study solvability of the main nonlinear integro-differential equation 
(15) governing the evolution of the orientation distribution. Primarily we are interested 
in existence, uniqueness, and the regularity properties of solutions of (15).

First, we note that (15) is an equation of the form:

9rPd = -Vd ( £ (d, d') Pd (d') dSd, + k(d) Pdj + O4dPd. (47)

Indeed, one can obtain (15) by substituting

K (d, d') = w (d, d') + BE (d, d'), k(d) = wBG(d) + PEBG(d). (48)

Both K and k from (48) are infinitely smooth functions of d. Therefore, in this section 
we consider (47) for the general case of smooth K and k.

We follow the standard procedure for the analysis of the well posedness of the 
evolution PDEs (e.g., see Evans 1998; Lions 1969; Frouvelle and Liu 2012). In par­
ticular, we introduce the notion of a weak solution. By Hs (s e R), we denote the 
corresponding Sobolev spaces.



 
 

 

 

 
 
 

 

Definition 2 For T > 0, the function f which belongs to space H given by

h = l- ((0, 7), h1 (s2)) n h' (<o. 7), h~x (s2)) (49)

is a weak solution of (47) if for almost all t e [0, 7] and all h e Hl (52)

(a,/,/i) = -D(Vd/,Vd/;)+ /. /SJic(dd7fas# + k(d) •Vd/; . (50)

where (•, ■) is the duality product for distributions on the unit sphere S2.

Remark 8 According to the well-known embedding (see Simon 1987), the fact that a 
weak solution f belongs to H implies that it is continuous with respect to t e [0, 7] 
with values in L2(52), i.e., f e C([0, 7]; L2(52)).

Definition3 A function f e C([0, 7]; L2(52)) is called positive in distributional 
sense if

(51)

for all t e [0, 7] and all h e C(52) such that /?(d) > 0 for all d e 52.

The following theorem is the main result of this section.

Theorem 1 Assume fo e L2(S2), K e C2(52x52), k e C2(S2}andT > Q. Assume 
also that fo is positive in the distributional sense. Then the following statements hold:

(i) There exists the unique weak solution of (47) f on interval [0, 7] such that 
f\t=o = fo- The weak solution f is positive in the distributional sense. It contin­
uously depends on initial conditions, i.e., there exists a positive constant C > 0 
such that

sup
re[0.r]

< C
L2(&) ’

(52)
L2(S'-)

where f{r> and /(2) are weak solutions with initial conditions /(l)|;=o = /0(1) 
and /(2)|;=o = /q2', respectively.

(ii) For all s > 0 if fo e HS(S2), then f e C([0, 7]; HS(S2)).
If fo e C°°(S2), then f e C([0, 7]; C°°(52)).
(iii) For ail s > 0 if fo e Hs (52), then for ail m >0 and t > 0;

ll/(0ll2HI+m(52) <cfl + ^V (53)

where the constant C depends only on || fo |Ihs(52)> an(i m. In particular,

f e C ((0, oo); Hp (s2))

for all p e Z.



 

 
 

 
 
 

 
 
 

Proof Step 0 (Preliminaries) Consider spaces of functions with mean zero:

L2 (s2) := L2 (S2) n j/ : (/, 1) = o) Hs (s2) := Hs (s2) O j/ : (/, 1) = o).

Note that for f e L1 (52)
</, 1} = [ fdSa. 

Js2

We use || Vd/||L2(52) as a norm in H1(52).
In this proof, we assume that fs2 fodSa = 1. Consider the “mean zero” component

of the solution /; namely, g := f — 57. If f is the weak solution of (47), then g 
satisfies

“ (g. h) = —D (Vdg. Vd/i) + (^ + £•jf, * (d- d') g (d') dSd- - VdZ» 

+ —---- f g. I K (d, d ) d ,Sd + k (d) • Vd /; (54)

for all h e Hi(S2). Existence, uniqueness, and continuous dependence on initial 
conditions will be proven for g, which is equivalent to the proof of the same properties 
for/.

Below C denotes a positive constant and it may change from line to line.

Step 1 (Local existence) Let En be the space spanned by the Hrst N eigenvalues of the 
Laplace-Beltrami operator zld, and let ILn be the orthogonal projector on the space 
En. Introduce the Galerkin approximation gN, which is the solution of the following 
equation:

(gN. /1) = — D (vdgN, VdZ,) + (2- + £ K (d. d') gN (d') dS„- • VdZ;

+ te+8 ■ ldSd< + k(d) Vd/t ,

for all Z? e EN, and ^,=0 = P^Ngo- where go ■= fo -
The problem (55) is a system of N ODEs with right-hand sides continuously dif­

ferentiable with respect to unknown gN, so the solution gN exists at least locally, i.e., 
for t e [0, tN) for some tN > 0. Next, we show that / ,,y can be chosen independently 
from N. Taking h = gN in (55), using the Cauchy inequality, and the boundedness of 
K and k, we obtain

+ 011^11^(52) <c(l + 11^111,(53)). (56)



 

 

 

 

 

 

 
 

In the inequality (56), the constant C does not depend on N. This implies that gN 
exists for 0 < f < ?o where to may be chosen independently from N, and

11^(0 II <C, Q<t<t0. (57)P IIl2(52) - - u v /

Now (57) gives that the RHS of (56) is bounded by a constant independent from N. 
Then by integrating (56) in t we get

£ \\8N\\-Hi(S2}dt <C. (58)

Take h e L2(0, to', Hl(S2)) in (55), integrate in t, and use the Cauchy inequality, 
(m, v} < C||m||Hi(52) ||uand the Minkovsky inequality to obtain

dr < C

Therefore,

\\dt8N\\2H-i{S2)dt <C. (59)

From bounds (57)—(59) and the following relation which holds for all g, h from

r'o rio
I (d,g,h} = -l (g,9,/7)dr + (g(ro)Jt(ro))-(g(0),/?(0)), 
0 Jo

we obtain that there exists g e H such that (up to a subsequence)

gN - g in L°° (o, to; L- (s2)) n L2 (o, t0; Hl (s2)) , 

drgN - dtg in L2 (o, to; H~l (s2)) .

(60)

(61)

According to the Aubin compactness theorem (see, e.g., Simon 1987), it follows from 
(60) and (61) that gN converges strongly to g in C([0, fol; T2(52)). Thus,

i'l;=o = lim g'v = lim nNg0 = go,
At—>oo f_0 N-*oo

and

f K (d, d') gN (d') d5„' K (d, d') g (d') dSd/ in C ([0, f0]; L2 (s2)) .
‘<2 ' 5' (62) 

To complete the proof of local existence, we need to show that g solves (54). To this 
end, consider (55) with h = w(r)/io, where ho e Em, M < N and w(?) is arbitrary 
smooth function of one argument t. Integrate this equation in t over the interval (0, to)



 

 
 

 

and pass to the limit N oo (M is fixed) using (60)-(62). Since w(t) is arbitrary, we 
obtain that (54) is satisfied for all ho from the space UmEm which is dense in 77 *(52). 
Therefore, g solves (54) for all h e 7/1 (52).

Thus, we constructed a function g that is a weak solution of (54) defined on the 
time interval 0 < t < t0.

Step 2 (Uniqueness and continuous dependence on initial conditions)
Consider g(1) and g(2), weak solutions of (54) defined on the time interval [0, fo]

with initial data g^’ and gg'1, respectively. For both i = 1 and i = 2 if one substitutes 
h = g(l> into the Eq. (54) written for g(t), one obtains by using the same arguments 
as for (57) that

V <C’ (63)
"L(S'

where the constant C depends on initial data g^ ’ and the parameter D only.
By subtracting Eq. (54) written for gl2> from Eq. (54) written for g(1), we get the

following equality

= -D(Vd«,V„/i) +

+ J K (d. d') dSd' + k

J j;(d.d')g,lldsd. vd/t\

+< ) y K (d. d') HdSd- vd/i\ (64)

By taking h = u. using the Cauchy inequality, and (63). we obtain

d, H,<llz.2(52) ^H“Hhi(52) — Chll^)-

This inequality implies that I|m</)||^2(«-3) < f0 ll«(0)||^2{iS3), and, thus.

(65)

Again, the constant C depends on initial data g-> 1 and the parameter D only.
The inequality (65) implies that a weak solution of (54) continuously depends on

the initial data. In particular, uniqueness holds: If g^ = gg2), then from (65) it follows 
that the corresponding solutions g(1) and g(2) coincide.

Step 3 (Regularity of weak solutions)



 
 

 

 

 

 
 

 

 

 

 
 
 

 

 

Consider a weak solution g and assume go e HS(S2) that 5 e Z+. Such a weak 
solution exists due to Step 1, and it can be approximated by Galerkin approximations 
gN which follows from uniqueness proved in Step 2.

By substituting h = (—AA)sgN into the Eq. (55), using the Cauchy inequality and 
(57) we obtain

+ D\\gN\\2HS+i^ < c (lIsX^) + 0 ’ (66)

where the constant C depends on ||go IIl2(S2), ||go IIhs(S2> and the parameter D. In the 
same manner as for (57)-(59), it follows from (66) that

gN is bounded in L2 (o, fo; Hs+l (s2)) n L°° (o, fo; Hs (s2)) , 

dtgN is bounded in L2 (o. fo; Hs~l (s2)1 .

Hence, g e L2(0, fo; Hs+i (S2)) n L°°(0, fo; HS(S2)) n H'(0, fo; Hs~i(S2)). The 
standard embedding theorem (e.g., from Simon 1987) implies g e C([0, fo]; Hs (52)). 

Step 4 (Positivity of weak solutions)
Consider f = + g, a weak solution of (47). Assume first fo e 774(52) and

/o(d) > 0. Then f belongs to C([0, fo]; C2(52)), and thus f is a classical solution 
of (47):

9,/ = DAAf — F ■ S7Af — (Vd ■ F)/,

where F(d) := f£2 K(d. d')f(d')dSA' + k(d) e C([0, fo]; C’(52)). Consider f := 
femt. where co ;= max[0 Zo]x52 |Vd ■ F|. Then f solves the following equation

dtf = DAAf — F -VAf + (w - Vd ■ F)f.

Since co — Vd ■ F > 0 the weak maximum principle for parabolic equations applies 
for /, and, thus, f > 0.

Consider the case of fo e F2(<S2), which is positive in the distributional sense. 
Then we can approximate fo by positive /ov e H4(S2) in the space L2(S2). Denote 
by fN solutions of (47) with initial data /ox. Then by (65) we can pass to the limit 
N oo in the inequality

(fN(t),h)>0

for all 0 < f < fo and h e C(S2). Thus, the function /, which is the solution of (47) 
with initial data fo. is positive at least in the distributional sense.

Step 5 (Global existence)
Consider fo = ^ + go £ L2(S2), which is positive in the distributional sense. 

Functions f and g are weak solutions of (47) and (54), respectively. We want to prove 
in this step that the time interval on which f and g are defined can be extended from 
[0, fo] to [0, F] for any given T > 0.



 

 
 
 
 
 

 

 

 

First, observe that
/ /(/)dSd = / /bdSd = l.
Js2 Js2

From the equality above and positivity of f established in Step 4, we obtain

ll/(/)ll£>GS2) = 1-

In particular, since |g| < \ f\ + we have

^7C(d,d/)^(d')dSd, <c(||/(?)IIl>(52) + i) =2C. (67)

Substitute h = g into (54), use the Cauchy inequality and (67) to obtain 

^11^2) + d\\8\\2h 1(52)<c(ii^ii2l2(52) + i).

Then the L2-norm of the weak solution is bounded on all bounded time intervals 
[0, T]:

^11^(011^2(52) <C(ecr+l).

Thus, global existence follows.

Step 6 (Instantaneous regularity)
Consider positive fo e Hs (S2) and the corresponding weak solution f = + g

of (47). According to Step 3 f e L2([0, T]; Hs+l(S2)) and, thus, f e 7U+1(52) 
for almost all t > 0. Hence, there exists t > 0 arbitrarily close to 0 such that /(f) e 
Hs+l(S2). Then by uniqueness and Step 3,/ e C([/ T]; HS+1(S2)). We can choose 
f arbitrarily small and T arbitrarily large (due to global existence proved in Step 5). 
By repeating the same arguments for 5 + 1, 5 + 2, and so on, we get

f e C (o, +oo; Hp (s2))

for all p e Z.
Next we prove (53) by induction with respect to m. Substitute h = (—Ai)sg + 

t (—Ad/+1g for f > 0 in (54) and use the Cauchy inequality to obtain

d / , D ii2 \

+ y ^H£ll//s+i(s2) + yz 11^11^+2(52)J C'||goll"w>(52)(l + 0- 

Using the Poincare inequality llgll/jm^) < HgH/p+m(52), we obtain

H^H/pos2) + yr||£H/p+i(s2) < c||g0||^(52)(i +1).



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thus, the base of induetion is shown

II.4? < II So II/y, (£3) (68)

Finally, to get the inequality (53) at the order in + 1 we use the inequality (53) at 
order m between times z/2 and I and (68) between times 0 and Z/2;

ll«(f)II««+«.+!(52) < C g

— O So ll/p (52)

Thus, (53) is proved by induction.

Step 7 (Proof of Theorem 1)

(i) Existence of a weak solution of (47) for arbitrary T > 0 is proved in Step 5. 
Uniqueness is proved in Step 2. To prove continuous dependence on initial data 
on arbitrary time interval [0, T], one needs to repeat all arguments in Step 2 
replacing to by T. Positivity is proved in Step 4.

(ii) This part is proved in Step 3, if one replaces to by T.
(iii) This part is proved in Step 6. □

7 Conclusions

In this paper, the derivation of a formula for the effective viscosity formally derived 
in Ryan et al. (2011) was made rigorous and an additional term in the asymptotic 
expansion for the effective viscosity was derived [now up to O(B2)]. This formula 
revealed the physical mechanisms responsible for the decrease in the effective vis­
cosity confirming the prior formal calculation. Namely, hydrodynamic interactions, 
an elongated body, and self-propulsion are required to observe a decrease. These fea­
tures are all present in the bacteria B. subtillis used in the experiments of Aranson 
et al. (Sokolov et al. 2007, 2009, 2010; Sokolov and Aranson 2009, 2012), which 
motivated this study of the effective viscosity. In addition, an interesting phenomenon 
was uncovered: the emergence of self-induced noise where a completely determinis­
tic system governed by interactions resembles a random system for certain regimes 
of the physical parameters. The explicit analytical formula for the effective viscosity 
derived herein showed good qualitative agreement with simulations and experiment. 
This paper also establishes the global solvability of solutions to the PDE kinetic equa­
tion governing the evolution of the bacterium orientation density. In order to derive 
the formula for the effective viscosity, the existence of a steady state was assumed and 
then computed asymptotically. Rigorously proving the convergence to a steady state 
distribution may be the subject of future work.
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Appendix 1: Explicit form of Integral Terms // from (39)

We will need the following technical Lemma:

Lemma 1 Assume that A is a 3 x 3-matrix that is independent of the orientation 
vector d. Then

Vd - |d x (d x Ad)] = 3(d. Ad) — TrA. (69)

In particular, if

A =
A C 0 
C —A 0 
0 0 0

(70)

then
Vd [d x (d x Ad)] = A sin2 f cos(2a) + C sin2 fi sin(2a). (71)

Remark 9 Recall that Vd denotes the spherical gradient in orientation d. and Vd 
denotes the classical gradient in vector d [e.g.. see (11)].

Proof Using the well-known vector identity a x (b x c) = b(a, c) — c(a, b) and the 
relation (11), we obtain

Vd • [d x d x Ad| = Vd ■ |d(d. Ad) - Ad]
= Vd ■ |d(d. Ad) — Ad]

l|d|5(a-'4a)-|dlJ(a-4a)l ’ (72)
9|d| IV/ V 71 l|d|=l

Here, d = d/|d|. The orientation d is a unit vector, but in order to relate the classical 
and the spherical divergence we need to calculate the derivative in |d| at |d| = 1: thus, 
consider d different from unit magnitude. Also, note that d does not depend on |d|.

One can easily verify that

Vd ■ [did. Ad) - Ad] = 3(d, Ad) + d V(d. Ad) - Tr(A)
= 3(d, Ad) + d 2Ad - Tr(A)
= 5(d. Ad) - Tr(A). (73)

and

--?-||d|5(d.Ad)-|d|3(d,Ad)j| = —2(d, Ad). (74)
9|d I \ / V 7,l|d|=i

Substituting (73) and (74) into (72), we obtain (69). The formula (71) follows directly 
from substituting (70) into (69). □



 

 

Next we evaluate integral terms k introduced in Sect. 4.4. 
The integral term I\ This integral is defined by

Vd J^ (jF[E]^[Px]2)kP)<l,(d')dS<f1
/, :=

4jrAqVzJ

and due to (28) and (31) can be written as:

-1 y ,M77[Z’J2<Zkd x d x;VdZ i = 8tprAZ|Vt|

Here, k := k/|k|, and the 3 x 3 matrix M is defined by

At := £kk* - 2kk*£kk* + kk*£.

where

3t/o
8jt

- Stt 
15 
0 
0

0 0
(115 J

0 0

0
-1
0

0
0
0

Substituting T into the expression for At, one finds that At equals to

2*7 - 2*f 4- 2*7*7 -2*5*2 4- 2*,*}
-2*^*2 + 2*i*f -2*7 - 2*7*2 + 2*}

*1*3 - 2*5*3 4- 2*,*7*3 —*2*3 - 2*7*2*3 + 2*5*3

*1*3 - 2*’*3 + 2* I *7*3 
—*2*3 - -*7*2*3 + 2*2*3

-2*7*74-2*2*2 '

where *4, *2, *3 are components of k.
Next we use the condition (C3) from Sect. 3.3 written in terms of the representation 

formula (17) to obtain

y A((.F[Px])2dk = y ^k3=oPi2(|k|*i,|k|*2)|k|2d|k|d0,

where

M 1*3=0 =
'2*7 [| -*74-*7 

-2*4*2 [*7 - *7
-2*4*2 [*7 - *7] 

-2*7 [l +*2 -*2]

0"
0

0 0 0

4*2*7 -2*4*2 [*7-*7] 0
-2*1*2 [*7- *7] -4*7*2 - 0

0 0 0

sin2(20) —|sin(40) 0
—|sin(40) — sin2 (26) 0

' 0 0 0



 

 

 

 

Here, variables k\ and are expressed in polar coordinates ki = cos(0) and fa = 
sin(6»).

Note that the matrix in the equality above is of the form (70) and. thus, we may 
apply (71):

/i =  (Asin20COS(2a) + Csin2/!sin(2a)).
40jtjx)7v| V/.I \ /

This is the desired formula for /].
The integral term A We need to obtain that h = 0. This holds provided that

I (j-|a>](^[PJ)2)kdSd- =0. 

52

(76)

The integral in the RHS of (76) by using inverse Fourier transform can be written

- -d x I / (xz) /\(x)V], x y u (x — x'. d') dSd’ 

The integral in curly braces is zero due to

u (x. d') dd' = I Uo (d' (d')* - 1/3) dSd'

dxdx'.

(77): = 0.

Thus, (76) holds and h = 0.
The integral term I3 To prove that 13 = 0 we can use the same arguments as for h. 
Indeed, I3 vanishes provided that

I (^IE](a/>xD2)kdSd-=0.

One can easily verify this equality by using the inverse Fourier transform and the 
identity (77).
The integral term I4 This integral can be written as

Vd [F<U(d)]
r

Js2
p^l} (d/)^]^[px\)A (ISf

According to (32), the formula for is the following

J-fw] = -- x [—zk x n] = x [k x (/ - kk*) £k].



 
 

Recall that k = k/|k| = (*i, k2. kj). Using (75) we obtain

M := (d') dSd< =-id x [kx (/ - kk*) Zk]

*2*3
*1*3

-2*1*2

In the same manner as we analyzed /|, we use the condition (C3) from Sect. 3.3 writ­
ten in terms of the representation formula (17), the form of orientation d in spherical 
angles (10), and polar angle B for k\ = cosB and *2 = sin0:

where

Vd[/’J1,(d)]

AW
<|k|*|. |k|*2)|k|2d|k|d0. (78)

t/oM|t,=o = — sin(2tf) 
10//

— sin a sin fi 
cos a sin fi 

0

Next we find Vd[RjU(d)]. Using (38) and the definition of the spherical gradient Vd:

-sSB)a« p + cos(u) cos(/l)ty P 

-|-sin(af)cos(^)9^P
- sin(/J)fyP

we obtain that

Vd^'Nd) = -3
4tt

sin a sin(2a) sin fi + cosacos(2a) sin fi cos2 fi 
— cos a sin(2a) sin fi -I- sin a cos( 2a) sin fi cos2 fi 

- sin2 fi cos fi cos(2a)

Substituting this equality into (78), one obtains the desired formula for

3U0
10jrWAt|Vz.|

D sin(2«) sin2 fi.h

This concludes the evaluation of integral terms /, for / = 1........4.

Appendix 2: Justification of the Representation Formula (17)

Consider the spatial distribution Ps(x, y, z) = Cz.X(z)Pi2(x, y), where

I, z e(-L.L),
0. z£(-L,L), (79)XM =



 

 

 
 
 

 

 

 

 

and we choose Cl = AlyfnL. The distribution Px satisfies the condition (C3), i.e., its 
support does not depend on z.

Our main goal of this subsection is to obtain a representation for the Fourier trans­
form of Px:

•Fl/y= / z(c)e'*,;:dA-3P|2(A|.A2) =---- O).
J-L y/ltL M

For an arbitrary continuous function 0. the following convergence holds:

L .7
1 f /sin(£i£)\~

-1.

From (80) and (81). it follows that for large L we have

CF[PX])2

(80)

(81)

(82)

which justifies (17). Note that due to our choice of cl it follows from Pxdx = TV 
and V ~ Z? that P|2 ~ \/T.

It is also interesting to calculate the coefficient A defined by (40) for the spatial 
distribution Px(x) = ^z(T)x(y)z(c) which is uniform in Vl. Then

^- /sin(£jL)\2 /sin(fc2P)\2

V A-I / V k2 J d(k\.k2)L5/2. (83)

In this case, the coefficient A is of the order 2. It is responsible for the decrease 
in viscosity. Namely, for fixed number density p = N/I.2’, the Bretherton constant 
5, the dipole moment Uq. and the strength of the background flow y, it follows from 
(44) that z?int ~ A/L6. Then due to (83)

z?mt ~ -> 0 as L -» 00. (84)

Therefore, A = AL 5/2 can serve as a measure of the deviation of the spatial density 
Px(x) from uniform.
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