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Abstract

Markov processes have been widely studied and used for modeling problems. A Markov process
has two main components (i.e., an evolution law and an initial distribution). Markov processes
are not suitable for modeling some problems, for example, the problem of predicting a trajectory
with a known destination. Such a problem has three main components: an origin, an evolution
law, and a destination. The conditionally Markov (CM) process is a powerful mathematical
tool for generalizing the Markov process. One class of CM processes, called CML, fits the above
components of trajectories with a destination. The CM process combines the Markov property
and conditioning. The CM process has various classes that are more general and powerful than
the Markov process, are useful for modeling various problems, and possess many Markov-like
attractive properties.

Reciprocal processes were introduced in connection to a problem in quantum mechanics and
have been studied for years. But the existing viewpoint for studying reciprocal processes is not
revealing and may lead to complicated results which are not necessarily easy to apply.

We define and study various classes of Gaussian CM sequences, obtain their models and
characterizations, study their relationships, demonstrate their applications, and provide general
guidelines for applying Gaussian CM sequences. We develop various results about Gaussian CM
sequences to provide a foundation and tools for general application of Gaussian CM sequences
including trajectory modeling and prediction.

We initiate the CM viewpoint to study reciprocal processes, demonstrate its significance,
obtain simple and easy to apply results for Gaussian reciprocal sequences, and recommend
studying reciprocal processes from the CM viewpoint. For example, we present a relationship
between CM and reciprocal processes that provides a foundation for studying reciprocal pro-
cesses from the CM viewpoint. Then, we obtain a model for nonsingular Gaussian reciprocal
sequences with white dynamic noise, which is easy to apply. Also, this model is extended to the
case of singular sequences and its application is demonstrated. A model for singular sequences
has not been possible for years based on the existing viewpoint for studying reciprocal processes.
This demonstrates the significance of studying reciprocal processes from the CM viewpoint.

Keywords: Stochastic process, conditionally Markov process, reciprocal process, Markov
process, dynamic model, trajectory modeling and prediction.
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Chapter 1

Introduction

1.1 Importance of this Research

For modeling a problem in probability theory, usually the following order should be considered
[1]. First, if the problem is time-invariant, a random variable might be good enough. Otherwise,
a stochastic process seems necessary. An independent process can be considered first for its
simplicity. If such a simple process is not good enough, the next choice is usually a Markov
process. A Markov process has two elements (an evolution law and an initial distribution).
However, even the Markov process is not good enough for some problems. Then, sometimes a
higher order (e.g., second order) Markov process is used. But such a model does not fit some
problems well, for example, a time-varying problem with some information available about its
future (e.g., destination). More specifically, consider the problem of predicting a trajectory with
known destination. Such a problem in, e.g., air traffic control (ATC), has three elements: an
origin, an evolution law, and a destination, to which the Markov process does not fit since it can
not account for the destination information. In fact, the destination distribution of a Markov
process is completely determined by its initial distribution and evolution law. The conditionally
Markov (CM) process is a powerful mathematical tool for generalizing the Markov process.
One class of CM processes called CML has the following elements: an evolution law and a joint
distribution of the two endpoints (i.e., an initial distribution and a destination distribution
conditioned on the initial). The CML process can model destination information and has a
Markov-like evolution law, which is powerful and simple. The CML process is more suitable
than the Markov process for modeling problems with destination information. For example, it
can be used in ATC for trajectory modeling, prediction, and conflict detection.

Conditioning is a very powerful tool in probability theory. The Bayes rule follows from the
definition of conditional probability. The concept of posterior probability, which relies on the
concept of conditioning, is essential in probability and statistical inference. Conditioning is the
key idea in the total probability theorem, which is extremely useful for many problems. The
Markov property, being very important and widely used, is based on conditioning. The CM
process combines the Markov property and conditioning. Different ways of combining the two
lead to different classes of CM processes, which are more general and powerful than the Markov
process. The CM process has various classes that are more general and powerful than the Markov
process, are useful for modeling various problems, and possess many Markov-like attractive
properties. CM processes are important for problem modeling and should be studied in order to
provide useful results for their application. We define and study various classes of CM processes,
obtain their dynamic models and characterizations, study their relationships, demonstrate their
applications, and provide general guidelines for using CM processes in application.

Reciprocal processes were introduced in [2] in connection to the problem posed by Schrödinger
[3]–[4]. Later, reciprocal processes were studied more in [5]–[40] and others. However, the
existing viewpoint for studying reciprocal processes is not revealing and may lead to complicated
results which are not necessarily easy to apply. Reciprocal processes are special CM processes.
We initiate the CM viewpoint to study reciprocal processes, demonstrate its significance, show
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its power, obtain simple and easy to apply results for reciprocal processes, and recommend
studying reciprocal processes from the CM viewpoint.

1.2 Existing Results and Our Contributions

Consider stochastic sequences1 defined over [0, N ] = {0, 1, . . . , N}. For convenience, let the
index be time. A sequence is Markov if and only if (iff) conditioned on the state at any time
k, the segment before k is independent of the segment after k. A sequence is reciprocal iff
conditioned on the states at any two times k1 and k2, the segment inside the interval (k1, k2) is
independent of the segments outside [k1, k2]. In other words, inside and outside are independent
given the boundaries. A sequence is CM over [k1, k2]

2 iff conditioned on the state at time k1
(k2), the sequence is Markov over [k1 + 1, k2] ([k1, k2 − 1]). Therefore, there are several classes
of CM sequences with different k1, k2, and the conditioning time (i.e., conditioning at the first
or the last time of the CM interval). So, the set of CM sequences is very large and its two
important special classes are the Markov sequence and the reciprocal sequence.

Markov processes have been widely studied and used for modeling problems. However, they
are not general enough in some cases [36]–[51], and more general processes are needed. The
reciprocal process is a generalization of the Markov process. The CM process is a powerful
mathematical tool for generalizing the Markov process.

In this chapter, we review existing results and our contributions in each chapter of the
dissertation. In Chapter 2 to Chapter 6, we present results about CM sequences. We also
point out applications of different classes of CM sequences. In Chapter 7, an application of
CM sequences in trajectory modeling is discussed in more detail. First, we present a general
overview of CM processes in theory and application.

1.2.1 CM Processes in Theory and Application

The CM process is a very large class of stochastic processes with various classes defined based on
the Markov property and the conditioning. Some classes of Gaussian CM processes were defined
in [52] based on mean and covariance functions, and later studied further in [29]. CM processes
are powerful in both theory and application. However, their power has not been appreciated in
the literature, and their study is limited to the above two papers. We demonstrate the power
of CM processes (the CM property) in theory and application.

Reciprocal processes have been widely studied and used in various fields/problems, e.g., ap-
plied mathematics, theoretical physics, stochastic mechanics, image processing, intent inference,
and acausal systems [2]–[51]. In these papers, reciprocal processes were defined, their proper-
ties were studied, their dynamic models were presented, their estimation was addressed, their
importance and usefulness were demonstrated, and their applications in various problems were
discussed. Reciprocal processes include the Markov process as a special case. The properties,
models, and estimators of reciprocal processes presented in the literature are much more com-
plicated than those of Markov processes. In essence, the literature studies the reciprocal process
from inside the set (of reciprocal processes) without paying attention to processes outside. As
we show later, this viewpoint may lead to complicated results and difficulties. Also, it does not
reveal some hidden properties of the reciprocal process. Fortunately, as we demonstrate later,
CM processes (including the reciprocal process) can provide an alternative and in fact better
viewpoint for studying reciprocal processes with many benefits. From the CM viewpoint we
can study the reciprocal process from outside of the set as well. This viewpoint gives a clearer
picture of the reciprocal process, is more revealing, and leads to simpler results. This demon-

1Our definitions and some of our results work for both discrete index and continuous index processes; however,
we present them all for discrete index processes (i.e., sequences).

2This is called the CM interval.
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strates the power of CM processes in theory. However, the literature on the reciprocal process
has not appreciated its relationship to the CM process and has not recognized the significance
of studying the reciprocal process from the CM viewpoint. Only very few papers implicitly
benefited from the CM property [30]–[31]. For example, as we show later, studying reciprocal
sequences from the CM viewpoint is very insightful and fruitful. But there is no paper in the
literature on studying reciprocal sequences from the CM viewpoint.

CM processes are powerful and flexible for modeling complicated problems (systems/ phe-
nomena), where Markov processes are not adequate. The CM property is based on the Markov
property and the conditioning. Different ways of combining the two give different CM classes.
As we illustrate later, by an appropriate combination of the Markov property and the condi-
tioning we can define a suitable CM process for modeling a given problem. The power of CM
processes for problem modeling has not been recognized in the literature. We develop a theoret-
ical foundation of (Gaussian) CM sequences/processes, obtain results/tools (properties, models,
characterizations, representations, etc.) for their application, present guidelines for their use in
problem modeling, and demonstrate their application. For example, we demonstrate an applica-
tion of CML sequences to trajectory modeling with destination information. Some papers used
(finite state) reciprocal sequences, which are special CML sequences, for modeling such trajec-
tories [41]–[47]. CML sequences and the structure of their dynamic model provide a natural,
simpler, and more general framework for modeling trajectories with destination information.
However, they have not been used in the literature.

1.2.2 Chapter 2

The notion of Gaussian CM processes was introduced in [52] based on mean and covariance
functions of Gaussian processes. [52] studied and characterized continuous time stationary
Gaussian CM processes that are nonsingular on the interior of the time interval. [29] extended
the definition of Gaussian CM processes (in [52]) to the general (Gaussian/nonGaussian) case.
Furthermore, [29] commented on some properties of Gaussian CM processes and Gaussian recip-
rocal processes. By conditioning on the state of the process at the first time of the CM interval,
different Gaussian CM processes were defined in [52]. However, it is possible not only to extend
the definitions to non-Gaussian processes, but also to other CM processes by conditioning on
the state at the last time of the CM interval. Such processes are useful for both theory and
application. Despite their power in theory and application, to our knowledge, (unlike reciprocal
processes) CM processes have not received much attention and have not been studied well to
gain understanding and to obtain tools for application. In addition, the literature on the recip-
rocal process has not appreciated its relationship to the CM process well and has not benefited
from it except implicitly in very few cases [30]–[31]. In particular, we are not aware of any paper
studying Gaussian reciprocal sequences from the CM viewpoint.

The main goal of Chapter 2 is two-fold: 1) to define and study various useful classes of CM
sequences and provide useful and easy to apply results for their application, e.g., for motion
trajectory modeling with destination information, and 2) to lay a foundation for studying an
important special class of CM sequences, the reciprocal sequence, from the CM viewpoint.

The contributions of Chapter 2 are as follows. In [52], Gaussian CM processes were defined by
conditioning only on the state at the first time of the CM interval. We extend the definitions by
conditioning on the state at the last time of the CM interval. The usefulness of such processes
is discussed for their application (e.g., trajectory modeling) and also for studying reciprocal
processes. Definitions and derivations presented in [52] (and other papers following [52]) are
restricted to the Gaussian case. Here, to build the foundation rigorously, all definitions are
presented in the formal probability language for the general (Gaussian/non-Gaussian) case, and
properties of CM sequences are studied. Then, in order to present results in a simple language
for application, simple formulas equivalent to the formal definitions are obtained. Forward
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and backward dynamic models of (stationary/non-stationary) nonsingular Gaussian (NG) CM
sequences in a recursive form are obtained. These models are complete descriptions of the
corresponding classes of NG CM sequences. Based on the models, characterizations of NG
CM sequences are obtained. As a by-product, new factorizations of two covariance matrices,
characterizing two classes of NG CM sequences, are presented.

From system theory, it is well known that the state concept is equivalent to the Markov
property, that is, conditioned on the state at a time, the states before and after are independent.
That is why there exists a simple recursive model for the evolution of the Markov sequence.
However, for the general Gaussian sequence there is no simple recursive model for the evolution.
The CM sequence is more general than the Markov sequence. Consequently, a CM sequence
does not necessarily have the above concept of state, in general. Instead, it has a similar concept
if it is conditioned at two instead of one time. That is why a simple recursive model also exists
for the evolution of Gaussian CM sequences.

Part of the results presented in Chapter 2 have appeared in [53].

1.2.3 Chapter 3

Reciprocal processes have been used in many different areas of science and engineering (e.g.,
[36]–[51]) where stochastic processes more general than Markov processes are needed. [36]–[39]
discussed reciprocal processes in the context of stochastic mechanics. In [40], the behavior of
acausal systems was described using reciprocal processes. More specifically, on the one hand, re-
ciprocal processes are a generalization of Markov processes. On the other hand, acausal systems
can be seen as a generalization of causal systems [40]. Then, the relationship between acausal
systems and reciprocal processes was studied in [40]. Also, Based on quantized state space,
[41]–[46] used finite state reciprocal sequences for trajectory modeling, detection of anomalous
trajectory pattern, intent inference, tracking, and track-before-detect. The idea of the reciprocal
process was implicitly utilized in [48]–[49] for intent inference in vehicle’s intelligent interactive
displays. Application of reciprocal processes in image processing was discussed in [50]–[51]. The
behavior of particles in the problem posed in [3]–[4] by Schrödinger can be explained in the
reciprocal process setting [2].

Reciprocal processes were introduced in [2] and studied further in [5]–[35] and others. A
reciprocal process was considered in [5] related to a first-passage time problem. [6]–[8] char-
acterized the stationary Gaussian reciprocal process and presented a functional form of the
corresponding covariance function. In [9]–[13], reciprocal processes were studied in a general
setting. A stochastic calculus study of reciprocal processes was presented in [13]. [29] com-
mented on the relationship between Gaussian CM processes and Gaussian reciprocal processes.
Following [52], [29] considered Gaussian processes being nonsingular on the interior of the time
interval of the process. Inspired by [52], a Wiener process-based representation of Gaussian
CM processes was also presented. State evolution models of Gaussian reciprocal processes were
presented and studied in [14]–[18]. A stochastic differential equation of Gaussian reciprocal
processes and their properties were studied in [14]–[15]. A dynamic model of NG reciprocal se-
quences was presented in [18]. [16] studied Gaussian Markov sequences with the same Gaussian
reciprocal model of [18]. The continuous time version of that problem was addressed in [17]. [19]
obtained a representation of the Gaussian reciprocal process in terms of the Gaussian Markov
process and connected it to a two-point boundary value problem. A covariance extension prob-
lem for reciprocal sequences was discussed in [20]. Parameter estimation for a special case of
the Gaussian reciprocal model of [18] was addressed in [21]. [22]–[23] studied characterization
of stationary multivariate Gaussian reciprocal processes in terms of their covariance. [24]–[28]
considered modeling and estimation of finite state reciprocal sequences. The optimal smooth-
ing of finite state reciprocal sequences was studied in [27]. Also, [28] presented the maximum
likelihood estimation of finite state reciprocal sequences and studied its performance.
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Despite many papers on the theory of reciprocal processes (e.g., [2], [5]–[35]), there is still a
lack of easy to apply results/tools for their application. To make this issue clear and demonstrate
the significance of studying reciprocal processes from the CM viewpoint, as an example, consider
a dynamic model of NG reciprocal sequences presented in [18], which is the most significant paper
on Gaussian reciprocal sequences. It was shown that the evolution of a NG reciprocal sequence
can be described by a second-order nearest-neighbor model driven by locally correlated dynamic
noise [18]. That model describes the NG reciprocal sequence completely (i.e., necessarily and
sufficiently), and can be considered a natural generalization of the Markov model. However, due
to its nearest neighbor structure and its colored dynamic noise, it is not easy to apply. Also,
recursive estimation of a reciprocal sequence based on the model of [18] is challenging. That
is why several papers [18], [32]–[35] tried to find a recursive estimator. Clearly, a simpler and
easier to apply model for NG reciprocal sequences is desired. But it is difficult to derive such a
model from the viewpoint of the existing literature including [18]. So, a simpler yet complete
description of the NG reciprocal sequence in an alternative viewpoint is desired. CM sequences
provide such a good viewpoint, leading to many benefits. In other words, the literature studies
reciprocal sequences from inside the set of reciprocal sequences without paying attention to
sequences outside. This viewpoint may lead to complicated results and difficulties. From the
CM viewpoint, however, we can also study the reciprocal sequence from outside. The CM
viewpoint gives a clearer picture of the reciprocal sequence (from outside), is more revealing,
and leads to simple results. For example, we obtain a dynamic model with white dynamic noise
for the NG reciprocal sequence from the CM viewpoint, based on which recursive estimation is
straightforward.

The main goal of Chapter 3 is three-fold: 1) to propose studying reciprocal sequences from
the CM viewpoint and demonstrate its significance, insightfulness, and fruitfulness, 2) to study
NG reciprocal sequences from the CM viewpoint, 3) to obtain easy to apply results and tools
for NG reciprocal sequences.

The main contributions of Chapter 3 are as follows. The reciprocal sequence is studied
explicitly from the CM viewpoint, which is a larger set of sequences. Studying, modeling, and
characterizing the reciprocal sequence from this viewpoint are different from those of [18] and
the literature. This fruitful angle has several advantages. It provides more insight into the
reciprocal sequence via its relationship to other CM sequences. As a result, new properties of
the Gaussian reciprocal sequence are revealed. In addition, the CM sequence and the reciprocal
sequence can be treated in the same way. This is not only theoretically interesting, but also
useful for application. We demonstrate that the relationship between the Gaussian CM process
and the Gaussian reciprocal process stated in [29] is incomplete. More specifically we elaborate
on the comment of [29], show that the said relationship is not sufficient even for Gaussian
processes, and obtain a relationship between the general (Gaussian/non-Gaussian) reciprocal
and CM processes. A characterization of the NG reciprocal sequence is obtained based on its
relationship to the CM sequence. This characterization is the same as that of [18], but it is
obtained by a different approach and from a different viewpoint. We show that a NG sequence
is reciprocal iff it is both CML (i.e., conditioned on the state at the last time N is Markov
over [0, N − 1]) and CMF (i.e., conditioned on the state at the first time 0 is Markov over
[1, N ]). In addition, we discuss how characterizations change from a NG CM sequence to the
NG reciprocal sequence and then to the NG Markov sequence; that is, how different classes
of NG CM sequences contribute to the construction of the NG reciprocal sequence, namely a
spectrum of characterizations from a CM class to the reciprocal class. Moreover, we obtain new
dynamic models for the NG reciprocal sequence based on the forward and backward models of
CML and CMF sequences. We call these models reciprocal CML and reciprocal CMF models.
They are driven by white (rather than colored) noise and are easy to apply. Also, we discuss
under what conditions these models are for NG Markov sequences.

Part of the results presented in Chapter 3 have appeared in [54].
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1.2.4 Chapter 4

Due to its simple structure and whiteness of the dynamic noise, our reciprocal CML model is
easy to apply, e.g., for trajectory modeling with destination. For example, recursive estimation
of a reciprocal sequence based on a reciprocal CML model is straightforward. However, it
is not clear how parameters of a reciprocal CML model can be designed in a problem. More
generally, a CML sequence and its dynamic model (obtained in Chapter 2) can model trajectories
with destination. However, guidelines for parameter design of a CML model are required.
Following [9], [43] used a transition probability function of a finite state reciprocal sequence
from a transition probability function of a finite state Markov sequence in a quantized state
space for a problem of intent inference. But [43] did not discuss if all reciprocal transition
probability functions can be obtained from a Markov transition probability function, which is
critical for application. Also, it is not always feasible or easy to quantize the state space in
some applications. NG Markov sequences modeled by the same reciprocal model of [18] were
studied in [16]. However, the results are based on the model of [18], which is not simple or easy
to apply.

The main goal of Chapter 4 is three-fold: 1) to present some approaches/guidelines for
parameter design of CML, CMF , and reciprocal CML models for their application, 2) to obtain
a representation of NG CML, CMF , and reciprocal sequences, revealing a key fact about
these sequences, and to emphasize the significance of studying reciprocal sequences from the
CM viewpoint, and 3) to present a full spectrum of dynamic models from a CML model to
a reciprocal CML model and show how models of various intersections of CM classes can be
obtained.

The main contributions of Chapter 4 are as follows. From the CM viewpoint, we not only
show how a Markov model induces a reciprocal CML model, but also prove that every reciprocal
CML model can be induced by a Markov model. Then, we give formulas to obtain parameters
of the reciprocal CML model from those of the Markov model. This approach is more intuitive
than a direct parameter design of a reciprocal CML model, because one usually has an intuitive
understanding of Markov models. A full spectrum of dynamic models from a CML model to a
reciprocal CML model is presented. This spectrum helps to understand the gradual change from
a CML model to a reciprocal CML model. For application of other CM classes, e.g. intersection
of two CM classes defined in Chapter 2, we need their dynamic models. It is demonstrated how
dynamic models for intersections of NG CM sequences can be obtained. In addition to their
usefulness for application, these models are particularly useful to describe the behavior of a
sequence (e.g., a reciprocal sequence) belonging to more than one CM class. Based on a valuable
observation, [29] discussed representations of NG continuous time CM processes (including NG
continuous time reciprocal processes) in terms of a Wiener process and an uncorrelated NG
vector. First, we show that the representation presented in [29] is not sufficient for a Gaussian
process to be reciprocal (although [29] stated that the representation was sufficient, which has
not been corrected so far). Then, we obtain a simple (necessary and sufficient) representation
for NG reciprocal sequences from the CM viewpoint. As a result, the significance of studying
reciprocal sequences from the CM viewpoint is demonstrated. Second, inspired by [29], we show
that a NG CML (CMF ) sequence can be represented by a sum of a NG Markov sequence and
an uncorrelated NG vector. This (necessary and sufficient) representation makes a key fact of
CM sequences clear and provides some insight for parameter design of CML and CMF models
based on those of a Markov model and an uncorrelated NG vector. Third, we study the obtained
representations of NG CML, CMF , and reciprocal sequences in detail and, as a by-product,
obtain new representations of some matrices, which are characterizations of NG CML, CMF ,
and reciprocal sequences.

Part of the results presented in Chapter 4 have appeared in [55].
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1.2.5 Chapter 5

From the viewpoint of singularity, one can consider two extreme cases for Gaussian sequences.
One extreme is a sequence being almost surely constant throughout the time interval. The other
extreme is a nonsingular sequence, i.e., a sequence with a nonsingular covariance matrix. For
example, a Gaussian sequence can be singular because it is almost surely constant over time
or at a time (i.e., the state over time or at a time is almost surely constant), or because the
states of the sequence at two or more times are almost surely linearly dependent. There are
various such causes (corresponding to different times) leading to singular Gaussian sequences.
As a result, we have various singularity. It is desired to model and characterize all singular and
nonsingular Gaussian sequences in a unified way.

Characterizations of NG Markov, reciprocal, and CM sequences presented in [56], [18], Chap-
ters 2, and Chapter 3 are based on the inverse of the covariance matrix of the whole sequence.
So, they do not work for singular sequences. In [57] a characterization was presented for the
scalar-valued (singular/nonsingular) Gaussian Markov process in terms of the covariance func-
tion. However, that characterization does not work for the general vector-valued case. In [58]
a characterization was presented for a special kind of NG reciprocal processes (i.e., second-
order NG processes, that is, Gaussian processes with covariance matrices corresponding to any
two times of the process being nonsingular) in terms of the covariance function of the process.
[19] presented a characterization of the Gaussian reciprocal process based on the Markov prop-
erty. That characterization is actually a representation of the reciprocal process in terms of
the Markov process and is specifically for continuous time processes. [30] presented a different
characterization of the Gaussian reciprocal process based on the Markov property. Characteriza-
tions of [19] and [30] converted the question about a characterization of the Gaussian reciprocal
process to the question about a characterization of the Gaussian Markov process, which was left
unanswered for the general vector-valued Gaussian process. Later studies on the covariance of
Gaussian processes were mainly under nonsingularity assumption [59]–[61]. Despite the above
attempts, to our knowledge, there is no characterization in terms of the covariance function for
the general (singular/nonsingular) Gaussian CM (including reciprocal and Markov) process in
the literature.

The well-posedness of the reciprocal dynamic model presented in [18] (i.e., the uniqueness
of the sequence obeying the model) is guaranteed by the nonsingularity assumption for the
covariance of the whole sequence. It can be seen that unlike the model of [18], the nonsingularity
assumption is not critical for the uniqueness of sequences obeying CM dynamic models presented
in Chapter 2. Dynamic models of the NG reciprocal sequence obtained in Chapter 2 does not
work for singular sequences, although the nonsingularity assumption is not critical for its well-
posedness. To our knowledge, there is no dynamic model for the Gaussian reciprocal sequence3

in the literature. For example, it is not clear how the model of [18] can be extended to the
Gaussian reciprocal sequence. More generally, there is no dynamic model for Gaussian CM
sequences in the literature.

Although they make the analysis and modeling easy, nonsingularity assumptions restrict
application of Gaussian CM (including reciprocal and Markov) sequences. Without such as-
sumptions, we have a larger and more powerful set of sequences for modeling problems. Some
problems can be modeled by a singular sequence better than a nonsingular one. For example,
a NG CML sequence is used in Chapter 7 for trajectory modeling between an origin and a
destination. Now assume that the origin/destination is known, i.e., some components of the
state of the sequence at the origin/destination are almost surely constant. Then, a singular
CML sequence is better for modeling such trajectories.

3In this subsection and in Chapter 5, by the “Gaussian sequence” we mean the general singular/nonsingular
Gaussian sequence. Otherwise, we make it explicit if we only mean the nonsingular Gaussian sequence (i.e.,
covariance of the whole sequence being nonsingular).
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The main goal of Chapter 5 is threefold: 1) to obtain dynamic models and characteriza-
tions of the general Gaussian CM sequence to unify singular and nonsingular Gaussian CM
sequences theoretically, 2) to provide tools for application of (singular/nonsingular) Gaussian
CM sequences, e.g., in trajectory modeling with destination information, 3) to emphasize the
significance of studying reciprocal sequences from the CM viewpoint, e.g., by obtaining two
dynamic models for the general Gaussian reciprocal sequence from the CM viewpoint.

The main contributions of Chapter 5 are as follows. Dynamic models and characterizations
of (singular/nonsingular) Gaussian CM, reciprocal, and Markov sequences are obtained. Two
types of characterizations are presented for Gaussian CM and reciprocal sequences. The first
type is in terms of the covariance function of the sequence. The second type, which has a
similar spirit to (but different from) those of [19] and [30], is based on the state concept in
system theory (i.e., the Markov property). Then, by deriving a characterization for the general
vector-valued Gaussian Markov sequence in terms of the covariance function, we can check the
Markov property. Then, the second type of characterization of Gaussian CM and reciprocal
sequences becomes complete and makes a better sense. It is shown that dynamic models of
Gaussian CM sequences have a structure similar to those of NG CM sequences presented in
Chapter 2, and the difference is in the values of their parameters. Therefore, the presented
models unify singular and nonsingular CM sequences. We obtain two dynamic models for
the Gaussian reciprocal sequence from the CM viewpoint. As a result, the significance and
the fruitfulness of studying reciprocal sequences from the CM viewpoint is demonstrated. A
full spectrum of models (characterizations) ranging from a CML model (characterization) to
a reciprocal CML model (characterization) for Gaussian sequences is presented. The obtained
models and characterizations unify singular and nonsingular Gaussian CM sequences. The
representation of NG CML/CMF sequences presented in Chapter 4 is extended to the general
singular/nonsingular Gaussian case.

1.2.6 Chapter 6

The evolution of a Markov sequence can be modeled by a Markov, reciprocal, CML, or CMF

model4. Similarly, the evolution of a reciprocal sequence can be modeled by a reciprocal model
[18] or a CML (CMF ) model (Chapter 2). Therefore, a CM sequence can be modeled by
more than one model. One model can be easier to apply than another in an application. For
example, a reciprocal CML model (Chapter 3) is easier to apply than a reciprocal model of [18]
for trajectory modeling with destination information (Chapter 7). The dynamic noise is white
for the former but colored for the latter. Also, the reciprocal model of [18] can be useful for some
other purposes since it is a natural generalization of a Markov model in the nearest-neighbor
structure. In addition, a Markov model is simpler than a reciprocal, CML, or CMF model. So,
if we have a reciprocal, CML, or CMF model whose sequence is Markov, a Markov model is
desired. Moreover, sometimes only a forward (backward) model is available when a backward
(forward) one is required. So, it is important to determine these models from each other.

Two models are said to be probabilistically equivalent5 if their sequences have the same
distribution. In some cases, this definition of equivalent models is not sufficient because it is
only about the distribution, not individual sample path. The two-filter smoothing approach is
an example, where to verify the conditions required for derivation, one needs the relationship in
dynamic noise and boundary values6 between forward and backward Markov models for having
the same sample path of the sequence [62]–[64]. In other words, it is desired to find forward and
backward Markov models whose stochastic sequences are path-wise identical. Two models are
said to be algebraically equivalent if their stochastic sequences are path-wise identical. Despite

4By a “dynamic model” or “model”, we may mean a model with or without its boundary condition, as is clear
from the context.

5Later, by “equivalent” we mean probabilistically equivalent.
6For a forward (backward) Markov model, a boundary value means an initial (a final) value.
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several attempts, to our knowledge, there is no general and unified approach for determination
of algebraically equivalent Markov, reciprocal, or CM models in the literature.

Motivated by the two-filter smoothing approach, determination of a backward Markov model
from a forward Markov model has been the topic of several papers [65]–[71]. [65] studied a
backward model for a second order (or Gaussian) process equivalent to a forward model. To
derive a smoother for a Markov process, [66] obtained a reverse-time model describing a process
statistically equivalent to the original process up to second-order properties. In [67]–[68], a
derivation of a backward Markov model was presented based on the scattering theory. [69]
derived backward Markov models for second order processes equivalent to the forward models in
the sense that they give the same state covariance. The forward and backward Markov models
derived in [65]–[69] are equivalent, but not algebraically equivalent. The backward Markov
model presented in [70] is algebraically equivalent only for forward models with nonsingular
state transition matrices, not for other models. For models with a singular state transition
matrix, [70] only provides an equivalent backward model. Later papers followed the approach
of [70] and, to our knowledge, there is no backward Markov model algebraically equivalent to
a forward one for a singular state transition matrix in the literature. As a result, we can not
check the required conditions of a two-filter smoother for a Markov model with a singular state
transition matrix.

Given a Markov model, [18] determined an algebraically equivalent reciprocal model. How-
ever, [18] did not present a unified approach for determination of other algebraically equivalent
CM models.

An important question in the theory of reciprocal processes is regarding Markov processes
governed by the same reciprocal evolution law [16], [17], [9]. Given a reciprocal model of [18],
[16] discussed determination of Markov sequences sharing the same reciprocal model. The
continuous-time counterpart of that problem was addressed in [17]. Also, given a reciprocal
transition density, [9] determined the required conditions on the joint endpoint distribution so
that the process is Markov. It is desired to have a simple approach for studying and determining
Markov models whose sequences share the same reciprocal/CML model. This is not only useful
for understanding the relationship between these models and between their sequences, but also
helpful for application of these models. For example, CML models induced by Markov models
are discussed in Chapter 4 for trajectory modeling with destination information. It is shown that
inducing a CML model by a Markov model is useful for parameter design of a reciprocal CML

model for trajectory modeling with destination information. Also, it is shown that a reciprocal
CML model can be induced by any Markov model whose sequence obeys the given reciprocal
CML model (and some boundary condition). So, it is desired to determine all such Markov
models and to study their relationship. But a simple approach for this purpose is lacking in the
literature.

The main goal of Chapter 6 is threefold: 1) to study the relationships between dynamic
models of different classes of CM sequences including Markov, reciprocal, CML, and CMF ,
2) to define and distinguish the notions of probabilisticlly equivalent and algebraically equiv-
alent dynamic models, and 3) to present a unified approach for determination of algebraically
equivalent models.

Chapter 6 makes the following main contributions. The relationship between CML, CMF , re-
ciprocal, and Markov dynamic models for NG sequences are studied. The notion of algebraically
equivalent models is defined versus (probabilistically) equivalent ones. Then, a general and uni-
fied approach is presented, based on which given one of the above models, any algebraically
equivalent model can be obtained. The presented approach is simple and not restricted to the
above models. As a special case, a backward Markov model algebraically equivalent to a forward
Markov model is obtained. Unlike [70], this approach works for both singular and nonsingular
state transition matrices. So, the required conditions in the derivation of two-filter smoothing
can be verified for all Markov models (with singular/nonsingular state transition matrices). The
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reciprocal model algebraically equivalent to a Markov model presented in [18] is obtained as a
special case of our result. A simple approach is presented for studying and determining Markov
models whose sequences share the same reciprocal/CML model.

Part of the results presented in Chapter 6 have appeared in [72].

1.2.7 Chapter 7

Modeling and predicting trajectories with an intent or a destination have been studied in the
literature. This problem has two steps: (a) trajectory modeling, (b) trajectory processing
(filtering and prediction). The corresponding papers can be divided into two groups. One
group of papers focus on trajectory processing without explicitly modeling trajectories with
intent/destination. In the modeling step, they consider Markov models developed for trajectories
with no intent or destination information. Also, in the processing step they use estimation
approaches developed for the case of no intent or destination. Then, in the processing step
they heuristically utilize the intent/destination information to improve trajectory filtering and
prediction performance. Such approaches for intent-based trajectory prediction can be found
in [73]–[81]. [73]–[76] presented some trajectory predictors based on hybrid estimation aided
by intent information for air traffic control (ATC). In [77], the interacting multiple model
(IMM) approach was used for trajectory prediction, where a higher weight was assigned to
the model with the closest heading towards the waypoint. Then, a pseudo measurement of
destination was used to improve the prediction. To incorporate destination information, [78]–
[79] also used a pseudo measurement to improve state estimation. [80] presented an approach for
trajectory prediction using an inferred intent based on a correlation factor. [81] used the intent
information (broadcast by ADS-B) in a tracking filter to improve state estimation in ATC. The
trajectory model is not clear in the above approaches. However, to study, generate, and analyze
trajectories, it is desired to model them. A rigorous mathematical model of trajectories is a
basis for a systematic approach for handling them.

Another group of papers first consider the trajectory modeling step and explicitly model
trajectories with intent/destination information. Then, in the processing step they use the
obtained model for filtering and prediction. Such a filter and trajectory predictor are derived
from one principle and are not based on a heuristic combination of different pieces. Therefore,
one can systematically study and analyze them. Due to many sources of uncertainty, trajec-
tories are mathematically modeled as some stochastic processes. An approach was presented
in [82] to incorporate predictive information in trajectory modeling. After quantizing the state
space, [41]–[46] used finite-state reciprocal sequences for intent inference and trajectory model-
ing with destination/waypoint information. [41] presented an approach to determine anomalous
trajectory patterns using stochastic context-free grammar and finite state reciprocal sequences
to assist the human operator in a surveillance system. The inadequacy of Markov models for
modeling trajectory patterns with a destination was also discussed. In addition, the complexity
of the corresponding estimation approaches was pointed out. [42] presented several trajectory
patterns based on the context-free grammar and reciprocal sequences in a quantized state space.
[43] used context-free grammar and finite state reciprocal sequences for trajectory modeling and
intent inference in a quantized state space. The presented trajectory filter was based on combin-
ing a finite state reciprocal sequence filter and a context-free grammar filter. A track extraction
approach, that is, confirming target existence in a set of observations, was presented in [44] using
a finite state reciprocal sequence in a quantized state space. [45] presented a smoother for a gen-
eralized finite state reciprocal sequence used for trajectory modeling in a quantized state space.
A track-before-detect approach was presented in [46] using maximum likelihood estimation and
finite state reciprocal sequences in a quantized state space. Reciprocal sequences provide an
interesting mathematical model for trajectories with destination information. However, it is not
always feasible or easy to quantize the state space. So, it is desirable to use continuous state
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reciprocal sequences to model trajectories. Gaussian sequences have continuous-state space. A
dynamic model of NG reciprocal sequences was presented in [18]. However, due to the nearest-
neighbor structure and the colored dynamic noise, the model of [18] is not easy to apply for
trajectory modeling and its generalization is not easy. For example, following [18], a generalized
Gaussian reciprocal sequence was presented in [47] for trajectory modeling. The approach of
[48]–[49] for intent inference (e.g., in selecting an icon on an in-vehicle interactive display) based
on bridging distributions can also be seen in the reciprocal process setting, although reciprocal
processes were not explicitly used or mentioned. To emphasize that trajectories end up at a spe-
cific destination, we call them destination-directed trajectories. A class of stochastic sequences
capable of modeling the main components of destination-directed trajectories (i.e., an origin, a
destination, and motion in between) with an appropriate and easy to apply dynamic model is
desired.

Consider a trajectory modeling problem, where there is information available about the des-
tination of a moving object. An example is an airliner flying from an origin to a destination.
For modeling trajectories in such a problem there are three main components: an origin, a
destination, and motion in between. The behavior of a Markov sequence can be described by an
evolution law and an initial probability density function. So, the Markov sequence is not flexi-
ble enough to model destination-directed trajectories. Given an initial density and an evolution
law, the future of a Markov sequence is determined probabilistically. CML sequences have the
following main components: a joint endpoint density (i.e., an origin density and a destination
density conditioned on the origin) and a Markov-like evolution law. CML sequences are suit-
able for modeling destination-directed trajectories. Also, they can be easily and systematically
generalized if necessary.

In Chapter 7, we propose the use of CML sequences for destination-directed trajectory mod-
eling. Considering the main components of destination-directed trajectories, we demonstrate
how naturally one would use the CML sequence for modeling such trajectories. This class of
CM sequences provides a general framework for modeling destination-directed trajectories. The
CML sequence models the main components of destination-directed trajectories and the only
assumption in its definition is the Markov-like (i.e., conditionally Markov) property of its evo-
lution law. We show how parameters of a CML model can be designed for destination-directed
trajectory modeling. The CML sequence enjoys several desirable properties for trajectory mod-
eling (for example in ATC). The Gaussian CML sequence, its realization, its properties, and its
dynamic model (the CML model) are studied for the purpose of trajectory modeling. Filtering
and prediction formulations are derived based on the CML model. The behavior of the filter
is studied. Trajectory predictors with and without destination information are compared based
on their formulations and some simulations. Several simulations are presented to demonstrate
the results.

Part of the results presented in Chapter 7 have appeared in [83].

1.2.8 Conventions and Notations

We give conventions used in multiple chapters of the dissertation.

We consider stochastic sequences defined over the interval [0, N ], which is a general discrete-
index interval. For convenience this discrete-index is called time. The following conventions are
used:

[i, j] , {i, i+ 1, . . . , j − 1, j}, i < j

[xk]ji , {xk, k ∈ [i, j]}
[xk] , [xk]N0
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x , [x′0, x
′
1, . . . , x

′
N ]′

i, j, k1, k2, l1, l2 ∈ [0, N ]

σ([xk]ji ) , σ-field generated by [xk]ji

where k in [xk]ji is a dummy variable. [xk] is a stochastic sequence. [xk]ji is not defined for i > j.

Also, σ([xk]ji ), for i > j, and σ([xk]cc \ {xc}) are defined as the trivial σ-field (i.e., including only
the empty set and the whole set Ω). The symbols “ ′ ” and “\” are used for matrix transposition
and set subtraction, respectively. In addition, 0 may denote a zero scalar, vector, or matrix, as
is clear from the context. P{·} denotes probability and F (·|·) denotes a conditional comulative
distribution function (CDF). Also, p(·) and p(·|·) are a probability density function (PDF)
and a conditional PDF, respectively. R denotes the set of real numbers. N (µk, Ck) denotes
the Gaussian distribution with mean µk and covariance Ck. Also, N (xk;µk, Ck) denotes the
corresponding Gaussian density with (dummy) variable xk. Ci,j is a covariance function, and
Ci , Ci,i. C is the covariance matrix of the whole sequence [xk] (C = Cov(x)). A Gaussian
sequence [xk] is nonsingular if its covariance matrix C is nonsingular. The abbreviations ZMNG
and NG are used for “zero-mean nonsingular Gaussian” and “nonsingular Gaussian”. For a
matrix A, A[r1:r2,c1:c2] denotes its submatrix consisting of (block) rows r1 to r2 and (block)
columns c1 to c2 of A. For square matrices Mk, we have

diag(M0,M1, . . . ,MN ) ,


M0 0 · · · 0
0 M1 · · · 0
...

...
. . .

...
0 · · · 0 MN


The evolution of a sequence can be modeled by a forward or a backward model. The for-

ward direction is the default. For forward direction/models, we drop the term “forward”, but for
backward direction/models we make “backward” explicit. We have different dynamic models in-
cluding a Markov model, a reciprocal model, a reciprocal CML/CMF model, and a CML/CMF

model. For example, a Markov model has an initial condition and a CML model has a boundary
condition. For unification, we may call an initial condition a boundary condition. Sometime
we need to refer to a dynamic model including its boundary condition, but sometimes we need
to refer to a dynamic model without its boundary condition. The term “dynamic model” or
“model” is used to refer to both these cases when the meaning is clear from the context. But to
avoid confusion in some cases we use the term “evolution model” to emphasize that we mean
a dynamic model without considering its initial/boundary condition. For example, a “Markov
evolution model” means a Markov model without considering its initial condition. Also, a “CML

evolution model” means a CML model without considering its boundary condition.

Some equations and statements hold almost surely (and not strictly), as is clear from the
context. For clarity, in some cases we mention it explicitly. The abbreviation “a.s.” stands for
“almost surely”. Definitions and some of the results work for both discrete-time and continuous-
time processes, but we present them all for discrete-time processes (i.e., sequences).
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Chapter 2

Modeling and Characterizing Nonsingular Gaussian CM Sequences

In this chapter, we 1) provide useful and easy to apply results for application of CM sequences,
e.g., for motion trajectory modeling with destination information, and 2) lay a foundation for
studying an important special class of CM sequences, the reciprocal sequence, from the CM
viewpoint.

2.1 Definitions and Preliminaries

To build a solid foundation, we start from definitions in the formal probability language. How-
ever, all the main results are presented in a simple language ready for application. We assume
the stochastic sequences are defined with respect to an underlying probability triple (Ω,A, P ).

2.1.1 CM Definitions and Notations

A sequence [xk] is [k1, k2]-CMc, c ∈ {k1, k2}, (i.e., CM over [k1, k2]) iff conditioned on the state
at time k1 (k2), the sequence is Markov over [k1+1, k2] ([k1, k2−1]). To build a solid foundation,
we need a formal definition of CM sequences (Definition 2.1.1 below). To provide results for
application, however, later we present Corollary 2.1.5, which is equivalent to Definition 2.1.1.

Definition 2.1.1. [xk] is [k1, k2]-CMc, c ∈ {k1, k2}, if for every j ∈ [k1, k2]

P{AB|xj , xc} = P{A|xj , xc}P{B|xj , xc} (2.1)

where A ∈ σ([xk]k2j+1 \ {xc}) and B ∈ σ([xk]j−1k1
\ {xc}).

The interval [k1, k2] of a [k1, k2]-CMc sequence is called the CM interval of the sequence. By
Definition 2.1.1, the sequence is defined over the interval [0, N ] but the CM interval is [k1, k2].

Remark 2.1.2. We use the following notation

[k1, k2]-CMc =

{
[k1, k2]-CMF if c = k1
[k1, k2]-CML if c = k2

where the subscript “F” or “L” is used because the conditioning is at the first or the last time
of the CM interval.

Remark 2.1.3. When the CM interval of a sequence is the whole time interval, it is dropped:
a [0, N ]-CMc sequence is called CMc.

A CM0 (CMN ) sequence is called a CMF (CML) sequence. For the backward direction, a
CM0 (CMN ) sequence is a CML (CMF ) sequence. We consider mainly the forward direction.
For the backward direction we present only results that are useful for some applications (e.g.,
smoothing).
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We define that every sequence with a length smaller than 3 (i.e., {x0, x1}, {x0}, and {}) is
Markov. Similarly, every sequence is [k1, k2]-CMc, |k2 − k1| < 3. So, CML and CML ∩ [k1, N ]-
CMF , k1 ∈ [N − 2, N ] are the same.

Assuming [xk] is a [k1, k2]-CMc sequence, then [xk]k2k1 is a CMc sequence.

Different values of k1, k2, and c define different classes of CM sequences. For example, CMF

and [1, N ]-CML are two classes. By CMF ∩ [1, N ]-CML we mean a sequence being both CMF

and [1, N ]-CML. We use similar notations for intersections of other classes.

2.1.2 Preliminaries (for Gaussian CM Sequences)

In this subsection, some results are presented, to be used in proofs in later sections. The goal
is to find simple necessary and sufficient conditions for Gaussian sequences to be CM.

Lemma 2.1.4. [xk] is [k1, k2]-CMc, c ∈ {k1, k2}, iff for every Borel measurable function f ,

E[f(xk)|[xi]jk1 , xc] = E[f(xk)|xj , xc] (2.2)

for every j, k ∈ [k1, k2], j < k, or equivalently,

E[f(xk)|[xi]k2j , xc] = E[f(xk)|xj , xc] (2.3)

for every k, j ∈ [k1, k2], k < j.

Proof. We prove (2.2) first. It can be seen that Definition 2.1.1 of the [k1, k2]-CMc sequence
and (2.4) below are equivalent; that is, [xk] is [k1, k2]-CMc iff

P{A|[xi]jk1 , xc} = P{A|xj , xc] (2.4)

for every j ∈ [k1, k2 − 1], where A ∈ σ([xk]k2j+1 \ {xc}) [85], [6]. Also, (2.4) holds iff

E[h([xi]
k2
j+1 \ {xc})|[xi]

j
k1
, xc] = E[h([xi]

k2
j+1 \ {xc})|xj , xc] (2.5)

for every j ∈ [k1, k2−1] and every Borel measurable function h. Clearly (2.2) follows from (2.5).
So, we need to show that if (2.2) holds, so does (2.5). We will do it by mathematical induction
on j. For j = k2 − 1, (2.5) follows from (2.2). Fix l ∈ [k1, k2 − 2]. Assume that (2.5) holds for
j = l + 1, that is,

E[g([xi]
k2
l+2 \ {xc})|[xi]

l+1
k1
, xc] = E[g([xi]

k2
l+2 \ {xc})|xl+1, xc] (2.6)

for every Borel measurable function g. Then, we prove that it holds for j = l,

E[h([xi]
k2
l+1 \ {xc})|[xi]

l
k1 , xc] = E

[
E[h([xi]

k2
l+1 \ {xc})|[xi]

l
k1 , xl+1, xc]

∣∣∣[xi]lk1 , xc]
= E

[
E[h([xi]

k2
l+1 \ {xc})|xl, xl+1, xc]

∣∣∣[xi]lk1 , xc]
= E

[
E[h([xi]

k2
l+1 \ {xc})|xl, xl+1, xc]

∣∣∣xl, xc]
= E[h([xi]

k2
l+1 \ {xc})|xl, xc] (2.7)

for every Borel measurable function h. Note that the second equality follows from (2.6), and the
third equality is due to (2.2) (note that E[h([xi]

k2
l+1 \ {xc})|xl, xl+1, xc] is a function of xl, xl+1,

and xc). By mathematical induction, (2.5) is concluded. (Note that the required integrability
condition for nested expectations [86] holds.)

The following has been used in the third equality of (2.7). By Corollary 2.1.5 below, (2.8)
below follows from (2.2)

F (ξl+1|[xi]lk1 , xc) = F (ξl+1|xl, xc),∀ξl+1 ∈ Rd (2.8)
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where F (·|·) is the conditional CDF of xl+1 and d is the dimension of xl+1. Then, (2.9) below
follows from (2.8):

F (ξl, ξl+1, ξc|[xi]lk1 , xc) = F (ξl, ξl+1, ξc|xl, xc) (2.9)

where F (·|·) is the conditional CDF of xl, xl+1, and xc. On the other hand, let g1(xl, xl+1, xc)
= E[h([xi]

k2
l+1 \ {xc})|xl, xl+1, xc]. By the definition of conditional expectation, g1 is a Borel

measurable function. Based on (2.9), it is concluded that (see the proof of Corollary 2.1.5 for
more details)

E[g1(xl, xl+1, xc)|[xi]lk1 , xc) = E[g1(xl, xl+1, xc)|xl, xc) (2.10)

which has been used in the third equality of (2.7). A similar fact has been used in the second
equality of (2.7), too.

A proof of (2.3) is similar. To prove sufficiency, it suffices to show that (2.11) follows from
(2.3) by mathematical induction. (Observe that for j = k1 + 1, (2.11) follows from (2.3). Then,
assume (2.11) holds for j = l − 1 (fix l ∈ [k1 + 2, k2]) and prove it for j = l.)

E[h([xi]
j−1
k1
\ {xc})|[xi]k2j , xc] = E[h([xi]

j−1
k1
\ {xc})|xj , xc] (2.11)

Corollary 2.1.5. [xk] is [k1, k2]-CMc, c ∈ {k1, k2}, iff its CDF satisfies

F (ξk|[xi]jk1 , xc) = F (ξk|xj , xc), ∀ξk ∈ Rd (2.12)

for every j, k ∈ [k1, k2], j < k, or equivalently,

F (ξk|[xi]k2j , xc) = F (ξk|xj , xc), ∀ξk ∈ Rd (2.13)

for every k, j ∈ [k1, k2], k < j, where d is the dimension of xk.

Proof. It is enough to show that (2.2) is equivalent to (2.12) and (2.3) is equivalent to (2.13).
We briefly address the former and skip the latter, since they are similar.

Assume (2.2) holds. Then, let f(xk) = 1A(xk) (1A(xk) = 1 for xk ∈ A, and 1A(xk) = 0
for xk /∈ A), where A = {x1k ≤ ξ1k} × {x2k ≤ ξ2k} × · · · × {xdk ≤ ξdk}, xk = [x1k, x

2
k, . . . , x

d
k]′, and

ξk = [ξ1k, ξ
2
k, . . . , ξ

d
k ]′. Then, the RHS (LHS) of (2.2) is equal to the RHS (LHS) of (2.12).

Assume (2.12) holds. Then, P{B|[xi]jk1 , xc} = P{B|xj , xc} for every B ∈ σ(xk) [87], and
(2.2) is concluded.

Remark 2.1.6. Due to simplicity we recommend considering Corollary 2.1.5 as the definition
of [k1, k2]-CMc sequences in application.

For Gaussian sequences, Lemma 2.1.4 is equivalent to the following.

Lemma 2.1.7. A Gaussian sequence [xk] is [k1, k2]-CMc, c ∈ {k1, k2}, iff

E[xk|[xi]jk1 , xc] = E[xk|xj , xc] (2.14)

for every j, k ∈ [k1, k2], j < k, or equivalently,

E[xk|[xi]k2j , xc] = E[xk|xj , xc] (2.15)

for every j, k ∈ [k1, k2], k < j.
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Proof. We prove (2.14). Proof of (2.15) is similar and is skipped. Necessity: By Lemma 2.1.4,
for a [k1, k2]-CMc sequence [xk], (2.14) holds.

Sufficiency: Let [xk] be a Gaussian sequence for which (2.14) holds. The conditional covari-
ance can be calculated as

Cov(xk|[xi]jk1 , xc) = E
[(
xk − E[xk|[xi]jk1 , xc]

)(
·
)′∣∣∣[xi]jk1 , xc]

On the other hand, for conditional expectation we have E[(xk−E[xk|[xi]jk1 , xc])g([xi]
j
k1
, xc)] = 0

for every Borel measurable function g. Thus, xk − E[xk|[xi]jk1 , xc] is orthogonal to (and due to

Gaussianity independent of) [xi]
j
k1

and xc. Therefore, noting (2.14), we have

Cov(xk|[xi]jk1 , xc) = E
[(
xk − E[xk|xj , xc]

)(
·
)′]

= E
[(
xk − E[xk|xj , xc]

)(
·
)′∣∣∣xj , xc] = Cov(xk|xj , xc) (2.16)

Due to Gaussianity, (2.14) and (2.16) lead to the equality of the corresponding conditional
distributions. In other words, a Gaussian conditional distribution is completely determined by
its conditional expectation [57]. Therefore, (2.2) holds and the sequence [xk] is [k1, k2]-CMc.

2.2 Dynamic Models of CMc Sequences

The CMc sequence is an important class of CM sequences. For example, a CML sequence can
be used for motion trajectory modeling with destination information (Chapter 7). In addition,
CML and CMF sequences play a very important role in the study of the reciprocal sequence
from the CM viewpoint.

A dynamic model for the zero-mean nonsingular Gaussian (ZMNG) reciprocal sequence was
presented in [18]. Inspired by [18], we first present a model for evolution of the ZMNG CMc

sequence, called a CMc model. Then, we discuss a model of the nonsingular Gaussian (NG)
CMc sequence. The following lemma demonstrates construction of a CMc model for the ZMNG
CMc sequence.

Lemma 2.2.1. Let [xk] be a ZMNG CMc sequence with covariance function Cl1,l2. Then, its
evolution obeys

xk = Gk,k−1xk−1 +Gk,cxc + ek, k ∈ [1, N ] \ {c} (2.17)

where [ek] (Gk = Cov(ek)) is a zero-mean white NG sequence, and boundary condition1

x0 = e0, xc = Gc,0x0 + ec (for c = N) (2.18)

or equivalently2

xc = ec, x0 = G0,cxc + e0 (for c = N) (2.19)

Proof. We prove the lemma in three steps: (i) model construction, (ii) boundary conditions and
the whiteness of [ek], and (iii) nonsingularity of covariance matrices Gk, k ∈ [0, N ].

(i) Model construction: Since [xk] is CMc, by Lemma 2.1.7 for every k ∈ [1, N ] \ {c} we have

E[xk|[xi]k−10 , xc] = E[xk|xk−1, xc] (2.20)

1Note that (2.18) means that for c = N we have x0 = e0 and xN = GN,0x0 + eN . Also, for c = 0 we have
x0 = e0. It is similar for (2.19).

2It should be clear that e0 and eN in (2.18) and in (2.19) are not necessarily the same. Just for simplicity we
use the same notation.
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Since [xk] is Gaussian, for c = 0 and k = 1 we have E[xk|xk−1, xc] = C1,0C
−1
0 x0. Let G1,0 ,

1
2C1,0C

−1
0 . For other c and k values (i.e., c = 0 and k ∈ [2, N ], and c = N and k ∈ [1, N − 1]),

E[xk|xk−1, xc] = [Ck,k−1 Ck,c]

[
Ck−1 Ck−1,c
Cc,k−1 Cc

]−1 [
xk−1
xc

]

Let [Gk,k−1 Gk,c] , [Ck,k−1 Ck,c]

[
Ck−1 Ck−1,c
Cc,k−1 Cc

]−1
. So, for every k ∈ [1, N ] \ {c} and

c ∈ {0, N}, we have E[xk|xk−1, xc] = Gk,k−1xk−1 +Gk,cxc. Define ek, k ∈ [1, N ] \ {c}, as

ek = xk − E[xk|xk−1, xc] (2.21)

= xk −Gk,k−1xk−1 −Gk,cxc

Then, for c = 0 and k = 1, G1 , Cov(e1) = C1 − C1,0 ·C−10 C ′1,0. For other c and k values,

Gk , Cov(ek) = Ck − [Ck,k−1 Ck,c]

[
Ck−1 Ck−1,c
Cc,k−1 Cc

]−1
[Ck,k−1 Ck,c]

′

[ek][1,N ]\{c} is a zero-mean white Gaussian sequence uncorrelated with x0 and xc. It can be
verified as follows. By the definition of conditional expectation and based on (2.20) we have

E[(xk − E[xk|xk−1, xc])g([xj ]
k−1
0 , xc)] = E[(xk − E[xk|[xi]k−10 , xc])g([xj ]

k−1
0 , xc)] = 0 (2.22)

for every Borel measurable function g. Thus, by (2.21) and (2.22), ek is uncorrelated with
[xi]

k−1
0 and xc. Then, for k ≥ j,

E[eke
′
j ] = E[ek(xj −Gj,j−1xj−1 −Gj,cxc)

′] =

{
Gk k = j
0 otherwise

(2.23)

Likewise for j ≥ k. Therefore, E[eke
′
k] = Gk and E[eke

′
j ] = 0, k 6= j. So, [ek][1,N ]\{c} is white.

(ii) Boundary conditions: For c = 0, we have G0 , C0. Let c = N and consider (2.18).
Since x0 and xN are jointly Gaussian, we have E[xN |x0] = GN,0x0, where GN,0 = CN,0C

−1
0 .

Then, we define eN , xN − GN,0x0, where eN is a ZMNG vector with covariance GN =
CN −CN,0C

−1
0 C ′N,0. Also, by the definition of conditional expectation, eN is uncorrelated with

x0 (i.e., E[(xN−E[xN |x0])g(x0)] = 0 for every Borel measurable function g). Also, for notational
unification e0 , x0 with covariance G0 , C0.

Similarly for c = N and (2.19), we have x0 = G0,N xN + e0, G0,N = C0,NC
−1
N , and G0 =

C0−C0,NC
−1
N C ′0,N , where e0 is a ZMNG vector with covariance G0, uncorrelated with xN . Also,

set eN , xN with covariance GN , CN .

By (2.22), [ek][1,N ]\{c} is uncorrelated with x0 and xc, and thus uncorrelated with e0 and ec.
So, [ek] is white.

(iii) From (2.30) in the proof of Lemma 2.2.5 below, nonsingularity of the covariance matrices
Gk, k ∈ [0, N ], follows from nonsingularity of the covariance matrix of [xk].

Lemma 2.2.2. For c = N , the boundary conditions (2.18) and (2.19) can be obtained from each
other.

Proof. For clarity, denote (2.18) and (2.19) as

x0 = e10, xN = GN,0x0 + e1N (2.24)

xN = eN , x0 = G0,NxN + e0 (2.25)

where G1
0 = E[e10(e

1
0)
′] and G1

N = E[e1N (e1N )′]. Now, we obtain (2.25) from (2.24). We will have
(2.25) if e0 and eN are chosen such that e10 = G0,NxN + e0 and eN = GN,0x0 + e1N , where it can
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be easily seen that e0 and eN are uncorrelated with [ek]N−11 , because e10, e
1
N , x0, and xN are

uncorrelated with [ek]N−11 . Also,

E[e0e
′
N ] =E[(e10 −G0,NxN )(e1N +GN,0x0)

′]

=E[e10(e
1
N )′] + E[e10x

′
0]G
′
N,0 −G0,NE[xN (e1N )′]−G0,NE[xNx

′
0]G
′
N,0

=E[e10(e
1
0)
′]G′N,0 −G0,NE[(GN,0e

1
0 + e1N )(e1N )′]−G0,NE[(GN,0e

1
0 + e1N )(e10)

′]G′N,0

=G1
0G
′
N,0 −G0,NG

1
N −G0,NGN,0G

1
0G
′
N,0

=C0(CN,0C
−1
0 )′ − C0,NC

−1
N (CN − CN,0C

−1
0 C0,N )− C0,NC

−1
N CN,0C

−1
0 C0,N = 0

which means e0 and eN are uncorrelated. Similarly, one can obtain (2.24) from (2.25).

So, for c = N , (2.18) and (2.19) have different forms, but are equivalent. Therefore, for
brevity later we may refer to only one of them, although similar results hold for the other.

Remark 2.2.3. Boundary condition (2.19) emphasizes the role and importance of xN in a CML

model (i.e., the evolution law from k = 0 to k = N − 1 depends on xN ).

It is important that a dynamic model gives a unique covariance function of the corresponding
sequence [18]. As the following lemma shows, this is the case for model (2.17).

Lemma 2.2.4. Model (2.17) along with (2.18) or (2.19) for every parameter value admits a
unique covariance function.

Proof. Let [xk] obey (2.17) along with (2.18) or (2.19) with c = N . That is,

Gx = e, e , [e′0, . . . , e
′
N ]′ (2.26)

where G will be given below. Post-multiplying both sides by x′ and taking expectation, we have
GC = U , where C = Cov(x) and U = Cov(e, x).

To show the uniqueness of the covariance function, it suffices to show that G is nonsingular.
Consider (2.18) for which G is

I 0 0 · · · 0 0
−G1,0 I 0 · · · 0 −G1,N

0 −G2,1 I 0 · · · −G2,N
...

...
...

...
...

...
0 0 · · · −GN−1,N−2 I −GN−1,N

−GN,0 0 0 · · · 0 I


(2.27)

The determinant of a partitioned matrix A =

[
A11 A12

A21 A22

]
is |A| = |A11| · |A22| if A12 = 0 or

A21 = 0 [88]. So, it can be seen that |G| 6= 0 for every choice of the parameters, as follows. Since
G[1:1,2:N+1] = 0, we have |G| = |G[2:N+1,2:N+1]|. For a similar reason (i.e. G[N+1:N+1,2:N ] = 0),
we have |G[2:N+1,2:N+1]| = |G[2:N,2:N ]|, where it is clear that |G[2:N,2:N ]| = 1. Therefore, model
(2.17)–(2.18) always admits a unique covariance function.

Since (2.18) and (2.19) are equivalent (Lemma 2.2.2), model (2.17) with (2.19) always admits
a unique covariance function, too. It can be also verified based on the nonsingularity of G
corresponding to (2.19), which is

I 0 0 · · · 0 −G0,N

−G1,0 I 0 · · · 0 −G1,N

0 −G2,0 I 0 · · · −G2,N
...

...
...

...
...

...
0 0 · · · −GN−1,N−2 I −GN−1,N
0 0 0 · · · 0 I


(2.28)
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Let [xk] obey (2.17)–(2.18) with c = 0. That is, Gx = e, e , [e′0, . . . , e
′
N ]′, where G is

I 0 0 · · · 0 0
−2G1,0 I 0 · · · 0 0
−G2,0 −G2,1 I 0 · · · 0

...
...

...
...

...
...

−GN−1,0 0 · · · −GN−1,N−2 I 0
−GN,0 0 0 · · · −GN,N−1 I


(2.29)

Since (2.29) is nonsingular, (2.17)–(2.18) always admits a unique covariance function.

Lemma 2.2.5. [xk] governed by (2.17)–(2.18) is always nonsingular (for every parameter value).

Proof. Let [xk] obey (2.17)–(2.18), where the covariance matrices Gk, k ∈ [0, N ], are nonsingu-
lar. Based on (2.26), we have Gx = e, where G is given by (2.27) for c = N and by (2.29) for
c = 0. Then, the covariance matrix of [xk] can be obtained as

C = G−1G(G′)−1 (2.30)

where G = Cov(e) = diag(G0, . . . , GN ) and by the proof of Lemma 2.2.4, G is nonsingular. Since
all Gk, k ∈ [0, N ], are nonsingular, G is nonsingular. Therefore, by (2.30), [xk] is nonsingular.

By the previous lemmas, a model for the ZMNG CMc sequence was constructed and some
related properties were studied. Now, we can present the main result for the CMc model as
follows.

Theorem 2.2.6. A ZMNG sequence [xk] with covariance function Cl1,l2 is CMc iff it obeys
(2.17) along with (2.18) or (2.19).

Proof. The necessity was proved as Lemma 2.2.1. So, we just need to prove the sufficiency.
This amounts to proving that [xk] is (i) nonsingular and (ii) Gaussian CMc. Lemma 2.2.5 has
established (i). So, we just need to prove (ii).

Since [xk] is Gaussian, by Lemma 2.1.7, [xk] is CMc if E[xk|[xi]j0, xc] = E[xk|xj , xc], for every
j, k ∈ [0, N ] \ {c}, j < k. From (2.17) we have xk = Gk,jxj +Gk,c|jxc + ek|j , where the matrices
Gk,j and Gk,c|j can be obtained from parameters of (2.17), and ek|j is a linear combination of

[el]
k
j+1. Since [ek] is white, [el]

k
j+1 (and so ek|j) is uncorrelated with [xk]j0 and xc. Thus, we have

E[xk|[xi]j0, xc] = E[xk|xj , xc], meaning that [xk] is CMc.

Let z ∼ N (µz, Cz) and y ∼ N (µy, Cy) be jointly Gaussian random vectors with cross-
covariance Cz,y. Also, let ž and y̌ be zero-mean parts of z and y, respectively. We have
E[z|y] = µz + Cz,yC

+
y (y − µy), where ‘+’ denotes the Moore-Penrose inverse. On the other

hand, E[ž|y̌] = Cz,yC
+
y (y̌). So, E[z|y] − µz = E[ž|y̌]. Then, by Lemma 2.1.7, a Gaussian

sequence is CMc iff its zero-mean part is CMc. Therefore, a Gaussian sequence [xk] with mean
function µk, k ∈ [0, N ], is CMc iff its zero-mean part [xk − µk] obeys (2.17)–(2.18). Thus, we
only present models of zero-mean CM sequences.

Backward Markov/hybrid models have been developed and used, e.g., for smoothing [65]–
[71], [89]. The evolution of the CMc sequence can also be modeled by a backward CMc model.
A backward CMc model may provide more insight and tools regarding the CMc sequence. Also,
it is useful for smoothing. The next proposition presents a backward CMc model.

Proposition 2.2.7. A ZMNG [xk] is CMc iff

xk = GB
k,k+1xk+1 +GB

k,cxc + eBk , k ∈ [0, N − 1] \ {c} (2.31)

xc = eBc , xN = GB
N,cxc + eBc (for c = 0) (2.32)
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and [eBk ] (GB
k = Cov(eBk )) is a zero-mean white NG sequence.

Proof. A proof is paraller to that of the CMc model (Theorem 2.2.6). The only difference is in
time order.

Similar to Theorem 2.2.6, we have a different form of the boundary condition equivalent to
(2.32):

xN = eBN , xc = GB
c,NxN + eBc (for c = 0) (2.33)

Similar to (2.30), the covariance matrix of [xk] can be obtained as

C = (GB)−1GB[(GB)′]−1 (2.34)

where GB = diag(GB
0 , · · · , GB

N ) and GB for c = N is

GB =



I −GB
0,1 0 · · · 0 −GB

0,N

0 I −GB
1,2 · · · 0 −GB

1,N

0 0 I −GB
2,3 · · · −GB

2,N
...

...
...

...
...

...
0 0 · · · 0 I −2GB

N−1,N
0 0 0 · · · 0 I


(2.35)

(2.35) will be used in the next sections.

2.3 Characterization of CMc Sequences

Definition 2.3.1. A symmetric positive definite matrix is called CML if it has form (2.36) and
CMF if it has form (2.37).

A0 B0 0 · · · 0 0 D0

B′0 A1 B1 0 · · · 0 D1

0 B′1 A2 B2 · · · 0 D2
...

...
...

...
...

...
...

0 · · · 0 B′N−3 AN−2 BN−2 DN−2
0 · · · 0 0 B′N−2 AN−1 BN−1
D′0 D′1 D′2 · · · D′N−2 B′N−1 AN


(2.36)



A0 B0 D2 · · · DN−2 DN−1 DN

B′0 A1 B1 0 · · · 0 0
D′2 B′1 A2 B2 · · · 0 0
...

...
...

...
...

...
...

D′N−2 · · · 0 B′N−3 AN−2 BN−2 0
D′N−1 · · · 0 0 B′N−2 AN−1 BN−1
D′N 0 0 · · · 0 B′N−1 AN


(2.37)

Here Ak, Bk, and Dk are matrices in general.

Remark 2.3.2. We use CMc to mean both CML and CMF matrices: A CMc matrix for c = N
is CML and for c = 0 is CMF .

Remark 2.3.3. A CMc sequence is one defined in Subsection 2.1.1, but a CMc matrix is one
defined by Definition 2.3.1.
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First, several new factorizations of CMc matrices are presented in the following lemma. Then,
based on the lemma, characterizations of CMc sequences are obtained.

Lemma 2.3.4. A CMc matrix A with d × d blocks can be uniquely factorized as A = V ′DV ,
where D is block diagonal with d× d blocks, and V is a block matrix (with d× d blocks) with the
same dimension as A: (i) for CML, V is in the form of (2.38), (2.39), or (2.40); (ii) for CMF ,
V is in the form of (2.41), (2.42), or (2.43).

I ∗ 0 · · · 0 ∗
0 I ∗ · · · 0 ∗
0 0 I ∗ · · · ∗
...

...
...

...
...

...
0 0 · · · 0 I ∗
0 0 0 · · · 0 I


(2.38)



I 0 0 · · · 0 0
∗ I 0 · · · 0 ∗
0 ∗ I 0 · · · ∗
...

...
. . .

. . .
. . .

...
0 0 · · · ∗ I ∗
∗ 0 0 · · · 0 I


(2.39)



I 0 0 · · · 0 ∗
∗ I 0 · · · 0 ∗
0 ∗ I 0 · · · ∗
...

...
. . .

. . .
. . .

...
0 0 · · · ∗ I ∗
0 0 0 · · · 0 I


(2.40)



I 0 0 · · · 0 0
∗ I 0 · · · 0 0
∗ ∗ I 0 · · · 0
...

...
...

...
...

...
∗ 0 · · · ∗ I 0
∗ 0 0 · · · ∗ I


(2.41)



I 0 0 · · · 0 ∗
∗ I ∗ · · · 0 0
∗ 0 I ∗ · · · 0
...

...
. . .

. . .
. . .

...
∗ 0 · · · 0 I ∗
0 0 0 · · · 0 I


(2.42)



I 0 0 · · · 0 0
∗ I ∗ · · · 0 0
∗ 0 I ∗ · · · 0
...

...
. . .

. . .
. . .

...
∗ 0 · · · 0 I ∗
∗ 0 0 · · · 0 I


(2.43)

where ∗ is not necessarily zero.

Proof. See Appendix A.
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It is known that a positive definite matrix has a unique triangular factorization [88]. Corollary
2.3.4 shows that the unique triangular factorization of a CML matrix has a special form as (2.38).
In addition, it shows that a CML matrix has non-triangular factorizations of forms (2.39) and
(2.40), which are unique. Moreover, given a CML matrix, the proof of Corollary 2.3.4 shows
how the matrices V and D of the factorizations can be easily calculated. The same is true for
a CMF matrix.

Theorem 2.3.5. A NG sequence with covariance matrix C is CMc iff C−1 is CMc.

Proof. We can prove the theorem based on results about the relationship between the conditional
independence of some Gaussian variables and their covariance matrix (e.g., see [60]). However,
here we present a proof based on the CMc dynamic model and a factorization presented in
Lemma 2.3.4. It suffices to consider the ZMNG sequence. Necessity: Consider c = N . Let [xk]
be a ZMNG CML sequence. By Lemma 2.2.1, [xk] obeys (2.17)–(2.18). From (2.30), we have

C−1 = G′G−1G (2.44)

where G is given by (2.27) and G = diag(G0, . . . , GN ). Substituting G in (2.27) into (2.44) leads
to a C−1 that is CML. The same proof works for c = 0 (i.e., CMF ).

Sufficiency: We need to show that for every CMc matrix C−1, there exists a Gaussian CMc

sequence with covariance matrix C. This has been shown in the proof of Lemma 2.3.4 based on
the CMc matrix factorization.

Markov and reciprocal sequences are special CMc sequences (Chapter 3). That is why
characterizations of NG Markov [56] and NG reciprocal sequences [18] are special cases of those
of NG CMc sequences.

Remark 2.3.6. Given a CMc matrix C−1, parameters of the forward and backward CMc models
of a ZMNG CMc sequence with covariance matrix C can be directly (and uniquely) determined
in terms of the entries of C−1.

Remark 2.3.6 is verified in Lemma B.1 and Lemma B.2 (Appendix B). The uniqueness is clear
either by Lemma B.1 and Lemma B.2 or the definition (uniqueness) of conditional expectation.
Parameters of a CMc model can be calculated based on the covariance function of the sequence.
However, Remark 2.3.6 says that the parameters can be directly determined in terms of the
entries of C−1 without calculating C. This is particularly useful for determination of parameters
of a backward (forward) CMc model in terms of those of a forward (backward) CMc model for
the same sequence (by equating C−1 calculated from the two models). In addition, it is useful
for determination of Markov sequences governed by the same CMc model. This is related to
an important question in the theory of reciprocal processes regarding determination of Markov
processes governed by the same reciprocal evolution law (Chapter 6).

2.4 Dynamic Models of [k1, k2]-CMc Sequences

[k1, k2]-CMc sequences are important for the study of the reciprocal sequence (Chapter 3).
Also, an application of [0, k2]-CML sequences is in trajectory modeling with waypoint or desti-
nation information (Chapter 4). Characterizations of NG [k1, k2]-CMc sequences are obtained
in Chapter 3. A dynamic model of [0, k2]-CMc sequences is given next.

Proposition 2.4.1. A ZMNG [xk] with covariance function Cl1,l2 is [0, k2]-CMc (k2 ∈ [1, N−1])
iff

xk = Gk,k−1xk−1 +Gk,cxc + ek, k ∈ [1, k2] \ {c} (2.45)

xc = ec, x0 = G0,cxc + e0 (for c = k2) (2.46)
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xk =
k−1∑
i=0

Gk,ixi + ek, k ∈ [k2 + 1, N ] (2.47)

and [ek] (Gk = Cov(ek)) is a zero-mean white NG sequence.

Proof. Necessity: By the definition of the [0, k2]-CMc sequence, [xk]k20 is CMc. Therefore, by
Theorem 2.2.6, [xk]k20 obeys (2.45)–(2.46). Also, its parameters can be calculated from the co-
variance function (see the proof of Theorem 2.2.6). For the evolution over [k2 + 1, N ] we have
E[xk|[xi]k−10 ] =

∑k−1
i=0 Gk,ixi, k ∈ [k2+1, N ], where

[
Gk,0 · · · Gk,k−1

]
= C[k+1:k+1,1:k]C

−1
[1:k,1:k].

We define ek = xk−
∑k−1

i=0 Gk,ixi, k ∈ [k2+1, N ], whereGk , Cov(ek) = Ck−C[k+1:k+1,1:k]C
−1
[1:k,1:k]

·C ′[k+1:k+1,1:k]. By the definition of conditional expectation we have E[(xk−E[xk|[xi]k−10 ])g([xj ]
k−1
0

)] = 0, k ∈ [k2 + 1, N ], for every Borel measurable function g. Therefore, [ek]Nk2+1 is a zero-mean
white Gaussian sequence (see the proof of Lemma 2.2.1) with the nonsingular covariances Gk

(nonsingularity of Gk, k ∈ [0, N ], follows from nonsingularity of [xk] and nonsingularity of T in
(2.48) (see the proof of Lemma 2.2.1)). Also, [ek]Nk2+1 is uncorrelated with [ek]k20 . So, [ek] is
white.

Sufficiency: Consider c = k2. Let [xk] obey (2.45), (2.46), and (2.47). Then, we can write

Tx = e (2.48)

where e , [e′0, . . . , e
′
N ]′, T =

[
T11 0
T21 T22

]
,

T11 =



I 0 0 · · · 0 −G0,k2

−G1,0 I 0 · · · 0 −G1,k2

0 −G2,0 I 0 · · · −G2,k2
...

...
...

. . .
...

...
0 0 · · · −Gk2−1,k2−2 I −Gk2−1,k2
0 0 0 · · · 0 I


(2.49)

T21 =


−Gk2+1,0 −Gk2+1,1 · · · −Gk2+1,k2

−Gk2+2,0 −Gk2+2,1 · · · −Gk2+2,k2
...

... · · ·
...

−GN,0 −GN,1 · · · −GN,k2

 (2.50)

and T22 is 
I 0 · · · 0 0

−Gk2+2,k2+1 I 0 · · · 0
... · · · . . .

. . .
...

−GN−1,k2+1 · · · −GN−1,N−2 I 0
−GN,k2+1 · · · −GN,N−2 −GN,N−1 I


From (2.48) it is clear that [xk]k20 is CML (see Theorem 2.2.6 and (2.28)).

Also, the covariances Gk, k ∈ [0, N ], and the matrix T are nonsingular. Thus, by (2.48) [xk]
is nonsingular. Therefore, [xk] is a ZMNG [0, k2]-CML sequence.

For c = 0 we have a similar proof with the following difference. For c = k2, (2.49) is in the
form of (2.40) (consider (2.46)). It can be seen that for c = 0, T11 is in the form of (2.41). So,
[xk]k20 is CMF and [xk] is a ZMNG [0, k2]-CMF sequence.

Since T is always nonsingular, (2.45)–(2.47) admit a unique covariance function for every
parameter value (see proof of Lemma 2.2.4).
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It is meaningful to compare the evolution model of the [0, k2]-CMc sequence over [k2 + 1, N ]
with a general Gaussian sequence. First, consider the following lemma.

Lemma 2.4.2. [xk] is a ZMNG sequence with covariance function Cl1,l2 iff it obeys

xk =
k−1∑
i=0

Lk,ixi + dk, k ∈ [1, N ], x0 = d0 (2.51)

and [dk] (Lk = Cov(dk)) is a zero-mean white NG sequence.

Comparing (2.47) and (2.51) indicates that given a sample path of the sequence over [0, k2], a
ZMNG [0, k2]-CMc sequence has the same evolution over [k2 + 1, N ] as that of a general ZMNG
sequence.

Proofs of Proposition 2.4.3 and 2.4.4 are parallel to that of Proposition 2.4.1.

Proposition 2.4.3. A ZMNG [xk] is [k1, N ]-CMc (k1 ∈ [1, N − 1]) iff

xk = GB
k,k+1xk+1 +GB

k,cxc + eBk , k ∈ [k1, N − 1] \ {c}
xc = eBc , xN = GB

N,cxc + eBN (for c = k1)

xk =

N∑
i=k+1

GB
k,ixi + eBk , k ∈ [0, k1 − 1]

and [eBk ] (GB
k = Cov(eBk )) is a zero-mean white NG sequence.

Proposition 2.4.4. A ZMNG [xk] is [k1, k2]-CMc (k1, k2 ∈ [1, N − 1]) iff

xk = Gk,k−1xk−1 +Gk,cxc + ek, k ∈ [k1 + 1, k2] \ {c}
xc = ec, xk1 = Gk1,cxc + ek1 (for c = k2)

xk =
N∑

i=k+1

GB
k,ixi + ek, k ∈ [0, k1 − 1]

xk =
k−1∑
i=k1

Gk,ixi + ek, k ∈ [k2 + 1, N ]

and [ek] (Gk = Cov(ek)) is a zero-mean white NG sequence.
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Chapter 3

Reciprocal Sequences from the CM Viewpoint

In this chapter, we 1) propose studying the reciprocal sequence from the CM viewpoint and
demonstrate its significance and fruitfulness, 2) study the NG reciprocal sequence from the CM
viewpoint, and 3) obtain easy to apply results and tools for the NG reciprocal sequence.

3.1 Reciprocal Sequences

A sequence is reciprocal iff conditioned on the states at any two times j and l, the segment
inside the interval (j, l) is independent of the segments outside [j, l]. A formal definition is as
follows.

Definition 3.1.1. [xk] is reciprocal if ∀j, l ∈ [0, N ], j < l,

P{AB|xj , xl} = P{A|xj , xl}P{B|xj , xl} (3.1)

where A ∈ σ([xk]l−1j+1) and B ∈ σ([xk] \ [xk]lj).

To provide results for application, later we present Corollary 3.1.7, which is equivalent to
Definition 3.1.1.

A sequence is Markov iff conditioned on the state at any time j, the segment before j is
independent of the segment after j. Formally, we have the following definition.

Definition 3.1.2. [xk] is Markov if ∀k1 ∈ [0, N ],

P{AB|xj} = P{A|xj)P (B|xj} (3.2)

where A ∈ σ([xk]j−10 ) and B ∈ σ([xk]Nj+1).

Lemma 3.1.3. [xk] is Markov iff

F (ξk|[xi]j0) = F (ξk|xj) (3.3)

for every j < k, or equivalently,

F (ξk|[xi]Nj ) = F (ξk|xj) (3.4)

for every k < j, where ξk ∈ Rd and d is the dimension of xk.

Lemma 3.1.4. A Gaussian [xk] is Markov iff

E[xk|[xi]j0] = E[xk|xj ] (3.5)

for every j < k, or equivalently,

E[xk|[xi]Nj ] = E[xk|xj) (3.6)

for every k < j.

Proofs of Lemmas 3.1.3 and 3.1.4 are similar to those of Corollary 2.1.5 and Lemma 2.1.7,
respectively.
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3.1.1 Reciprocal Characterization from CM Viewpoint

First, the relationship between the CM sequence and the reciprocal sequence is presented in
Theorem 3.1.5 for the general Gaussian/non-Gaussian case. Then, according to this relation-
ship, the reciprocal characterization of [18] is obtained based on the characterizations of CM
sequences.

Theorem 3.1.5. [xk] is reciprocal iff it is

(i) [k1, N ]-CMF , ∀k1 ∈ [0, N ], and CML

or equivalently

(ii) [0, k2]-CML, ∀k2 ∈ [0, N ], and CMF

Proof. Necessity: Let [xk] be reciprocal. Comparing Definition 2.1.1 and Definition 3.1.1, we
can see that Definition 2.1.1 with [k1, c] = [0, k2] and Definition 2.1.1 with [c, k2] = [k1, N ] are
both special cases of Definition 3.1.1. Therefore, [xk] is both [0, k2]-CML, ∀k2 ∈ [0, N ] and
[k1, N ]-CMF , ∀k1 ∈ [0, N ].

Sufficiency: We prove the sufficiency for (i). Proof of the sufficiency of (ii) is similar. It can
be seen that (3.1) and (3.7) below are equivalent; that is, [xk] is reciprocal iff

P{B|[xi]k2k1 ] = P{B|xk1 , xk2 ] (3.7)

for every k1, k2 ∈ [0, N ] (k1 < k2), where B ∈ σ([xk] \ [xk]k2k1) [85]. On the other hand, (3.7) and
(3.8) below are equivalent, meaning that [xk] is reciprocal iff

E[g([xk]k1−10 )h([xk]Nk2+1)|[xi]
k2
k1

] = E[g([xk]k1−10 )h([xk]Nk2+1)|xk1 , xk2 ] (3.8)

for every k1, k2 ∈ [0, N ] (k1 < k2) and every Borel measurable function g and h.

Similarly, it can be seen that the definition of [k1, N ]-CMF (Definition 2.1.1) and (3.9) below
are equivalent; that is, [xk] is [k1, N ]-CMF iff

P{B|[xi]k2k1} = P{B|xk1 , xk2} (3.9)

for every k1, k2 ∈ [0, N ] (k1 < k2), where B ∈ σ([xk]Nk2+1) [85]. Also, (3.9) and (3.10) below are
equivalent, meaning that [xk] is [k1, N ]-CMF iff

E[h([xk]Nk2+1)|[xi]
k2
k1

] = E[h([xk]Nk2+1)|xk1 , xk2 ] (3.10)

for every k2 ∈ [k1 + 1, N − 1] and every Borel measurable function h.

By Definition 2.1.1, [xk] is CML iff

E[g([xk]k1−10 )|[xi]Nk1 ] = E[g([xk]k1−10 )|xk1 , xN ] (3.11)

for every k1 ∈ [1, N − 1] and every Borel measurable function g. Now, let [xk] be [k1, N ]-CMF ,
∀k1 ∈ [0, N ], and CML. We show that (3.8) holds. We have

E[g([xk]k1−10 )h([xk]Nk2+1)|[xi]
k2
k1

] =E
[
E[g([xk]k1−10 )h([xk]Nk2+1)|[xi]

k2
k1
, [xi]

N
k2+1]

∣∣∣[xj ]k2k1]
=E
[
h([xk]Nk2+1)E[g([xk]k1−10 )|[xi]k2k1 , [xi]

N
k2+1]

∣∣∣[xi]k2k1]
=E
[
h([xk]Nk2+1)E[g([xk]k1−10 )|xk1 , [xi]Nk2 ]

∣∣∣[xi]k2k1]
=E
[
h([xk]Nk2+1)E[g([xk]k1−10 )|xk1 , [xi]Nk2 ]

∣∣∣xk1 , xk2]
=E
[
E[g([xk]k1−10 )h([xk]Nk2+1)|xk1 , [xi]Nk2 ]

∣∣∣xk1 , xk2]
=E[g([xk]k1−10 )h([xk]Nk2+1)|xk1 , xk2 ]
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where the third equality holds because [xk] is CML and thus by (3.11) we have

E[g([xk]k1−10 )|[xi]Nk1 ] = E[g([xk]k1−10 )|xk1 , [xi]Nk2 ]

The fourth equality holds because [xk] is [k1, N ]-CMF for every k1 ∈ [0, N ] and so by (3.10) we
have

E[q([xk]Nk2 , xk1)|[xi]k2k1 ] = E[q([xk]Nk2 , xk1)|xk1 , xk2 ]

for every Borel measurable function q. Therefore, [xk] is reciprocal. (Note that the required
integrability condition for nested expectations [86] holds.)

Due to the symmetry ([k1, N ]-CMF , ∀k1 ∈ [0, N ], and CML vs. [0, k2]-CML, ∀k2 ∈ [0, N ],
and CMF ), sufficiency of (ii) is proved using (3.8), (3.12) and (3.13) below. Similar to (3.11),
[xk] is [0, k2]-CML iff

E[g([xk]k1−10 )|[xi]k2k1 ] = E[g([xk]k1−10 )|xk1 , xk2 ] (3.12)

for every k1 ∈ [1, k2 − 1] and every Borel measurable function g. Also, considering k1 = 0 in
(3.10), [xk] is CMF iff

E[h([xk]Nk2+1)|[xi]
k2
0 ] = E[h([xk]Nk2+1)|x0, xk2 ] (3.13)

for every k2 ∈ [1, N − 1] and every Borel measurable function h.

Note that Theorem 3.1.5, Lemma 3.1.6, and Corollary 3.1.7 below are for the general
(Gaussian/non-Gaussian) case.

[29] commented on the relationship between the Gaussian CM process and the Gaussian
reciprocal process, where a part of the condition, i.e., [k1, N ]-CMF (∀k1 ∈ [0, N ]) was mentioned,
but the other part, i.e., CML was overlooked. We will show in Section 3.2 that the condition
presented in [29] is not sufficient for a Gaussian process to be reciprocal.

From the proof of Theorem 3.1.5, a sequence that is [k1, N ]-CMF (∀k1 ∈ [0, N ]) and CML

or equivalently [0, k2]-CML (∀k2 ∈ [0, N ]) and CMF is actually [k1, N ]-CMF and [0, k2]-CML

(∀k1, k2 ∈ [0, N ]). It means that a sequence is reciprocal iff it is [k1, N ]-CMF and [0, k2]-CML

(∀k1, k2 ∈ [0, N ]). This was pointed out for the Gaussian case in [30]. However, [30] did
not discuss if the condition presented in [29] is sufficient even for the Gaussian case. By the
relationship between the CM sequence and the reciprocal sequence it can be seen that the set
of CM sequences is much larger than that of reciprocal sequences.

The following lemma presents an equation which is equivalent to the definition of the recip-
rocal sequence. Lemma 3.1.6 follows from [6]. However, our proof is based on the relationship
between the reciprocal sequence and the CM sequence (Theorem 3.1.5), which is simple and
different from that of [6]. This proof demonstrates the advantage of the CM viewpoint for
studying reciprocal sequences.

Lemma 3.1.6. [xk] is reciprocal iff

E[f(xk)|[xi]j0, [xi]
N
l ] = E[f(xk)|xj , xl] (3.14)

for every j, k, l ∈ [0, N ] (j < k < l) and every Borel measurable function f .

Proof. Necessity: It can be seen that (3.1) is equivalent to

P{A|[xi]j0, [xi]
N
l } = P{A|xj , xl} (3.15)

where A ∈ σ([xk]l−1j+1) [85]. Let [xk] be a reciprocal sequence. Then, (3.14) follows from (3.15).
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Sufficiency: It is based on Theorem 3.1.5. Assume that (3.14) holds for [xk]. Then,

E[f(xk)|[xi]j0, xl] = E
[
E[f(xk)|[xi]j0, [xi]

N
l ]
∣∣∣[xi]j0, xl]

= E
[
E[f(xk)|xj , xl]

∣∣∣[xi]j0, xl]
= E[f(xk)|xj , xl]

where the second equality holds due to (3.14). So, by Corollary 2.1.5, [xk] is [0, l]-CML. Simi-
larly, we have

E[f(xk)|xj , [xi]Nl ] = E[f(xk)|xj , xl]

meaning that, by Corollary 2.1.5, [xk] is [j,N ]-CMF . Then, by Theorem 3.1.5, [xk] is reciprocal.

Corollary 3.1.7. [xk] is reciprocal iff

F (ξk|[xi]j0, [xi]
N
l ) = F (ξk|xj , xl) (3.16)

for every j, k, l ∈ [0, N ] (j < k < l), where F (·|·) is the conditional cumulative distribution
function (CDF) of xk, ξk ∈ Rd, and d is the dimension of xk.

Proof. See the proof of Corollary 2.1.5.

Corollary 3.1.7 (in a simple language) is equivalent to Definition 3.1.1.

Remark 3.1.8. Due to its simplicity, we recommend Corollary 3.1.7 as the definition of recip-
rocal sequences in application.

Lemma 3.1.6 reduces to the following lemma for the Gaussian case.

Lemma 3.1.9. A Gaussian sequence [xk] is reciprocal iff

E[xk|[xi]j0, [xi]
N
l ] = E[xk|xj , xl] (3.17)

for every j, k, l ∈ [0, N ] (j < k < l).

Proof. Necessity: Let [xk] be a Gaussian reciprocal sequence. Clearly (3.17) follows from (3.14).

Sufficiency: We present a proof based on Theorem 3.1.5. Let [xk] be a Gaussian sequence for
which (3.17) holds for every j, k, l ∈ [0, N ] (j < k < l). Then, as in the proof of Lemma 3.1.6,
we have

E[xk|[xi]j0, xl] = E[xk|xj , xl]
E[xk|xj , [xi]Nl ] = E[xk|xj , xl]

meaning that [xk] is [0, l]-CML and [j,N ]-CMF (Lemma 2.1.7). Then, by Theorem 3.1.5, [xk]
is reciprocal.

Note that Lemma 3.1.9 works for both singular and nonsingular Gaussian sequences.

In order to characterize the NG reciprocal sequence based on Theorem 3.1.5, we obtain
characterizations of NG [k1, k2]-CMc sequences. We first consider the general case, and then
address some important special cases.

28



Proposition 3.1.10. Let A = C−1 be the inverse of the covariance matrix of a NG sequence.
The sequence is [k1, k2]-CMc (k1, k2 ∈ [1, N − 1]) iff ∆B11 has the CMc form, where

∆B11 = B22 −B′12B−111 B12 (3.18)

B = ∆Abb
= Aaa −AabA

−1
bb A

′
ab (3.19)

and for a (k2+1)d×(k2+1)d matrix X we have X11 = X[1:k1,1:k1], X22 = X[k1+1:k2+1,k1+1:k2+1],
X12 = X[1:k1,k1+1:k2+1], and for an (N + 1)d× (N + 1)d matrix Y we have Yaa = Y[1:k2+1,1:k2+1],
Ybb = Y[k2+2:N+1,k2+2:N+1], and Yab = Y[1:k2+1,k2+2:N+1] (d × d is the dimension of each block
entry of these matrices).

Proof. We have

A−1 =

[
∆−1Abb

−∆−1Abb
AabA

−1
bb

−A−1bb A
′
ab∆

−1
Abb

A−1bb +A−1bb A
′
ab∆

−1
Abb
AabA

−1
bb

]
Also,

C =

[
Caa Cab

C ′ab Cbb

]
= A−1

Clearly Caa = ∆−1Abb
. Then, define B , ∆Abb

. We have

B−1 =

[
B−111 +B−111 B12∆

−1
B11

B′12B
−1
11 −B−111 B12∆

−1
B11

−∆−1B11
B′12B

−1
11 ∆−1B11

]
Also, let

D =

[
D11 D12

D′12 D22

]
, Caa

Since B−1 = D, we have D−122 = ∆B11 . Therefore, the sequence [xk] is [k1, k2]-CMc iff ∆B11

has the CMc form, where ∆B11 is given by (3.18).

Definition 3.1.11. A positive definite matrix A is called a [k1, k2]-CMc matrix (or A is said
to have the [k1, k2]-CMc form) if ∆B11 in (3.18) has the CMc form.

The characterization of the [k1, k2]-CMc sequence can be presented in a different formulation
(Proposition 3.1.12). Actually, Proposition 3.1.10 and Proposition 3.1.12 below give different
formulations of the same characterization. However, in some cases one formulation is more
convenient to use than the other (Section 3.2).

Proposition 3.1.12. Let A = C−1 be the inverse of the covariance matrix of a NG sequence.
The sequence is [k1, k2]-CMc (k1, k2 ∈ [1, N − 1]) iff ∆B22 has the CMc form, where

∆B22 = B11 −B12B
−1
22 B

′
12 (3.20)

B = ∆A11 = A22 −A′12A−111 A12 (3.21)

and B11 = B[1:k2−k1+1,1:k2−k1+1], B22 = B[k2−k1+2:N−k1+ 1,k2−k1+2:N−k1+1], B12 = B[1:k2−k1+1,

k2−k1+2:N−k1+1], A11 = A[1:k1,1:k1], A22 = A[k1+1:N+1,k1+1:N+1], and A12 = A[1: k1,k1+1:N+1].

Proof. Similar to the proof of Proposition 3.1.10.

Corollary 3.1.13. Let A = C−1 be the inverse of the covariance matrix of a NG sequence. (i)
The sequence is [0, k2]-CMc (k2 ∈ [1, N − 1]) iff ∆Abb

in (3.19) has the CMc form. (ii) The
sequence is [k1, N ]-CMc (k1 ∈ [1, N − 1]) iff ∆A11 in (3.21) has the CMc form.
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Proof. Proofs of (i) and (ii) are special cases of those of Proposition 3.1.10 and Proposition
3.1.12, respectively.

In order to make clear the properties of the [0, k2]-CMc sequence1, we study the sequence
over [k2 + 1, N ], too. In the following, we discuss the distribution of [xk]Nk2+1. First, relevant
properties of the positive definite matrices are reviewed. Consider a symmetric matrix

M =

[
M11 M12

M ′12 M22

]
Then, M > 0 iff M11 > 0 and M22 − M ′12M

−1
11 M12 > 0; M > 0 iff M22 > 0 and M11 −

M12M
−1
22 M

′
12 > 0.

Now, let [xk] be a NG sequence with the covariance matrix (following the notation of Propo-
sition 3.1.10)

C =

[
Caa Cab

C ′ab Cbb

]
(3.22)

[xk] is [0, k2]-CMc iff (Caa)−1 has the CMc form. Then, given Caa of a NG [0, k2]-CMc sequence,
the only restriction on Cbb and Cab is that Cbb−(Cab)

′(Caa)−1Cab > 0. As an example, for Cab =

(Caa)
1
2B, where B is any nonsingular matrix, we have Cbb− (Cab)

′(Caa)−1Cab = Cbb−B′B > 0.
Now, let Cab = 0. Then, there is no more restriction on Cbb (other than positive definiteness). It
can be also seen from the covariance matrix C with Cab = 0. Therefore, there exist [0, k2]-CMc

sequences for which the covariance of [xk]Nk2+1 can be any positive definite matrix without extra
restriction.

Marginal distributions of the NG [k1, k2]-CMc sequence over [0, k1 − 1] and [k2 + 1, N ] can
be similarly studied. Let its covariance matrix be

C =

 C11 C12 C13

C ′12 C22 C23

C ′13 C ′23 C33


where C11 = C[1:k1,1:k1], C12 = C[1:k1,k1+1:k2+1], C13 = C[1:k1,k2+2:N+1], C22 = C[k1+1:k2+1,k1+1:k2+1],

C23 = C[k1+ 1:k2+1,k2+2:N+1], and C33 = C[k2+2:N+1,k2+2:N+1]. Given C22 (where C−122 has the
CMc form), we have

C11 − C12C
−1
22 C

′
12 > 0

C33 −
[
C ′13 C ′23

] [ C11 C12

C ′12 C22

]−1 [
C13

C23

]
> 0

or

C33 − C ′23C−122 C23 > 0

C11 −
[
C12 C13

] [ C22 C23

C ′23 C33

]−1 [
C ′12
C ′13

]
> 0

A characterization of the NG reciprocal sequence was presented in [18]. Based on the above
characterizations of [k1, k2]-CMc sequences, that characterization of the NG reciprocal sequence
can be obtained from the CM viewpoint (Theorem 3.1.14 below). The corresponding proof is
simple and different from the one presented in [18].

1One can similarly study [k1, N ]-CMc.
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Theorem 3.1.14. A NG sequence with the covariance matrix C is reciprocal iff C−1 is cyclic
(block) tri-diagonal as 

A0 B0 0 · · · 0 0 D0

B′0 A1 B1 0 · · · 0 0
0 B′1 A2 B2 · · · 0 0
...

...
...

...
...

...
...

0 · · · 0 B′N−3 AN−2 BN−2 0
0 · · · 0 0 B′N−2 AN−1 BN−1
D′0 0 0 · · · 0 B′N−1 AN


(3.23)

Proof. Necessity: By Theorem 3.1.5, characterization of the NG reciprocal sequence is the same
as that of the NG sequence being CMF and [0, k2]-CML, ∀k2 ∈ [0, N ]. Let [xk] be a NG
sequence (with the covariance matrix C), which is CMF and [0, k2]-CML, ∀k2 ∈ [0, N ]. By
Theorem 2.3.5, C−1 is (block) cyclic tri-diagonal, because a matrix being both CML and CMF

is cyclic tri-diagonal.

Sufficiency: Assume that the inverse of the covariance matrix (C−1) of a NG [xk] is cyclic
(block) tri-diagonal. A cyclic tri-diagonal matrix has the CMF and the [0, k2]-CML forms
∀k2 ∈ [0, N ]. Thus, by Theorem 2.3.5 and Corollary 3.1.13, [xk] is CMF and [0, k2]-CML,
∀k2 ∈ [0, N ]. Therefore, by Theorem 3.1.5, [xk] is reciprocal.

The following corollary of Theorem 3.1.14 has an important implication about the relation-
ship between the CM sequence and the reciprocal sequence. Once more, it demonstrates the
significance of the CM viewpoint for studying the reciprocal sequence.

Corollary 3.1.15. A NG sequence is reciprocal iff it is both CML and CMF .

Proof. Clearly, a NG sequence with the covariance matrix C is both CML and CMF iff C−1

has the form of (3.23). So, by Theorem 3.1.14, it is reciprocal iff it is both CML and CMF .

By Corollary 3.1.15, a NG sequence being both CML and CMF is [k1, k2]-CML and [k1, k2]-
CMF , ∀k1, k2 ∈ [0, N ].

A characterization of the NG Markov sequence is as follows [56].

Remark 3.1.16. A NG sequence with the covariance matrix C is Markov iff C−1 is (block)
tri-diagonal as (3.23) with D0 = 0.

Theorem 2.3.5, Theorem 3.1.14, Corollary 3.1.15, and Remark 3.1.16 show how CM, recip-
rocal, and Markov sequences are connected.

3.1.2 Reciprocal CMc Dynamic Models

A dynamic model of the ZMNG reciprocal sequence was presented in [18], where the evolution
of reciprocal sequences is described by a second-order nearest-neighbor model driven by locally
correlated dynamic noise [18]. That model can be considered a generalization of the Markov
model. However, due to the autocorrelation of the dynamic noise and the nearest-neighbor
structure, it is not necessarily easy to apply (see Subsection 3.1.3). In the following, two models
of the ZMNG reciprocal sequence are presented from the CM viewpoint. These models have
white dynamic noise, and their corresponding recursive estimators are easily obtained.

Dynamic models of CMc sequences were presented in Chapter 2. On the other hand, the
reciprocal sequence is a special CMc sequence. The following theorem gives the condition under
which a CMc model is for a reciprocal sequence. Also, it is shown that every ZMNG reciprocal
sequence has such a dynamic model.
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Theorem 3.1.17. A ZMNG [xk] with the covariance function Cl1,l2 is reciprocal iff it obeys
(2.17) along with (2.18) or (2.19), and

G−1k Gk,c = G′k+1,kG
−1
k+1Gk+1,c (3.24)

∀k ∈ [1, N − 2] for c = N , or ∀k ∈ [2, N − 1] for c = 0. Moreover, for c = N , [xk] is Markov iff
in addition to (3.24), we have

G−1N GN,0 = G′1,NG
−1
1 G1,0 (3.25)

for (2.18), or equivalently

G−10 G0,N = G′1,0G
−1
1 G1,N (3.26)

for (2.19). Also, for c = 0, the reciprocal sequence is Markov iff in addition to (3.24), we have

GN,0 = 0 (3.27)

Proof. Let c = N . A ZMNG sequence is CML iff it obeys (2.17) along with (2.18) or (2.19).
Also, by Theorem 2.3.5, a NG sequence is CML iff its C−1 is CML given by (2.36). Entries of
C−1 of a ZMNG CML sequence can be calculated in terms of the parameters of (2.17) along with
(2.18) or (2.19) (see (3.29) below). On the other hand, by Theorem 3.1.14, a NG sequence is
reciprocal iff its C−1 is cyclic (block) tri-diagonal given by (3.23). Therefore, a ZMNG sequence
is reciprocal iff it obeys (2.17) along with (2.18) or (2.19) and its C−1 is given by (2.36) with
D1 = · · · = DN−2 = 0. By D1 = · · · = DN−2 = 0, we obtain (3.24). In addition, by Remark
3.1.16, a NG sequence is Markov iff in addition to D1 = · · · = DN−2 = 0, we have D0 = 0, which
leads to (3.25) for (2.18), and (3.26) for (2.19) (see (B.5),(B.8),(B.11) in Appendix B.1 for the
explicit relationship between Di, i ∈ [0, N − 2] and parameters of the CML dynamic model).

Proof of the theorem for c = 0 is similar to that of c = N . By D2 = D3 = · · · = DN−1 = 0,
we get (3.24) and by DN = 0 we obtain (3.27) (see (B.41)–(B.42) in Appendix B.2 for the
explicit relationship between Di, i ∈ [2, N ] and parameters of the CMF dynamic model).

The Markov sequence is a subset of the reciprocal sequence, and the reciprocal sequence
is a subset of the CMc sequence. A CMc model is a complete (i.e., necessary and sufficient)
description of the CMc sequence. Theorem 3.1.17 shows under what conditions a CMc model
is a complete description of the reciprocal sequence, and under what conditions a CMc model is
a complete description of the Markov sequence. In other words, Theorem 3.1.17 shows simple
and explicit iff conditions for the CM (model) to reduce to the reciprocal, and for the reciprocal
to reduce to the Markov.

Theorem 3.1.17 can be presented in a different way.

Corollary 3.1.18. Model (2.17) along with (2.18) or (2.19) is one for a ZMNG reciprocal
sequence iff the matrix

A = G′G−1G (3.28)

is (block) cyclic tri-diagonal, where G = diag(G0, G1, . . . , GN ), and for c = N the matrix G
is (2.27) for (2.18), (2.28) for (2.19), and for c = 0, G is (2.29). In addition, the sequence is
Markov iff A in (3.28) is (block) tri-diagonal.

Proof. Let [xk] be a ZMNG CMc sequence that obeys (2.17) along with (2.18) or (2.19). Then,

Gx = e , [e′0, e
′
1, . . . , e

′
N ]′
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where for c = 0, G is given by (2.29); for c = N , G is given by (2.27) for (2.18) and by (2.28)
for (2.19). C−1 of [xk] is calculated as

C−1 = G′G−1G (3.29)

which is a CMc matrix (Theorem 2.3.5). By Theorem 3.1.14, [xk] is reciprocal iff its C−1 (i.e.,
G′G−1G) is (block) cyclic tri-diagonal. In addition, by Remark 3.1.16, [xk] is Markov iff G′G−1G
is (block) tri-diagonal.

The ZMNG reciprocal sequence can be modeled by either the reciprocal CMc model of
Theorem 3.1.17 or the reciprocal model of [18]. We use the term “reciprocal CMc model” for
our model (Theorem 3.1.17) and the term “reciprocal model” for the model of [18].

Remark 3.1.19. A CMc model of a reciprocal sequence is called a reciprocal CMc model. In
this way, we distinguish between the reciprocal model of [18] and our reciprocal CMc model.

Similarly, the Markov sequence is a special CMc sequence. Theorem 3.1.17, gives the nec-
essary and sufficient condition under which a CMc model is actually a dynamic model of the
ZMNG Markov sequence. A CMc model describing a Markov sequence is called a Markov CMc

model.

The following proposition presents a backward model of the reciprocal sequence.

Proposition 3.1.20. A ZMNG sequence [xk] with the covariance function Cl1,l2 is reciprocal
iff it obeys (2.31) along with (2.32) or (2.33) and

(GB
k+1)

−1GB
k+1,c = (GB

k,k+1)
′(GB

k )−1GB
k,c (3.30)

∀k ∈ [1, N − 2] for c = 0, or ∀k ∈ [0, N − 3] for c = N . Moreover, for c = 0, [xk] is Markov iff
in addition to (3.30), we have

(GB
N )−1GB

N,0 = (GB
N−1,N )′(GB

N−1)
−1GB

N−1,0 (3.31)

for (2.32), or equivalently

(GB
0 )−1GB

0,N = (GB
N−1,0)

′(GB
N−1)

−1GB
N−1,N (3.32)

for (2.33). Also, for c = N , [xk] is Markov iff in addition to (3.30), we have

GB
0,N = 0 (3.33)

Proof. It is similar to that of Theorem 3.1.17 and is omitted.

The dynamic model presented in Proposition 3.1.20 is called a backward reciprocal CMc

model.

3.1.3 Recursive Estimation of Reciprocal Sequences

A dynamic model was presented in [18] for the NG reciprocal sequence. That dynamic model
with the second-order nearest neighbor structure is a complete (i.e., necessary and sufficient)
description of the NG reciprocal sequence. It was shown in [18] that the well-posedness of the
model2 is guaranteed by a condition on all parameters of the model (i.e., parameters should be
determined in a way leading to a nonsingular sequence). That condition on all the parameters of
the model is not easy to check. On the contrary, our CMc dynamic models (including reciprocal

2A dynamic model is well-posed iff it admits a unique solution. For the Gaussian case, a model is well-posed
iff it admits a unique covariance function [18].
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CMc models) are always well-posed for every value of their parameters (Chapter 2). In addition,
the condition on parameters of a CMc model of a reciprocal sequence is much simpler than the
well-posedness condition for the model of [18].

Due to the nearest neighbor structure and the colored dynamic noise, recursive estimation of
a reciprocal sequence based on the model of [18] is not straightforward. That is why several pa-
pers were presented for recursive estimation of NG reciprocal sequences based on that dynamic
model. For example, [32]–[33] presented some recursive estimators for NG reciprocal sequences
based on the model of [18] with different boundary conditions using a higher-order state whose
dimension was 3 times of that of the state of the sequence. Later, a different recursive estimator
was presented in [34] using a higher-order state whose dimension was 2 times of that of the
state of the sequence. After lengthy and complicated manipulation of the second-order model
of [18], [34] obtained a first-order forward/backward dynamic model with white dynamic noise.
Then, derivation of a recursive estimator based on the obtained first-order forward/backward
model was straightforward based on existing results from linear system theory. This straight-
forwardness is why the approach of [34] is highly desired. The difficulty in the approach of [34]
is to obtain the forward/backward first-order model with white dynamic noise from the second-
order model of [18]. However, it can be easily seen that the first-order forward/backward model
of [18] is actually a forward/backward CML model (Theorem 2.2.6 (c = N) and Proposition
2.2.7 (c = 0)), which is available without any effort from the CM viewpoint. Therefore, it
demonstrates the significance of the CM viewpoint for studying reciprocal sequences.

Note that the first-order forward/backward model in [34] (which turned out to be a for-
ward/backward CML model) was obtained after complicated manipulation of the dynamic
model of [18]. That is why the relationship between parameters of the obtained first-order for-
ward/backward model and those of the dynamic model of [18] is complicated. Consequently, the
relationship between different parameters of the obtained first-order forward/backward model
is complicated and not straightforward. However, we obtained the forward/backward reciprocal
CML model directly from the CM viewpoint. Thus, we do not need to connect parameters of our
forward/backward reciprocal CML model to those of the model of [18]. Also, the relationship
between different parameters of a forward/backward reciprocal CML model is clear. Moreover,
a reciprocal CMc model clearly shows how a CMc model of the CMc sequence reduces to its
special case (i.e., reciprocal CMc model) for the reciprocal sequence (Theorem 3.1.17). This
is desired for unifying treatment of CM and reciprocal sequences leading to more insight into
reciprocal sequences.

Recursive estimation (filtering/smoothing/prediction) based on our reciprocal CMc model is
straightforward based on the results from linear system theory (Chapter 7).

3.2 Characterizations: Other CM Classes vs. Reciprocal

In order to reveal the relationship between various CM sequences (including reciprocal se-
quences), their intersections are studied. As a result, we show how the characterizations change
from a CM sequence to the reciprocal sequence.

We do not consider trivial special cases. For example, it is obvious by definition that every
sequence is [k1, k2]-CMc, 0 < k2− k1 ≤ 2. We are interested in the general cases with arbitrary
N , k1, and k2. The only difference between some classes of CM sequences is time direction.
For example, the CML ∩ [0, k]-CML sequence and the CMF ∩ [k,N ]-CMF sequence (i.e., the
backward CML ∩ [k,N ]-CML sequence) differ only in time direction. Due to the similarity, we
only consider one of such cases.

3.2.1 CML ∩ [k1, N ]-CMF

By Theorem 2.3.5 and Corollary 3.1.13 we have
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• Special case: A sequence is CML ∩ [N − 3, N ]-CMF iff its C−1 is given by (2.36) with
DN−2 = 0.

• Special case: A sequence is CML ∩ [N − 4, N ]-CMF iff its C−1 is given by (2.36) with
DN−3 = DN−2 = 0.

• General case: A sequence is CML ∩ [k1, N ]-CMF iff its C−1 is given by (2.36) with

Dk1+1 = Dk1+2 = · · · = DN−3 = DN−2 = 0

• Important special case: A sequence is CML ∩ CMF iff its C−1 is given by (2.36) with

D1 = D2 = · · · = DN−2 = 0

which is actually the reciprocal characterization (Corollary 3.1.15).

It is thus seen how the characterizations (i.e., C−1) gradually change from CML to reciprocal
and then Markov. In addition, based on the results above, the CML ∩ [k1, N ]-CMF sequence
has been characterized for every k1 ∈ [0, N − 1].

Similarly, a sequence is CMF ∩ [0, k2]-CML iff its C−1 is given by (2.37) with D2 = D3 =
· · · = Dk2−1 = 0.

3.2.2 CML ∩ [0, k2]-CML (CMF ∩ [k1, N ]-CMF )

In this subsection, we study characterizations of CML∩ [0, k2]-CML sequences to see their rela-
tionship with the reciprocal sequence. As a result, the condition presented in [29] is addressed.

By Theorem 2.3.5 and Corollary 3.1.13 we have

• Special case: A sequence is CML∩[0, 3]-CML iff its C−1 is given by (2.36) withD0U0,3D
′
2 =

0, where U0,3 = R[N−3:N−3,N−3:N−3] and R = (A[5:N+1,5:N+1])
−1. Clearly, a trivial solution

is D2 = 0.

• Special case: A sequence is CML∩[0, 4]-CML iff its C−1 is given by (2.36) withD0U0,4D
′
2 =

0, D0U0,4D
′
3 = 0, and D1U0,4D

′
3 = 0, where U0,4 = R[N−4:N−4,N−4:N−4] and R =

(A[6:N+1,6:N+1])
−1. A trivial solution is D2 = D3 = 0.

• General case: A sequence is CML ∩ [0, k2]-CML iff its C−1 is given by (2.36) with

D0U0,k2D
′
i = 0, i = 2, . . . , k2 − 1

D1U0,k2D
′
i = 0, i = 3, . . . , k2 − 1

...

Dk2−3U0,k2D
′
k2−1 = 0

where U0,k2 = R[N−k2:N−k2,N−k2:N−k2] and R = (A[k2 +2:N+1,k2+2:N+1])
−1. A trivial solu-

tion is D2 = D3 = · · · = Dk2−1 = 0.

• Important special case: A sequence is CML∩ [0, N −1]-CML iff its C−1 is given by (2.36)
with

D0U0,N−1D
′
i = 0, i = 2, . . . , N − 2

D1U0,N−1D
′
i = 0, i = 3, . . . , N − 2

...

DN−4U0,N−1D
′
N−2 = 0

where U0,N−1 = (AN )−1.
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A trivial solution for the last case above is D2 = D3 = · · · = DN−2 = 0 and D1 can be
non-zero. Note that this trivial solution is actually a trivial solution of all the above equations
for CML ∩ [0, 3]-CML through CML ∩ [0, N − 1]-CML. On the other hand, a sequence is
∩Nk2=1[0, k2]-CML iff its C−1 is given by (2.36) and all the above equations (for CML ∩ [0, 3]-
CML through CML ∩ [0, N − 1]-CML) hold. As a result, a sequence with C−1 given by (2.36)
with D2 = D3 = · · · = DN−2 = 0 is ∩Nk2=1[0, k2]-CML. From the CML sequence to the

∩Nk2=1[0, k2]-CML sequence, as we consider intersections of more classes of sequences, the set of
solutions for D1, . . . , DN−2 shrinks in general, while a trivial solution for D2, . . . , DN−2 (i.e.,
D2 = · · · = DN−2 = 0) always exists. However, it can be seen that for the ∩Nk2=1[0, k2]-
CML sequence, there is no guarantee that D1, D2, . . . , DN−2 are all equal to zero. Therefore,
∩Nk2=1[0, k2]-CML is not necessarily reciprocal. Similarly, ∩N−1k1=0[k1, N ]-CMF is not necessarily
reciprocal. This means that the condition of [29] is not sufficient because equation (4) in [29]
(which is the foundation of the argument of [29]) is necessary but not sufficient for a Gaussian
process to be reciprocal.

Note that we need to check if a solution of the above equations is valid, that is, there exists
a sequence with such a C−1. This is because the above equations do not guarantee the positive
definiteness of C−1. In order to show the existence of a sequence corresponding to a solution
of the above equations (for CML ∩ [0, 3]-CML through CML ∩ [0, N − 1]-CML), we can find
parameters of a CML model (Theorem 2.2.6) of a sequence with the corresponding C−1 (i.e.,
satisfying the above equations).

The trivial solution (D2 = D3 = · · · = DN−2 = 0 and D1 6= 0) really exists for all the
above equations (for CML ∩ [0, 3]-CML through CML ∩ [0, N − 1]-CML), that is, there exists
a sequence with C−1 given by (2.36) with D2 = D3 = · · · = DN−2 = 0 and D1 6= 0. Based
on the relation of (block) entries of a CML matrix and the parameters of the CML model and
its boundary condition (Appendix B.1), we can determine parameters of a CML model and its
boundary condition so that D2 = D3 = · · · = DN−2 = 0 and D1 6= 0. Then, by Theorem 2.2.6,
there exists a CML sequence corresponding to the above trivial solution. For example, the set
of parameters of a CML model (Gk,k−1, Gk,N , Gk), k ∈ [1, N −1], with Gk,N = 0, k ∈ [2, N −1],
and G1,N 6= 0 leads to D2 = D3 = · · · = DN−2 = 0 and D1 6= 0.

From the above equations (for the characterization of the CML∩[0, k2]-CML sequence), it can
be seen that for scalar sequences, a CML∩ [0, l2]-CML sequence is CML∩ [0, k2]-CML if k2 < l2.
However, this is not true for vector-valued sequences in general. Here is a counterexample.

Example 3.2.1. Consider CM sequences defined over [0, N ] with N = 5. According to the
results above, the characterization of CML ∩ [0, 3]-CML is given by (2.36) with D0U0,3D

′
2 = 0,

where U0,3 = R[2:2,2:2] = (A5 − B′4A
−1
4 B4)

−1 and R = (A[5:6,5:6])
−1. Also, the characterization

of CML ∩ [0, 4]-CML is given by (2.36) with

D0U0,4D
′
2 = 0, D0U0,4D

′
3 = 0, D1U0,4D

′
3 = 0 (3.34)

where U0,4 = (A5)
−1.

Based on the parametric relation of a CML model and C−1 of its sequence, we have (Appendix
B.1)

D0 = −G5,0G
−1
5 +G′1,0G

−1
1 G1,5

Di = −G−1i Gi,5 +G′i+1,iG
−1
i+1Gi+1,5, i = 1, 2, 3

A5 = G−15 +
4∑

i=0

G′i,5G
−1
i Gi,5

B4 = −G−14 G4,5

A4 = G−14
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Let Gi = I, i = 0, . . . , 5, G4,3 = G3,5 = G0,5 = 0, G1,5 = I. Also,

G4,5 =

 1 0 0
1 1 0
1 1 1

 , G2,5 =

 1 1 0
1 1 0
1 1 0

 , G0,5 =

 5
6

5
6

5
6

0 0 0
1 1 1


Then, we can see that D3 = 0, D0U0,4D

′
2 = 0, but D0U0,3D

′
2 6= 0. Thus, for the above choice of

parameters, (3.34) holds but D0U0,3D
′
2 6= 0. Thus, for vector-valued sequences, CML ∩ [0, 4]-

CML is not CML ∩ [0, 3]-CML in general.

3.2.3 More About Intersections of CM Classes Relative to Reciprocal

In this subsection, intersections of some other interesting CM classes are studied relative to the
reciprocal sequence.

For the Gaussian sequence the only restrictions on C−1 are the symmetry and the positive
definiteness. The restrictions on C−1 gradually increase from the Gaussian sequence to the
Gaussian CMc sequence to the Gaussian reciprocal sequence, and then to the Gaussian Markov
sequence. A CML ∩ [k1, N ]-CMF sequence is reciprocal over [k1, N ] (Corollary 3.1.15).

It can be seen that a ∩Nk2=1[0, k2]-CML ∩N−1k1=1 [k1, N ]-CMF sequence is not necessarily recip-
rocal because D1, D2, . . . , DN−2 in (2.36) are not necessarily zero for such a sequence. However,
the CML ∩ CMF sequence is reciprocal. It means that to be reciprocal the sequence must
be both CML and CMF . In addition, a CML ∩ [0, N − 1]-CMF sequence is not necessarily
reciprocal. This can be seen as follows. A sequence is CML∩ [0, N −1]-CMF iff its C−1 is given
by (2.36) with

D1(AN )−1D′i = 0, i = 3, . . . , N − 2

D1(AN )−1B′N−1 = 0

D2(AN )−1D′i = 0, i = 4, . . . , N − 2

D2(AN )−1B′N−1 = 0

...

DN−4(AN )−1D′N−2 = 0

DN−4(AN )−1B′N−1 = 0

DN−3(AN )−1B′N−1 = 0

The above equations have a trivial solution D1 = D2 = · · · = DN−2 = 0, which corresponds to
the reciprocal sequence. Another trivial solution is

D3 = D4 = · · · = DN−2 = BN−1 = 0 (3.35)

where D1 and D2 are non-zero. So, a CML ∩ [0, N − 1]-CMF sequence is not necessarily
reciprocal. Consider the following choice of parameters of the CML model: Gi,N = 0, i =
3, . . . , N − 1, and other parameters equal to the identity matrix I. This set of parameters
satisfies (3.35) (see Appendix B.1 for the relation of the CML model parameters and the (block)
entries of C−1).

Using Theorem 2.3.5, Proposition 3.1.10 or 3.1.12, and Corollary 3.1.13, we can study the
relationship between some other CM classes. We skip the details and only present some results.

A ∩N−1k2=1[0, k2]-CML∩N−1k1=0 [k1, N ]-CMF sequence is not necessarily CML. If it were, it would
be reciprocal (Corollary 3.1.15), but it is not reciprocal. So, it is not CML. This again shows
the role of the CML sequence and the CMF sequence in the construction of the reciprocal
sequence.
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An interesting class of CM sequences is [0, l]-CML∩[l, N ]-CMF (l ∈ [1, N−1]). Conditioning
on xl, the sequence is Markov over [0, l − 1] and Markov over [l + 1, N ]. A sequence is [0, l]-
CML ∩ [l, N ]-CMF iff its C−1 has both [0, l]-CML and [l, N ]-CMF forms.

A scalar CML ∩ [k1, k2]-CML sequence is CML ∩ [l1, l2]-CML, k1 ≤ l1 < l2 < k2. However,
this is not necessarily true for vector-valued sequences. A scalar CML∩[k1, N−1]-CMF sequence
is CML ∩ [l1, l2]-CMF , k1 < l1 < l2 ≤ N − 1. In general, a CML ∩ [k1, k2]-CMF sequence is not
necessarily CML ∩ [l1, l2]-CMF , k1 < l1 < l2 ≤ k2 ≤ N − 1.
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Chapter 4

Models and Representations of Gaussian Reciprocal and Other Gaussian
CM Sequences

In this chapter, we 1) present some approaches/guidelines for parameter design of CML, CMF ,
and reciprocal CML models for their application, 2) present a full spectrum of dynamic models
ranging from a CML model to a reciprocal CML model, 3) show how models of various in-
tersections of CM classes can be obtained, and 4) obtain a representation of NG CML, CMF ,
and reciprocal sequences, revealing a key fact behind these sequences, and demonstrate the
significance of studying reciprocal sequences from the CM viewpoint.

4.1 Dynamic Models of Reciprocal and Intersections of CM Classes

4.1.1 Reciprocal Sequences

By Theorem 3.1.17, one can determine whether a CML evolution model is for a reciprocal
sequence or not. In other words, it gives the required conditions on the parameters of a CML

evolution model to design a reciprocal CML evolution model. However, Theorem 3.1.17 does
not provide an approach for designing the parameters. Theorem 4.1.3 below provides such an
approach. First, we have a lemma.

Lemma 4.1.1. The set of reciprocal sequences modeled by a reciprocal CML evolution model
(2.17) with parameters (Gk,k−1, Gk,N , Gk), k ∈ [1, N − 1] includes Markov sequences.

Proof. By Theorem 3.1.17, (2.17) (for c = N) satisfying (3.24) with (2.19) models a reciprocal
sequence. By Theorem 2.3.5, C−1 of such a sequence is cyclic (block) tri-diagonal given by
(2.36) with D1 = · · · = DN−2 = 0 and

D0 = G′1,0G
−1
1 G1,N −G−10 G0,N (4.1)

(see (B.11) in Appendix B.1).

Now, consider a reciprocal sequence modeled by (2.17) satisfying (3.24) with the parameters
(Gk,k−1, Gk,N , Gk), k ∈ [1, N−1], and boundary condition (2.19) with the parameters G0,N , G0,
and GN , where

G0,N = G0G
′
1,0G

−1
1 G1,N (4.2)

meaning that D0 = 0. This reciprocal sequence is Markov (Theorem 2.3.5). Note that since for
every possible value of the parameters of the boundary condition the sequence is nonsingular
reciprocal modeled by the same reciprocal CML evolution model, choice (4.2) is valid. Thus,
there exist Markov sequences belonging to the set of reciprocal sequences modeled by a reciprocal
CML evolution model (2.17) with the parameters (Gk,k−1, Gk,N , Gk), k ∈ [1, N − 1].

Lemma 4.1.2. A ZMNG [yk] is Markov iff it obeys

yk = Mk,k−1yk−1 + ek, k ∈ [1, N ] (4.3)

where y0 = e0 and [ek] (Cov(ek) = Mk) is a zero-mean white NG sequence.
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Theorem 4.1.3. (Markov-induced CML (evolution) model) A ZMNG [xk] is reciprocal iff it
can be modeled by a CML model (2.17) and (2.19) (for c = N) induced by a Markov evolution
model (4.3), that is, iff the parameters (Gk,k−1, Gk,N , Gk), k ∈ [1, N − 1], of the CML evolution
model (2.17) of [xk] can be determined by the parameters (Mk,k−1,Mk), k ∈ [1, N ], of a Markov
evolution model (4.3), as

Gk,k−1 = Mk,k−1 −Gk,NMN |kMk,k−1 (4.4)

Gk,N = GkM
′
N |kC

−1
N |k (4.5)

Gk = (M−1k +M ′N |kC
−1
N |kMN |k)−1 (4.6)

where MN |k = MN,N−1 · · ·Mk+1,k, CN |k =
∑N−1

n=k MN |n+1Mn+1M
′
N |n+1, k ∈ [1, N − 1], and

MN |N = I, where Mk,k−1, k ∈ [1, N ], are square matrices, and Mk, k ∈ [1, N ], are positive
definite with the dimension of xk.

Proof. First, we show how (4.4)–(4.6) are obtained and prepare the setting for our proof.

Given the square matrices Mk,k−1, k ∈ [1, N ], and the positive definite matrices Mk, k ∈
[1, N ], there exists a ZMNG Markov sequence [yk] (Lemma 4.1.2):

yk = Mk,k−1yk−1 + eMk , k ∈ [1, N ], y0 = eM0 (4.7)

where [eMk ] is a zero-mean white NG sequence with covariances Mk, k ∈ [0, N ].

Since every Markov sequence is CML, we can obtain a CML model of [yk] as

yk = Gk,k−1yk−1 +Gk,NyN + eyk, k ∈ [1, N − 1] (4.8)

where [eyk] is a zero-mean white NG sequence with covariances Gk, k ∈ [1, N − 1], Gy
0, G

y
N , and

boundary condition

yN = eyN , y0 = Gy
0,NyN + ey0 (4.9)

Parameters of (4.8) can be obtained as follows. By (4.7), we have p(yk|yk−1) = N (yk;
Mk,k−1yk−1,Mk). Since [yk] is Markov, we have, for ∀k ∈ [1, N − 1],

p(yk|yk−1, yN ) =
p(yk|yk−1)p(yN |yk, yk−1)

p(yN |yk−1)

=
p(yk|yk−1)p(yN |yk)

p(yN |yk−1)
(4.10)

= N (yk;Gk,k−1yk−1 +Gk,NyN , Gk)

and it turns out that Gk,k−1, Gk,N , and Gk are given by (4.4)–(4.6) [90], where we have
p(yk|yk−1) = N (yk;Mk,k−1yk−1,Mk).

Now, we construct a sequence [xk] modeled by the same evolution model (4.8) as

xk = Gk,k−1xk−1 +Gk,NxN + ek, k ∈ [1, N − 1] (4.11)

where [ek] is a zero-mean white Gaussian sequence with nonsingular covariances Gk, and bound-
ary condition

xN = eN , x0 = G0,NxN + e0 (4.12)

but with different parameters of the boundary condition (i.e., (GN , G0,N , G0) 6= (Gy
N , G

y
0,N ,

Gy
0)). By Theorem 2.2.6, [xk] is a ZMNG CML sequence. (Note that parameters of (4.8) and

(4.11) are the same (Gk,k−1, Gk,N , Gk, k ∈ [1, N − 1]), but parameters of (4.9) (Gy
0,N , G

y
0, G

y
N )

and (4.12) (G0,N , G0, GN ) are different.)
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Sufficiency: we prove sufficiency; that is, a CML model with the parameters (4.4)–(4.6) is a
reciprocal CML model. It suffices to show that the parameters (4.4)–(4.6) satisfy (3.24), and
consequently [xk] is reciprocal. Substituting (4.4)–(4.6) in (3.24), for the right hand side of
(3.24), we have

G′k+1,kG
−1
k+1Gk+1,N =

M ′N |kC
−1
N |k+1 −M

′
N |kC

−1
N |k+1MN |k+1(M

−1
k+1 +M ′N |k+1C

−1
N |k+1MN |k+1)

−1M ′N |k+1C
−1
N |k+1

and for the left hand side of (3.24), we have G−1k Gk,N = M ′N |kC
−1
N |k = M ′N |k (CN |k+1 +

MN |k+1Mk+1M
′
N |k+1)

−1, where from the matrix inversion lemma it follows that (3.24) holds.

Therefore, [xk] is reciprocal. So, equations (2.17) and (2.19) with (4.4)–(4.6) model a ZMNG
reciprocal sequence.

Necessity: Let [xk] be ZMNG reciprocal. By Theorem 3.1.17 [xk] obeys (2.17) and (2.19)
with (3.24). By Lemma 4.1.1, the set of reciprocal sequences modeled by a reciprocal CML

evolution model contains Markov and non-Markov sequences (depending on the parameters of
the boundary condition). So, a sequence modeled by a reciprocal CML evolution model and a
boundary condition determined as in the proof of Lemma 4.1.1 (i.e., satisfying (4.2)) is actually
a Markov sequence whose C−1 is (block) tri-diagonal (i.e., (2.36) with D0 = · · · = DN−2 = 0).
Given this C−1, we can obtain parameters of a Markov model (4.7) (Mk,k−1, k ∈ [1, N ], Mk, k ∈
[0, N ]) of a Markov sequence with the given C−1 as follows. C−1 of a Markov sequence can
be calculated in terms of parameters of a Markov CML model or in terms of parameters of a
Markov model. Equating these two formulations of C−1, parameters of the Markov model are
obtained in terms of parameters of the Markov CML. Thus, for k = N − 2, N − 3, . . . , 0,

M−1N = AN (4.13)

MN,N−1 = −MNB
′
N−1 (4.14)

M−1k+1 = Ak+1 −M ′k+2,k+1M
−1
k+2Mk+2,k+1 (4.15)

Mk+1,k = −Mk+1B
′
k (4.16)

M−10 = A0 −M ′1,0M−11 M1,0 (4.17)

where

A0 = G−10 +G′1,0G
−1
1 G1,0 (4.18)

Ak = G−1k +G′k+1,kG
−1
k+1Gk+1,k, k ∈ [1, N − 2] (4.19)

AN−1 = G−1N−1 (4.20)

AN = G−1N +
N−1∑
k=0

G′k,NG
−1
k Gk,N (4.21)

Bk = −G′k+1,kG
−1
k+1, k ∈ [0, N − 2] (4.22)

BN−1 = −G−1N−1GN−1,N (4.23)

Following (4.10) to get a reciprocal CML model from this Markov model, we have (4.4)–(4.6).

What remains to be proven is that the parameters of the model obtained by (4.4)–(4.6) are
the same as those of the CML model calculated directly based on the covariance function of
[xk]. By Theorem 2.2.6, the model constructed from (4.4)–(4.6) is a valid CML model. In
addition, given a CML matrix (a positive definite cyclic (block) tri-diagonal matrix is a special
CML matrix) as the C−1 of a sequence, the set of parameters of the CML evolution model and
boundary condition of the sequence is unique (it can be seen by the almost sure uniqueness of
a conditional expectation (Chapter 2)). Thus, the parameters (4.4)–(4.6) must be the same as
those obtained directly from the covariance function of [xk]. Thus, a ZMNG reciprocal sequence
[xk] obeys (2.17) and (2.19) with (4.4)–(4.6).
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Note that by matrix inversion lemma, (4.6) is equivalent to Gk = Mk −MkM
′
N |k(CN |k +

MN |kMkM
′
N |k)−1MN |kMk.

Note that Theorem 4.1.3 holds true for every combination of the parameters, i.e., square
matrices Mk,k−1 and positive definite matrices Mk, k ∈ [1, N ]. By (4.4)–(4.6), parameters of
every reciprocal CML model are obtained from Mk,k−1,Mk, k ∈ [1, N ], which are parameters of
a Markov evolution model (4.3). This is particularly useful for parameter design of a reciprocal
CML model. In Chapter 7 we use Theorem 4.1.3 for parameter design of a CML model for
motion trajectory modeling with destination information.

Markov sequences modeled by the same reciprocal evolution model of [18] were studied in
[16]. This is an important topic in the theory of reciprocal processes [9]. In the following,
Markov sequences modeled by the same CML evolution model (2.17) are studied and deter-
mined. Following the notion of a reciprocal transition density derived from a Markov transition
density [9], a CML evolution model induced by a Markov model is defined as follows. A Markov
sequence can be modeled by either a Markov model (4.3) or a CML model (2.17). Such a CML

evolution model is called the CML evolution model induced by the Markov evolution model since
parameters of the former can be obtained from those of the latter (see (4.10) or (4.13)–(4.23)).
Definition 4.1.4 is for the Gaussian case.

Definition 4.1.4. Consider a Markov evolution model (4.3) with parameters Mk,k−1, k ∈ [1, N ],
Mk, k ∈ [1, N ]. The CML (evolution) model (2.17) with parameters (Gk,k−1, Gk,N , Gk), k ∈
[1, N − 1], given by (4.4)–(4.6) is called the CML (evolution) model induced by the Markov
(evolution) model or simply the Markov-induced CML (evolution) model.

Corollary 4.1.5. A CML model (2.17) is for a reciprocal sequence iff it can be so induced by
a Markov model (4.3).

Proof. See our proof of Theorem 4.1.3.

By the proof of Theorem 4.1.3, given a reciprocal CML evolution model (2.17) (satisfying
(3.24)), we can choose a boundary condition satisfying (4.2) and then obtain a Markov model
(4.3) for a Markov sequence that obeys the given reciprocal CML evolution model (see (4.13)–
(4.23)). Since parameters of the boundary condition (i.e., G0,N , G0, and GN ) satisfying (4.2)
can take many values, there are many such Markov models and their parameters are given by
(4.13)–(4.17).

The idea of obtaining a reciprocal evolution law from a Markov evolution law was used in
[3], [9], and later for finite-state reciprocal sequences in [41], [27]. Also, [16] studied Markov
sequences with the same reciprocal evolution model of [18]. Our contributions are different.
First, our reciprocal CML model above is from the CM viewpoint. Second, Theorem 4.1.3 not
only induces a reciprocal CML evolution model by a Markov evolution model, but also shows
that every reciprocal CML evolution model can be induced by a Markov evolution model (by
necessity and sufficiency of Theorem 4.1.3). This is important for application of reciprocal se-
quences (i.e., parameter design of a reciprocal CML model) because one usually has an intuitive
understanding of Markov models (Chapter 7). Third, our proof of Theorem 4.1.3 is constructive
and shows how a given reciprocal CML evolution model can be induced by a Markov evolution
model. Fourth, our constructive proof of Theorem 4.1.3 gives all possible Markov evolution
models by which a given reciprocal CML evolution model can be induced. Note that only one
CML evolution model can be induced by a given Markov evolution model (it can be verified
by (4.13)–(4.23)). However, a given reciprocal CML evolution model can be induced by many
different Markov evolution models. This is because (4.2) holds for many different choices of
parameters of the boundary condition (i.e., G0,N , G0, and GN ) each of which leads to a Markov
model with parameters given by (4.13)–(4.17) (see the proof of necessity of Theorem 4.1.3).
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4.1.2 Intersections of CM Classes

In some applications sequences with more than one CM property (i.e., belonging to more than
one CM class) are desired. An example is trajectories with waypoint and destination infor-
mation. A CML sequence can be used for modeling trajectories with destination information
(Chapter 7). Assume not only the destination density (at time N) but also the density of the
state at a time k2(< N) is known (i.e., waypoint information). First, consider only the way-
point information at k2 (without destination information). In other words, we know the state
density at k2 but not after. With a CM evolution law between 0 and k2, such trajectories can be
modeled as a [0, k2]-CML sequence. Now, consider only the destination information (density)
without waypoint information. Such trajectories can be modeled as a CML sequence. Then,
trajectories with waypoint and destination information can be modeled as a sequence being both
[0, k2]-CML and CML, denoted as CML ∩ [0, k2]-CML. In other words, the sequence has both
the CML property and the [0, k2]-CML property. Studying the evolution of other sequences be-
longing to more than one CM class, for example CML∩ [k1, N ]-CMF , is also useful for studying
reciprocal sequences. The NG reciprocal sequence is equivalent to CML ∩ CMF (Chapter 3).
Proposition 4.1.6 below presents a dynamic model of CML ∩ [k1, N ]-CMF sequences, based on
which one can see a full spectrum of models from a CML sequence to a reciprocal sequence.

Proposition 4.1.6. A ZMNG [xk] is CML ∩ [k1, N ]-CMF iff it obeys (2.17) and (2.19) with
(∀k ∈ [k1 + 1, N − 2])

G−1k Gk,N = G′k+1,kG
−1
k+1Gk+1,N (4.24)

Proof. A ZMNG CML sequence has a CML model (2.17) and (2.19) (Theorem 2.2.6). Also, a
NG sequence is [k1, N ]-CMF iff its C−1 has the [k1, N ]-CMF form (Corollary 3.1.13). Then, a
sequence is CML ∩ [k1, N ]-CMF iff it obeys (2.17) and (2.19), where C−1 of the sequence has
the [k1, N ]-CMF form, which is equivalent to (4.24) (see Appendix B.1 for calculation of C−1

in terms of parameters of a CML model).

Proposition 4.1.6 shows how models change from a CML model to a reciprocal CML model
for k1 = 0 (compare (4.24) and (3.24) (for c = N)). Note that CML and CML ∩ [k1, N ]-CMF ,
k1 ∈ [N − 2, N ] are equivalent (Subsection 2.1.1).

Following the idea of the proof of Proposition 4.1.6, we can obtain models for intersections
of different CM classes, for example CMc ∩ [k1, k2]-CMc ∩ [m1,m2]-CMc sequences. However,
the above approach does not lead to simple results in some cases, e.g., CML ∩ [0, k2]-CML

sequences. A different way of obtaining a model for CML ∩ [0, k2]-CML sequences is presented
in Proposition 4.1.7.

Proposition 4.1.7. A ZMNG [xk] is CML ∩ [0, k2]-CML iff

xk = Gk,k−1xk−1 +Gk,k2xk2 + ek, k ∈ [1, k2 − 1] (4.25)

xk2 = ek2 , x0 = G0,k2xk2 + e0 (4.26)

xN =

k2∑
i=0

GN,ixi + eN (4.27)

xk = Gk,k−1xk−1 +Gk,NxN + ek, k ∈ [k2 + 1, N − 1] (4.28)

where [ek] (Cov(ek) = Gk) is a zero-mean white NG sequence,

G′N,jG
−1
N GN,i = 0 (4.29)

G−1l Gl,k2 = G′l+1,lG
−1
l+1Gl+1,k2 +G′N,lG

−1
N GN,k2 (4.30)

j = 0, . . . , k2 − 3, i = j + 2, . . . , k2 − 1, and l = 0, . . . , k2 − 2.
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Proof. Necessity: Let [xk] be a ZMNG CML ∩ [0, k2]-CML sequence. Let p(·) and p(·|·) be its
density and conditional density, respectively. Then,

xk2 ∼ p(xk2) (4.31)

x0 ∼ p(x0|xk2) (4.32)

Since [xk] is CML ∩ [0, k2]-CML, it is [0, k2]-CML. Thus, for k ∈ [1, k2 − 1],

xk ∼ p(xk|x0, . . . , xk−1, xk2) = p(xk|xk−1, xk2) (4.33)

Also, since [xk] is CML, for k ∈ [k2 + 1, N ],

xN ∼ p(xN |x0, . . . , xk2) (4.34)

xk ∼ p(xk|x0, . . . , xk−1, xN ) = p(xk|xk−1, xN ) (4.35)

According to (4.31)–(4.32), we have xk2 = ek2 and x0 = G0,k2xk2+e0, where e0 and ek2 are un-
correlated ZMNG with nonsingular covariances G0 and Gk2 , G0,k2 = C0,k2C

−1
k2

, Gk2 = Ck2 , G0 =

C0 − C0,k2C
−1
k2
C ′0,k2 , and Cl1,l2 is the covariance function of [xk]. For k ∈ [1, k2 − 1], by (4.33),

we have xk = Gk,k−1xk−1 + Gk,k2xk2 + ek, Gk = Cov(ek) (Theorem 2.2.6), [Gk,k−1, Gk,k2 ] =

[Ck,k−1, Ck,k2 ]

[
Ck−1 Ck−1,k2
Ck2,k−1 Ck2

]−1
, and Gk = Ck − [Ck,k−1, Ck,k2 ]

[
Ck−1 Ck−1,k2
Ck2,k−1 Ck2

]−1
·[Ck,k−1, Ck,k2 ]′

For k ∈ [k2 + 1, N ], by (4.34), we have xN =
∑k2

i=0GN,ixi+ eN , GN = Cov(eN ), and

[GN,0, GN,1, . . . , GN,k2 ] = C[N+1:N+1,1:k2+1](C[1:k2+1,1:k2+1])
−1

GN = CN − C[N+1:N+1,1:k2+1](C[1:k2+1,1:k2+1])
−1C ′[N+1:N+1,1:k2+1]

Here, C[r1:r2,c1:c2] denotes the submatrix of the covariance matrix C of [xk] including the block
rows r1 to r2 and the block columns c1 to c2.

1

By (4.35), we have xk = Gk,k−1xk−1 +Gk,NxN + ek, k ∈ [k2 + 1, N − 1], Gk = Cov(ek), and

[Gk,k−1, Gk,N ] = [Ck,k−1, Ck,N ]

[
Ck−1 Ck−1,N
CN,k−1 CN

]−1
Gk = Ck − [Ck,k−1, Ck,N ]

[
Ck−1 Ck−1,N
CN,k−1 CN

]−1
[Ck,k−1, Ck,N ]′

In the above, [ek] is a zero-mean white NG sequence with covariances Gk.

Now we show that (4.29)–(4.30) hold. We construct C−1 of the whole sequence [xk] and
obtain (4.29)–(4.30) from the fact that C−1 is both CML and [0, k2]-CML. [xk]k20 obeys (4.25)–
(4.26). So, by Theorem 2.2.6, [xk]k20 is CML. Then, by Theorem 2.3.5, (C[1:k2+1,1:k2+1])

−1 is
CML for every value of parameters of (4.25)–(4.26) (i.e., C−1 is [0, k2]-CML). C−1 of [xk] is
calculated by stacking (4.25)–(4.28) as follows. We have

Gx = e (4.36)

where x , [x′0, x
′
1, . . . , x

′
N ]′, e , [e′0, e

′
1, . . . , e

′
N ]′, G =

[
G11 0
G21 G22

]
,

1Note that C is an (N + 1)× (N + 1) matrix for a scalar sequence.
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G21 =


0 · · · 0 −Gk2+1,k2

0 · · · 0 0
...

...
...

...
−GN,0 · · · −GN,k2−1 −GN,k2



G11 =



I 0 0 · · · 0 −G0,k2

−G1,0 I 0 · · · 0 −G1,k2

0 −G2,0 I 0 · · · −G2,k2
...

...
...

...
...

...
0 0 · · · −Gk2−1,k2−2 I −Gk2−1,k2
0 0 0 · · · 0 I



G22 =


I 0 · · · 0 −Gk2+1,N

−Gk2+2,k2+1 I 0 · · · −Gk2+2,N
...

...
...

...
...

0 · · · −GN−1,N−2 I −GN−1,N
0 · · · 0 0 I


Then,

C−1 = G′G−1G (4.37)

whereG = diag(G0, G1, . . . , GN ). Since [xk] is CML, C−1 has the CML form, which is equivalent
to (4.29)–(4.30).

Sufficiency: We need to show that a sequence modeled by (4.25)-(4.30) is CML ∩ [0, k2]-
CML, that is, its C−1 has both CML and [0, k2]-CML forms. Since [xk]k20 obeys (4.25)–(4.26),
(C[1:k2+1,1:k2+1])

−1 has the CML form for every choice of parameters of (4.25)–(4.26) (Theorem
2.2.6 and Theorem 2.3.5). So, [xk] governed by (4.25)-(4.30) is [0, k2]-CML. Also, C−1 can be
calculated by (4.37). It can be seen that (4.29)–(4.30) is equivalent to C−1 having the CML

form. Thus, a sequence modeled by (4.25)-(4.30) is CML ∩ [0, k2]-CML. The Gaussianity of
[xk] follows clearly from linearity of (4.25)-(4.28). Also, [xk] is nonsingular due to (4.37), the
nonsingularity of G, and the positive definiteness of G.

4.2 Representations of CM and Reciprocal Sequences

A representation of NG continuous-time CM processes in terms of a Wiener process and an
uncorrelated NG vector was presented in [29]. Inspired by [29], we show that a NG CMc

sequence can be represented by a sum of a NG Markov sequence and an uncorrelated NG vector.
We also show how to use a NG Markov sequence and an uncorrelated NG vector to construct
a NG CMc sequence. This is useful for construction of a CML/CMF model in application.

Proposition 4.2.1. A ZMNG [xk] is CMc iff it can be represented as

xk = yk + Γkxc, k ∈ [0, N ] \ {c} (4.38)

where [yk]\{yc} 2 is a ZMNG Markov sequence, xc is a ZMNG vector uncorrelated with [yk]\{yc},
and Γk are some matrices.

2For c = N , [yk] \ {yc} = [yk]N−1
0 , and for c = 0, [yk] \ {yc} = [yk]N1 .
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Proof. Let c = N . Necessity: It is shown that a ZMNG CML [xk] can be represented as (4.38).
[xk] obeys

xk = Gk,k−1xk−1 +Gk,NxN + ek, k ∈ [1, N − 1] (4.39)

x0 = G0,NxN + e0 (4.40)

xN = eN (4.41)

where [ek] (Gk = Cov(ek)) is zero-mean white NG.

According to (4.40), we consider y0 = e0 and Γ0 = G0,N . So, x0 = y0 + Γ0xN . For
k ∈ [1, N − 1], we have

xk = Gk,k−1xk−1 +Gk,NxN + ek

= Gk,k−1(yk−1 + Γk−1xN ) +Gk,NxN + ek

= Gk,k−1yk−1 + ek + (Gk,k−1Γk−1 +Gk,N )xN

By induction, [xk] can be represented as xk = yk +ΓkxN , k ∈ [0, N−1], where for k ∈ [1, N−1],
yk = Uk,k−1yk−1 + ek, Uk,k−1 = Gk,k−1, Γk = Gk,k−1Γk−1 + Gk,N , y0 = e0, Γ0 = G0,N , and xN
is uncorrelated with the Markov sequence [yk]N−10 , because xN is uncorrelated with [ek]N−10 .

What remains is to show the nonsingularity of [yk]N−10 and the random vector xN . Since
the sequence [xk] is nonsingular, xN is nonsingular. Also, we have y0 = e0. In addition, the
covariances Gk, k ∈ [0, N ], are nonsingular. Thus, Uk = Cov(ek), k ∈ [0, N − 1], are all non-
singular. Similar to (4.37), we have Cy = Cov(y) = W−1UW ′−1, where y = [y′0, y

′
1, . . . , y

′
N−1]

′,

U = diag(U0, U1, . . . , UN−1) and W is a nonsingular matrix. Therefore, [yk]N−10 is nonsingular
because U and W are nonsingular.

Sufficiency: We show that given a ZMNG Markov sequence [yk]N−10 uncorrelated with a
ZMNG vector xN , [xk] constructed as xk = yk +ΓkxN , k ∈ [0, N−1] is a ZMNG CML sequence,
where Γk are some matrices. Therefore, it suffices to show that [xk] obeys (2.17) and (2.19).
Since [yk]N−10 is a ZMNG Markov sequence, it obeys (Lemma 4.1.2) yk = Uk,k−1yk−1 + ek,
k ∈ [1, N − 1], y0 = e0, where [ek]N−10 is a zero-mean white NG sequence with covariances Uk.

We have x0 = y0 + Γ0xN . So, consider G0,N = Γ0. Then, for k ∈ [1, N − 1], we have

xk = yk + ΓkxN = Uk,k−1yk−1 + ek + ΓkxN

= Uk,k−1xk−1 + (Γk − Uk,k−1Γk−1)xN + ek (4.42)

We consider Gk,k−1 = Uk,k−1 and Gk,N = Γk − Uk,k−1Γk−1. Covariances Uk, k ∈ [0, N − 1]
and Cov(xN ) are nonsingular. So, covariances Gk = Cov(ek), k ∈ [0, N ] (let eN = xN ), are all
nonsingular. So, [xk] is nonsingular (it can be shown similar to (4.37)). Thus, by (4.42), it can
be seen that [xk] obeys (2.17) (note that [ek] is white). So, [xk] is a ZMNG CML sequence.

For c = 0 we have a parallel proof. So, we skip the details and only present some results
required later. Necessity: Let c = 0. The proof is based on the CMF model. Let [xk] be a
ZMNG CMF sequence governed by (2.17)–(2.18) (for c = 0). It is possible to represent [xk] as
(4.38) with the Markov sequence [yk]N1 governed by yk = Uk,k−1yk−1 + ek, k ∈ [2, N ], where for
k ∈ [2, N ], Uk,k−1 = Gk,k−1, Γ1 = 2G1,0, Γk = Gk,k−1Γk−1 +Gk,0.

Sufficiency: Let [yk]N1 be a ZMNG Markov sequence governed by yk = Uk,k−1yk−1 + ek,
k ∈ [2, N ], where [ek]N1 (let y1 = e1) is a zero-mean white NG sequence with covariances Uk.
Also, let x0 be a ZMNG vector uncorrelated with the sequence [yk]N1 . It can be shown that
the sequence [xk] constructed by (4.38) obeys (2.17)–(2.18) (for c = 0), where for k ∈ [2, N ],
Gk,k−1 = Uk,k−1, G1,0 = 1

2Γ1, and Gk,0 = Γk − Uk,k−1Γk−1.

Proposition 4.2.1 makes a key fact behind the NG CMc sequence clear, that is, every NG
CMc sequence can be represented as a sum of two components: a NG Markov sequence and
an uncorrelated NG vector. As a result, it provides some insight and guideline for design
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of CMc models in application. Below we explain the idea for designing a CML model for
motion trajectory modeling with destination information. A CML model is more general than a
reciprocal CML model. Consequently, the following guideline for CML model design includes the
approach of Theorem 4.1.3 as a special case. The guideline is as follows. First, a Markov model
(e.g., a nearly constant velocity model) with the given origin distribution (without considering
other information) is considered. The sequence modeled by this model is [yk]N−10 in (4.38).
Assume the destination (distribution of xN ) is known. Then, based on Γk, the Markov sequence
[yk]N−10 is modified to satisfy the available information in the problem (e.g., about the general
form of trajectories) leading to the desired trajectories [xk] which end up at the destination.
A direct attempt to design parameters of a CML model for this problem is hard. However,
the above guideline makes parameter design easier and intuitive. In addition, one can learn
Γk (which shows the impact of the destination) from a set of trajectories. In the following,
the representation of Proposition 4.2.1 is studied further to provide insight and tools for its
application.

The following representation of CMc matrices is a by-product of Proposition 4.2.1.

Corollary 4.2.2. Let C be an (N + 1)d× (N + 1)d positive definite block matrix (with (N + 1)
blocks in each row/column and each block with dimension d× d). C−1 is CMc iff

C = B + ΓDΓ′ (4.43)

where D is a d × d positive definite matrix and (i) for c = N , B =

[
B1 0
0 0

]
, Γ =

[
S
I

]
,

(ii) for c = 0, B =

[
0 0
0 B1

]
, Γ =

[
I
S

]
, where (B1)

−1 is Nd × Nd block tri-diagonal, S is

Nd× d, and I is the d× d identity matrix.

Proof. Let c = N . Necessity: By Theorem 2.3.5, for every CML matrix C−1, there exists a
ZMNG CML sequence [xk] with the covariance C. By Proposition 4.2.1, we have

x = y + ΓxN (4.44)

where x , [x′0, x
′
1, . . . , x

′
N−1, x

′
N ], y , [y′0, y

′
1, . . . , y

′
N−1]

′, y , [y′, 0]′, S , [Γ′0,Γ
′
1, . . . ,Γ

′
N−1]

′,

Γ , [S′, I]′, and [yk]N−10 is a ZMNG Markov sequence uncorrelated with the ZMNG vector xN .
Then, by (4.44), we have

Cov(x) = Cov(y) + ΓCov(xN )Γ′ (4.45)

because y and xN are uncorrelated. Then, (4.45) leads to (4.43), where C , Cov(x), B ,[
B1 0
0 0

]
= Cov(y), B1 , Cov(y), D , Cov(xN ), and by Remark 3.1.16, (B1)

−1 is block

tri-diagonal. Therefore, for every CML matrix C−1 we have (4.43).

Sufficiency: Let (B1)
−1 be an Nd×Nd block tri-diagonal matrix, D be a d×d positive definite

matrix, and S be an Nd× d matrix. By Theorem 2.3.5, for every Nd×Nd block tri-diagonal
matrix (B1)

−1, there exists a Gaussian Markov sequence [yk]N−10 with (Cy)−1 = (B1)
−1, where

Cy = Cov(y) and y = [y′0, y
′
1, . . . , y

′
N−1]

′. Also, given a d × d positive definite matrix D, there

exists a Gaussian vector xN with Cov(xN ) = D. Let xN and [yk]N−10 be uncorrelated. By
Proposition 4.2.1, [xk] constructed by (4.44) is a CML sequence. Also, by Theorem 2.3.5, C−1

of [xk] is a CML matrix. With C , Cov(x), (4.43) follows from (4.45). Thus, for every block
tri-diagonal matrix (B1)

−1, every positive definite matrix D, and every matrix S, C−1 is a CML

matrix. The proof for c = 0 is similar.

Corollary 4.2.3. For every CMc sequence, the representation (4.38) is unique.
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Proof. Let c = N , and [xk] be a CML sequence governed by (2.17) with parameters (Gk,k−1, Gk,N

, Gk), k ∈ [1, N − 1], and (2.19) with the parameters (G0,N , G0, GN ). By Proposition 4.2.1, [xk]
can be represented as (4.38). Parameters (denoted by Uk,k−1, k ∈ [1, N − 1], Uk, k ∈ [0, N − 1])
of the Markov model (4.3) of [yk]N−10 , covariance of xN denoted by D, and the matrices Γk,
k ∈ [0, N − 1], can be calculated in terms of the parameters of the CML model as follows (see
the proof of Proposition 4.2.1):

D = GN , Γ0 = G0,N (4.46)

Uk = Gk, k ∈ [0, N − 1] (4.47)

Uk,k−1 = Gk,k−1, k ∈ [1, N − 1] (4.48)

Γk = Gk,k−1Γk−1 +Gk,N , k ∈ [1, N − 1] (4.49)

Now, assume that there exists a different representation of the form (4.38) for [xk]. Denote
parameters of the corresponding Markov model by Ũk,k−1, k ∈ [1, N − 1], Ũk, k ∈ [0, N − 1], and
the weight matrices by Γ̃k, k ∈ [0, N − 1] (covariance of xN is D). By the proof of Proposition
4.2.1, parameters of the corresponding CML model are

G0,N = Γ̃0, GN = D (4.50)

Gk,k−1 = Ũk,k−1, k ∈ [1, N − 1] (4.51)

Gk,N = Γ̃k − Ũk,k−1Γ̃k−1, k ∈ [1, N − 1] (4.52)

Gk = Ũk, k ∈ [0, N − 1] (4.53)

Parameters of a CML model of a CML sequence are unique (Appendix B.1). Comparing
(4.46)-(4.49) and (4.50)-(4.53), it can be seen that the parameters Ũk,k−1, k ∈ [1, N −1], Ũk, k ∈
[0, N − 1], and Γ̃k, k ∈ [0, N − 1], are the same as Uk,k−1, k ∈ [1, N − 1], Uk, k ∈ [0, N − 1],
and Γk, k ∈ [0, N − 1]. In other words, parameters of the representation (4.38) are unique.
Uniqueness of (4.38) for c = 0 can be proven similarly.

Based on a valuable observation, [29] discussed the relationship between Gaussian CM and
Gaussian reciprocal processes. Then, based on the obtained relationship, [29] presented a repre-
sentation of NG reciprocal processes. It was shown in Chapter 3 that the relationship between
Gaussian CM and Gaussian reciprocal processes presented in [29] was incomplete, that is, the
presented condition was not sufficient for a Gaussian process to be reciprocal (although [29]
stated that it was sufficient, which has not been corrected so far). Then, the relationship be-
tween CM and reciprocal processes for the general (Gaussian/non-Gaussian) case was presented
(Theorem 3.1.5). In addition, it was shown that CML in Theorem 3.1.5 was the missing part in
the results of [29]. Consequently, it can be seen that the representation presented in [29] is not
sufficient for a NG process to be reciprocal and its missing part is the representation of CML

processes.

In the following, we present a simple necessary and sufficient representation of NG reciprocal
sequences from the CM viewpoint. It demonstrates the significance of studying reciprocal
sequences from the CM viewpoint.

Proposition 4.2.4. A ZMNG [xk] is reciprocal iff it can be represented as both

xk = yLk + ΓL
kxN , k ∈ [0, N − 1] (4.54)

xk = yFk + ΓF
k x0, k ∈ [1, N ] (4.55)

where [yLk ]N−10 and [yFk ]N1 are ZMNG Markov sequences, xN and x0 are ZMNG vectors uncor-
related with [yLk ]N−10 and [yFk ]N1 , respectively, and ΓL

k and ΓF
k are some matrices.
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Proof. A NG [xk] is reciprocal iff it is both CML and CMF (Theorem 2.3.5). On the other
hand, [xk] is CML (CMF ) iff it can be represented as (4.54) ((4.55)) (Proposition 4.2.1). So,
[xk] is reciprocal iff it can be represented as both (4.54) and (4.55).

By (4.54)–(4.55) the relation between sample paths of the two Markov sequences is yLk +
ΓL
kxN = yFk + ΓF

k x0, k ∈ [1, N − 1], yL0 + ΓL
0 xN = x0, xN = yFN + ΓF

Nx0.

The following representation of cyclic block tri-diagonal matrices is a by-product of Propo-
sition 4.2.4.

Corollary 4.2.5. Let C be an (N + 1)d× (N + 1)d positive definite block matrix (with (N + 1)
blocks in each row/column and each block with dimension d × d). Then, C−1 is cyclic block
tri-diagonal iff

C = BL + ΓLDL(ΓL)′ = BF + ΓFDF (ΓF )′ (4.56)

where DL and DF are d × d positive definite matrices, BL =

[
B1 0
0 0

]
, ΓL =

[
S1
I

]
, BF =[

0 0
0 B2

]
, ΓF =

[
I
S2

]
, (B1)

−1 and (B2)
−1 are Nd × Nd block tri-diagonal, S1 and S2 are

Nd× d, and I is the d× d identity matrix.

Proof. Necessity: Let C−1 be a positive definite cyclic block tri-diagonal matrix. So, C−1 is
CML and CMF . Then, by Corollary 4.2.2 we have (4.56). Sufficiency: Let a positive definite
matrix C be written as (4.56). By Corollary 4.2.2, C−1 is CML and CMF and consequently
cyclic block tri-diagonal.

The reciprocal sequence is an important special CML (CMF ) sequence. So, it is important
to know under what conditions the representation (4.38) is for a reciprocal sequence.

Proposition 4.2.6. Let [yk]\{yc}, c ∈ {0, N}, be a ZMNG Markov sequence, yk = Uk,k−1yk−1+
ek, k ∈ [1, N ] \ {a},

a =

{
1 if c = 0
N if c = N

, r =

{
1 if c = 0
N − 1 if c = N

where [ek] \ {ec} is a zero-mean white NG sequence with covariances Uk (for c = 0 we have
e1 = y1; for c = N we have e0 = y0). Also, let xc be a ZMNG vector with a covariance Cc

uncorrelated with the Markov sequence [yk] \ {yc}. Let [xk] be constructed as

xk = yk + Γkxc, k ∈ [0, N ] \ {c} (4.57)

where Γk are some matrices. Then, [xk] is reciprocal iff ∀k ∈ [1, N − 1] \ {r},

U−1k (Γk − Uk,k−1Γk−1) = U ′k+1,kU
−1
k+1(Γk+1 − Uk+1,kΓk) (4.58)

Moreover, [xk] is Markov iff in addition to (4.58), we have

(U0)
−1Γ0 = U ′1,0U

−1
1 (Γ1 − U1,0Γ0), (for c = N) (4.59)

ΓN − UN,N−1ΓN−1 = 0, (for c = 0) (4.60)

Proof. By Proposition 4.2.1, [xk] constructed by (4.57) is a CMc sequence. Parameters of the
CML model (i.e., c = N) are calculated by (4.50)–(4.53) ((Ũk,k−1, k ∈ [1, N−1], Ũk, k ∈ [0, N−1]
and Γ̃k, k ∈ [0, N − 1] are replaced by Uk,k−1, k ∈ [1, N − 1], Uk, k ∈ [0, N − 1], and Γk, k ∈
[0, N − 1]). Parameters of the CMF model (i.e., c = 0) are calculated as Gk,k−1 = Uk,k−1,
k ∈ [2, N ], Gk = Uk, k ∈ [1, N ], G1,0 = 1

2Γ1, G0 = D, Gk,0 = Γk−Uk,k−1Γk−1, k ∈ [2, N ]. Then,
by Proposition 3.1.17, the CMc sequence [xk] is reciprocal iff (4.58) holds. Also, [xk] is Markov
iff in addition to (4.58), (4.59) holds for c = N and (4.60) for c = 0.
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Due to their importance in design of CMc dynamic models, the main elements of represen-
tation (4.38) are formally defined.

Definition 4.2.7. In (4.38), [yk]\{yc} is called an underlying Markov sequence and its Markov
evolution model (i.e., its Markov model without considering the initial condition) is called an
underlying Markov (evolution) model. Also, [xk] is called a CMc sequence constructed from the
underlying Markov sequence and its CMc evolution model (i.e., the CMc model of [xk] without
considering its boundary condition) is called a CMc (evolution) model constructed from the
underlying Markov (evolution) model.

Corollary 4.2.8. For CMc models, having the same underlying Markov evolution model is
equivalent to having the same Gk,k−1, Gk, ∀k ∈ [1, N ] \ {a} (a = N for c = N , and a = 1 for
c = 0).

Proof. Given a Markov evolution model with parameters Uk,k−1, Uk, k ∈ [1, N ] \ {a}, by our
proof of Proposition 4.2.1, parameters of a CMc evolution model constructed from the Markov
evolution model are Gk,k−1 = Uk,k−1, Gk,c = Γk−Uk,k−1Γk−1, Gk = Uk, k ∈ [1, N ]\{a}. Clearly
all CMc models so constructed have the same Gk,k−1, Gk, k ∈ [1, N ] \ {a}.

For a CMc evolution model with the parameters Gk,k−1, Gk,c, Gk, ∀k ∈ [1, N ] \ {a}, param-
eters of its underlying Markov evolution model are uniquely determined as (see the proof of
Proposition 4.2.1)

Uk,k−1 = Gk,k−1, Uk = Gk, k ∈ [1, N ] \ {a} (4.61)

So, CMc evolution models with the same Gk,k−1, Gk, ∀k ∈ [1, N ] \ {a}, are constructed from
the same underlying Markov evolution model.

In the following, we try to distinguish between two concepts which are both useful in the
application of CML and reciprocal sequences: 1) a CML evolution model induced by a Markov
evolution model (Definition 4.1.4) and 2) a CML evolution model constructed from its underlying
Markov evolution model (Definition 4.2.7).

By Theorem 4.1.3, a CML evolution model induced by a Markov evolution model is actually
a reciprocal CML evolution model. In other words, non-reciprocal CML evolution models can
not be so induced (with (4.4)–(4.6)) by any Markov evolution model. By Corollary 4.1.5, every
reciprocal CML evolution model can be induced by a Markov evolution model. However, the
corresponding Markov evolution model is not unique. In addition, every Markov sequence
modeled by a Markov evolution model is also modeled by the CML evolution model induced by
the Markov evolution model.

Every CML evolution model can be constructed from its underlying Markov evolution model,
which is unique (Corollary 4.2.3). So, an underlying Markov evolution model plays a funda-
mental role in constructing a CML evolution model. However, an underlying Markov sequence
is not modeled by the constructed CML evolution model.

The underlying Markov evolution model of a reciprocal CML evolution model induced by a
Markov evolution model is determined as follows. Let Mk,k−1,Mk, ∀k ∈ [1, N ], be the param-
eters of a Markov evolution model (4.3). Parameters of the reciprocal CML evolution model
induced by this Markov evolution model are calculated by (4.4)–(4.6). Then, by (4.61), pa-
rameters of the underlying Markov evolution model denoted by (Uk,k−1, Uk), ∀k ∈ [1, N − 1],
are

Uk,k−1 = Mk,k−1 − (UkM
′
N |kC

−1
N |k)MN |k−1 (4.62)

Uk = (M−1k +M ′N |kC
−1
N |kMN |k)−1 (4.63)

where MN |k = MN,N−1 · · ·Mk+1,k for k ∈ [0, N − 1], CN |k =
∑N−1

n=k MN |n+1Mn+1M
′
N |n+1 for

k ∈ [1, N − 1], and MN |N = I.
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Chapter 5

Singular/Nonsingular Gaussian CM Sequences

In this chapter, we 1) obtain dynamic models and characterizations of the general Gaussian
CM (including reciprocal and Markov) sequence to unify singular and nonsingular Gaussian
CM sequences theoretically, 2) provide tools for application of (singular/nonsingular) Gaussian
CM sequences, e.g., in trajectory modeling with destination information, 3) emphasize the
significance of studying reciprocal sequences from the CM viewpoint, e.g., by obtaining two
dynamic models for the general (singular/nonsingular) Gaussian reciprocal sequence from the
CM viewpoint.

For a matrix P , Pi,j denotes the (block) entry at (block) row i+ 1 and (block) column j + 1
of P . Also, Pi , Pi,i. For example, C is the covariance matrix of the whole sequence [xk], Ci,j

is the covariance function1, and Ci , Ci,i. By the “Gaussian sequence” we mean the general
singular/nonsingular Gaussian sequence. Otherwise, we make it explicit if we only mean the
NG sequence. The abbreviation ZMG is used for “zero-mean Gaussian”.

5.1 Dynamic Model and Characterization of CMc Sequences

5.1.1 Dynamic Model

The following theorem presents a model of ZMG CMc sequences called a CMc model. A
Gaussian sequence is CMc iff its zero-mean part is CMc (Chapter 2). So, based on Theorem
5.1.1, a model of nonzero-mean Gaussian CMc sequences can be easily obtained.

Theorem 5.1.1. A ZMG [xk] is CMc, c ∈ {0, N}, iff it obeys

xk = Gk,k−1xk−1 +Gk,cxc + ek, k ∈ [1, N ] \ {c} (5.1)

where [ek] is a zero-mean white Gaussian sequence with covariances Gk, and boundary condition2

xc = ec, x0 = G0,cxc + e0 (for c = N) (5.2)

or equivalently3

x0 = e0, xc = Gc,0x0 + ec (for c = N) (5.3)

Proof. Necessity: We first prove it for c = N (i.e., CML). Let [xk] be a ZMG CML sequence
with covariance function Cl1,l2 . It is shown that [xk] is modeled by (5.1) along with (5.2) or
(5.3). First, we obtain boundary condition (5.3). Let x0 = e0, where e0, a ZMG vector with

1Note that i, j ∈ [0, N ], but matrix C has (block) rows (columns) 1 to N + 1.
2Note that (5.2) means that for c = N we have xN = eN and x0 = G0,NxN + e0; for c = 0 we have x0 = e0.

Likewise for (5.3).
3e0 and eN in (5.2) are not necessarily the same as e0 and eN in (5.3). Just for simplicity we use the same

notation.
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covariance C0, is defined for notational unification. The conditional expectation E[xN |x0] is the
a.s. unique Borel measurable function of x0 for which

E[(xN − E[xN |x0])g(x0)] = 0 (5.4)

for every Borel measurable function g.

We show now that there exists B for which E[(xN −Bx0])g(x0)] = 0 for every Borel measur-
able function g. Then, by the uniqueness of the conditional expectation in (5.4), we conclude
E[xN |x0] = Bx0 [57], [91].

Let B satisfy the following normal equation

BC0 = CN,0 (5.5)

which always has a solution B = CN,0(C0)
+ + S(I − C0(C0)

+) for any matrix S, where the
superscript “+” means the Moore-Penrose inverse (MP-inverse) [1]. Since [xk] is zero-mean,
(5.5) can be rewritten as

E[(xN −Bx0)x′0] = 0 (5.6)

which means xN −Bx0 is uncorrelated with (and orthogonal to, because [xk] is zero-mean) x0.
Due to the Gaussianity of [xk], xN −Bx0 and x0 are independent and we have

E[(xN −Bx0)g(x0)] = 0 (5.7)

for every Borel measurable function g. Comparing (5.4) and (5.7), and by the uniqueness of
the conditional expectation, we have E[xN |x0] = Bx0 for B given above (i.e., solution of (5.5)).
Also, since Cov((I − C0(C0)

+)x0) = 0, we have (I − C0(C0)
+)x0

a.s.
= E[(I − C0(C0)

+)x0] = 0.
Therefore, E[xN |x0] = CN,0(C0)

+x0. We define eN as eN = xN − CN,0(C0)
+x0. By (5.6), eN

and e0 are uncorrelated. Also, the covariance of eN is CN − CN,0(C0)
+C ′N,0.

We can obtain (5.2) as xN = eN and x0 = C0,N (CN )+xN + e0, where eN and e0 are inde-
pendent ZMG vectors with covariances CN and C0 − C0,N (CN )+(C0,N )′, respectively.

Following a similar argument as above, based on the definition of the conditional expecta-
tion E[xk|yk−1], yk = [x′k, x

′
N ]′, we obtain E[xk|yk−1] = Akyk−1, where Ak = Cxy

k,k−1(C
y
k−1)

+ +

S(I − Cy
k−1(C

y
k−1)

+), Cy
k−1 = Cov(yk−1), and Cxy

k,k−1 = Cov(xk, yk−1). In addition, we have

(I − Cy
k−1(C

y
k−1)

+)yk−1 = 0, a.s., because Cov((I − Cy
k−1(C

y
k−1)

+)yk−1) = 0 and E[(I −
Cy
k−1(C

y
k−1)

+)yk−1] = 0. Thus, we have a.s.

E[xk|yk−1] = Cxy
k,k−1(C

y
k−1)

+yk−1 (5.8)

We define ek, ∀k ∈ [1, N − 1], as

ek = xk − E[xk|xk−1, xN ] (5.9)

where [ek] is a zero-mean white Gaussian sequence (with covariances Ck − Cxy
k,k−1(C

y
k−1)

+

·(Cxy
k,k−1)

′, k ∈ [1, N − 1]), which can be verified as follows. By the definition of the condi-

tional expectation E[xk|[xi]k−10 , xN ], we have

E[(xk − E[xk|[xi]k−10 , xN ])g([xi]
k−1
0 , xN )] = 0 (5.10)

for every bounded Borel measurable function g. Then, by Lemma 2.1.7, (5.10) leads to

E[(xk − E[xk|xk−1, xN ])g([xi]
k−1
0 , xN )] = 0 (5.11)

Since xk−E[xk|xk−1, xN ] is uncorrelated with g([xi]
k−1
0 , xN ), it can be seen from (5.9) that [ek]

is white (E[eke
′
j ] = 0, k 6= j). Thus, given any ZMG CML sequence, its evolution obeys (5.1)

along with (5.2) or (5.3).
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Proof of necessity for c = 0 (i.e., CMF ) is similar. We have x0 = e0, x1 = C1,0(C0)
+x0 + e1,

and xk = Cxy
k,k−1(C

y
k−1)

+yk−1 + ek, k ∈ [2, N ], where G0 = C0, G1 = C1 − C1,0C
+
0 C
′
1,0, and

Gk = Ck − Cxy
k,k−1(C

y
k−1)

+(Cxy
k,k−1)

′, k ∈ [2, N ].

Sufficiency: Our proof of sufficiency is similar to that of the ZMNG CMc model in Chapter
2. From (5.1), we have xk = Gk,jxj + Gk,c|jxc + ek|j , where Gk,j and Gk,c|j can be obtained

from parameters of (5.1), and ek|j is a linear combination of [el]
k
j+1. Since [ek] is white, [el]

k
j+1

(and so ek|j) is uncorrelated with [xk]j0 and xc. So, we have E[xk|[xi]j0, xc] = E[xk|xj , xc]. Then,
by Lemma 2.1.7, [xk] is CMc.

(5.13) and (5.15) (below) are always nonsingular. Then, by (5.12), (5.1)–(5.2) (for every
parameter value) admit a unique covariance function (i.e., a unique sequence). Similarly, (5.1)
and (5.3) admit a unique covariance function for every parameter value (see Lemma 2.2.4).

The boundary conditions (5.2) and (5.3) are equivalent. So, later we only consider one of
them.

Consider (5.1)–(5.2) for c = N . We have

Gx = e (5.12)

where e , [e′0, e
′
1, . . . , e

′
N ]′, x , [x′0, x

′
1, . . . , x

′
N ]′, and G is

I 0 0 · · · 0 −G0,N

−G1,0 I 0 · · · 0 −G1,N

0 −G2,0 I 0 · · · −G2,N
...

...
...

...
...

...
0 0 · · · −GN−1,N−2 I −GN−1,N
0 0 0 · · · 0 I


(5.13)

From (5.12), the covariance matrix of x (i.e., C) is calculated as

C = G−1G(G′)−1 (5.14)

where G = diag(G0, . . . , GN ). Similarly, for c = 0, the covariance is given by (5.14), where
G = diag(G0, . . . , GN ) and G is

I 0 0 · · · 0 0
−2G1,0 I 0 · · · 0 0
−G2,0 −G2,1 I 0 · · · 0

...
...

...
...

...
...

−GN−1,0 0 · · · −GN−1,N−2 I 0
−GN,0 0 0 · · · −GN,N−1 I


(5.15)

By (5.14), we can determine the imposed condition on the parameters of (5.1)–(5.2) due to
a specific singularity. An example is as follows.

Corollary 5.1.2. A ZMG [xk] with covariance function Cl1,l2 is CML with the matrices[
Ck Ck,N

CN,k CN

]
, k ∈ [0, N − 2] (5.16)

being nonsingular iff

xk = Gk,k−1xk−1 +Gk,NxN + ek, k ∈ [1, N − 1] (5.17)

xN = eN , x0 = G0,NxN + e0 (5.18)
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where [ek] is a white Gaussian sequence with covariances Gk, and the matrices[
Pk Pk,N

PN,k PN

]
, k ∈ [0, N − 2] (5.19)

are nonsingular (positive definite4), with P = G−1GG′−1, G = diag(G0, . . . , GN ), and G being
given by (5.13).

Proof. A ZMG [xk] is CML iff we have (5.17)–(5.18). Also, P is the covariance of [xk] (see
(5.14)). So, (5.16) and (5.19) are equal.

By having different values of the parameters, (5.1)–(5.2) can model all Gaussian CMc se-
quences ranging from a nonsingular CMc sequence to a singular CMc sequence a.s. zero through-
out the time interval. For example, let |Gk| = 0, ∀k ∈ [0, N ] (| · | denotes the determinant
operator), and all other parameters of (5.1)–(5.2) be zero. By (5.14), such a CMc model is
for a white sequence with |Ck| = 0, ∀k ∈ [0, N ] (for a scalar-valued sequence, it is actually an
a.s. zero sequence). Another extreme is when all the matrices Gk are nonsingular leading to a
nonsingular Gaussian CMc sequence.

Let [xk] be a ZMG CML sequence. xn and yn−1 = [x′n−1, x
′
N ]′ are a.s. linearly dependent iff

en is a.s. zero (i.e., Cov(en) = 0). It can be verified by (5.9).

Let [xk] be a ZMG CML sequence. xn is a.s. zero (i.e., Cov(xn) = 0) iff both en and
Cxy
n,n−1(C

y
n−1)

+yn−1 are a.s. zero. It is verified as follows. By (5.9), xn is a.s. zero iff we have
a.s.

en + Cxy
n,n−1(C

y
n−1)

+yn−1 = 0 (5.20)

Post-multiplying both sides of (5.20) by e′n and taking expectation, it is concluded that Cov(en) =
0, where the fact that en is orthogonal to xn−1 and xN , has been used (see (5.11)). Then, by
(5.20), we have a.s. Cxy

n,n−1(C
y
n−1)

+yn−1 = 0. Therefore, xn is a.s. zero iff both terms of (5.20)
are a.s. zero.

5.1.2 Characterization

Two characterizations are presented for Gaussian CMc sequences with any kind of singularity.
The first characterization is as follows.

Theorem 5.1.3. A Gaussian [xk] with covariance function Cl1,l2 is CMc, c ∈ {0, N}, iff

Ck,i =
[
Ck,j Ck,c

] [ Cj Cj,c

Cc,j Cc

]+ [
Cj,i

Cc,i

]
(5.21)

∀i, j, k ∈ [0, N ] \ {c}, i < j < k, where the superscript “+” means the MP-inverse.

Proof. A Gaussian sequence is CMc iff its zero-mean part is CMc. Also, a sequence and its zero-
mean part have the same covariance function. So, it suffices to consider zero-mean sequences.

Necessity: Let [xk] be a ZMG CMc sequence with covariance function Cl1,l2 . Define

r(k, j) = xk − E[xk|yj ] (5.22)

∀j, k ∈ [0, N ] \ {c}, j < k, and yj , [x′j , x
′
c]
′. Then, since [xk] is Gaussian, (5.22) leads to (see

(5.8))

r(k, j) = xk −
[
Ck,j Ck,c

] [ Cj Cj,c

Cc,j Cc

]+ [
xj
xc

]
(5.23)

4P is always positive (semi)definite.
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On the other hand, by the definition of the conditional expectation E[xk|[xi]j0, xc], we have

E[(xk − E[xk|[xi]j0, xc])g([xi]
j
0, xc)] = 0 (5.24)

for every Borel measurable function g. Then, by Lemma 2.1.7, we have

E[(xk − E[xk|xj , xc])g([xi]
j
0, xc)] = 0 (5.25)

By (5.25), r(k, j) is uncorrelated with [xi]
j
0 and xc. So, post-multiplying both sides of (5.23) by

x′i, ∀i ∈ [0, j − 1] \ {c}, and taking expectation, we obtain (5.21), where i, j, k ∈ [0, N ] \ {c},
i < j < k.

Sufficiency: Let [xk] be a ZMG sequence with covariance function Cl1,l2 satisfying (5.21),
∀i, j, k ∈ [0, N ] \ {c}, i < j < k. Since [xk] is Gaussian, we have

E[xk|xj , xc] =
[
Ck,j Ck,c

] [ Cj Cj,c

Cc,j Cc

]+ [
xj
xc

]
(5.26)

Define

r(k, j) = xk −
[
Ck,j Ck,c

] [ Cj Cj,c

Cc,j Cc

]+ [
xj
xc

]
(5.27)

where based on (5.21), it is concluded that r(k, j) is uncorrelated with (and since [xk] is zero-
mean, orthogonal to) [xi]

j−1
0 \ {c} (it is seen by post-multiplying both sides of (5.27) by x′i,

∀i ∈ [0, j − 1] \ {c} and taking expectation). In addition, r(k, j) is orthogonal to xj and xc. It
can be verified based on (5.26) and the definition of the conditional expectation E[xk|xj , xc],
where E[(xk − E[xk|xj , xc])g(xj , xc)] = 0 for every Borel measurable function g. Then, due to

the Gaussianity, r(k, j) is independent of [xi]
j
0 and xc, and consequently r(k, j) is uncorrelated

with g([xi]
j
0, xc) for every Borel measurable function g. Thus, by the a.s. uniqueness of the

conditional expectation in (5.24),

E[xk|[xi]j0, xc] =
[
Ck,j Ck,c

] [ Cj Cj,c

Cc,j Cc

]+ [
xj
xc

]
(5.28)

So, by (5.26) and (5.28), ∀j, k ∈ [0, N ] \ {c}, j < k, we have E[xk|[xi]j0, xc] = E[xk|xj , xc].
Then, by Lemma 2.1.7, [xk] is CMc.

The following characterization of the Gaussian CMc sequence is based on the concept of
state in system theory (i.e., Markov property).

Corollary 5.1.4. A Gaussian [xk] is CMc iff [yk] \ {yc} 5 is Markov, where yk , [x′k, x
′
c]
′,∀k ∈

[0, N ] \ {c}.

Proof. It can be verified by Lemma 2.1.7 or Theorem 5.1.1.

5.2 Characterization and Dynamic Model of Reciprocal Sequences

5.2.1 Characterization

In [58] a characterization was presented for the Gaussian reciprocal process with a special kind
of nonsingularity called the second-order nonsingularity. [xk] is second-order nonsingular if the
covariance of y = [x′m, x

′
n]′ for every n,m ∈ [0, N ] is nonsingular. Inspired by [58], in Theorem

5.2.2 below, a characterization of the Gaussian reciprocal sequence is presented. First, we need
a corollary of Theorem 5.1.3. By definition, [xk] is [k1, k2]-CMc iff [xk]k2k1 is CMc. So, we have
the following corollary.

5For c = N , [yk] \ {yc} , [yk]N−1
0 , and for c = 0, [yk] \ {yc} , [yk]N1 .
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Corollary 5.2.1. A Gaussian [xk] with covariance function Cl1,l2 is [k1, k2]-CMc, c ∈ {k1, k2},
iff

Ck,i =
[
Ck,j Ck,c

] [ Cj Cj,c

Cc,j Cc

]+ [
Cj,i

Cc,i

]
(5.29)

∀i, j, k ∈ [k1, k2] \ {c}, i < j < k.

Theorem 5.2.2. A Gaussian [xk] with covariance function Cl1,l2 is reciprocal iff

Ck,i =
[
Ck,j Ck,l

] [ Cj Cj,l

Cl,j Cl

]+ [
Cj,i

Cl,i

]
(5.30)

(a) ∀i, j, k, l ∈ [0, N ] with l < i < j < k, and (b) ∀i, j, k ∈ [0, N − 1] with i < j < k < l = N (or
equivalently (a) ∀i, j, k, l ∈ [0, N ] with i < j < k < l, and (b) ∀i, j, k ∈ [1, N ] with 0 = l < i <
j < k).

Proof. A proof is based on Theorem 3.1.5 and Corollary 5.2.1.

First, the characterization presented in [58] only works for second-order nonsingular Gaussian
reciprocal sequences. The characterization of Theorem 5.2.2 works for all Gaussian reciprocal
sequences. Second, Theorem 3.1.5 implies the equality of two sets of sequences, i.e., ∩Nk1=0[k1, N ]-

CMF ∩Nk2=0 [0, k2]-CML = ∩Nk1=0[k1, N ]-CMF ∩ CML. Accordingly, and by Corollary 5.2.1,
for a Gaussian sequence (5.30) holds for (a) ∀i, j, k, l ∈ [0, N ] with l < i < j < k, and (b)
∀i, j, k, l ∈ [0, N ] with i < j < k < l iff (5.30) holds for (a) ∀i, j, k, l ∈ [0, N ] with l < i < j < k,
and (b) ∀i, j, k ∈ [0, N−1] with i < j < k < l = N . Although the two conditions are equivalent,
the latter is simpler (and more revealing) than the former. It seems [58] was not aware of the
simpler condition. We obtained the simpler condition based on studying reciprocal sequences
from the CM viewpoint, which is different from that of [58]. It shows how insightful the CM
viewpoint is for studying reciprocal sequences.

Another characterization of the Gaussian reciprocal sequence is based on the concept of state
in system theory (i.e. Markov property).

Corollary 5.2.3. i) A Gaussian [xk] is reciprocal iff [yk]Nk1+1 with yk , [x′k, x
′
k1

]′,∀k ∈ [k1 +

1, N ], ∀k1 ∈ [0, N ], and [yk]N−10 with yk , [x′k, x
′
N ]′,∀k ∈ [0, N−1], are Markov. ii) A Gaussian

[xk] is reciprocal iff [yk]k2−10 with yk , [x′k, x
′
k2

]′, ∀k ∈ [0, k2 − 1], ∀k2 ∈ [0, N ], and [yk]N1 with

yk , [x′k, x
′
0]
′,∀k ∈ [1, N ], are Markov.

Proof. A proof is based on Theorem 3.1.5, Corollary 5.1.4, and the fact that [xk] is [k1, k2]-CMc

iff [xk]k2k1 is CMc.

5.2.2 Dynamic Model

To our knowledge, the only dynamic model for Gaussian reciprocal sequences is the one presented
in [18], which is for the NG reciprocal sequence. The nonsingularity assumption is critical for
that model, because its well-posedness (i.e., the uniqueness of the sequence obeying the model) is
guaranteed by the nonsingularity of the whole sequence. There is not any model for the general
(singular/nonsingular) Gaussian reciprocal sequence in the literature, and it is not clear how to
obtain such a model. For example, it is not clear how the model of [18] can be extended to the
general (singular/nonsingular) case. The CM viewpoint is very fruitful for studying reciprocal
sequences. The following theorem presents two models for the general (singular/nonsingular)
Gaussian reciprocal sequence from the CM viewpoint. They are called reciprocal CMc models.
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Theorem 5.2.4. A ZMG [xk] is reciprocal iff it obeys (5.1)–(5.2) and

Pk,i =
[
Pk,j Pk,l

] [ Pj Pj,l

Pl,j Pl

]+ [
Pj,i

Pl,i

]
(5.31)

(i) for c = N and ∀i, j, k, l ∈ [0, N ], l < i < j < k, and G given by (5.13), or equivalently (ii)
for c = 0 and ∀i, j, k, l ∈ [0, N ], i < j < k < l, and G given by (5.15), where P = (G)−1G(G′)−1
and G = diag(G0, . . . , GN ).

Proof. A reciprocal sequence is CMc. A ZMG sequence is CMc iff it obeys (5.1)–(5.2). The
covariance matrix of a sequence modeled by a CMc model can be calculated in terms of the
parameters of the model and its boundary condition (the calculated covariance matrix is denoted
by P above). A Gaussian sequence is reciprocal iff its covariance function satisfies (5.30). Since
model (5.1)–(5.2) is for a CMc sequence, P already satisfies condition (b) of Theorem 5.2.2
(note that condition (b) of Theorem 5.2.2 is a CMc characterization for c = N or c = 0). So,
a Gaussian sequence is reciprocal iff it obeys (5.1)–(5.2) (for c = N or c = 0) and P satisfies
(5.31).

The results of this section support the idea of studying reciprocal sequences from the CM
viewpoint.

5.3 Characterizations and Dynamic Models of Other CM Sequences

It is useful for both application and theory to study sequences belonging to more than one CM
class. For example, an application of CML∩ [0, k2]-CML sequences in trajectory modeling with
a waypoint and a destination was discussed in Chapter 4. Also, by Theorem 3.1.5, a reciprocal
sequence belongs to several CM classes. This is particularly useful for studying reciprocal
sequences from the CM viewpoint (e.g., Theorem 5.2.2 and Theorem 5.2.4). In addition, a
dynamic model of CML ∩ [k1, N ]-CMF sequences is useful for obtaining a full spectrum of
models ranging from a CML model to a reciprocal CML model.

Corollary 5.3.1. A Gaussian [xk] is CML ∩ [k1, N ]-CMF iff it obeys (5.1)–(5.2) (for c = N),
and

Pk,i =
[
Pk,j Pk,k1

] [ Pj Pj,k1

Pk1,j Pk1

]+ [
Pj,i

Pk1,i

]
(5.32)

∀i, j, k ∈ [k1 + 1, N ], i < j < k, where

P = G−1G(G′)−1 (5.33)

G = diag(G0, . . . , GN ), and G is given by (5.13).

Proof. A sequence is CML ∩ [k1, N ]-CMF iff it is CML and [k1, N ]-CMF . By Theorem 5.1.1, a
Gaussian sequence is CML iff it obeys (5.1)–(5.2) (for c = N). Also, the covariance matrix of a
CML sequence can be calculated as (5.33). On the other hand, by Corollary 5.2.1, a Gaussian
sequence is [k1, N ]-CMF iff its covariance function satisfies (5.29) (let k2 = N and c = k1 in
Corollary 5.2.1). Therefore, a Gaussian sequence is CML ∩ [k1, N ]-CMF iff it obeys (5.1)–(5.2)
and (5.32) holds.

Following the idea of Corollary 5.3.1, one can obtain models of other CM sequences belonging
to more than one CM class, e.g., CML ∩ [k1, N ]-CMF ∩ [l1, N ]-CMF . As a result, by Theorem
3.1.5, Corollary 5.3.1, and Theorem 5.2.4, one can see a full spectrum of models ranging from
a CML model (Theorem 5.1.1) to a reciprocal CML model (Theorem 5.2.4).

57



Characterizations presented in Corollary 5.1.4 and Corollary 5.2.3 are based on the Markov
property. To complete those characterizations, we need a characterization of the Gaussian
Markov sequence based on covariance functions. A characterization was presented in [57] for
the scalar-valued Gaussian Markov process, but its generalization to the vector-valued case is
not trivial. The following corollary presents a characterization of the vector-valued general
(singular/nonsingular) Gaussian Markov sequence. To our knowledge, there is no such a char-
acterization in the literature.

Corollary 5.3.2. A Gaussian [xk] with covariance function Cl1,l2 is Markov iff Ck,i = Ck,jC
+
j Cj,i,

∀i, j, k ∈ [0, N ], i < j < k.

Proof. Our proof is parallel to that of Theorem 5.1.3. The main differences are as follows. For
the proof of necessity, instead of r(k, j) in (5.22), we need to define r(k, j) = xk − E[xk|xj ].
Also, instead of Lemma 2.1.7, we should use Lemma 3.1.4. For the proof of sufficiency, instead
of r(k, j) in (5.27), we need to define r(k, j) = xk − Ck,jC

+
j xj .

Inspired by [29], a representation of the ZMNG CMc sequence as a sum of a ZMNG Markov
sequence and an uncorrelated ZMNG vector was presented in Proposition 4.2.1 (Chapter 4). We
now extend it to the ZMG CMc sequence. Proposition 5.3.3 can be proved based on Theorem
5.1.1. We omit the proof.

Proposition 5.3.3. A ZMG [xk] is CMc, c ∈ {0, N}, iff it can be represented as xk = yk +
Γkxc, k ∈ [0, N ] \ {c}, where [yk] \ {yc} is a ZMG Markov sequence, xc is a ZMG vector uncor-
related with [yk] \ {yc}, and Γk are some matrices.

A corollary of Proposition 5.3.3 is as follows.

Corollary 5.3.4. An (N + 1)d × (N + 1)d matrix (with (N + 1) blocks in each row/column
and each block with dimension d× d) is the covariance matrix of a d-dimensional vector-valued
Gaussian CMc sequence iff C = B + ΓDΓ′, where D is a d × d positive semi-definite matrix

and (i) for c = N , B =

[
B1 0
0 0

]
, Γ =

[
S
I

]
, (ii) for c = 0, B =

[
0 0
0 B1

]
, Γ =

[
I
S

]
,

where B1 is an Nd×Nd covariance matrix of a d-dimensional vector-valued Gaussian Markov
sequence, S is an arbitrary Nd× d matrix, and I is the d× d identity matrix.
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Chapter 6

Algebraically Equivalent Dynamic Models of Gaussian CM Sequences

In this chapter, we 1) study the relationships between dynamic models of different classes of CM
sequences including Markov, reciprocal, CML, and CMF , 2) define and distinguish the notions
of probabilistically equivalent and algebraically equivalent dynamic models, 3) present a unified
approach for determination of algebraically equivalent models, and 4) present a simple approach
for studying/determining Markov sequences sharing the same reciprocal/CML model.

The term “boundary value” is used for random vectors in equations as “boundary condition”.
A boundary condition (value) for a forward (backward) Markov model means an initial (a final)
condition (value).

6.1 Preliminaries: Dynamic Models

Forward and backward CML, CMF , reciprocal, and Markov models are reviewed Chapter 2,
Chapter 3, [18].

Let [xk] be a zero-mean NG sequence.

Markov Model

[xk] is Markov iff

xk = Mk,k−1xk−1 + eMk , k ∈ [1, N ] (6.1)

where x0 = eM0 and [eMk ] (Cov(eMk ) = Mk) is a zero-mean white NG sequence. We have

Mx = eM , eM = [(eM0 )′, (eM1 )′, . . . , (eMN )′]′ (6.2)

where M is the nonsingular matrix

I 0 0 · · · 0 0
−M1,0 I 0 · · · 0 0

0 −M2,1 I 0 · · · 0
...

...
...

...
...

...
0 0 · · · −MN−1,N−2 I 0
0 0 0 · · · −MN,N−1 I


(6.3)

From (6.2), the inverse of the covariance matrix of [xk] is

C−1 =M′M−1M (6.4)

where M = Cov(eM ) = diag(M0,M1, . . . ,MN ). C−1 is (block) tri-diagonal (Remark 3.1.16).
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Backward Markov Model

[xk] is Markov iff

xk = MB
k,k+1xk+1 + eBM

k , k ∈ [0, N − 1] (6.5)

where xN = eBM
N and [eBM

k ] (Cov(eBM
k ) = MB

k ) is a zero-mean white NG sequence.

We have

MBx = eBM , eBM = [(eBM
0 )′, . . . , (eBM

N )′]′ (6.6)

C−1 = (MB)′(MB)−1MB (6.7)

where MB = Cov(eBM ) = diag(MB
0 , . . . ,M

B
N ), C−1 is (block) tri-diagonal, and MB is the

nonsingular matrix 

I −MB
0,1 0 · · · 0 0

0 I −MB
1,2 0 · · · 0

0 0 I −MB
2,3 · · · 0

...
...

...
...

...
...

0 0 · · · 0 I −MB
N−1,N

0 0 0 · · · 0 I


(6.8)

Reciprocal Model

[xk] is reciprocal iff

R0
kxk −R−k xk−1 −R

+
k xk+1 = eRk , k ∈ [1, N − 1] (6.9)

where [eRk ]N−11 is a zero-mean colored Gaussian sequence with E[eRk (eRk )′] = R0
k, k ∈ [1, N − 1],

E[eRk (eRk+1)
′] = −R+

k , k ∈ [1, N−2], E[eRk (eRj )′] = 0, |k−j| > 1, R+
k = (R−k+1)

′, k ∈ [1, N−2] and
boundary condition (i) or (ii) below, with parameters of (6.9) and either boundary condition
leading to a nonsingular sequence.

(i) The first type:

R0
0x0 −R−0 xN −R

+
0 x1 = eR0 (6.10)

R0
NxN −R−NxN−1 −R

+
Nx0 = eRN (6.11)

where E[eR0 (eR1 )′] = −R+
0 , E[eRN (eR0 )′] = −R+

N , E[eR0 (eR0 )′] = R0
0, E[eR0 (eRk )′] = 0, k ∈ [2, N − 1],

E[eRN (eRk )′] = 0, k ∈ [1, N − 2], E[eRN (eRN )′] = R0
N , E[eRN−1(e

R
N )′] = −R+

N−1, (R−0 )′ = R+
N ,

(R−N )′ = R+
N−1, (R−1 )′ = R+

0 .

(ii) The second type: [x′0, x
′
N ]′ ∼ N (0, C{0,N}), which can be written as

x0 = eR0 , xN = RN,0x0 + eRN (6.12)

or equivalently

xN = eRN , x0 = R0,NxN + eR0 (6.13)

where eR0 and eRN are uncorrelated zero-mean NG vectors1 with covariances R0
0 and R0

N , and
uncorrelated with [eRk ]N−11 .

1eR0 and eRN (and their covariances) in (6.12) are not necessarily the same as those in (6.13) or in the first
boundary condition. Just for simplicity we use the same notation.
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Consider (6.9) and boundary condition2 (6.10)–(6.11) with appropriate parameters leading
to a nonsingular sequence. Then,

Rx = eR, eR = [(eR0 )′, . . . , (eRN )′]′ (6.14)

C−1 = R′R−1R = R (6.15)

where R = Cov(eR) = R and R is

R0
0 −R+

0 0 · · · 0 −R−0
−R−1 R0

1 −R+
1 0 · · · 0

0 −R−2 R0
2 −R+

2 · · · 0
...

...
...

...
...

...
0 0 · · · −R−N−1 R0

N−1 −R+
N−1

−R+
N 0 0 · · · −R−N R0

N


(6.16)

Since the sequence is nonsingular, so is (6.16) [18]. Then, C−1 = R is (block) cyclic tri-diagonal
(3.23).

Model (6.9) and its boundary condition (either the first or the second type) are well-posed
(i.e., they admit a unique sequence) if their parameters lead to a nonsingular sequence [18]. Not
all choices of the parameters lead to a nonsingular covariance matrix.

A reciprocal model is symmetric. So, its forward and backward are the same.

Remark 6.1.1. Model (6.9) (with either boundary condition) is called a reciprocal model, to be
distinguished from our reciprocal CML and CMF models.

CMc Models

[xk] is CMc, c ∈ {0, N}, iff (2.17) along with (2.18) or (2.19).

For c = 0, we have a CMF model. Then,

GFx = eF , eF , [e′0, . . . , e
′
N ]′ (6.17)

C−1 = (GF )′(GF )−1GF (6.18)

where GF = Cov(eF ) = diag(G0, . . . , GN ) and GF is the nonsingular matrix (2.29). C−1 is a
CMF matrix (2.37).

For c = N , we have a CML model. Then,

GLx = eL, eL , [e′0, . . . , e
′
N ]′ (6.19)

C−1 = (GL)′(GL)−1GL (6.20)

where GL = Cov(eL) = diag(G0, . . . , GN ), GL is the nonsingular matrix (2.27) for (2.18) and
(2.28) for (2.19). C−1 is a CML matrix (2.36).

Theorem 3.1.17 gives the reciprocal/Markov CMc model.

Backward CMc Models

[xk] is CMc, c ∈ {0, N}, iff it obeys (2.31) along with (2.32) or (2.33).

For c = 0, we have a backward CML model. Then,

GBLx = eBL, eBL = [(eB0 )′, . . . , (eBN )′]′ (6.21)

C−1 = (GBL)′(GBL)−1GBL (6.22)

2Boundary condition (ii) is discussed only in Section 6.4. In all other sections, we consider boundary condition
(i).
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where C−1 is a CMF matrix, GBL = Cov(eBL) = diag(GB
0 , . . . , G

B
N ), GBL is the nonsingular

matrix 

I 0 0 · · · 0 −GB
0,N

−GB
1,0 I −GB

1,2 · · · 0 0

−GB
2,0 0 I −GB

2,3 · · · 0
...

...
...

...
...

...
−GB

N−1,0 0 · · · 0 I −GB
N−1,N

0 0 0 · · · 0 I


(6.23)

for (2.33), and GBL for (2.32) is the nonsingular matrix

I 0 0 · · · 0 0
−GB

1,0 I −GB
1,2 · · · 0 0

−GB
2,0 0 I −GB

2,3 · · · 0
...

...
...

...
...

...
−GB

N−1,0 0 · · · 0 I −GB
N−1,N

−GB
N,0 0 0 · · · 0 I


(6.24)

For c = N , we have a backward CMF model. Then,

GBFx = eBF , eBF = [(eB0 )′, . . . , (eBN )′]′ (6.25)

C−1 = (GBF )′(GBF )−1GBF (6.26)

where C−1 is a CML matrix, GBF = Cov(eBF ) = diag(G0, . . . , GN ), and GBF is the nonsingular
matrix (2.35).

Theorem 3.1.20 gives a backward reciprocal/Markov CMc model.

Forward and backward CML (CMF ) models have similar structures. They differ only in the
time direction.

For a Markov model, [eMk ]N1 is the dynamic noise and eM0 is the initial value. For a CML

model, [ek]N−11 is the dynamic noise and e0 and eN are the boundary values. For a CMF model,
[ek]N1 is the dynamic noise and e0 is the boundary value. For a reciprocal model, [eRk ]N−11 is the
dynamic noise and eR0 and eRN are the boundary values. Likewise for backward models.

Let [xk] be a CM sequence modeled by any of the above models. Then,

Tx = v, v = [v′0, . . . , v
′
N ]′ (6.27)

where the vector v includes the dynamic noise and the boundary values. The matrix T is
determined by parameters of the corresponding model. T is nonsingular for the forward and
backward CML, CMF , and Markov models. Also, since [xk] is assumed nonsingular, T is also
nonsingular for the reciprocal model.

Definition 6.1.2. Two models T1x = v and T2y = w are (probabilistically) equivalent if x and
y have the same distribution.

Definition 6.1.3. Two models T1x = v and T2y = w are algebraically equivalent if x = y.

6.2 Determination of Algebraically Equivalent Models: A Unified Approach

By Definitions 6.1.2 and 6.1.3, (algebraically) equivalence is mutual, i.e., if model 2 is (alge-
braically) equivalent to model 1, then so is model 1 to model 2.

To determine an equivalent model, we need to fix its parameters. Thus, we have the following
proposition.
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Proposition 6.2.1. Any two forward/backward CML, CMF , reciprocal, or Markov models

T1x = v (6.28)

T2y = w (6.29)

are equivalent iff

T ′2P
−1
2 T2 = T ′1P

−1
1 T1 (6.30)

where v = [v′0, . . . , v
′
N ]′ and w = [w′0, . . . , w

′
N ]′ are the vectors of the dynamic noise and boundary

values with covariances Cov(v) = P1 and Cov(w) = P2.

Proof. The inverse of the covariance matrix of the sequence obeying model (6.28) is C−1 =
T ′1(P1)

−1T1 because E[(T1x)(T1x)′] = E[vv′]. Similarly, for the sequence obeying (6.29), we
have C−1 = T ′2(P2)

−1T2. Two models are equivalent iff their sequences have the same covariance
matrix; thus we have (6.30).

Due to the special structures of T1, P1, T2, and P2, parameters of model 2 can be easily
obtained from parameters of model 1 using (6.30) (see Appendix B for more details). Then, P2

and T2 are known. Note that parameters of model 2 so calculated are unique. This can be easily
verified based on (6.30) for all models (see Appendix B). This uniqueness also follows from the
definition of conditional expectation.

Clearly, algebraically equivalent models are equivalent. The next proposition gives a rela-
tionship of dynamic noise and boundary values for two equivalent models to be algebraically
equivalent.

Proposition 6.2.2. Two equivalent models (6.28) and (6.29) are algebraically equivalent if

T ′2(P2)
−1w = T ′1(P1)

−1v (6.31)

Proof. Let P2, T2, P1, and T1 be given (Proposition 6.2.1). Given model (6.28), we show how
(6.31) leads to an algebraically equivalent model (6.29). First, we show that w has the desired
covariance P2. By (6.31), we have

T ′2(P2)
−1Cov(w)(P2)

−1T2 = T ′1(P1)
−1Cov(v)(P1)

−1T1

From Cov(v) = P1 and (6.30) it follows that

Cov(w) = P2(T
′
2)
−1T ′2(P2)

−1T2(T2)
−1P2 = P2

Thus, w is the required vector.

Now we show that (6.31) implies that models (6.28) and (6.29) generate the same sample
path of the sequence. We have

T ′1(P1)
−1T1y

(6.30)
= T ′2(P2)

−1T2y
(6.29)

= T ′2(P2)
−1w

(6.31)
= T1(P1)

−1v
(6.28)

= T1(P1)
−1T1x

=⇒ y = x

So, (6.29) and (6.28) are algebraically equivalent.

By Propositions 6.2.1 and 6.2.2, given a model, one can construct an algebraically equivalent
model. For two algebraically equivalent models, how are the sample paths of their dynamic
noise and boundary values related? The next proposition answers this question.
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Proposition 6.2.3. For two algebraically equivalent forward /backward CML, CMF , reciprocal,
or Markov models

T1x = v (6.32)

T2y = w (6.33)

the sample paths of v and w are related by (6.31), where v = [v′0, . . . , v
′
N ]′ and w = [w′0, . . . , w

′
N ]′

are vectors of the dynamic noise and boundary values with covariances Cov(v) = P1 and
Cov(w) = P2, and the nonsingular matrices T1 and T2 are determined by the model param-
eters.

Proof. Algebraic equivalence (i.e., x = y) of (6.32) and (6.33) yields

T−12 w = T−11 v (6.34)

It follows from the equivalence of (6.32) and (6.33) that

C−1 = T ′1P
−1
1 T1 = T ′2P

−1
2 T2 (6.35)

Then, using (6.34) and (6.35), we have (T ′2P
−1
2 T2)T

−1
2 w = (T ′1P

−1
1 T1)T

−1
1 v, which leads to

(6.31).

Remark 6.2.4. (6.31) is equivalent to (6.34).

Although (6.34) looks simpler, for the construction of algebraically equivalent models, (6.31)
is preferred for the following reasons. The matrices P1 and P2 in (6.31) for the forward/backward
CML, CMF , and Markov models are block diagonal, and their inverses can be easily calculated.
Also, for the reciprocal model, no calculation is needed since P = T in (6.27) (see Subsection
6.1). However, calculation of the inverses of T1 and T2 in (6.34) is not straightforward in general.

6.3 Algebraically Equivalent Models: Examples

Following Propositions 6.2.1 and 6.2.2, algebraically equivalent forward/backward CML, CMF ,
reciprocal, or Markov models can be obtained. Two such examples are presented in this section,
and more in appendices. Appendix B shows how parameters of equivalent models can be
uniquely determined from each other (Proposition 6.2.1). Appendix C shows how the dynamic
noise and boundary values of algebraically equivalent models are related (Proposition 6.2.2).

6.3.1 Forward and Backward Markov Models

By (6.30), parameters of a backward Markov model (6.5) are obtained from those of a forward
one (6.1). For k = 2, 3, . . . , N ,

(MB
0 )−1 =M−10 +M ′1,0M

−1
1 M1,0 (6.36)

MB
0,1 =MB

0 M
′
1,0M

−1
1 (6.37)

(MB
k−1)

−1 =M−1k−1 +M ′k,k−1M
−1
k Mk,k−1 − (MB

k−2,k−1)
′(MB

k−2)
−1MB

k−2,k−1 (6.38)

MB
k−1,k =MB

k−1M
′
k,k−1M

−1
k (6.39)

(MB
N )−1 =M−1N − (MB

N−1,N )′(MB
N−1)

−1MB
N−1,N (6.40)

By (6.31), the dynamic noise and boundary values of the two models are related by

(MB
0 )−1eBM

0 =M−10 eM0 −M ′1,0M−11 eM1 (6.41)

(MB
k )−1eBM

k =(MB
k−1,k)′(MB

k−1)
−1eBM

k−1 +M−1k eMk −M ′k+1,kM
−1
k+1e

M
k+1, k ∈ [1, N − 1] (6.42)

(MB
N )−1eBM

N =(MB
N−1,N )′(MB

N−1)
−1eBM

N−1 +M−1N eMN (6.43)
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By these equations, given a backward model, one can obtain its algebraically equivalent
forward model.

For a forward Markov model with a nonsingular state transition matrix, [70] determined
the relationship of the dynamic noise and boundary values between algebraically equivalent
forward and backward models. But in the case of singular state transition matrices, forward and
backward models of [70] are not algebraically equivalent, but only (probabilistically) equivalent.
Our (6.36)–(6.40) and (6.41)–(6.43) give algebraically equivalent forward and backward models
whether the state transition matrix is singular or nonsingular. Based on (6.41)–(6.43), we
can verify the required condition for the two-filter smoother [62]–[64] for Markov models with
singular/nonsingular state transition matrices.

6.3.2 Reciprocal CML and Reciprocal Models

By (6.30), parameters of a reciprocal model are obtained from those of a reciprocal CML model.
For (2.17)–(2.18), parameters of the reciprocal model are

R0
0 = G−10 +G′1,0G

−1
1 G1,0 +G′N,0G

−1
N GN,0 (6.44)

R0
k = G−1k +G′k+1,kG

−1
k+1Gk+1,k, k ∈ [1, N − 2] (6.45)

R0
N−1 = G−1N−1 (6.46)

R0
N = G−1N +

N−1∑
k=1

G′k,NG
−1
k Gk,N (6.47)

R+
k = G′k+1,kG

−1
k+1, k ∈ [0, N − 2] (6.48)

R+
N−1 = G−1N−1GN−1,N (6.49)

R−0 = −G′1,0G−11 G1,N +G′N,0G
−1
N (6.50)

and for (2.17) and (2.19) we have (6.45)–(6.46), (6.48)–(6.49), and

R0
0 = G−10 +G′1,0G

−1
1 G1,0 (6.51)

R0
N = G−1N +

N−1∑
k=1

G′k,NG
−1
k Gk,N +G′0,NG

−1
0 G0,N (6.52)

R−0 = G−10 G0,N −G′1,0G−11 G1,N (6.53)

By (6.31), the dynamic noise and boundary values of the two models are related by: for
(2.17)–(2.18),

eR0 =G−10 e0 −G′1,0G−11 e1 −G′N,0G
−1
N eN (6.54)

eRk =G−1k ek −G′k+1,kG
−1
k+1ek+1, k ∈ [1, N − 2] (6.55)

eRN−1 =G−1N−1eN−1 (6.56)

eRN =−
N−1∑
k=1

G′k,NG
−1
k ek +G−1N eN (6.57)

and for (2.17) and (2.19), (6.54) and (6.57) are replaced by

eR0 =G−10 e0 −G′1,0G−11 e1 (6.58)

eRN =−
N−1∑
k=1

G′k,NG
−1
k ek +G−1N eN −G′0,NG−10 e0 (6.59)

By these equations, one can obtain an algebraically equivalent reciprocal CML model from
a reciprocal model. This is important because a reciprocal CML model is easier to apply than
a reciprocal model (Chapter 3, Chapter 7).
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6.4 More About Algebraically Equivalent Models

6.4.1 Models Algebraically Equivalent to a Reciprocal Model

This section presents two approaches for determination of models algebraically equivalent to a
reciprocal model (6.9) along with (6.12) or (6.13), or the other way round. We consider only
boundary condition (6.13). The same approach works for boundary condition (6.12).

We first show how to determine parameters of a reciprocal model (6.9) and (6.13) equivalent
to other models. For example, from the parameters of a reciprocal CML model (2.17) and (2.19),
those of its equivalent reciprocal model (6.9) and (6.13) are obtained as follows. Regardless of
its boundary condition, model (6.9) is obtained based on conditional expectations [18], so its
parameters are as given in Subsection 6.3.2 for a NG reciprocal sequence (i.e., with a given
covariance matrix). (2.19) and (6.13) are the same since they are both obtained from the joint
density of x0 and xN , which is the same for both reciprocal and reciprocal CML models.

Similarly, from parameters of a reciprocal model (6.9) and (6.13), we can uniquely determine
parameters of its equivalent reciprocal CML model (2.17) and (2.19). Also, by (6.30), parameters
of other equivalent models can be determined.

Algebraically equivalent models are discussed next.

The First Approach

We show that the unified approach of Section 6.2 (i.e., (6.31)) works for models algebraically
equivalent to a reciprocal model (6.9) and (6.13).

First, we determine the structure of T , P , and ξ in (6.27) for model (6.9) and (6.13). We
have

Rrx = er (6.60)

where er , [(eR0 )′, . . . , (eRN )′]′ and

Rr =



I 0 0 · · · 0 −R0,N

−R−1 R0
1 −R+

1 · · · 0 0
0 −R−2 R0

2 −R+
2 · · · 0

...
...

...
...

...
...

0 0 · · · −R−N−1 R0
N−1 −R+

N−1
0 0 0 · · · 0 I


(6.61)

It is nonsingular because its submatrix of the block rows and columns 2 to N is nonsingular
since (6.16) is nonsingular. Its nonsingularity can be verified based on the determinant of a
partitioned matrix [92]. Also, the covariance of er is

Rr =



R0
0 0 0 · · · 0 0

0 R0
1 −R+

1 · · · 0 0
0 −R−2 R0

2 −R+
2 · · · 0

...
...

...
...

...
...

0 0 · · · −R−N−1 R0
N−1 0

0 0 0 · · · 0 R0
N


(6.62)

which is likewise nonsingular since its submatrix of block rows and columns 2 to N is same as
that of (6.16) because model (6.9) is independent of boundary condition [18].

With (6.61) and (6.62), models algebraically equivalent to (6.9) and (6.13) can be obtained
by (6.31).
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The Second Approach

In the first approach, (Rr)
−1 is required in (6.31), which is not desirable since Rr is not block

diagonal. In the following, we present a simple relationship in dynamic noise and boundary
values between a reciprocal model and an algebraically equivalent reciprocal CML model.

It suffices to construct a reciprocal CML model algebraically equivalent to a reciprocal model.
Then, by Proposition 6.2.2 other algebraically equivalent models can be obtained.

We show that (6.63) below makes an equivalent reciprocal model algebraically equivalent to
a reciprocal CML model (2.17) and (2.19):

er = TR|CML
e (6.63)

where TR|CML
is the nonsingular matrix

I 0 0 0 · · · 0 0

0 G−11 −G′2,1G
−1
2 0 · · · 0 0

0 0 G−12 −G′3,2G
−1
3 · · · 0 0

0 0 0 G−13 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · G−1N−1 0

0 0 0 0 · · · 0 I


(6.64)

er , [(eR0 )′, . . . , (eRN )′]′ is the vector of dynamic noise and boundary values of the reciprocal
model, and e , [e′0, . . . , e

′
N ]′ is of the reciprocal CML model.

Let [ek] be white (since it is for a reciprocal CML model). We show that [eRk ] has the
properties of reciprocal dynamic noise and boundary values. By (6.64), the covariance of [eRk ]N−11

is cyclic tridiagonal. So, [eRk ]N−11 can serve as dynamic noise of a reciprocal model (6.9). It is a
function of [ek]N−11 with eR0 = e0 and eRN = eN . Then, since [ek] is white, [eRk ]N−11 is uncorrelated
with eR0 and eRN and consequently with x0 and xN . Therefore, [eRk ]N−11 can serve as reciprocal
dynamic noise, and eR0 and eRN as boundary values.

Now, we show that (6.63) leads to the same sample path of the sequence obeying the recip-
rocal CML model and the reciprocal model. From (6.63), we have

eRk = G−1k ek −G′k+1,kG
−1
k+1ek+1, k ∈ [1, N − 2] (6.65)

Substituting ek and ek+1 of the CML model (2.17) into (6.65), after some manipulation, we get

eRk = (G−1k +G′k+1,kG
−1
k+1Gk+1,k)xk −G−1k Gk,k−1xk−1 −G′k+1,kG

−1
k+1xk+1+

(−G−1k Gk,N +G′k+1,kG
−1
k+1Gk+1,N )xN (6.66)

Using (3.24), (6.66) becomes

eRk = (G−1k +G′k+1,kG
−1
k+1Gk+1,k)xk −G−1k Gk,k−1xk−1 −G′k+1,kG

−1
k+1xk+1 (6.67)

(6.67) has the properties (of the structure and parameters) of (6.9) and thus can serve as a
reciprocal model for k ∈ [1, N − 2]. In addition, for k = N − 1, based on (6.63) we have

eRN−1 = G−1N−1eN−1 (6.68)

Substituting eN−1 of (2.17), we have

eRN−1 = G−1N−1xN−1 −G
−1
N−1GN−1,N−2xN−2 −G−1N−1GN−1,NxN (6.69)
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(6.69) can serve as a reciprocal model for k = N − 1. So, by (6.67), (6.69) and since (2.19) and
(6.13) are identical, (6.63) leads to the same sample path of the sequence obeying the two models
(and their boundary conditions). In other words, the two models are algebraically equivalent.

Next, from a reciprocal model (6.9) and (6.13), we construct its algebraically equivalent
reciprocal CML model. Calculation of the parameters of (2.17) and (2.19) from those of (6.9)
and (6.13) was discussed above. So, TR|CML

is known. First, we show that e in (6.63) has a
(block) diagonal covariance matrix, i.e, [ek] is white (which is the case for a reciprocal CML

model). According to (6.9) and (6.13), eR0 and eRN are uncorrelated, and uncorrelated with
[eRk ]N−11 . By (6.63), we have e0 = eR0 and eN = eRN . Also, [ek]N−11 are linear combinations of
[eRk ]N−11 . So, e0 and eN are mutually uncorrelated and uncorrelated with [ek]N−11 . Therefore, we
only need to show that [ek]N−11 is white. The covariance of [(eR1 )′, . . . , (eRN−1)

′]′ is (Rr)[2:N,2:N ],
i.e., matrix (6.62) without the first and the last block rows and columns. By (6.63), we have

(Rr)[2:N,2:N ] = (TR|CML
)[2:N,2:N ](Cov(e))[2:N,2:N ](TR|CML

)′[2:N,2:N ] (6.70)

Let C be the covariance matrix of the reciprocal sequence. Now calculate C−1 based on the
reciprocal CML model (2.17) and (2.19) (Appendix B). The tridiagonal matrix (C−1)[2:N,2:N ]

can be decomposed as

(C−1)[2:N,2:N ] = (TR|CML
)[2:N,2:N ]G[2:N,2:N ](TR|CML

)′[2:N,2:N ] (6.71)

where G[2:N,2:N ] = diag(G1, . . . , GN−1). Comparing (Rr)[2:N,2:N ] with (6.16), it can be seen that
(Rr)[2:N,2:N ] = (C−1)[2:N,2:N ]. Comparing (6.71) and (6.70), we have

(Cov(e))[2:N,2:N ] = G[2:N,2:N ]

meaning that [ek]N−11 is white. So, [ek] is white.

Next, we show that (6.63) leads to algebraic equivalence of the reciprocal model and the
reciprocal CML model. (6.63) for k = N − 1 is

eRN−1 = G−1N−1eN−1 (6.72)

Using eRN−1 from the reciprocal model (6.9), we obtain

R0
N−1xN−1 −R−N−1xN−2 −R

+
N−1xN = G−1N−1eN−1

Expressing R0
N−1, R

−
N−1, and R+

N−1 of the reciprocal model in terms of parameters of the
reciprocal CML model (specifically (6.46), (6.48), (6.49)) yields

G−1N−1xN−1 − (G−1N−1GN−1,N−2)xN−2 − (G−1N−1GN−1,N )xN = G−1N−1eN−1

which leads to

xN−1 −GN−1,N−2xN−2 −GN−1,NxN = eN−1 (6.73)

Clearly (6.73) is a CML model (2.17) for k = N − 1 with an eN−1 that is related to eRN−1 by
(6.72). Then, By (6.63), for k ∈ [1, N − 2], we have

eRk = G−1k ek −G′k+1,kG
−1
k+1ek+1 (6.74)

Substituting eRk of the reciprocal model (6.9) into (6.74) yields

R0
kxk −R−k xk−1 −R

+
k xk+1 = G−1k ek −G′k+1,kG

−1
k+1ek+1 (6.75)
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Substituting ek+1 from the reciprocal CML model (2.17) into (6.75), we obtain

(G−1k +G′k+1,kG
−1
k+1Gk+1,k)xk −G−1k Gk,k−1xk−1 −G′k+1,kG

−1
k+1xk+1 =

G−1k ek −G′k+1,kG
−1
k+1(xk+1 −Gk+1,kxk −Gk+1,NxN ) (6.76)

After manipulation of (6.76), we obtain

G−1k xk−G−1k Gk,k−1xk−1 −G′k+1,kG
−1
k+1Gk+1,NxN = G−1k ek (6.77)

Using (3.24) for the coefficient of xN in (6.77), (6.77) leads to

xk −Gk,k−1xk−1 −Gk,NxN = ek (6.78)

This is a CML model (2.17) for k ∈ [1, N − 2] with an [ek]N−21 that is related to [eRk ]N−21 by
(6.63). Also, the two models have identical boundary conditions. So, (6.63) connects the two
models by having the same sample paths of the reciprocal sequence. In other words, using
(6.63), the reciprocal model and the reciprocal CML model are algebraically equivalent.

6.4.2 Parameters of Equivalent Markov and Reciprocal Models

By (6.30), parameters of equivalent models can be uniquely determined (Appendix B). In some
cases given parameters of a model, one can calculate parameters of an equivalent model in
a different way. Due to the uniqueness, the apparently different results must be the same.
For example, in the following we consider an approach (different from (6.30)) for calculating
parameters of a reciprocal model equivalent to a Markov model. Then, we show that the results
are actually the same as those of Appendix B.

Given a Markov model (6.1) of [xk], by (6.30), parameters of an equivalent reciprocal model
(6.9) are (Appendices B.4 and B.3), for k ∈ [1, N − 1],

R0
k = M−1k +M ′k+1,kM

−1
k+1Mk+1,k (6.79)

R+
k = M ′k+1,kM

−1
k+1 (6.80)

R−k = M−1k Mk,k−1 (6.81)

Parameters of the reciprocal model (6.9) can be also obtained as follows. The transition density
of [xk] is

p(xk|xk−1) = N (xk;Mk,k−1xk−1,Mk) (6.82)

Given (6.82), by the Markov property, we have

p(xk|xk−1, xk+1) =
p(xk|xk−1)p(xk+1|xk)

p(xk+1|xk−1)
= N (xk;Rk,k−1xk−1 +Rk,k+1xk+1, Rk)

Then, we define rk as

rk = xk −Rk,k−1xk−1 −Rk,k+1xk+1 (6.83)

where the covariance of rk is Rk and

Rk,k−1 = Mk,k−1 − (M−1k +M ′k+1,kM
−1
k+1Mk+1,k)−1M ′k+1,kM

−1
k+1Mk+1,kMk,k−1

Rk,k+1 = (M−1k +M ′k+1,kM
−1
k+1Mk+1,k)−1M ′k+1,kM

−1
k+1

Rk = (M−1k +M ′k+1,kM
−1
k+1Mk+1,k)−1

69



Pre-multiplying both sides of (6.83) by R0
k (which is nonsingular), we obtain

R0
kxk = R0

kRk,k−1xk−1 +R0
kRk,k+1xk+1 +R0

krk (6.84)

By the uniqueness of parameters, we must haveR0
kRk,k−1 = R−k , R0

kRk,k+1 = R+
k , and Cov(R0

krk) =
R0

k. Comparing the parameters of (6.84) with (6.79), (6.80), and (6.81), it is not clear that
R0

kRk,k−1 = R−k , which, however, can be verified using

(M−1k +M ′k+1,kM
−1
k+1Mk+1,k)−1(M−1k +M ′k+1,kM

−1
k+1Mk+1,k)Mk,k−1 = Mk,k−1

6.5 Markov Models and Reciprocal/CML Models

An important question in the theory of reciprocal processes is about Markov processes governed
by the same reciprocal evolution law [16]–[17], [9]. It is desired to determine Markov evolution
models (i.e., without the initial condition) of Markov sequences, which obey a reciprocal CML

evolution model (and an arbitrary boundary condition). Also, given two Markov evolution
models, whether their sequences share the same CML evolution model? Studying such issues
will gain a better understanding of the models and their sequences, and is useful for their
application. For example, in Chapter 7 we discuss CML evolution models induced by Markov
evolution models (presented in Chapter 4) for trajectory modeling with destination information,
and show that inducing a CML evolution model by a Markov evolution model is useful for
parameter design of a reciprocal CML evolution model. Also, in Chapter 4 we showed that a
reciprocal CML evolution model can be induced by any Markov evolution model whose sequences
obey the given reciprocal CML evolution model (and some boundary condition). So, it is desired
to determine all such Markov evolution models and their relationships. In the following, a simple
approach is presented for studying and determining different Markov models whose sequences
share the same reciprocal/CML evolution model.

Relationships between different models (and their boundary conditions) can be studied based
on the entries of C−1 calculated from the models and their boundary conditions. Some entries of
C−1 depend on evolution model parameters only and others depend also on boundary condition
(Appendix B). Proofs of the following results are based on Appendix B.

The next proposition gives conditions for Markov models of Markov sequences to share the
same reciprocal model.

Proposition 6.5.1. Two Markov sequences modeled by Markov models (6.1) with parameters

M
(i)
k,k−1, M

(i)
k , k ∈ [1, N ], i = 1, 2, share the same reciprocal evolution model (6.9) iff

(M
(1)
k )−1 + (M

(1)
k+1,k)′(M

(1)
k+1)

−1M
(1)
k+1,k =

(M
(2)
k )−1 + (M

(2)
k+1,k)′(M

(2)
k+1)

−1M
(2)
k+1,k, k ∈ [1, N − 1] (6.85)

(M
(1)
k+1,k)′(M

(1)
k+1)

−1 = (M
(2)
k+1,k)′(M

(2)
k+1)

−1, k ∈ [0, N − 1] (6.86)

Proof. Two sequences share the same reciprocal evolution model iff their C−1 (3.23) have the
same entries A1, A2, . . . , AN−1, B0, B1, . . . , BN−1. So, two Markov sequences having Markov

models with parameters M
(i)
k,k−1, M

(i)
k , k ∈ [1, N ], i = 1, 2, share the same reciprocal model iff

(6.85)–(6.86) hold.

Sequences modeled by any Markov model (6.1) satisfying

R0
k =M−1k +M ′k+1,kM

−1
k+1Mk+1,k, k ∈ [1, N − 1] (6.87)

R+
k =M ′k+1,kM

−1
k+1, k ∈ [0, N − 1] (6.88)

share a given reciprocal evolution model with parameters R0
k, k ∈ [1, N − 1], and R+

k , k ∈
[0, N−1] (with some boundary condition) (see Proposition 6.5.1). Therefore, all Markov models
whose sequences share a reciprocal model are determined.
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Proposition 6.5.2. Two sequences share the same reciprocal evolution model (6.9) iff they
share the same reciprocal CML evolution model (2.17) (c = N).

Proof. Two sequences share the same reciprocal evolution model (6.9) (reciprocal CML evolu-
tion model (2.17) (c = N)) iff their C−1 (3.23) have the same entriesA1, . . . , AN−1 , B0, . . . , BN−1.
So, two sequences share the same reciprocal evolution model (6.9) iff they share the same re-
ciprocal CML evolution model (2.17) (c = N).

By Proposition 6.5.2 and (6.87)–(6.88) we can determine all Markov models whose sequences
share a reciprocal CML evolution model (2.17). All we need to do is to replace the model
parameters in (6.87)–(6.88) (i.e., R0

k and R+
k ) with the corresponding (block) entries of the C−1

calculated from the parameters of (2.17) (see Subsection 6.3.2 or Appendix B).

The following proposition determines conditions for two Markov sequences sharing the same
reciprocal evolution model to share the same Markov evolution model.

Proposition 6.5.3. Two Markov sequences sharing the same reciprocal evolution model (6.9)
share the same Markov evolution model (6.1) iff for the parameters of (6.11) we have

(R0
N )(1) = (R0

N )(2) (6.89)

or equivalently M
(1)
N = M

(2)
N , where the superscripts (1) and (2) correspond to the first and the

second sequence.

Proof. Two sequences share the same reciprocal evolution model iff their C−1 (3.23) have the
same entries A1, . . . , AN−1, B0, . . . , BN−1. Two Markov sequences share the same Markov evo-
lution model iff their C−1 ((3.23) with D0 = 0) have the same entries A1, . . . , AN , B0, . . . , BN−1.
So, two Markov sequences sharing the same reciprocal evolution model share the same Markov
evolution model iff they have the same AN , i.e., (6.89) holds (see (B.72)).

More general relationships between different forward/backward CML, CMF , reciprocal,
Markov models can be studied based on the entries of C−1 calculated from the models and
the boundary conditions. In general, we can obtain conditions for two sequences sharing the
same evolution model to share the same evolution model of different type.
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Chapter 7

Trajectory Modeling, Filtering, and Prediction Using CM Sequences

In this chapter, we discuss an application of CM sequences in modeling trajectories with desti-
nation information. To emphasize that the trajectory ends up at a specific destination, we call
it destination-directed trajectory (DDT).

7.1 DDT Modeling

To model the trajectory of a moving object without the notion of destination there are two main
components: the evolution (motion) law and the origin. On the other hand, the Markov sequence
is determined by two components: an evolution law and an initial density. Sample paths of a
Markov sequence can be used for modeling such trajectories. For example, a nearly constant
velocity/acceleration/turn (with white noise) model describes a Markov sequence. Markov
property is simple and effective and this is the reason for its widespread use in application
and theory.

In trajectory modeling problems there might be some information available about the desti-
nation. A case in point is in air traffic control (ATC), where destination of flight is available.
The main components of destination-directed trajectories are an origin, a destination, and mo-
tion in between. The Markov sequence is not flexible enough for DDT modeling because its
final density is determined by its initial density and evolution law. Therefore, a more general
class of stochastic sequences with an initial density, evolution law, and final density as main
components is desired.

In the following, some properties desirable for a DDT model and the corresponding inference
are discussed. Such a model should take the three main components of DDT into account.
It should be able to model any origin and destination. Also, the evolution law (as the most
important part of the model) should be able to describe trajectories corresponding to any origin
and destination. In other words, the model should be general enough to describe trajectories
in different scenarios according to available information. In addition, the evolution law should
be simple and easy to apply, yet has the potential to be generalized to more powerful ones if
necessary. Moreover, it is desired to model the relationship between the trajectories at the origin
and the destination. In some applications (e.g., ATC) an accurate prior density of the destination
state might be available. In some other applications, based on the available information about
the destination, an approximate prior density might be available. An automatic update of the
prior density (to the posterior, a more concentrated density) is desired as more measurements are
received. The impact of destination is the key to DDT modeling. However, the state estimate
over time (especially far from the destination) should not be sensitive to (the mismatch of)
the prior destination density. Also, it is useful to have guidelines for a suitable design of an
approximate prior destination density to decrease the mismatch impact on state estimate near
the destination.

CML sequences provide a general framework for DDT modeling that enjoys the above de-
sirable properties. Some of these properties are about modeling and some others regarding
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filtering/prediction. Therefore, some of them are addressed in this section and others are dis-
cussed in Subsection 7.2.3, after presenting filtering of CML sequences in Subsections 7.2.1 and
7.2.2.

Some desirable properties of CML sequences for DDT modeling are as follows: 1) they
fit well the need to model the main DDT components, 2) they have a Markov-like evolution
law, which is simple and well understood, 3) they include reciprocal sequences as a special
case (Chapter 3), 4) the CML dynamic model ((7.6) below) has an appropriate structure for
describing DDT, 5) the CML model can systematically model the impact of destination on the
evolution of trajectories (see (7.6) below), 6) the CML model has white dynamic noise which
is desirable for simplicity, 7) state estimation based on the CML model is straightforward, and
8) CML sequences (and their dynamic models) can be simply and systematically generalized,
if necessary. Later, we elaborate these and some other properties of CML sequences for DDT
modeling and prediction.

Here we only briefly compare the structure of our CML model and the reciprocal model of
[18] for DDT modeling. The model of [18] has a nearest-neighbor structure (i.e., the current
state depends on the previous state and the next state). As a result, for estimation of the current
state, prior information (density) of the next state is required. However, such information is not
available. Based on our CML model, for estimation of the current state, information about the
last state (destination) is required. For our problem (i.e., trajectory modeling with destination
information) such information is available. Also, dynamic noise of the reciprocal model of [18]
is colored. As a result, state estimation based on that model is not straightforward. However,
dynamic noise of our CML model is white and its state estimation is straightforward.

7.1.1 CML Sequences for DDT Modeling

Let the trajectory be modeled as a sequence [xk]. In probability theory, one can interpret
the main elements of a DDT (i.e., an origin, a destination, and motion in between) as fol-
lows. The origin (destination) is modeled by a density function of x0 (xN ). The relationship
between the origin and the destination is modeled by their joint density, i.e., joint density
of x0 and xN . Since the destination (i.e., density of xN ) is (assumed) known, the evolution
law can be modeled as a conditional density (over the space of sample paths) given the state
at destination xN . Different choices of this conditional density correspond to different evolu-
tion laws. The simplest choice is that conditioned on xN the density is equal to the prod-
uct of its marginals: p([xk]N−10 |xN ) =

∏N−1
k=0 p(xk|xN ). However, this choice is often inade-

quate. Then, the next choice is a conditional density corresponding to the Markov sequence:
p([xk]N−10 |xN ) = p(x0|xN )

∏N−1
k=1 p(xk|xk−1, xN ). This is the evolution law of the CML sequence

(Chapter 2). The main elements of a CML sequence [xk] are: a joint density of x0 and xN—in
other words, an initial density and a final density conditioned on the initial, or equivalently, the
other way round—in addition an evolution law, where the evolution law is conditionally Markov
(conditioned on xN ). The above argument naturally leads to CML sequences for DDT mod-
eling. Following the same argument, we can consider more general and complicated evolution
laws, if necessary. For example, the conditional law (conditioned on xN ) can be higher-order
Markov instead of first-order Markov. Therefore, by choosing conditional laws, all DDT can be
modeled.

The CML sequence is studied in more detail below to demonstrate its use for DDT modeling.
In the following, sample path generation of the Markov sequence and the CML sequence is
discussed.

There are many different ways for sample path generation of a stochastic sequence. Let p(·)
and p(·|·) denote any joint and conditional density function, respectively. The causal approach
for sample path generation is based on the following representation

p([xk]) = p(xN |[xi]N−10 ) · · · p(x2|x1, x0)p(x1|x0)p(x0) (7.1)
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meaning that first x0 is generated, and then conditioned on the realization of x0, x1 is generated,
and so on. For generation of xk, realizations of all the previous states are required. This
approach is causal because the realization of xk does not depend on the realizations of any
future state. Depending on the properties of a sequence, there might be simpler ways for sample
path generation. In the following, Markov sequence sample path generation is discussed. Then,
a simple approach for CML sample path generation is presented.

Let [xk] be a Markov sequence. Then, p(xk|[xi]k−10 ) = p(xk|xk−1). Therefore, the causal
approach of (7.1) leads to a simple way for sample path generation, which can be seen in two
steps: first the initial state is generated from p(x0), then the subsequent states are generated
from the transition density p(xk|xk−1) step by step as follows:

p([xk]) = p([xk]N1 |x0)p(x0) =
( N∏

i=1

p(xi|xi−1)
)
p(x0) (7.2)

Corresponding to (7.2), we have model (6.1).

Unlike for the Markov sequence, the causal sample path generation (7.1) does not lead to a
simple way for the CML sequence sample path generation. Following (7.1), it can be seen that
the state of a ZMNG CML sequence [xk] generally obeys

xk =
k−1∑
i=0

Fk,ixi + dk, k ∈ [1, N ] (7.3)

where x0 is uncorrelated with [dk]N1 , which is a zero-mean white NG sequence. But this model is
not simple for application. By definition, for a CML sequence [xk], we have p(xk|[xi]k−10 , xN ) =
p(xk|xk−1, xN ). A simple way for the CML sample path generation is as follows: first generate
the endpoint states from their joint density p(x0, xN ), and then generate other states based on
the transition density p(xk|xk−1, xN ). For example, we can first generate xN from p(xN ) and
then x0 from p(x0|xN ). So, we have

p([xk]) = p([xk]N−10 |xN )p(xN ) (7.4)

= p([xk]N−11 |x0, xN )p(x0|xN )p(xN )

=
(N−1∏

i=1

p(xi|xi−1, xN )
)
p(x0|xN )p(xN ) (7.5)

It should be noticed that given a joint density of a CML sequence [xk], (7.1) and (7.5) give the
same set of paths.

Corresponding to (7.5), we have CML model (2.17) and (2.19) (c = N).

For trajectory modeling we need non-zero-mean sequences. A non-zero-mean NG sequence
is CML iff its zero-mean part follows a CML model (Chapter 2). Similarly, a non-zero-mean
NG sequence is Markov iff its zero-mean part follows a Markov model. The CML model (and
its boundary condition) of the non-zero-mean Gaussian CML sequences considered in the simu-
lations (for DDT modeling) is as follows. Let µ0 (µN ) and C0 (CN ) be the mean and covariance
of the origin (destination) state distribution. Also, let C0,N be the cross-covariance of x0 and
xN . We have

xk = Gk,k−1xk−1 +Gk,NxN + ek, k ∈ [1, N − 1] (7.6)

xN = µN + eN , x0 = µ0 +G0,N (xN − µN ) + e0 (7.7)

where G0,N = C0,NC
−1
N , G0 = Cov(e0) = C0 − C0,NC

−1
N (C0,N )′, and GN = Cov(eN ) = CN .

Parameter design for (7.6) is discussed in Subsection 7.1.2.
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In (7.5) or (7.6), xN is generated before other states. In other words, the last state is gener-
ated first and realizations of other states depend on the realization of the last one. Therefore,
the model is not causal. Is this non-causal model applicable for DDT modeling, filtering, and
prediction in reality? The answer to this question is based on the filter derived for the CML

sequence in Section 7.2. Therefore, the applicability of model (7.6) is discussed in Subsection
7.2.3. Here we only mention that the non-causal model (7.6) requires information about xN
(i.e., p(xN )), which is available. Therefore, this model is totally applicable.

7.1.2 CML Model Parameter Design for DDT Modeling

To use the CML model for DDT modeling, we need an approach for its parameter design. Next
we present such an approach.

We show how Theorem 4.1.3 can be used to design parameters of a CML model for DDT
modeling. DDT can be modeled based on two key assumptions: (i) the moving object follows
a Markov model (7.8) below (e.g., a nearly constant velocity model) without the destination
information (destination density), and (ii) the joint origin and destination density is known
(which can be different from that of the Markov model in (i)). In reality, if the joint density
is not known, an approximate density can be used (the density mismatch impact is studied in
Section 7.4). Now, (by (i)) let [yk] be Markov modeled by

yk = Mk,k−1yk−1 + eMk , k ∈ [1, N ], y0 = eM0 (7.8)

where [eMk ] is a zero-mean white NG sequence with covariances Mk, k ∈ [0, N ]. Every Markov
sequence is CML. So, [yk] can be modeled by a CML model as

yk = Gk,k−1yk−1 +Gk,NyN + eyk, k ∈ [1, N − 1] (7.9)

where [eyk] is a zero-mean white NG sequence with covariances Gk, k ∈ [1, N − 1], Gy
0, Gy

N , and
boundary condition

yN = eyN , y0 = Gy
0,NyN + ey0 (7.10)

We now obtain parameters of (7.9). Based on the Markov property of [yk], we have

p(yk|yk−1, yN ) =
p(yk, yk−1, yN )

p(yk−1, yN )

=
p(yk|yk−1)p(yN |yk, yk−1)

p(yN |yk−1)

=
p(yk|yk−1)p(yN |yk)

p(yN |yk−1)
(7.11)

= N (yk;Gk,k−1yk−1 +Gk,NyN ;Gk), k ∈ [1, N − 1]

and Gk,k−1, Gk,N , and Gk are obtained as

Gk,k−1 = Mk,k−1 −Gk,NMN |kMk,k−1 (7.12)

Gk,N = GkM
′
N |kC

−1
N |k (7.13)

Gk = (M−1k +M ′N |kC
−1
N |kMN |k)−1 (7.14)

where MN |N = I,

MN |k = MN,N−1 · · ·Mk+1,k, k ∈ [1, N − 1]

CN |k =
N−1∑
n=k

MN |n+1Mn+1M
′
N |n+1, k ∈ [1, N − 1]

p(yk|yk−1) = N (yk;Mk,k−1yk−1,Mk)
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and Mk,k−1,Mk, k ∈ [1, N ], are parameters of (7.8).

Now, we construct a different sequence [xk] modeled also by (7.9) as

xk = Gk,k−1xk−1 +Gk,NxN + ek, k ∈ [1, N − 1] (7.15)

where [ek] is a zero-mean white NG sequence with covariances Gk, k ∈ [0, N ], and boundary
condition

xN = eN , x0 = G0,NxN + e0 (7.16)

but with different parameters of the boundary condition (i.e., (GN , G0,N , G0) 6= (Gy
N , G

y
0,N ,

Gy
0)). Note that parameters of (7.9) and (7.15) are the same (Gk,k−1, Gk,N , Gk, k ∈ [1, N − 1]),

but parameters of (7.10) (Gy
0,N , G

y
0, G

y
N ) and (7.16) (G0,N , G0, GN ) are different. So, [yk] and

[xk] are two different sequences. By Theorem 2.2.6, [xk] is a ZMNG CML sequence.

The sequences [yk] and [xk] have the same CML model (i.e., (7.15) and (7.9) have the
same parameters Gk,k−1, Gk,N , Gk, k ∈ [1, N − 1]) or equivalently the same transition density
(7.11) or the same evolution law. But since parameters of the boundary condition (7.16) (i.e.,
(GN , G0,N , G0)) are arbitrary, [xk] can have any joint endpoint density. The two assumptions
((i) and (ii)) above naturally leads to the CML sequence [xk] whose CML model is the same
as that of [yk] while the former can model any origin and destination. Model (7.15) with
(7.12)–(7.14) is desired for DDT modeling based on (i) and (ii) above.

The CML model (7.15) with parameters (7.12)–(7.14) is called the CML model induced by
the Markov model (7.8) (or simply the Markov-induced CML model) since parameters of the
former are obtained from parameters of the latter (Chapter 4). Such a CML model is used in
our simulations presented in Subsection 7.4.

7.2 DDT Filtering

Consider CML model (7.6)–(7.7) and the measurement model

zk = Hkxk + vk, k ∈ [1, N ] (7.17)

where [vk]N1 is a zero-mean white Gaussian noise with Cov(vk) = Rk and uncorrelated with [ek]
in (7.6)–(7.7).

The goal is to obtain the minimum mean square error (MMSE) estimate x̂k = E[xk|zk]
and its mean square error (MSE) matrix given all measurements from the beginning to time k
denoted as zk = {z1, z2, . . . , zk}, where z0 means no measurement.

We present two formulations of the filter. The first one is simpler, but the second one provides
a better intuitive understanding of the behavior of the DDT filter and its main components.

7.2.1 First Formulation

Let sk = [x′k, x
′
N ]′. Then, (7.6) can be written as

sk = Gs
k,k−1sk−1 + esk−1, k ∈ [1, N − 1] (7.18)

where

Gs
k,k−1 =

[
Gk,k−1 Gk,N

0 I

]
, esk =

[
ek+1

0

]
, Gs

k = Cov(esk) =

[
Gk+1 0

0 0

]
Also, (7.17) is written as

zk = Hs
ksk + vk, k ∈ [1, N − 1] (7.19)
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where Hs
k = [Hk, 0]. Given ŝ0 = E[s0] and Σ0 = Cov(s0), based on (7.18) and (7.19), the MMSE

estimator and its MSE matrix are

ŝk = E[sk|zk] = ŝk|k−1 + Csk,zkC
−1
zk

(zk −Hs
k ŝk|k−1) (7.20)

Σk = E[(sk − ŝk)(sk − ŝk)′] = Σk|k−1 − Csk,zkC
−1
zk

(Csk,zk)′ (7.21)

where ŝk|k−1 = Gs
k,k−1ŝk−1, Σk|k−1 = Gs

k,k−1Σk−1(G
s
k,k−1)

′+Gs
k−1, Csk,zk = Σk|k−1(H

s
k)′, Czk =

Hs
kΣk|k−1(H

s
k)′ +Rk. The estimate of xk and its MSE are

x̂k = [I, 0]ŝk (7.22)

Pk = [I, 0]Σk[I, 0]′ (7.23)

Given ŝN−1 and ΣN−1, we have

x̂N |N−1 = [0, I]ŝN−1 (7.24)

PN |N−1 = [0, I]ΣN−1[0, I]′ (7.25)

where x̂N |N−1 is the estimate of xN given all the measurements up to time N − 1 and PN |N−1
is the corresponding MSE matrix. Given zN , we have the update

x̂N = x̂N |N−1 + CxN ,zNC
−1
zN

(zN −HN x̂N |N−1) (7.26)

PN = PN |N−1 − CxN ,zNC
−1
zN

(CxN ,zN )′ (7.27)

where CxN ,zN = PN |N−1(HN )′ and CzN = HNPN |N−1(HN )′ +RN .

The filter is as follows.

• Initialization

ŝ0 =

[
µ0
µN

]
, Σ0 =

[
C0 C0,N

(C0,N )′ CN

]
• For k ∈ [1, N − 1]:

ŝk|k−1 = Gs
k,k−1ŝk−1

Σk|k−1 = Gs
k,k−1Σk−1(G

s
k,k−1)

′ +Gs
k−1

Cs,z = Σk|k−1(H
s
k)′

Cz = Hs
kΣk|k−1(H

s
k)′ +Rk

ŝk = ŝk|k−1 + Cs,zC
−1
z (zk −Hs

k ŝk|k−1)

Σk = Σk|k−1 − Cs,zC
−1
z (Cs,z)

′

x̂k = [I, 0]ŝk

Pk = [I, 0]Σk[I, 0]′

• For k = N :

x̂N |N−1 = [0, I]ŝN−1

PN |N−1 = [0, I]ΣN−1[0, I]′

Cx,z = PN |N−1(HN )′

Cz = HNPN |N−1(HN )′ +RN

x̂N = x̂N |N−1 + Cx,zC
−1
z (zN −HN x̂N |N−1)

PN = PN |N−1 − Cx,zC
−1
z (Cx,z)

′
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7.2.2 Second Formulation

The filter is derived based on propagation of posterior density p(xk|zk) over time. For k ∈
[1, N − 1] we can write

p(xk|zk) =

∫
p(xk|xN , zk)p(xN |zk)dxN (7.28)

For calculation of p(xk|zk) based on (7.28), the propagation of p(xk|xN , zk) and p(xN |zk) (the
key terms of the filter) over time is required.

From the boundary condition of the CML model, a prior jointly Gaussian endpoint density
p(x0, xN ) with the following mean and covariance is available:[

C0 C0,N

(C0,N )′ CN

]
,

[
µ0
µN

]
Recursive calculation of p(xk|xN , zk) can be done as follows. We have p(x0|xN ) = N (x0;µ0|N

,Σ0|N ), where µ0|N = µ0 + C0,NC
−1
N (xN − µN ) and Σ0|N = C0 − C0,NC

−1
N (C0,N )′. For the

recursive calculation it is useful to define the following terms µ0|N = b0 + B0xN , b0 = µ0 −
C0,NC

−1
N µN , B0 = C0,NC

−1
N , B0 = Σ0|N . Then,

p(x0|xN ) = N (x0;µ0|N ,Σ0|N ) = N (x0; b0 +B0xN ,B0) (7.29)

Let the conditional density from time k − 1, and the CML transition density based on model
(7.6) be given as

p(xk−1|xN , zk−1) = N (xk−1; bk−1 +Bk−1xN ,Bk−1) (7.30)

p(xk|xk−1, xN ) = N (xk;Gk,k−1xk−1 +Gk,NxN , Gk) (7.31)

Then, for k ∈ [1, N − 1],

p(xk|xN , zk−1) =

∫
p(xk|xk−1, xN )p(xk−1|xN , zk−1)dxk−1

= N (xk;Gk,k−1bk−1 +DkxN , Sk) (7.32)

where Sk = Gk +Gk,k−1Bk−1(Gk,k−1)
′ and Dk = Gk,k−1Bk−1 +Gk,N . By (7.17), we have

p(zk|xk) = N (zk;Hkxk, Rk) (7.33)

For k ∈ [1, N − 1],

p(xk|xN , zk) =
p(zk|xk)p(xk|xN , zk−1)

p(zk|xN , zk−1)
= N (xk; bk +BkxN ,Bk)

where

bk =Gk,k−1bk−1 + Bk(Hk)′R−1k (zk −HkGk,k−1bk−1)

Bk =Gk,k−1Bk−1 +Gk,N −Bk(Hk)′R−1k Hk(Gk,k−1Bk−1 +Gk,N )

Bk =Sk − Sk(Hk)′(Rk +HkSk(Hk)′)−1HkSk

So, the propagation of p(xk|xN , zk) is complete.

The second density p(xN |zk) can be recursively calculated as follows. For the purpose of
recursive calculation it is useful to write p(xN ) = N (xN ; a0, A0), where a0 = µN and A0 = CN .
For k ∈ [1, N − 1], we have

p(xN |zk) =
p(zk|xN , zk−1)p(xN |zk−1)

p(zk|zk−1)
(7.34)
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where from k − 1 we have

p(xN |zk−1) = N (xN ; ak−1, Ak−1) (7.35)

Also,

p(zk|xN , zk−1) =

∫
p(zk|xk)p(xk|xN , zk−1)dxk

= N
(
zk;Hk(Gk,k−1bk−1 +DkxN ), Rk +HkSk(Hk)′

)
(7.36)

where p(xk|xN , zk−1) and p(zk|xk) are available by (7.32) and (7.33), respectively. Then, sub-
stituting (7.35) and (7.36) into (7.34), we get

p(xN |zk) = N (xN ; ak, Ak) (7.37)

where

ak =ak−1 +Ak(Dk)′(Hk)′(Rk +HkSk(Hk)′)−1(zk −HkGk,k−1bk−1 −HkDkak−1)

Ak =Ak−1 −Ak−1(Dk)′(Hk)′(Rk +HkSk(Hk)′ +HkDkAk−1(Dk)′(Hk)′)−1HkDkAk−1

Thus, the propagation of p(xN |zk) for k ∈ [1, N − 1] is complete.

Given the key terms p(xk|xN , zk) and p(xN |zk), the posterior density p(xk|zk) for k ∈ [1, N−
1] can be calculated by (7.28), which results in

p(xk|zk) =

∫
N (xk; bk +BkxN ,Bk)N (xN ; ak, Ak)dxN

= N (xk;Bkak + bk,Bk +BkAk(Bk)′)

Then, the MMSE estimate and its MSE matrix are

x̂k = Bkak + bk (7.38)

Pk = Bk +BkAk(Bk)′ (7.39)

For k = N , the posterior density is

p(xN |zN ) =
p(zN |xN )p(xN |zN−1)

p(zN |zN−1)

where p(xN |zN−1) = N (xN ; aN−1, AN−1) is available from time N − 1, and p(zN |xN ) is given
by (7.33). Then,

x̂N = aN−1 + PN (HN )′R−1N (zN −HNaN−1)

PN = AN−1 −AN−1(HN )′(RN +HNAN−1(HN )′)−1HNAN−1

The filter is as follows.

• Initialization:

b0 =µ0 − C0,NC
−1
N µN

B0 =C0,NC
−1
N

B0 =C0 − C0,NC
−1
N (C0,N )′

x̂0 =a0 = µN

P0 =A0 = CN
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• For k ∈ [1, N − 1]:

Sk =Gk +Gk,k−1Bk−1(Gk,k−1)
′

Bk =Sk − Sk(Hk)′(Rk +HkSk(Hk)′)−1HkSk

bk =Gk,k−1bk−1 + Bk(Hk)′R−1k (zk −HkGk,k−1bk−1)

Bk =Gk,k−1Bk−1 +Gk,N −Bk(Hk)′R−1k Hk(Gk,k−1Bk−1 +Gk,N )

Dk =Gk,k−1Bk−1 +Gk,N

Ak =Ak−1 −Ak−1(Dk)′(Hk)′(Rk +HkSk(Hk)′ +HkDkAk−1(Dk)′(Hk)′)−1HkDkAk−1

ak =ak−1 +Ak(Dk)′(Hk)′(Rk +HkSk(Hk)′)−1(zk −HkGk,k−1bk−1 −HkDkak−1)

Pk =Bk +BkAk(Bk)′

x̂k =Bkak + bk

• For k = N :

PN =AN−1 −AN−1(HN )′
(
RN +HNAN−1(HN )′

)−1
HNAN−1

x̂N =aN−1 + PN (HN )′R−1N

(
zN −HNaN−1

)

7.2.3 Discussion

The CML Sequence For DDT Modeling

Consider a flight from an origin to a destination. Let the trajectories of the flight be modeled by
sample paths of a CML sequence [xk]. In other words, it is assumed that the flight follows the
CML sequence [xk]. Although we don’t know which CML sample path the flight is following,
at every time a measurement of the state of the flight is available. The goal is to obtain an
estimate of the state (and then obtain a predicted state) by processing the measurements. (7.6)
is non-causal, but our filter (7.38)–(7.39) still works in a causal way because it uses only causal
(statistical) information. Therefore, there is no problem regarding the applicability of the CML

model due to its non-casuality. If the exact density is not available, an approximate one can be
used. The mismatch impact is studied in Subsection 7.4.

By (7.4), first, xN is generated from p(xN ). Then, conditioned on the realization of xN ,
other states are realized. Given xN , one can intuitively interpret CML sample path generation
as the realization of one of the sample paths going through the given xN . This approach of path
generation helps to understand the behavior of the filter based on (7.28). In (7.28), p(xk|zk) is
a weighted sum of p(xk|xN , zk), where the weights are proportional to the posterior destination
density p(xN |zk). As measurements are received over time, the posterior destination density is
updated. In other words, the uncertainty about the state xN reduces. Also, for every value of
xN , the conditional density p(xk|xN , zk) is propagated over time. Thus, as p(xN |zk) gets more
concentrated, higher weights are given to conditional densities p(xk|xN , zk) with more likely xN
(according to p(xN |zk)). It means the conditional densities p(xk|xN , zk) with more likely xN
play more important roles in determination of p(xk|zk). The above explanation, based on the
second formulation of the filter (Subsection 7.2.2), shows that the behavior of a DDT filter is
quite intuitive.

An essential part of the filter is the update of destination density p(xN |zk) (Subsection
7.2.2). As measurements are received over time, the posterior destination density becomes
more concentrated. The (assumed) known prior destination density p(xN ) is not necessarily
accurate. If not known, an approximate (mismatched) prior destination density can be used.
Given the CML model, the destination density is updated as measurements are received. It can
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be seen in the simulations (Section 7.4) that the impact of the destination density mismatch
on state estimates far from the destination is negligible. Also, by an appropriate design of the
approximate prior destination density, this mismatch impact can be reduced for estimates of
the states close to the destination (Section 7.4).

Reciprocal CML Model vs. Reciprocal Model of [18] for Estimation

Recursive estimation of a reciprocal sequence based on the reciprocal CML model and the
reciprocal model of [18] was discussed in Subsection 3.1.3. It was shown that the reciprocal
CML model gives a much simpler recursive estimator. In addition, we emphasize that the
structure of the reciprocal CML model fits DDT much better than the reciprocal model of [18].
Because the former can directly model/incorporate destination density (due to the term xN in
(2.17)), but the latter is difficult to incorporate such information (due to the nearest neighbor
structure of (6.9)).

Markov Model vs. Reciprocal CML Model for Estimation

By Theorem 3.1.17, given a reciprocal CML model, there exist boundary conditions that lead
to Markov sequences. So, such a Markov sequence can be modeled by a Markov model (7.8) or a
reciprocal CML model (Chapter 3, Chapter 6). The CML filter (Subsection 7.2.1 or Subsection
7.2.2) is MMSE optimal. For a Markov sequence, one can also derive the MMSE optimal filter
based on the Markov model. Therefore, for a Markov sequence both these filters calculate the
conditional mean E[xk|zk] and are actually the same.

7.3 DDT Prediction

Given a CML model and measurements up to time k, the trajectory can be predicted. Let
[xk] be a CML sequence modeled by (7.18). Assume that the output of the filter p(sk|zk) =
N (sk; ŝk,Σk) at time k is available (Subsection 7.2.1). The predicted density at time k + n ∈
[k + 1, N − 1] is (sk = [x′k, x

′
N ]′)

p(sk+n|zk) =

∫
p(sk+n|sk)p(sk|zk)dsk (7.40)

where the second term of the integrand is the output of the filter (7.20)–(7.21) at time k, and
the first term is determined by (7.18). For k + n ∈ [k + 1, N − 1], the predicted state and its
MSE matrix are obtained as

ŝk+n|k = Gs
k+n|kŝk (7.41)

Σk+n|k = Kk+n|k +Gs
k+n|kΣk(Gs

k+n|k)′ (7.42)

where

Gs
k+n|k = Gs

k+n,k+n−1G
s
k+n−1,k+n−2 · · ·Gs

k+1,k, Gs
k|k = I, ∀k (7.43)

Kk+n|k =

k+n−1∑
i=k

Gs
k+n|i+1G

s
i (G

s
k+n|i+1)

′ (7.44)

Then, the predicted xk+n and its MSE matrix are

x̂k+n|k = [I, 0]ŝk+n|k (7.45)

Pk+n|k = [I, 0]Σk+n|k[I, 0]′ (7.46)
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Also,

x̂N |k = [0, I]ŝk (7.47)

PN |k = [0, I]Σk[0, I]′ (7.48)

The predictor is as follows:

• ŝk and Σk are available by the filter.

• For k + n ∈ [k + 1, N − 1]:

ŝk+n|k = Gs
k+n|kŝk

Σk+n|k = Kk+n|k +Gs
k+n|kΣk(Gs

k+n|k)′

x̂k+n|k = [I, 0]ŝk+n|k

Pk+n|k = [I, 0]Σk+n|k[I, 0]′

• For k + n = N :

x̂N |k = [0, I]ŝk

PN |k = [0, I]Σk[0, I]′

It is desirable to compare trajectory prediction formulations obtained with and without
incorporating destination information. To do so, we compare trajectory predictors obtained
based on a Markov model and on the Markov-induced CML model (Theorem 4.1.3). In addition
to the above formulation, we present an alternative formulation for DDT prediction for the
Markov-induced CML model. This formulation is particularly useful for comparing trajectory
predictors with and without destination information. For simplicity, we assume a time-invariant
Markov model (7.8) (i.e., Mk,k−1 = F and Mk = Q) of [yk]. We have

p(yk+n|yk) = N (yk+n;Fnyk, Ck+n|k)

p(yN |yk+n) = N (yN ;FN−(k+n)yk+n, CN |k+n)

where for k+ n ∈ [k+ 1, N − 1], Ck+n|k =
∑n−1

i=0 F
iQ(F i)′, CN |k+n =

∑N−k−n−1
i=0 F iQ(F i)′. By

the Markov property, for the transition density we have

p(yk+n|yk, yN ) =
p(yk+n|yk)p(yN |yk+n, yk)

p(yN |yk)

=
p(yk+n|yk)p(yN |yk+n)

p(yN |yk)
(7.49)

= N (yk+n;Wk+n,kyk + Uk+n,kyN ,Wk+n,k) (7.50)

where

Wk+n,n =Fn − Uk+n,nF
N−k (7.51)

Uk+n,n =Wk+n|k(FN−(k+n))′C−1N |k+n (7.52)

Wk+n|k =Ck+n|k − Ck+n|k(FN−(k+n))′(CN |k+n+

FN−(k+n)Ck+n|k(FN−(k+n))′)−1FN−(k+n)Ck+n|k (7.53)

Ek+n|k =[Wk+n,n, Uk+n,n] (7.54)
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Let h(yk+n, yk, yN ) = p(yk+n|yk, yN ). For the transition density of the Markov-induced CML

model of [xk], we have1 (Appendix D)

p(xk+n|xk, xN ) = h(xk+n, xk, xN ) (7.55)

For trajectory prediction, we can write (sk = [x′k, x
′
N ]′)

p(xk+n|zk) =

∫
p(xk+n|sk)p(sk|zk)dsk (7.56)

Using (7.55) in (7.56), the trajectory predictor based on the Markov-induced CML model is,
for k + n ∈ [k + 1, N − 1],

x̂k+n|k = Ek+n|kŝk (7.57)

Pk+n|k =Wk+n|k + Ek+n|kΣk(Ek+n|k)′ (7.58)

with (7.51)–(7.54), and for k + n = N we have (7.47)–(7.48).

The predictor is as follows:

• ŝk and Σk are available by the filter.

• For k + n ∈ [k + 1, N − 1]:

x̂k+n|k = Ek+n|kŝk

Pk+n|k =Wk+n|k + Ek+n|kΣk(Ek+n|k)′

• For k + n = N :

x̂N |k = [0, I]ŝk

PN |k = [0, I]Σk[0, I]′

The trajectory predictor based on Markov model (7.8) of a Markov sequence [yk] is obtained
by

p(yk+n|zk) =

∫
p(yk+n|yk)p(yk|zk)dyk

where the second term of the integrand is available from the filter and the first term is determined
by the Markov model. Then, for Mk,k−1 = F and Mk = Q, the predicted yk+n and its MSE
matrix are

ŷk+n|k = Fnŷk (7.59)

Pk+n|k = Ck+n|k + FnPk(Fn)′ (7.60)

where ŷk and Pk are provided by the corresponding filter (the filter derived based on the Markov
model).

It is useful to compare the DDT predictor (7.57)–(7.58) with the trajectory predictor (7.59)–
(7.60).

1Note that with an abuse of notation, p(yk+n|yk, yN ) means transition density of [yk] and p(xk+n|xk, xN )
transition density of [xk].
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7.4 Simulations

Performance of the CML sequence in DDT modeling was evaluated via simulations. Four exam-
ples were considered to study the following topics: trajectories in different scenarios, filtering,
destination density update, and trajectory prediction. Then, an example is presented to demon-
strate an application of a singular CML sequence in trajectory modeling.

Consider a two-dimensional scenario, where the state of a moving object at time k is
xk = [x, ẋ, y, ẏ]′k with position [x, y]′ and velocity [ẋ, ẏ]′. Mean and covariance of the origin
(destination) are denoted by µ0 and C0 (µN and CN ). The cross-covariance between them is
denoted by C0,N . To compare performance of the CML modeling with that of the Markov
modeling for trajectories, we considered a Markov-induced CML model (Theorem 4.1.3). For
the corresponding Markov model (7.8), for every k ∈ [1, N ], we have

Mk,k−1 = F = diag(F1, F1), F1 =

[
1 T
0 1

]
(7.61)

Mk = Q = diag(Q1, Q1), Q1 = q

[
T 3/3 T 2/2
T 2/2 T

]
(7.62)

where T = 15 second (sampling interval between k − 1 and k), q = 0.01, and N = 100.

In simulations we considered the Markov model yk = Mk,k−1yk−1 + eMk , eMk ∼ N (0,Mk),
k ∈ [1, N ], y0 = eM0 , with the above parameters, where eM0 ∼ N (µ0, C0). Also, we considered
the Markov-induced CML model

xk = Gk,k−1xk−1 +Gk,NxN + ek (7.63)

x0 = µ0 + C0,NC
−1
N (xN − µN ) + e0 (7.64)

xN = µN + eN (7.65)

where ek ∼ N (0, Gk), k ∈ [1, N − 1], eN ∼ N (0, CN ), e0 ∼ N (0, C0 − C0,NC
−1
N C ′0,N ), and

parameters of (7.63) are given by (7.12)–(7.14) as

Gk,k−1 = F −Gk,NF
N−k+1 (7.66)

Gk,N = Gk(FN−k)′C−1N |k (7.67)

Gk = (Q−1 + (FN−k)′C−1N |kF
N−k)−1 (7.68)

= Q−Q(FN−k)′(CN |k + FN−kQ(FN−k)′)−1FN−kQ

where CN |k =
∑N−1

n=k F
N−n−1Q(FN−n−1)′. The time duration is the same [0, N ] in all scenarios.

Example 7.4.1. In this example, trajectories generated by the above Markov-induced CML

model were studied. Different scenarios were considered.

• Scenario 1: Let the means and the covariances of the origin and the destination densities
be given by (7.69)–(7.72). Fig. 7.1 shows some CML trajectories from the origin to the
destination, generated by the Markov-induced CML model. To compare the two models
(the Markov model and the Markov-induced CML model), we plot the trajectories of
Fig. 7.1 (solid lines) and those of the Markov sequence (dash lines) in Fig.7.2. Both
sequences model the origin well. Also, near the origin their difference is small. However,
later their difference grows. This is due to the poor performance of the Markov model
in incorporating the destination information. Also, Figs. 7.3 and 7.4 show the x and y
components of the velocity for Markov (50 dash lines) and CML (50 solid lines) sequences.
For clarity, Fig. 7.5 also shows y-velocity for the CML sequence separately. Variations
of velocity components are intuitive by comparing Markov and CML trajectories in Figs.
7.3 and 7.4. The x-position mean of the destination is 130000 while the x-position at
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Figure 7.1: CML trajectories from an origin to a destination (Example 1, Scenario 1).

the end of Markov trajectories is around 110000. The x-velocity means at the origin
and the destination are the same. So, the x-velocity for the CML sequence should be
greater than that of the Markov sequence on the way (Fig. 7.3) to satisfy the x-position
at the destination. Note that the x-velocity for the Markov sequence does not change
much overall. Also, note that both sequences have the same time duration [0, N ]. The
y-velocity means of the origin and destination densities are the same. But the y-position
means of the origin (5000) is larger than that of the destination (2000). So, the y-velocity
of the CML sequence slightly decreases on the way (Fig. 7.4).

µ0 = [2000, 70, 5000, 0]′ (7.69)

C0 = CN = diag(A,A) (7.70)

µN = [130000, 70, 2000, 0]′ (7.71)

C0,N = diag(B,B) (7.72)

A =

[
1000 40
40 10

]
, B =

[
800 20
20 7

]

• Scenario 2: Let the means and the covariances be given by (7.69)–(7.72), except µN =
[80000, 70, 2000, 0]. Fig. 7.6 shows some trajectories of the CML and Markov sequences.
Similar to the scenario 1, variations of velocity components are intuitive by comparing
Markov and CML trajectories in Figs. 7.7 and 7.8. The x-position mean of the destination
is 80000 while the x-position at the end of Markov trajectories is around 110000. The
x-velocity means at the origin and the destination are the same. So, the x-velocity for
the CML sequence should be smaller than that of the Markov sequence on the way (Fig.
7.7) to satisfy the x-position at the destination. Note that the x-velocity for the Markov
sequence does not change much overall; also, the time duration for both sequences is the
same [0, N ]. It is meaningful to compare the x-velocity in Figs. 7.3 and 7.7. The variations
of y-velocities are similar in Figs. 7.4 and 7.8.

• Scenario 3: Let the means and the covariances be given by (7.69)–(7.72), except µ0 =
[2000, 70, 5000, 10] and µN = [130000, 70, 2000,−10]. Trajectories of the corresponding
CML sequence are shown in Fig. 7.9. Fig. 7.10 shows trajectories of the Markov and the
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Figure 7.2: CML (solid lines) and Markov (dash lines) trajectories (Example 1, Scenario 1).

Figure 7.3: x-velocity for CML and Markov trajectories (Example 1, Scenario 1).

Figure 7.4: y-velocity for CML and Markov trajectories (Example 1, Scenario 1).
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Figure 7.5: y-velocity for CML trajectories (Example 1, Scenario 1).

Figure 7.6: CML and Markov trajectories (Example 1, Scenario 2).

Figure 7.7: x-velocity for CML and Markov trajectories (Example 1, Scenario 2).
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Figure 7.8: y-velocity for CML and Markov trajectories (Example 1, Scenario 2).

Figure 7.9: CML trajectories from an origin to a destination (Example 1, Scenario 3).

CML sequence. The variations of the x and y components of the velocity in Figs. 7.11
and 7.12 are intuitive based on the origin and destination means of position and velocity.

• Scenario 4: Let the means and the covariances be given by (7.69)–(7.72), except µ0 =
[2000, 70, 5000, 10] and µN = [130000, 70, 2000, 10]. Trajectories of the CML sequence are
shown in Fig 7.13.

• Scenario 5: Let the means and the covariances be given by (7.69)–(7.72), except µ0 =
[2000, 70, 5000, 10] and µN = [130000, 70, 2000, 0]. Trajectories of the CML sequence are
shown in Fig 7.14.

Example 7.4.1 shows how the CML sequence can model trajectories taking the origin and
the destination information into account.

In the ATC application, the origin and the destination of a flight are two airports. So,
the origin and the destination densities are often available. However, in other applications the
exact origin and destination densities are not necessarily available. Thus, in the following, some
mismatched cases are considered. The matched case (i.e., the true µ0, C0, µN , CN , and C0,N
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Figure 7.10: CML and Markov trajectories (Example 1, Scenario 3).

Figure 7.11: x-velocity for CML and Markov trajectories (Example 1, Scenario 3).

Figure 7.12: y-velocity for CML and Markov trajectories (Example 1, Scenario 3).
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Figure 7.13: CML trajectories from an origin to a destination (Example 1, Scenario 4).

Figure 7.14: CML trajectories from an origin to a destination (Example 1, Scenario 5).
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are given by (7.69)–(7.72)) is considered as case (i). The mismatched cases are:

• Case (ii): (7.70), (7.72), and

µ0 = [2300, 60, 5300, 10]′ (7.73)

µN = [130300, 60, 2300, 10]′ (7.74)

• Case (iii):

µ0 = [2300, 60, 5300, 10]′ (7.75)

C0 = CN = diag(10000, 100, 10000, 100) (7.76)

µN = [130300, 60, 2300, 10]′ (7.77)

C0,N = diag(7000, 60, 7000, 60) (7.78)

• Case (iv): (7.75), (7.77), and

C0 = CN = diag(100, 1, 100, 1) (7.79)

C0,N = diag(90, 0.8, 90, 0.8) (7.80)

• Case (v): (7.69), (7.71), and

C0 = CN = diag(10000, 100, 10000, 100) (7.81)

C0,N = diag(7000, 60, 7000, 60) (7.82)

Example 7.4.2. Filtering performance is studied. The true trajectories were generated
by the Markov-induced CML model (case (i)). Since the Markov sequence is a special CML

sequence, this approach for generation of true trajectories is totally fair for both CML and
Markov models (see Subsection 7.2.3 about a Markov model vs. a reciprocal CML model for
estimation). The measurement model is given by (7.17), where

Hk =

[
1 0 0 0
0 0 1 0

]
Rk = diag(100, 100)

Figs. 7.15 and 7.16 show the logarithm of the average Euclidean error (AEE) [93] of the
position (AEEp

k|k) and the velocity (AEEv
k|k) estimates based on the CML model and the Markov

model using measurements up to time k. The AEE of the position and velocity estimates are
given by

AEEp
k|k =

1

M

M∑
i=1

√
(x

(i)
k − x̂

(i)
k|k)2 + (y

(i)
k − ŷ

(i)
k|k)2

AEEv
k|k =

1

M

M∑
i=1

√
(ẋ

(i)
k − ˆ̇x

(i)
k|k)2 + (ẏ

(i)
k − ˆ̇y

(i)
k|k)2

where [x
(i)
k , y

(i)
k ]′ and [ẋ

(i)
k , ẏ

(i)
k ]′ are the true position and velocity at time k on the ith Monte

Carlo run, [x̂
(i)
k|k, x̂

(i)
k|k]′ and [ˆ̇x

(i)
k|k,

ˆ̇y
(i)
k|k]′ their estimates using measurements up to time k, and

M = 1000 is the number of Monte Carlo runs. The results of the CML model for all different
mismatched endpoints are shown (Figs. 7.15 and 7.16). However, for the Markov model only
the result of the matched case (i.e., case (i)) is presented. In case (ii), the mismatched means of
the origin and destination densities lead to some bias in the CML model. This is the reason for
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Figure 7.15: AEE of position estimate (AEEp
k|k) (Example 2).

estimation performance degradation near the origin and especially near the destination in case
(ii). However, the mismatch impact is not significant far from the origin and the destination,
which is intuitive. By an appropriate (large enough) choice of the origin and the destination
covariances, the impact of mismatched means can be compensated as it is seen in case (iii).
An inappropriate (too small) choice of the origin and the destination covariances can make the
impact of mismatched means even worse (case (iv)). On the other hand, the impact of large
covariances of the origin and the destination is not that serious (case (v)). The differences in
estimation performance in case (i), case (iii), and case (v) are not significant. So, if the origin
or the destination mean mismatch is likely in a scenario, one should design the covariances
accordingly to compensate the model bias. Note that estimation performance based on the
Markov model can be much worse than that of Figs. 7.15 and 7.16 for other scenarios presented
in Figs. 7.9, 7.13, 7.14.

Example 7.4.3. Destination density update is an important part of the filter for the CML

sequence (Section 7.2.2). In other words, estimation of xN plays an important role in filtering
and prediction. Dynamic and measurement models are the same as the above. The AEE of the
(prediction) estimates of the position and velocity components of xN given measurement up to
time k are given by

AEEp
N |k =

1

M

M∑
i=1

√
(x

(i)
N − x̂

(i)
N |k)2 + (y

(i)
N − ŷ

(i)
N |k)2

AEEv
N |k =

1

M

M∑
i=1

√
(ẋ

(i)
N − ˆ̇x

(i)
N |k)2 + (ẏ

(i)
N − ˆ̇y

(i)
N |k)2

where [x
(i)
N , y

(i)
N ]′ and [ẋ

(i)
N , ẏ

(i)
N ]′ are the true position and velocity at time N on the ith Monte

Carlo run, [x̂
(i)
N |k, ŷ

(i)
N |k]′ and [ˆ̇x

(i)
N |k,

ˆ̇y
(i)
N |k]′ their estimates using measurements up to time k, and

M = 1000 is the number of Monte Carlo runs.

Figs. 7.17 and 7.18 show how the predicted xN in case (i) gets better as more measurements
are received especially near the destination. The mismatched means (model bias) in case (ii)
degrade the estimation performance. Appropriate choices of the covariances in case (iii) enhance
the performance while inappropriate choices of the covariances in case (iv) make the bias impact
worse. It demonstrates the importance of appropriate choices of the origin and destination
covariances in the presence of mismatched means.
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Figure 7.16: AEE of velocity estimate (AEEv
k|k) (Example 2).

Due to the mismatched endpoint densities, the predicted xN can deteriorate over time. It
can be verified as follows. Based on a CML model (7.6) we can write xk = Akx0 +BkxN + rk,
k ∈ [1, N − 1], where Ak and Bk are some matrices, and rk is a linear function of the CML

dynamic noise. Also, from (7.7) we have x0 = µ0+G0,N (xN−µN )+e0. For example, assume the
means of the origin (µ0) and the destination (µN ) are mismatched. We have µ0 = µtrue0 + µ̃0 and
µN = µtrueN + µ̃N , where µ̃0 and µ̃0 are mismatch terms. Using the above formulas for xk and x0,
we can write the measurement at time k (i.e., (7.17)) in terms of xN as zk = LkxN +dk+bk+wk,
where Lk is a matrix, dk is a linear function of µtrue0 and µtrueN , wk is a linear function of the
measurement noise and the CML dynamic noise, and bk is a bias term due to mismatched means
(i.e., bk is a function of the mismatch terms µ̃0 and µ̃N ). It can be seen that depending on the
bias at different times, the predicted xN can deteriorate over time occasionally (Fig. 7.18).

Example 7.4.4. Trajectory prediction is studied in this example. Dynamic and measure-
ment models are the same as in the above. CML trajectory prediction is possible based on
(7.45)–(7.46) or (7.57)–(7.58) for k + n ∈ [k + 1, N − 1], and (7.47)–(7.48) for k + n = N . It is
assumed that the measurements are available up to time k = 9, based on which the filter’s out-
put is available. Fig. 7.19 shows the logarithm of the AEE of the position prediction obtained
based on the CML model and the Markov model. The AEE of the position prediction is

AEEk+n|k =
1

M

M∑
i=1

√
(x

(i)
k+n − x̂

(i)
k+n|k)2 + (y

(i)
k+n − ŷ

(i)
k+n|k)2

where [x
(i)
k+n, y

(i)
k+n]′ is the true position at k + n (k + n = 10, . . . , 100) on the ith Monte Carlo

run, [x̂
(i)
k+n|k, ŷ

(i)
k+n|k]′ is its prediction using measurements up to time k = 9, and M = 1000

is the number of Monte Carlo runs. Results of the CML model in all different mismatched
endpoints are shown. However, for the Markov model only the result of case (i) is shown. The

ratio of AEEp
100|9 of the Markov model to AEEp

100|9 of the CML model
AEEp

100|9(Markov)

AEEp
100|9(CML)

is 545.75,

which is huge. Performance of the Markov model in other cases is close to case (i) or worse.
Fig. 7.19 shows that the origin and destination mismatched means degrade the prediction
performance in case (ii). Prediction performance in case (ii) and case (iii) are close. However,
an appropriate (large enough) covariance of the destination can compensate a large bias due to
a highly mismatched destination mean. An inappropriate (small) covariance of the destination
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Figure 7.17: Log of AEE of position predictions of xN (AEEp
N |k) (Example 3).

Figure 7.18: Log of AEE of velocity predictions of xN (AEEv
N |k) (Example 3).
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Figure 7.19: Log of AEE of position prediction (log10(AEE9+n|9)) (Example 4).

can make the bias impact (case (ii)) even worse (case (iv)). Prediction performance in case (v)
is better than in case (ii) especially near the destination.

Example 7.4.5. In the previous examples, we used a NG CML sequence to model tra-
jectories between an origin and a destination. Now assume the destination (the position) is
completely known (i.e., position components of the state of the sequence at destination are
almost surely constant, which means the sequence is singular). The means and the covariances
of the origin and the destination are

µ0 = [2000, 5, 2000, 20]′ (7.83)

C0 = diag(A,A) (7.84)

A =

[
100000 40

40 10

]
(7.85)

µN = [15000, 5, 2000,−20]′ (7.86)

CN = diag(0, 1, 0, 1) (7.87)

C0,N = diag(0, 2, 0, 2) (7.88)

The Markov model used in this example is the same as in the above examples with µ0
and C0 given by (7.83)–(7.84). The Markov-induced CML model is the same as in the above
examples, where the boundary condition is x0 = µ0+C0,N (CN )+(xN−µN )+e0, e0 ∼ N (0, C0−
C0,N (CN )+C ′0,N ), and xN = µN + eN , eN = [0, α, 0, β]′, α ∼ N (0, 1), β ∼ N (0, 1), where α and
β are independent. Also, µ0, C0, µN , CN , and C0,N are given by (7.83)–(7.88).

Fig. 7.20 shows trajectories generated by the CML model. To demonstrate the behavior
of the CML model induced by the Markov model, Fig. 7.21 shows trajectories generated by
the CML model (50 solid lines) and the Markov model (50 dash lines). Also, Figs. 7.22 and
7.23 show the x and y components of the velocity for trajectories of both models. It can be
seen how the velocity components for the CML sequence variations to satisfy the origin and the
destination densities. This example demonstrates an application of a singular CML sequence
for DDT modeling.

[84] presented a CM sequence for modeling trajectories with waypoints and destination in-
formation.
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Figure 7.20: CML trajectories from an origin to a destination (Example 5).

Figure 7.21: CML and Markov trajectories (Example 5).

Figure 7.22: x-velocity for CML and Markov trajectories (Example 5).
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Figure 7.23: y-velocity for CML and Markov trajectories (Example 5).
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Chapter 8

Conclusions and Future Work

We have developed a large class of stochastic sequences, called conditionally Markov (CM)
sequences, and have demonstrated its power in theory and application. There are a wide variety
of CM sequences useful for problem modeling. We have studied various Gaussian CM classes,
obtained their dynamic models and characterizations, studied the relationships between their
models, and pointed out their applications (Chapters 2–6). Chapters 2–6 have provided required
models and tools for application of CM sequences. We highlight some of the obtained results.

• Nonsingular Gaussian (NG) CMc sequences have a simple Markov-like recursive dynamic
model in the state space with white dynamic noise ((2.17) along with (2.18) or (2.19)).
The two boundary conditions (2.18) and (2.19) are equivalent. One can be more suitable
than the other for a problem. (5.1) along with (5.2) or (5.3) is the extension of the above
CMc model to the general singular/nonsingular Gaussian sequences, where there is no
nonsingularity condition on the covariances of the dynamic noise and the boundary values
(i.e., [ek]). There is no condition on the parameters of the CMc model ((5.1) along with
(5.2) or (5.3)) and the model is well-posed for any value of its parameters.

• Inverse of the covariance matrix of the NG CMc sequence has a special structure (which
differs from that of the NG Markov sequence only in the first/last row and column)
that characterizes the sequence (Chapter 2). These characterizations clearly reveal the
relationship between Markov, reciprocal, and CMc sequences, i.e., a Markov sequence
is a special reciprocal sequence, and a reciprocal sequence is a special CMc sequence.
These characterizations are also useful to obtain a reciprocal dynamic model from the
CM viewpoint (Chapter 3). A more general characterization is in terms of the covariance
function of the CMc sequence that characterizes the general singular/nonsingular Gaussian
CMc sequence (Chapter 5).

• We initiated the CM viewpoint to study reciprocal processes. CM processes provide an
insightful and fruitful viewpoint for studying reciprocal processes. For example, a NG
sequence is reciprocal if and only if (iff) it is both CML and CMF , i.e., the NG reciprocal
sequence is equivalent to the intersection of the NG CML sequence and the NG CMF

sequence. This relationship simplifies studying the NG reciprocal sequence by studying
the NG CML sequence and the NG CMF sequence. For example, this idea leads to
a reciprocal CML/CMF dynamic model with white dynamic noise being easy to apply
(Chapter 3). A full spectrum of characterizations and dynamic models from a NG CM class
to the NG reciprocal class provides more insight into these classes (Chapter 3, Chapter
4).

• The evolution of a Markov sequence can be modeled by a CML model. Correspondingly,
a Markov model can induce a CML model that is actually a reciprocal CML model. Also,
every reciprocal CML model can be induced by a Markov model. This is particularly
useful for parameter design of a reciprocal CML model based on those of a Markov model
since one usually has an intuitive understanding of the Markov model (Chapter 4).
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• By definition, a CMc sequence is obtained based on combining the Markov property and
conditioning. Every Gaussian CMc sequence can be decomposed to a Gauss-Markov
sequence and an independent Gaussian vector as the conditioning state (i.e., sum of a
Gauss-Markov sequence and an independent Gaussian vector). Also, a sum of a Gauss-
Markov sequence and an independent Gaussian vector gives a CMc sequence, where the
independent vector is the conditioning state. This is particularly useful for design of a
CMc sequence/model in application based on a Gauss-Markov sequence/model and an
independent Gaussian vector (Chapter 4). Also, it makes the key fact about the CMc

sequence clear (i.e., the Markov property and the conditioning state).

• Singular CM (including reciprocal) sequences are desired for modeling some problems. For
example, a singular CML sequence is desired for destination-directed trajectory modeling,
where some components of the state at the destination are known (e.g., the destination
position is (almost surely) constant). Our CMc dynamic model works for both singular
and nonsingular Gaussian sequences (Chapter 2, Chapter 5). The well-posedness of the
reciprocal model presented in [18] is guaranteed by the nonsingularity of its sequence.
This is why it has not been possible to generalize the model of [18] to the general singu-
lar/nonsingular case even after decades. However, from the CM viewpoint we have ob-
tained a reciprocal CMc model for the general singular/nonsingular Gaussian case. This
demonstrates the significance of studying reciprocal sequences from the CM viewpoint.

• A CM (including Markov and reciprocal) sequence can be described by different models.
For example, a reciprocal sequence can be modeled by a reciprocal model of [18], a (for-
ward/backward) CML model, or a (forward/backward) CMF model. These models are
equivalent, but one can be more suitable than the other for a given problem. We defined
two notions of equivalency for models: algebraic and probabilistic. Then, we presented
a unified approach based on which given a model of a NG CMc sequence, other (alge-
braically) equivalent models can be obtained. As a special case, given a forward Markov
model, the presented approach gives an (algebraically) equivalent backward Markov model
regardless of the singularity/nonsingularity of the Markov transition matrix. This makes
it possible to check the required condition for two-filter smoothing for a Markov model
with a singular transition matrix, which has not been possible before.

By definition, a process is Markov iff given the state at any time, the states before and
after that are independent. A process is reciprocal iff given the states at any two times, the
states between two times are independent of the states outside. The reciprocal process is a
generalization of the Markov process. However, according to the definition and the properties
of the reciprocal process, it can be seen that it is a complicated generalization of the Markov
process. The CM process is a simpler and more flexible generalization of the Markov process
based on conditioning. It has several classes and includes the reciprocal process as a special
case. The CM process is a more powerful generalization of the Markov process for problem
modeling.

In Chapters 2–6, we have provided required tools for application of CM sequences and have
pointed out such applications. Then, as an example, we have elaborated an application of one
CM class (i.e., CML) to destination-directed trajectory modeling in Chapter 7. In the following,
we discuss some directions and ideas for future research in application of CM sequences.

As it can be seen from the results of Chapter 7, the impact of destination is significant on the
behavior of trajectories when they are close to the destination, which is intuitive. Depending on
different factors (e.g., sampling interval) the impact of destination can be small on the behavior
of trajectories when they are far from it. Destination impact on the local (small scale) behavior
of trajectories when they are far from the destination can be tiny, but on the global (large scale)
behavior can be significant. Accordingly, we can consider different modeling scales. One for the
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local scale and the other for the global scale (this is somewhat similar to the idea of “meta-level
tracking” [42]). In the former we can use the existing dynamic models/filters (without the
destination notion) and in the latter we can use a CML dynamic model and the corresponding
filter, where the two scales are connected. A good design of the two scales is based on the
impact of the destination. The impact is negligible in one and significant in the other. Also,
the two scales can change over time and can be even merged when trajectories are close to the
destination.

Reciprocal CML models can be induced by a Markov model (Theorem 4.1.3). Their pa-
rameters can be designed based on those of the Markov model (Chapter 4). However, not all
CML models can be induced by a Markov model. Therefore, Theorem 4.1.3 can not be used
for parameter design of all CML models. The Markov-based representation of CML sequences
(Proposition 4.2.1 and Proposition 5.3.3) makes key components of the Gaussian CML sequence
clear: a Gauss-Markov sequence and an independent Gaussian vector. The result of that propo-
sition is necessary and sufficient for a Gaussian sequence to be CML. It means that every
Gaussian CML sequence can be constructed based on (4.38). Also, the superimposition of ev-
ery Gauss-Markov sequence and an independent Gaussian vector (based on (4.38)) gives a CML

sequence. On the other hand, in Chapter 7 we showed that CML sequences naturally model
destination-directed trajectories. So, Proposition 4.2.1 is particularly useful for constructing
a CML model for destination-directed trajectories. Superimposition of every Gauss-Markov
sequence and an independent Gaussian vector models some trajectories from an origin to a des-
tination. But it is desired to choose a Gauss-Markov sequence (called the underlying Markov
sequence of a CML sequence (Definition 4.2.7)), an independent Gaussian vector, and appropri-
ate coefficients (of the independent Gaussian vector in (4.38)) that lead to desired trajectories
from the origin to the destination.

In Chapter 7, we showed that destination-directed trajectories can be naturally modeled by
CML sequences (Section 7.1.1). Modeling the evolution law by a Markov conditional density
(conditioned on the last state), the resultant sequence is a CML sequence that naturally models
destination-directed trajectories. Instead of a Markov conditional density, we can consider more
general and complicated conditional densities, for example, a higher-order Markov conditional
density, to model the evolution law. Then, the resultant sequence is a higher-order CML

sequence, i.e., a CML sequence with a higher-order Markov property. Application of such CML

sequences in destination-directed trajectory modeling can be further studied.

CM sequences belonging to more than one CM class are useful in application. For example,
reciprocal sequences, which have been used in various applications (Chapter 3–4), belong to
several CM classes. Another example of CM sequences belonging to more than one CM class
is CML ∩ [0, k2]-CML sequences. An application of such sequences in trajectory modeling
with a waypoint and a destination was pointed out in Chapter 4, where a dynamic model of
CML∩[0, k2]-CML sequences was also obtained. Details of an application of CML∩[0, k2]-CML

sequences in trajectory modeling with a waypoint and a destination can be further studied.

In Chapter 7, we modeled the destination-directed trajectory of a single target by a CML

sequence. We can also study a multi-target scenario, where information about destinations of
targets is available. A CML dynamic model can be used for trajectory modeling of each target.
By incorporating destination information, a CML model can improve data association. Also, a
CML model can be used in the PHD filter framework for multi-target tracking with destination
information. In addition, trajectory prediction based on a CML model can be used for the
purpose of conflict detection in air traffic control. So, there are several directions for application
of CM models in multi-target problems.

The idea of using CML sequences for trajectory modeling with destination information can
be generalized to other problems using CM sequences. Note the critical role of a destination in
destination-directed trajectory modeling. The trajectory of a flight depends on its destination.
It is the destination that makes destination-directed trajectory modeling more complicated than
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trajectory modeling without a destination. By conditioning on the state at the destination,
the remaining problem is a simple one of no ambiguity about the destination. Then, the
conditional sequence is modeled as a Markov sequence, which is simple (Chapter 7). Thus,
by conditioning, a complicated problem is reduced to a simple one. This idea can be used to
handle many problems in which there are some “hubs” (“critical parts”) affecting the problem
as the source of complexity of the problem. In order to use conditioning effectively, we first
should understand the problem well to distinguish such “hubs” in the problem (e.g., destination
in the above problem). Then, by conditioning on the “hubs” the complicated problem is reduced
to a simpler one easy to handle.
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Appendix

A Proof of Lemma 2.3.4

We first prove the following lemma about a factorization of a tridiagonal matrix. Such a fac-
torization was used in [56] without proof.

Lemma A.1. A positive definite block1 tridiagonal matrix T can be factorized as T = U ′DU ,
where U is upper block bidiagonal with unit diagonal2, and D is block diagonal.

Proof. Let T be an (N + 1)d × (N + 1)d positive definite block tridiagonal matrix. T can be
triangularly factorized as [88],

T =

[
T1 T12
T ′12 T2

]
=

[
I 0

T ′12T
−1
1 I

] [
T1 0
0 ∆T1

] [
I T−11 T12
0 I

]
(A.1)

where ∆T1 = T2 − T ′12T
−1
1 T12. T1 is Nd × Nd, and T2 is d × d. Since T1 is also a nonsingular

block tridiagonal matrix we can factorize it (similar to (A.1)) as T1 = U ′1DT1U1, where U1

is upper triangular with unit diagonal and DT1 is block diagonal whose first block [DT1 ]1 is
(N − 1)d × (N − 1)d and the second block [DT1 ]2 is d × d. Using the factorization of T1 and
(A.1), T can be factorized as follows[

I 0

T ′12T
−1
1 I

] [
U ′1DT1U1 0

0 ∆T1

] [
I T−11 T12
0 I

]
=[

U ′1 0

T ′12T
−1
1 U ′1 I

]
︸ ︷︷ ︸

W ′

[
DT1 0

0 ∆T1

] [
U1 U1T

−1
1 T12

0 I

]
︸ ︷︷ ︸

W

Then, using T1 = U ′1DT1U1, we have T ′12T
−1
1 U ′1 = T ′12U

−1
1 D−1T1

, where U−11 is upper triangular.

Then, from the forms of T12, U
−1
1 , and D−1T1

, it can be seen that T ′12T
−1
1 U ′1 is a d × dN block

row matrix of the form [0d×d(N−1) ∗d×d]—the first N − 1 blocks being zero and the last block
(denoted by *) not necessarily zero. Therefore, the structure of the last block column of W is the
same as that of an upper block bidiagonal matrix. Then, we can continue the same procedure
for the matrix [DT1 ]1 and so on, to obtain T = U ′DU with U being upper block bidiagonal with
unit diagonal and D block diagonal.

In the following, we prove Lemma 2.3.4 using Lemma A.1. We prove (i) (in Lemma 2.3.4)
and skip (ii) (they are similar).

First, triangular factorization of a CML matrix is obtained. Let A(N+1)d×(N+1)d be a CML

matrix. Since it is positive definite, it can be factorized as A = V ′DV , where V is upper
triangular with unit diagonal and D is block diagonal:[

A1 A12

A′12 A2

]
=

[
I 0

A′12A
−1
1 I

] [
A1 0
0 ∆A1

] [
I A−11 A12

0 I

]
(A.2)

1In this appendix, we consider block matrices (block tridiagonal or CMc matrices) with d× d blocks.
2An (N + 1)d× (N + 1)d upper block bidiagonal matrix with unit diagonal is: identity matrices Id×d as block

diagonal elements, the first upper minor d×d block diagonal elements not necessarily zero, and all other elements
zero.
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where ∆A1 = A2−A′12A
−1
1 A12, A1 is Nd×Nd, and A2 is d× d. Since A is CML, A1 is positive

definite block tridiagonal. So, A1 can be factorized as A1 = V ′1DA1V1, where V1 is upper block
bidiagonal with unit diagonal and DA1 is block diagonal. Then by (A.2), A can be factorized
as [

I 0

A′12A
−1
1 I

] [
V ′1DA1V1 0

0 ∆A1

] [
I A−11 A12

0 I

]
=[

V ′1 0

A′12A
−1
1 V ′1 I

] [
DA1 0

0 ∆A1

] [
V1 V1A

−1
1 A12

0 I

]
= V ′DV

It can be seen that A′12A
−1
1 V ′1 is a d × dN block row matrix with not necessarily zero blocks3.

In addition, V1 is upper block bidiagonal with unit diagonal. Therefore, V in the factorization
A = V ′DV has form (2.38). Also, D is block diagonal. The uniqueness of this factorization is
discussed below.

Next, factorizations of a CML matrix in the forms of (2.39) and (2.40) are discussed.

Consider a ZMNG sequence with covariance matrix C governed by backward model (2.31)–
(2.32). By (2.34), we have C−1 = (GB)′(GB)−1GB, where GB = diag(GB

0 , G
B
1 , . . . , G

B
N ), GB

k

(k ∈ [0, N ]) are nonsingular, and GB is given by (2.35). It can be seen that matrices (2.38)
and (2.35) have the same form. Thus, from GB = U and (GB)−1 = DA, we can construct
a backward model (2.31)–(2.32) for a ZMNG CML sequence with C−1 = A. Therefore, for
every CML matrix A, there exists a unique ZMNG CML sequence [xk] with its C−1 equal to A
(the uniqueness of such a sequence is obvious because the covariance matrix C determines the
Gaussian sequence). On the other hand, by Lemma 2.2.1, given a ZMNG CML sequence, one
can construct its model (2.17) along with (2.18) or (2.19). Also, the inverse of the covariance
matrix of the sequence can be calculated by (2.30), where G is given by (2.27) for (2.18), and
by (2.28) for (2.19). It can be seen that (2.27) is actually in the form of (2.39), and (2.28) is in
the form of (2.40). In addition, given a CML matrix C−1, parameters of the forward/backward
model of a ZMNG CML sequence with the covariance matrix C are unique (see Remark 2.3.6).
Therefore, a CML matrix can be uniquely factorized in the forms of (2.38), (2.39), and (2.40).

Also, given a CML matrix A, parameters of forward/backward models of a sequence with
C−1 = A can be easily obtained (Lemma B.1 in Appendix B). Then, (2.35), (2.27), and (2.28)
give V , and G (GB) gives D for factorization of the CML matrix. So, not only their structure,
but also the values of the matrices V and D in the factorizations of Lemma 2.3.4 are also
determined.

B (Probabilistically) Equivalent Models

Parameters of equivalent models can be calculated based on (6.30). Since there are several
different models, in order to save space, it suffices to show i) how the entries of the inverse
of the covariance matrix of a sequence (C−1) can be written in terms of the parameters of
the model and the boundary condition of the sequence, ii) how parameters of a model and its
boundary condition can be calculated from the entries of C−1. Then, based on (i) and (ii),
given parameters of a model and its boundary condition, parameters of any equivalent model
and its boundary condition can be uniquely determined.

3Note that in (A.1), T ′12 has the form [0d×d(N−1) ∗d×d], and so T ′12T
−1
1 U ′1 has the same form, but in (A.2),

A′12 is a general d× dN block matrix and so A′12A
−1
1 U ′1 is also a general d× dN matrix.
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B.1 CML Sequences

Forward CML Model (c = N)

For (2.17):

Ak = G−1k +G′k+1,kG
−1
k+1Gk+1,k, k ∈ [1, N − 2] (B.1)

AN−1 = G−1N−1 (B.2)

Bk = −G′k+1,kG
−1
k+1, k ∈ [0, N − 2] (B.3)

BN−1 = −G−1N−1GN−1,N (B.4)

Dk = −G−1k Gk,N +G′k+1,kG
−1
k+1Gk+1,N , k ∈ [1, N − 2] (B.5)

for boundary condition (2.18):

A0 = G−10 +G′1,0G
−1
1 G1,0 +G′N,0G

−1
N GN,0 (B.6)

AN = G−1N +
N−1∑
k=1

G′k,NG
−1
k Gk,N (B.7)

D0 = G′1,0G
−1
1 G1,N −G′N,0G

−1
N (B.8)

and for (2.19):

A0 = G−10 +G′1,0G
−1
1 G1,0 (B.9)

AN = G−1N +
N−1∑
k=1

G′k,NG
−1
k Gk,N +G′0,NG

−1
0 G0,N (B.10)

D0 = −G−10 G0,N +G′1,0G
−1
1 G1,N (B.11)

Backward CMF Model (c = N)

For (2.31)–(2.32):

A0 =(GB
0 )−1 (B.12)

Ak+1 =(GB
k,k+1)

′(GB
k )−1GB

k,k+1 + (GB
k+1)

−1, k ∈ [0, N − 2] (B.13)

AN =

N−2∑
k=0

(GB
k,N )′(GB

k )−1GB
k,N + 4(GB

N−1,N )′(GB
N−1)

−1GB
N−1,N + (GB

N )−1 (B.14)

Bk =− (GB
k )−1GB

k,k+1, k ∈ [0, N − 2] (B.15)

BN−1 =(GB
N−2,N−1)

′(GB
N−2)

−1GB
N−2,N − 2(GB

N−1)
−1GB

N−1,N (B.16)

D0 =− (GB
0 )−1GB

0,N (B.17)

Dk =(GB
k−1,k)′(GB

k−1)
−1GB

k−1,N − (GB
k )−1GB

k,N , k ∈ [1, N − 2] (B.18)

Lemma B.1. Parameters of CML model (2.17) along with (2.18) or (2.19) and backward CMF

model (2.31)–(2.32) of a ZMNG CML sequence with the inverse of its covariance matrix equal
to any given CML matrix (2.36) can be uniquely determined as follows.

(i) CML model (2.17) (c = N):

G−1N−1 = AN−1 (B.19)
k = N − 1, . . . , 2 :
Gk,k−1 = −GkB

′
k−1

G−1k−1 = Ak−1 −G′k,k−1(Gk)−1Gk,k−1

(B.20)
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G1,0 = −G1B
′
0 (B.21)

GN−1,N = −GN−1BN−1 (B.22){
k = N − 1, . . . , 2 :

Gk−1,N = Gk−1G
′
k,k−1G

−1
k Gk,N −Gk−1Dk−1

(B.23)

Parameters of the boundary condition are: for (2.18)

G−1N = AN −
N−1∑
k=1

G′k,NG
−1
k Gk,N (B.24)

GN,0 = GNG
′
1,NG

−1
1 G1,0 −GND

′
0 (B.25)

G−10 = A0 −G′1,0G−11 G1,0 −G′N,0G
−1
N GN,0 (B.26)

and for (2.19):

G−10 =A0 −G′1,0G−11 G1,0 (B.27)

G0,N =G0G
′
1,0G

−1
1 G1,N −G0D0 (B.28)

G−1N =AN −
N−1∑
k=1

G′k,NG
−1
k Gk,N −G′0,NG−10 G0,N (B.29)

(ii) Backward CMF model (2.31)–(2.32) (c = N):

(GB
0 )−1 = A0 (B.30)
k = 0, 1, . . . , N − 2 :
GB

k,k+1 = −GB
k Bk

(GB
k+1)

−1 = Ak+1 − (GB
k,k+1)

′(GB
k )−1GB

k,k+1

(B.31)

GB
0,N = −GB

0 D0 (B.32){
k = 1, 2, . . . , N − 2 :
GB

k,N = GB
k (GB

k−1,k)′(GB
k−1)

−1GB
k−1,N −GB

k Dk
(B.33)

2GB
N−1,N = GB

N−1(G
B
N−2,N−1)

′(GB
N−2)

−1GB
N−2,N −GB

N−1BN−1 (B.34)

(GB
N )−1 = AN −

N−2∑
i=0

(GB
i,N )′(GB

i )−1GB
i,N − 4(GB

N−1,N )′(GB
N−1)

−1GB
N−1,N (B.35)

B.2 CMF Sequences

CMF Model (c = 0)

For (2.17)–(2.18):

A0 =G−10 +
N∑
k=2

G′k,0(Gk)−1Gk,0 + 4G′1,0G
−1
1 G1,0 (B.36)

Ak =G′k+1,k(Gk+1)
−1Gk+1,k +G−1k , k ∈ [1, N − 1] (B.37)

AN =G−1N (B.38)

B0 =G′2,0G
−1
2 G2,1 − 2G′1,0G

−1
1 (B.39)

Bk =−G′k+1,k(Gk+1)
−1, k ∈ [1, N − 1] (B.40)

Dk =G′k+1,0G
−1
k+1Gk+1,k −G′k,0G−1k , k ∈ [2, N − 1] (B.41)

DN =−G′N,0G
−1
N (B.42)
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Backward CML Model (c = 0)

For backward CML model (2.31):

A1 =(GB
1 )−1 (B.43)

Ak =(GB
k−1,k)′(GB

k−1)
−1GB

k−1,k + (GB
k )−1, k ∈ [2, N − 1] (B.44)

B0 =− (GB
1,0)
′(GB

1 )−1 (B.45)

Bk =− (GB
k )−1GB

k,k+1, k ∈ [1, N − 1] (B.46)

Ek =(GB
k−1,0)

′(GB
k−1)

−1GB
k−1,k − (GB

k,0)
′(GB

k )−1, k ∈ [2, N − 1] (B.47)

(B.48)

for boundary condition (2.32):

A0 =(GB
0 )−1 +

N−1∑
k=1

(GB
k,0)
′(GB

k )−1GB
k,0 + (GB

N,0)
′(GB

N )−1GB
N,0 (B.49)

AN =(GB
N−1,N )′(GB

N−1)
−1GB

N−1,N + (GB
N )−1 (B.50)

EN =(GB
N−1,0)

′(GB
N−1)

−1GB
N−1,N − (GB

N,0)
′(GB

N )−1 (B.51)

and for (2.33):

A0 =(GB
0 )−1 +

N−1∑
k=1

(GB
k,0)
′(GB

k )−1GB
k,0 (B.52)

AN =(GB
N−1,N )′(GB

N−1)
−1GB

N−1,N + (GB
N )−1 + (GB

0,N )′(GB
0 )−1GB

0,N (B.53)

EN =(GB
N−1,0)

′(GB
N−1)

−1GB
N−1,N − (GB

0 )−1GB
0,N (B.54)

Lemma B.2. Parameters of CMF model (2.17)–(2.18) and backward CML model (2.31) along
with (2.32) or (2.33) of a ZMNG CMF sequence with the inverse of its covariance matrix equal
to any given CMF matrix (2.37) can be uniquely determined as follows.

(i) CMF model (2.17)–(2.18):

G−1N = AN (B.55)
k = N,N − 1, . . . , 2 :
Gk,k−1 = −GkB

′
k−1

G−1k−1 = Ak−1 −G′k,k−1(Gk)−1Gk,k−1

(B.56)

GN,0 = −GNE
′
N (B.57){

k = N − 1, N − 2, . . . , 2 :

Gk,0 = GkG
′
k+1,kG

−1
k+1Gk+1,0 −GkE

′
k

(B.58)

2G1,0 = G1G
′
2,1G

−1
2 G2,0 −G1B

′
0 (B.59)

G−10 = A0 −
N∑
k=2

G′k,0G
−1
k Gk,0 − 4G′1,0G

−1
1 G1,0 (B.60)

(ii) Backward CML model (2.31) (c = 0):

(GB
1 )−1 = A1 (B.61)
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k = 1, 2, . . . , N − 2 :
GB

k,k+1 = −GB
k Bk

(GB
k+1)

−1 = Ak+1 − (GB
k,k+1)

′(GB
k )−1GB

k,k+1

(B.62)

GB
N−1,N = −GB

N−1BN−1 (B.63)

GB
1,0 = −GB

1 B
′
0 (B.64){

k = 2, . . . , N − 1 :
GB

k,0 = GB
k (GB

k−1,k)′(GB
k−1)

−1GB
k−1,0 −GB

k E
′
k

(B.65)

Parameters of the boundary condition are: for (2.32)

(GB
N )−1 =AN − (GB

N−1,N )′(GB
N−1)

−1GB
N−1,N (B.66)

(GB
0 )−1 =A0 −

N−1∑
k=1

(GB
k,0)
′(GB

k )−1GB
k,0 − (GB

N,0)
′(GB

N )−1GB
N,0 (B.67)

GB
N,0 =GB

N (GB
N−1,N )′(GB

N−1)
−1GB

N−1,0 −GB
NE
′
N (B.68)

and for (2.33):

(GB
0 )−1 = A0 −

N−1∑
k=1

(GB
k,0)
′(GB

k )−1GB
k,0 (B.69)

GB
0,N = GB

0 (FB
N−1,0)

′(GB
N−1)

−1GB
N−1,N −GB

0 EN (B.70)

(GB
N )−1 = AN − (GB

N−1,N )′(GB
N−1)

−1GB
N−1,N − (GB

0,N )′(GB
0 )−1GB

0,N (B.71)

B.3 Reciprocal Sequences

For reciprocal model (6.9) along with (6.10)–(6.11):

R0
k = Ak, k ∈ [0, N ] (B.72)

R+
k = (R−k+1)

′ = −Bk, k ∈ [0, N − 1] (B.73)

R−0 = (R+
N )′ = −D0 (B.74)

Model (6.9) along with (6.12) or (6.13) was discussed in Section 6.4.

B.4 Markov Sequences

Markov Model (6.1)

A0 =M−10 +M ′1,0M
−1
1 M1,0 (B.75)

Ak =M−1k +M ′k+1,kM
−1
k+1Mk+1,k, k ∈ [1, N − 1] (B.76)

AN =M−1N (B.77)

Bk =−M ′k+1,kM
−1
k+1, k ∈ [0, N − 1] (B.78)

Backward Markov Model (6.5)

A0 =(MB
0 )−1 (B.79)

Ak =(MB
k )−1 + (MB

k−1,k)′(MB
k−1)

−1MB
k−1,k, k ∈ [1, N − 1] (B.80)

AN =(MB
N )−1 + (MB

N−1,N )′(MB
N−1)

−1MB
N−1,N (B.81)

Bk =− (MB
k )−1MB

k,k+1, k ∈ [0, N − 1] (B.82)

113



Lemma B.3. Parameters of Markov model (6.1) and backward Markov model (6.5) of a ZMNG
Markov sequence with the inverse of its covariance matrix equal to any given symmetric positive
definite (block) tri-diagonal matrix can be uniquely determined as follows:

(i) Markov model (6.1):

M−1N = AN (B.83)

MN,N−1 = −MNB
′
N−1 (B.84)

k = N − 2, N − 3, . . . , 0 :

M−1k+1 = Ak+1 −M ′k+2,k+1M
−1
k+2Mk+2,k+1

Mk+1,k = −Mk+1B
′
k

(B.85)

M−10 = A0 −M ′1,0M−11 M1,0 (B.86)

(ii) Backward Markov model (6.5):

(MB
0 )−1 = A0 (B.87)

MB
0,1 = −MB

0 B0 (B.88)
k = 2, 3, . . . , N :
(MB

k−1)
−1 = Ak−1 − (MB

k−2,k−1)
′(MB

k−2)
−1MB

k−2,k−1
MB

k−1,k = −MB
k−1Bk−1

(B.89)

(MB
N )−1 = AN − (MB

N−1,N )′(MB
N−1)

−1MB
N−1,N (B.90)

C Algebraically Equivalent Models

Following (6.31), relationships of dynamic noise and boundary values between some algebraically
equivalent models are presented.

C.1 Reciprocal Model and Markov Model

eR0 =M−10 eM0 −M ′1,0M−11 eM1 (C.1)

eRk =M−1k eMk −M ′k+1,kM
−1
k+1e

M
k+1, k ∈ [1, N − 1] (C.2)

eRN =M−1N eMN (C.3)

These equations are the same as those obtained in [18] by a different approach.

C.2 CML Model and Markov Model

(i) CML model (2.17)–(2.18) (c = N):
G−10 e0 −G′1,0G−11 e1 −G′N,0G

−1
N eN = M−10 eM0 −M ′1,0M−11 eM1 (C.4)

G−1k ek −G′k+1,kG
−1
k+1ek+1 = M−1k eMk −M ′k+1,kM

−1
k+1e

M
k+1, k ∈ [1, N − 2] (C.5)

G−1N−1eN−1 = M−1N−1e
M
N−1 −M ′N,N−1M

−1
N eMN (C.6)

−
N−1∑
k=1

G′k,NG
−1
k ek +G−1N eN = M−1N eMN (C.7)

(ii) CML model (2.17) and (2.19) (c = N): we have (C.5)–(C.6), and
G−10 e0 −G′1,0G−11 e1 = M−10 eM0 −M ′1,0M−11 eM1 (C.8)

−
N−1∑
k=1

G′k,NG
−1
k ek +G−1N eN −G′0,NG−10 e0 = M−1N eMN (C.9)
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C.3 CMF Model and Reciprocal Model

eR0 =G−10 e0 − 2G′1,0G
−1
1 e1 −

N∑
k=2

G′k,0G
−1
k ek (C.10)

eR1 =G−11 e1 −G′2,1G−12 e2 (C.11)

eRk =G−1k ek −G′k+1,kG
−1
k+1ek+1, k ∈ [2, N − 1] (C.12)

eRN =G−1N eN (C.13)

C.4 CML Model and Backward CMF Model

(i) CML model (2.17)–(2.18): we have
(GB

0 )−1eB0 = G−10 e0 −G′1,0G−11 e1 −G′N,0G
−1
N eN (C.14)

− (GB
k−1,k)′(GB

k−1)
−1eBk−1 + (GB

k )−1eBk = G−1k ek −G′k+1,kG
−1
k+1ek+1, k ∈ [1, N − 2] (C.15)

− (GB
N−2,N−1)

′(GB
N−2)

−1eBN−2 + (GB
N−1)

−1eBN−1 = G−1N−1eN−1 (C.16)

N−2∑
k=0

(GB
k,N )′(GB

k )−1eBk + 2(GB
N−1,N )′(GB

N−1)
−1eBN−1 − (GB

N )−1eBN =

N−1∑
k=1

G′k,NG
−1
k ek +G−1N eN (C.17)

(ii) CML model (2.17) and (2.19): we have (C.15)–(C.16), and
(GB

0 )−1eB0 = G−10 e0 −G′1,0G−11 e1 (C.18)

(GB
N )−1eBN − 2(GB

N−1,N )′(GB
N−1)

−1eBN−1 −
N−2∑
k=0

(GB
k,N )′(GB

k )−1eBk

= −
N−1∑
k=1

G′k,NG
−1
k ek +G−1N eN −G′0,NG−10 e0 (C.19)

D Transition Density of a Markov-Induced CML Model

We show that the transition density pCML
(xk+n|xk, xN ) (k + n ∈ [k + 1, N − 1]) of a CML

sequence [xk] described by a Markov-induced CML model (Definition 4.1.4) is the same as the
transition density pM (yk+n|yk, yN ) of the Markov sequence [yk] given by (7.49). Note that by
Definition 4.1.4 (and (4.10)) we only know that pCML

(xm+1|xm, xN ) and pM (ym+1|ym, yN ) are
the same (for every m ∈ [0, N − 2]).

First, note that by recursive use of the Markov-induced CML model we obtain
xk+n = Lk,nxk + Lk,n,NxN + ek+n|k (D.1)

where Lk,n and Lk,n,N are some matrices, and ek+n|k (with Lk,n = Cov(ek+n|k)) is a linear com-

bination of [ek]k+n
k+1 . Then, by (D.1) we have pCML

(xk+n|xk, xN ) = N (xk+n;Lk,nxk +Lk,n,NxN ,
Lk,n). However, it is not obvious whether this transition is the same as pM (yk+n|yk, yN ) given
by (7.49). To show that they are actually the same, define functions h and g based on transi-
tion densities of the Markov sequence [yk] as follows: h(yk+n, yk, yN ) = pM (yk+n|yk, yN ), k+n ∈
[k+1, N−1] and g(yj , yi) = pM (yj |yi), i, j ∈ [0, N ], i < j. By the definition of a Markov-induced
CML model (see (4.10)), for the transition density of [xk], for every m ∈ [0, N − 2], we have

pCML
(xm+1|xm, xN ) = h(xm+1, xm, xN ) =

g(xm+1, xm)g(xN , xm+1)

g(xN , xm)
(D.2)
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Then, since [xk] is CML, for k + n ∈ [k + 2, N − 1], we have

pCML
(xk+n|xk, xN ) =

∫
pCML

(xk+n|xk+n−1, xN )pCML
(xk+n−1|xk+n−2, xN )·

· · · pCML
(xk+1|xk, xN )dxk+n−1 · · · dxk+1 =

g(xk+n, xk)g(xN , xk+n)

g(xN , xk)
= h(xk+n, xk, xN )

which is obtained by substituting all the terms of the integrand based on (D.2) and using (D.3)
below.

g(xk+n, xk) =

∫
g(xk+n, xk+n−1)g(xk+n−1, xk+n−2) · · ·

· g(xk+1, xk)dxk+n−1dxxk+n−2
· · · dxk+1 (D.3)

Thus, the two transitions pCML
(xk+n|xk, xN ) and pM (yk+n|yk, yN ) (given by (7.49)) are the

same.
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