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Abstract

The Gulf of Mexico (GoM) is heavily exploited by the oil industry. Incidental oil releases, such as

the 2010 blowout of the Deepwater Horizon platform, lead to a large scale dispersion of pollutants

by ocean currents, contaminating the coastline and damaging the ecosystems. In order to determine

whether the ocean dynamics hampers or conversely fosters the landing of material in the coastal

regions, we simulate more than 29000 individual tracer releases in the offshore waters of the GoM.

We assume that the tracers are not decaying and transported passively by the ocean currents. In a

first  part  of our study we focus on the mean dispersion pattern of 80  releases occurring at  the

location of the Deepwater Horizon. In a second part, we generalize the metrics that we defined to

the  whole  GoM.  Our  study  shows  that  releases  occurring  in  specific  regions,  i.e  the  bay  of

Campeche,  off  the  Mississipi-Alabama-Florida  and  the  West  Florida  shelfs  are  associated  with

higher environmental costs as the ocean currents steer the released material toward the productive

coastal ecosystems and foster landings. Conversely, the tracers released off the Louisiana-Texas-

shelfs and the center of the Gulf of Mexico are less threatening for coastal regions as the material

recirculates offshore. We show that the coastline of the southwest part of the Bay of Campeche, the

Mississipi’s mouth and the Island of Cuba are particularly exposed as 70 % of the landings occur in

these 3 regions. 
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1. Introduction

The Gulf of Mexico (GoM) is characterized by an intense anthropogenic activity. The four biggest

industries in the Gulf of Mexico are oil, tourism, fishing and shipping; they accounted in 2007 for

$234 billion in economic activity (Cato et al., 2008). Two-thirds of that amount is generated in the

United States, with the other third is in Mexico. The oil industry alone represents 53 % of the total

activity. The United States Energy Information Administration (EIA) estimated the 2015 US oil

production to  be about  1.6 million  barrels/day whereas  the  Mexican production was about  1.8

million barrels/day. The total production of the GoM represents more than 3% of the world’s total

production (100 million barrels/day  source EIA).

As technology has progressed over the years, oil companies have extended drilling and production

farther offshore and into deeper waters. In 2009, about 80% of the northern Gulf of Mexico oil

production originated from wells drilled in water depths greater than 500 m (“deep water”) and 30

% in water  depths greater  than 1500 m (“ultra-deep water”).  In contrast,  90 % of the oil  was

extracted in shallow waters before 1995 (source EIA, Moerschbaecher and Day Jr., 2011). As an

example of this trend, all of the 14 oil production projects which started between 2015 – 2017

involved drilling in water deeper than 500 m, with 7 of them in waters deeper than 1500 m (source

EIA). Among the deepest drilling sites are the platforms associated with the Perdido and the Stones

projects which lie in waters 2400 m and 2900 m deep respectively. The deepest water where a

discovery has been made is 3040 m, close to the Sigsbee escarpment (source Bureau of Ocean

Energy Management - BOEM), suggesting that oil exploitation in abyssal plains may be possible in

the near future. In total, more than 2700 leases are active in the US sector of the GoM (source

BOEM  :  https://www.boem.gov/Gulf-of-Mexico-Region-Leasing-Information/)  (Fig.  1).  The

Mexican government opened 3 rounds of lease sales since 2015 permitting the participation of

international companies in the Mexican “deep waters”. In January 2018, 19 leases were adjudicated

(source Mexican Secretary of Energy – SENER: https://  rondasmexico.gob.mx  ). Last but not least,

while  the Cuban production is  currently negligible  (~ 0.05 million barrels  /  day),  the currently

unexploited oil reserves in the deep waters located north off Cuba may reach 10 billion barrels, a

size similar to the Mexican oil reserves and half of the US GoM reserves (Schenk, 2010)
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Figure 1 : a – Oil and gas leasing for exploration and exploitation (blue : USA. Source BOEM:

https://www.boem.gov/Gulf-of-Mexico-Region-Leasing-Information/, green :Mexico, source SENER

:https://www.gob.mx/sener/acciones-y-programas/programa-quinquenal-de-licitaciones-para-la-

exploracion-y-  extraccion-de-hidrocarburos-2015-2019   ,  yellow  :  Cuba,  source  :  Nerurkar  and

Sullivan,  2011).  The  name  of  the  shelves  have  been  specified  :  Louisiana  –  Texas  (LATEX),

Mississipi-Alabama-Florida  (MALFA),  West  Florida  Shelf  (WFS),  Tamaulipas-Veracruz  (TAVE),

The location of the Bay of Campeche is indicated as BoC. The black dot is the Deepwater Horizon

(DWH) location. The mean Loop Current velocity (ms-1) is displayed in grayscale.

The  development  of  the  “deep”  and  “ultra-deep”  offshore  exploitation  leads  to  environmental

issues.  The  tragedy  of  the  Deepwater  Horizon  which  occurred  in  April  2010  illustrates  the

consequences of a rig blowout. Estimates suggest that the blowout and the subsequent sinking of the

platform resulted in the release of approximately 4 million barrels into the northern Gulf of Mexico

over a 3 month period, from April to June 2010 (Crone and Tolstoy, 2010). About half of the oil

remained at depth while the other half reached the surface (see Passow and Hetland, 2016 for a

global budget). More than 1800 km of coasts were polluted (Michel et al., 2013; Nixon et al., 2016),

representing the largest marine oil spill in history by length of shoreline oiled (Nixon et al., 2016).

Closures of commercial and recreational fishing covered approximately 15 % of the Gulf of Mexico

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Page 3 of 28 AUTHOR SUBMITTED MANUSCRIPT - ERC-100123.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t

https://www.gob.mx/sener/acciones-y-programas/programa-quinquenal-de-licitaciones-para-la-exploracion-y-extraccion-de-hidrocarburos-2015-2019
https://www.gob.mx/sener/acciones-y-programas/programa-quinquenal-de-licitaciones-para-la-exploracion-y-extraccion-de-hidrocarburos-2015-2019
https://www.gob.mx/sener/acciones-y-programas/programa-quinquenal-de-licitaciones-para-la-exploracion-y-extraccion-de-hidrocarburos-2015-2019
https://www.boem.gov/Gulf-of-Mexico-Region-Leasing-Information/


during nearly 2 months (Gohlke et  al.,  2011).  Between 2 and 5 trillion fish larvae were killed

directly by the spill (Final Programmatic Damage Assessment and Restoration Plan) and the oil

incorporated into the foodweb (Graham et al., 2010; Chanton et  al., 2012). A comprehensive review

of the impacts on the ecosystem is available in Joye et al.  (2016). Long term effects  include a

reduction of the habitat of species such as the bluefin tuna (Hazen et al., 2016) and a significant

increase in mortality in fishes (Esbaugh et al., 2016, Incardona et al., 2014), oysters (Vignier et al.,

2017) and corals (DeLeo et al., 2016).

In  order  to  organize  efficiently  spill  responses  (e.g   deployment  of  booms  or  skimmers)  and

minimize  the  negative  effects  of  oil  release,  numerical  models  of  the  ocean  are  used  by  the

academic  community  and  environmental  agencies  to  forecast  as  realistically  as  possible  the

extension of the spill at short time scale (next hours or days). These so-called “operational models”

use observations (e.g remote sensing data) to constrain the ocean simulations in a realistic manner.

The simulated velocity fields are used to transport “particles” of oil, which locations of origin are

eventually seeded by satellite imagery (Liu et al., 2011). For this purpose the US National ocean

and Atmospheric Administration (NOAA) uses the General Operational Modelling Environment

(GNOME) framework) (MacFayden et al., 2011). Other comparable engines have been developed

such as MEDSLIK (DeDominicis et al., 2013) used by the Regional Marine Pollution Emergency

Response  Centre  for  the  Mediterranean  Sea  (REMPEC).  To  complement  these  operational

applications, ocean models are also used to improve our understanding of the oil-ocean system and

quantify the role of specific biogeochemical and physical processes, such as the biodegradation

(Valentine  et  al.,  2012),  the  role  of  the  waves  (Weisberg  et  al.,  2017),  the  mesoscale  and

submesoscale activity (Bracco et al., 2018)

Most of the studies characterize the extension of spills originating from a single location under

specific conditions. Few studies focus on a systematic exposure analysis and on determining the

environmental impact (e.g coastline landings) of an eventual spill. The objectives of such exposure

analyses are fundamentally different compared to operational applications. By making an analogy

with meteorological sciences, risk analyses characterize the “climate” (broad context, probabilistic

aspect) while operational applications focus on the current “weather” (short  time scale,  specific

event).  Risk  analyses  are  usually  performed  by  statistical  models,  such  as  the  Oil  Spill  Risk

Analysis (OSRA) model, an environmental impact assessment tool using a Lagrangian framework
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that provides estimates of the probabilities of oil spill occurrence and coastal contact (Price et al.,

2004, 2006). The OSRA model has been applied to the location of the Deepwater Horizon platform

(Ji et al., 2011). In some cases the location where an incident may occur is however not necessarily

known with precision. A typical case is the shipping and maritime industry as an incident may occur

on any part of a shipping lane. In this context, Soomere et al. (2014) developed a method for the

preventive reduction of the remote environmental risks by computing the average probability for a

particle to reach the coast from a shipping lane in the Baltic Sea. Liubartseva et al. (2015) derived

beached oil hazard maps in the Ionean Sea. Singh et al. (2015) identified that 83 % of the coastal

regions of the Caribbean Sea are potentially at risk from oil spills occurring along shipping lanes.  A

similar  underlying  question,  i.e  “how  large  is  the  coastal  exposure  to  the  whole  economical

activity ?” applies to the oil industry. Very few studies tackle this issue. Among those,  Nelson et al.

(2015) assess the exposure of the northern coastline of the GoM to 5 potential spills locations in

deep offshore regions. Nelson and Grubesic (2018) simulate 10 spills in the Eastern GoM to assess

the  environmental  exposure  of  the Florida  coastline  to  a  potential  development  of  offshore

activities. We perform a basin-scale dispersion study simulating more than 370 release locations.

In this pilot study, we do not intend to tackle the physical and chemical oil complexity. Instead of

selecting arbitrary a specific type of oil, we assume that the released material is purely passive  and

focus specifically on its transport due to ocean circulation (section 2), After detailing the dispersion

patterns, coastal accumulation, and metrics applied to the specific case of a release occurring at the

DWH location (section 3), we generalize this approach to the whole set of release locations (section

4) and determine i)  whether some specific releases locations have the potential to cause a larger

environmental impact than others (e.g wider dispersion, larger coastal contact) ii). whether some

locations of the coastline of the GoM coastline are either “protected” by the ocean circulation (the

current system hampers the landing of material) or conversely particularly exposed (the current

system drives the material toward the coastline). We conclude in section 5.

2. Experiments

2.1 Regional characteristics of the GoM

The  near-surface  circulation  of  the  GoM is  dominated  by  the  Loop  Current,  which  enters  the

Eastern  Gulf  of  Mexico  through the  Yucatan  Straits  and exits  through the  Strait  of  Florida.  It

extends northward and bends at a variable most northern position that can reach the Mississipi-
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Alabama-Florida shelves (MALFA) (see Fig. 1) (Sturges and Leben, 2000; Andrade-Canto et al.,

2013; Sheinbaum et al., 2016). The western part of the Gulf is constrained by a persistent (except

for summer) cyclonic gyre located on the shelves of Texas – Louisiana (LATEX) (Cochrane and

Kelly, 1986; Cho et al, 1998; Nowlin et al., 2005), a semi-permanent cyclonic Gyre in the Bay of

Campeche and the large anticyclonic Loop Current eddies ( ~ 200-300 km diameter) that shed from

the Loop Current and travel westward across the GoM. The circulation on the shelves is regionally

dependent  and  dominated  by  its  along-shore  component  (Zavala-Hidalgo  et  al.  (2003;  2006),

Weisberg et.  al (2000)). It  is characterized by large seasonal variability that impacts cross-shelf

transports  usually confined to specific regions such as the TAVE (Tamaulipas-Veracruz) region,

located  between  the  LATEX  shelf  and  the  western  GoM  shelf  and  extending  till  the  Bay  of

Campeche (Martinez-Lopez and Zavala-Hidalgo (2009), Zavala-Hidalgo et al. (2003), Weisberg et

al. (2003)). From a biological perspective, there is a clear contrast between the productive coastal

waters and the oligotrophic deep waters. The major river discharges, in particular the Mississippi

River strongly constrain the biological activity (e.g: Lohrenz et al.,  1990; 1997; Nababan et al.,

2009)

2.2. Modeling framework and methodology

The circulation fields (temperature, salinity, currents, diffusivity) have been obtained using a GoM

regional configuration based on  the Nucleus for European Modelling of the Ocean (NEMO), a

state-of-the-art  modeling  environment  of  ocean  related  engines  (Madec  et  al.,  2008).  The

configuration that we employed, called GOLFO12, is described in detail in Damien et al. (2018)

and  similar  to  the  one  used  in  Garcia-Navaro  et  al.  (2016).  The  resolution  is  1/12°  degree  in

longitude  and  latitude.  The  model  includes  75  vertical  levels  (25  in  the  first  100  m).  The

atmospherical forcings are given by the interannual 3h-resolution Drakkar Forcing Sets 5 (DFS5)

dataset  (Brodeau et  al.,  2010)  from 1995 to 2015. Boundary conditions are  constrained by the

Mercator  reanalysis  GLORYS.  The  circulation  model  has  been  coupled  to  the  PISCES

biogeochemical  model  (Aumont  et  al.,  2015).  The  GoM  circulation  and  the  distribution  of

chlorophyll, further used in this study, displays consistent patterns with observations (Damien et al.,

2018).

The released passive tracers are transported using a full Eulerian framework using the “offline”

version  of  the  NEMO  modeling  environment  (configuration  GOLFO12-OFF).  The  “offline”
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tridimensional grid is identical to the grid used in the “online” GOLFO12 configuration briefly

described above. The advection scheme employed is based on the Monotonic Upwind Scheme for

Conservation Laws (MUSCL) (VanLeer, 1979), which provides accurate numerical solutions even

in cases where the solutions exhibit large horizontal or vertical gradients. Isopycnal diffusion is

included (coefficient 220 m²/s). Vertical diffusion of tracers is performed by  the Generic Length

Scale (GLS) scheme (Reffray et al., 2015).

We implemented a total of 371 passive tracers covering all the regions of the GoM deeper than 1000

m (Fig. S1).Each passive tracer is initialized with an arbitrary value at surface of 1000 permil in a

0.5 degree * 0.5 degree box and 0 elsewhere. We performed simultaneous releases at surface at

these 371 locations considering that the tracer is neutrally buoyant  and passively transported by the

model ocean currents. The tracers are not decaying as the objective of this idealized study is to

estimate the potential maximal dispersion and accumulation on  the coastline rather than to describe

a specific spill as realistically as possible (as e.g in Barker, 2011; Paris et al., 2012; LeHenaff et al.,

2012; Boufadel et al., 2014 in the case of the  Deepwater Horizon). The tracers accumulate once

they “land” (i.e. when they are located in an ocean box adjacent to the coast). A release is performed

every 3 months from 1995 to 2015 totalizing 80 releases of 371 tracers (more than 29000 releases)

integrated during 3 months each (examples of individual releases are displayed in Fig S2).

3. Test case : releases at the Deepwater Horizon location

We  consider  here  the  tracers  released  at  surface  at  the  Deepwater Horizon  (DWH)  location

(28.8°N  /  88.3°W)  and  compare  the  simulations  (location  of  coastal  landing,  extension  of

contaminated  area)  to  “in  situ”  observed  data.  As  a  note  of  caution,  it  does  not  constitute  a

validation of the model’s performance as our experiments specifically focus on evaluating the role

of the upper ocean circulation on the dispersion of passive tracers. Furthermore an ensemble of 80

experiments  characterized  by  different  circulation  patterns  is  considered.   It  however  indicates

whether the simulated coastal and environmental exposure is consistent at first order with an event

which occurred in reality and allows to detail our methodology and to introduce key quantitative

metrics

3.1 Exposure of the coastline
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The DWH coastal oiling reached its maximum about 3 months after the spill (July 2010): more than

1800  km  of  coasts  were  affected  (“maximum  oiling”)  as  revealed  by  “in  situ”  observations

performed during the Shoreline Cleanup Assessment Technique (SCAT) program (Michel et  al.,

2013; Nixon et al., 2016). The regions close to the Mississipi’s mouth (30°N/90°W) and Mobile

Bay (30.5°N/88°W) were heavily impacted (see Michet et al., 2013. Fig S3a). The mean pattern of

the simulated coastal landings after 3 months integration in GOLFO12 (Fig. 2a) shows similarities

with the SCAT observations, with a strong accumulation close to the Mississipi’s mouth (more than

5 permil  of the released tracers)  and east  of Mobile  Bay (4 permil).  The average total  coastal

accumulation is 565 permil. The “polluted” (we define the pollution threshold as 0.01 permil) area

extends from 97°W to 83°W in the LATEX-MAFLA coastline in our experiments; the total length

of the polluted coastline represents 18 % of the GoM coastline.

The regions located between 92°W and 86°W (LATEX-MAFLA) are “very frequently” (75 to 90 %

of the experiments) or “always” (> 90 %) polluted (threshold 0.01 permil), while the regions located

west of 94°W and east of 84°W are polluted in less than 25 % of the releases (Fig 2b). The central

part of the LATEX shelf is polluted in about 25-75 % of the releases, depending both of the eddy

activity and the seasonal circulation. The connection between the eastern and the western part of the

GoM is stronger in October / November leading to an increase of the tracer transport from the

MALFA toward the LATEX shelf in winter. Morey et al. (2003) showed that in winter 52 % of the

drifters deployed in the MALFA travel westward (compared to 1% in summer), past the Mississippi

Delta,  and  onto  the  LATEX  shelf.  In  the  MALFA  shelf  the  winds  are  most  intense  and

southwestward in Autumn (Velasco ans Winant, 1996), fostering the transport of tracers toward the

coast (onshore Ekman transport), explaining the 25 – 75 % pollution probability between 86°W and

84°W. 

Using a larger “heavy pollution” threshold (1 permil) shows a similar geographical pattern (Fig 2c).

The probabaility of “heavy polution” close to the Mississipi’s mouth and east of Mobile bay are

however lower and ranges between 50 and 75 %. The mean length of the “heavy polluted” coastline

is about 7 %. 
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Figure 2 :  a - mean (80 releases every 3 months from 1995 to 2015) tracers concentration on the

coastline 3 months after a release of 1000 permil at Deepwater Horizon location (black square). b,c

– frequency (%) of  b- > “pollution” (0.01 permil threshold), c- > “heavy pollution”(1 permil

threshold). 

3.2 Surface dispersion and ecosystem exposure

The mean surface dispersion of the tracers released at the DWH location displays similarities with

the surface dispersion monitored by remote sensing (source :  National  Environmental  Satellite,

Data, and Information Service, NESDIS) (Leifer et al., 2012) and forecasted by operational models

(Fig S3b). A part of the oil slicks was transported toward the coast where it landed, while the other

part was transported offshore where it reached the northern rim of a Loop Current eddy located
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approximately at  27°N (Weisberg et al., 2017) in the form of a “tiger-tail” filament (Olascoaga and

Haller, 2012). In the specific case of the DWH, the observations show very little surface oil south of

about 26.5°N and west of about 85°W (Ylitalo et al., 2012) , possibly due to biodegradation (North

et al., 2015) / weathering processes and the use of dispersants.

In our model experiments,  the tracer concentration is maximal east  of the release location.  The

tracer reaches the loop current and is advected toward the Florida and Cuba region. The extension

of  the  modeled  spill  is  similar  in  >90% of  the  releases  between  27°N-28°N and  88°W-84°W

(threshold  0.05  permil:  fig  3b)  or  east  of  88°W (threshold  0.005 permil:  fig  3c).  The  western

extension  is  characterized  by  a  stronger  variability,  in  particular  due  to  the  presence  of  the

mesoscale activity associated with the loop current, the role of the seasonal cycle and the strength of

the connection eastern / western GoM (see 3.1). 
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Figure 3 : a – mean tracer depth-integrated concentration (permil) after 3 months. b- percentage of

the experiments where the tracer concentration is greater than b- > 0.05 and  c- > 0.005 The

contour  represent  the b-  0.05 and c-  0.005 concentration isoline.  d– Chlorophyll-Tracer  Index

(CTI)  (mgChl.permil)  (see  definition  in  the  main  text)  (contour  :  mean  surface  chlorophyll

concentration (mg.m-3)).  e,f- percentage of the experiments where the CTI is greater than e- >

0.05 and  f- >0.005. The contour represent the b- 0.05 and c- 0.005 CTI isoline. The black square

represents the release location.

The DWH release occurred in one of the most productive regions of the GoM  due to the fertilizing

role of  nutrients originating from the Mississipi’s mouth (Lohrenz et al. 1997). The impact of oil on

organisms, foodwebs and ecosystems is complex and includes multiple feedbacks (Joye et al., 2016;

Short et al., 2017). The chlorophyll concentration in the upper  ocean is directly related with the
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primary productivity and is simulated  by GOLFO12 in a consistent way compared to observations

as shown by Damien et al. (2018). In a very crude way, we computed a “Chlorophyll-Tracer Index”

(CTI) (Fig. 3d) to quantify  the  co-presence of both chlorophyll and tracer. The CTI is computed as

the  integral  of  the  chlorophyll  concentration  obtained  by  GOLFO12  multiplied  by  the  tracer

distribution. High values indicate that high tracer levels are located in productive regions, resulting

in a strong negative impact on the ecosystem. Lower values indicate that either the released tracer

displays lower concentrations and/or that the region is less productive. The CTI is maximal between

the DWH release location and the coastline as the productivity is maximal on the shelf and the

tracer concentration high. Its value is lower in the center of the GoM as chlorophyll concentrations

are lower. The integrated CTI value is valuable to compare different spills location (see 3.3 and 4). 

3.3 Quantitative set of metrics

Based on the analysis  above we derive  a  set  of  metrics  (Table  1)  which  characterize  the  spill

originating  from  the  DWH  location.  These  metrics  will  be  used  to  perform  a  basin-scale

characterization (see part 4.1)

Table 1 : quantitative metrics used to characterize a release occurring at the DWH location and

generalized to the whole GoM (3 months integration)

Metric DWH GoM

Integral of landed tracers  
(permil) 

565 (mean value) Figure 4a-I

Integral of landed tracers  :
greater than 50/200/500 permil

77 / 56 / 38 % of the 
experiments 

Figure 4a-II,III,IV

Coastal extension  (% of the total
GoM coastal length : threshold 0.01

and 1 permil)
18 % / 7 % (mean value) 

Figure 4b-I
(threshold 0.01 permil)

Coastal extension (threshold 0.01
permil) greater than 5% / 10 % / 20 %

of total GoM length 

91 / 82 / 52 % of the 
experiments 

Figure  4b-II,III,IV

Surface extension (% of the basin
surface : threshold 0.005 and 0.05

permil)

25 % / 12 % (mean value) Figure  4c-I
(threshold 0.005 permil)

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

Page 12 of 28AUTHOR SUBMITTED MANUSCRIPT - ERC-100123.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Surface extension  (threshold 0.005
permil) greater than 20 % / 30 % / 40

% of the GoM surface

81 / 26 / 3 % of the 
experiments

Figure 4c-II,III,IV

“Chlrophyll-Tracer Index” 270 (mean value) Figure 4d-I 

CTI greater than 50/ 100/ 150 85 / 80 / 36 % of the
experiments

Figure 4d- II,III,IV

4.1 Exposure and release location

The metrics (see Table 1) computed for each 371 release locations at sea surface are reported at the

location of each release and displayed in Fig 4. The release regions characterized by large amount

of landings are located in the Bay of Campeche (up to 1000 permil), off the MALFA shelf (up to

800 permil) and close to the Cuba Island (1000 permil) (Fig. 4a-I). The regions presenting large

mean landing amounts are also characterized by high frequency of occurrences (Fig 4a-II,III,IV).

For instance a total landing greater than 200 (500) permil originate from releases regions located in

the southwest bay of Campeche and close to the Cuba Island in 75 to 90 % (50 to 75 %) of the

experiments and 50 to 75 % (25 to 50 %) of the experiments close to the MALFA shelf. Conversely

to these “hotspots”, a release occurring in the regions located off the LATEX and the West Florida

shelfs has relatively few impact on the coastline (less than 100 permil). An explanation is that the

LATEX shelf presents a semi permanent cyclonic circulation (Cochrane and Kelly, 1986), which

may acts as a dynamical barrier and traps the tracer in its center. The southern part of the WFS is

characterized by a persistent cross shelf barrier (Olascoaga et al., 2006). More intuitively, a release

occurring in the center of the GoM does not impact the coastal regions in a 3 months timescale as

the tracer recirculates in the center of the GoM.  It is noteworthy that the horizontal gradient is

significant :  release locations potentially polluting the coastline are located close to regions which

do not pollute the coastline (especially close to the bay of Campeche, around 23°N-94°W).

Complementary to the total landed material, the Fig 5b-I shows the mean length of the polluted

coastline (threshold 0.01 permil) for each release location. A release occurring on the MALFA shelf

or close to the island of Cuba pollutes up to 20 % of the total GoM coastline. A release occurring in
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the bay of Campeche pollutes up to 15 % of the total GoM coastline as the circulation in the Bay of

Campeche is  sluggisher.  A basin scale pollution (defined as > 20 % of the length of the GoM

coastline – Fig 4b-III) occurs in 25-50 % of the experiments where the release location is located in

MALFA shelf and the Cuba Island, while it almost never occurs when it is located in the Campeche

region. The material released close to the Cuba Island is characterized by a broad dispersion, likely

due to the transport by the loop current / eddies . The role of the loop current is clearly visible in Fig

5c-I, showing the mean surface extension of the tracer (threshold 0.005 permil as in Fig 3c). The

tracer originating from the regions located westward of 88°W spreads into the GoM and covers

after 3 months about 30-35 % of the GoM surface (in 50-75 of the experiment, the area polluted

covers more than 30 % of the GoM – Fig 4c-III).  Conversely,  east  of 88°W the contaminated

surface area is smaller (5 to 25 %) as a significant amount of tracers is flushed out from the GoM to

the Atlantic Ocean.

The CTI is displayed as Fig 4d. Its distribution highlights the large chlorophyll exposure associated

with releases located off the MAFLA shelf, where the CTI is maximal as the mean chlorophyll

concentration is high off the shelf (between 0.2 and 1 mmol.m-3). Depending of the circulation

strength a larger amount of tracer is transported toward the coast, where chlorophyll concentrations

are higher thus increasing the CTI. The Bay of Campeche is characterized by intermediate values.

The region close to the Island of Cuba is characterized by low CTI as the chlorophyll concentration

is low.
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Figure 4 : a: integral (permil) of landing tracers for each release location. b: length of polluted

coast (% of GoM total coast length) for each release location. c: surface contaminated (% of GoM

total surface)  for each release location.  d: “Chlorophyll-Tracer Index” (permil.mgChl.m-3) for

each  release  location.  I:  mean value  (average  of  80  experiments).  II,III,IV:  % of  experiments

greater than a given threshold (thresholds a-II,III,IV: 50,200,500 /b-II,III,IV : 5,10,20 / c-II,III,IV :

20,30,40 / d: II,III,IV: 50,100,200)   

4.2 Exposure of the coastline

Are some specific regions more likely to be impacted by oil originating from an offshore “deep

water” platform ? We derive a basin-scale picture of the coastal accumulation pattern in the GoM

(Fig. 5a) from a “coastal perspective” (i.e the occurrences of landings on a specific coastal point

independently of  the  release  origin).  A preferential  coastal  accumulation occurs  after  3  months

integration in three “hotspots”: the island of Cuba (annual mean 22 % of the tracers which landed in

the GoM), the Bay of Campeche (32 %), the region close to the Mississipi mouth (16 %): more than
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70 % of the landing tracers are located in these three regions while the coastline length represents

less than 30 % of the total coastline. A similar pattern occurs in most of the release experiments (Fig

5b) : an accumulation greater than the mean accumulation (threshold 78.7 permil) occurs in > 90 %

of the experiments in the Bay of Campeche and the Cuba island.  It  occurs in 50-75 % of the

experiments  in  the  LATEX-MALFA shelf.  Conversely,  the  tracer  does  not  accumulate  in  other

regions  of  the  GoM :  western  LATEX shelf,  bank of  Campeche  (<  10% of  the  experiments).

Performing  a  similar  analysis  using  a  low  threshold  of  10  permil  highlights  clearly  the  three

“hotspots” regions (accumulation in > 90 % of the experiments) (Fig 5c)

Figure 5 : a- mean integrated levels (permil) of coastal landings in the case of a simultaneous

release of the 371 tracers covering the whole GoM. The regions highlighted in red (“hot spots”)

are the regions where the accumulation is larger than the mean accumulation (value 78.7 permil).

b- percentage of the experiments where an accumulation greater than the mean accumulation (78.7

permil) occurs. c: percentage of the experiments where an accumulation greater than 10 permil

occurs. d- tracer origin (%). d- origin (%) of the tracers accumulating in each “hotspot” (contour

0.01 %). 
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In order to determine the origin of the the tracers which landed in each of the three “hotspots”, we

computed the normalized value (landings originating from a given release location in a hotspot

region divided by the total landings occurring in the same hotspot) at the tracer release location (Fig

5d). A part of the tracers landing in Cuba originates from the regions located off the West Florida

Shelf (WFS) and are strongly constrained by the extension of the Loop Current. A large part of the

tracers landing in the western Bay of Campeche originates from the southern part of the western

GoM, highlighting the role of the currents located off the TAVE shelf. The tracers landing close to

the Mississipi’s mouth are issued from the regions located in front of the MALFA and eventually

LATEX shelf. Depending on the ocean conditions, the tracers released in the western part of the

GoM (25-28°N, 96-94°W) may land either in the Bay of Campeche or in the Mississipi’s mouth.

The TAVE shelf is characterized by a large seasonal variability: the currents are going southward

from September  to  March  and  northward  from May to  August  (Zavala-Hidalgo  et  al.,  2003),

explaining  that  a  small  fraction of  the  tracers  released in  this  region may reach the  Mississipi

region. Similarly, a small fraction of the tracers released in the eastern part of the Gulf (90-86°W,

24-28°N) may land in the Cuba island, possibly depending of the extension of the loop current. The

interconnections between the three regions of origin are however small as few overlaps are presents.

It supports the concept of dynamical geographies with weakly interacting provinces in the GoM

(Miron et al., 2017).

5. Conclusion and discussion

Using a Gulf of Mexico configuration of the NEMO Ocean General Circulation Model we aim to

quantify the exposure of the coastline and the open waters to a passive tracer release occurring at

surface in “deep offshore” waters. While the quantification of coastal exposure to pollution using

ocean circulation models is not novel, the “deep offshore” oil exploitation is a new source of risks

as an incident may affect large and remote areas due to the basin-scale transport of material by

ocean  currents.  An  example  of  such  an  incidental  release  followed  the  2010  blow-out  of  the

Deepwater Horizon (DWH) oil platform. In a first part of our study, we focus on a release occurring

at the DWH location. The mean coastal landing display  patterns consistent at first order compared

to “in situ” coastline oiling surveys conducted after the DHW spill, in particular a strong landing

rate close to the Mississipi mouth and east of the Mobile bay. We determine key, basic, metrics :

landing amount of the released tracer, extension of the coastline polluted by the tracer, surface of
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the polluted ocean,  co-presence of both released tracer  and chlorophyll,  a proxy for ecosystem

productivity.

We generalize the use of these metrics to 371 release locations covering the whole “deep offshore”

waters of the Gulf of Mexico. The experiments have been repeated 80 times, during each season

from 1995 to 2015 (total 29680 individual releases). The role of ocean dynamics on the landing of

material  in  coastal  regions  strongly  depends  of  the  release  location  and  the  ocean  dynamical

properties (mean and variability of currents, level of eddy activity). Both determine the pathways

that the material follows. As a note of caution, the role of the Stokes drift has not been taken in

account; in complement to the ocean circulation, the “windage” impacts the dispersion of material

(LeHenaff  et  al.,  2012).  Our study focuses  specifically  on the  role  of  ocean currents.  Specific

release locations (in the bay of Campeche, off the Mississipi-Alabama-Florida -MALFA- and close

to the Cuba Island) are characterized by a large negative potential  environmental impact as the

system  of  ocean  currents  steer  the  released material  toward  the  coast  while  some  others  (off

Louisiana-Texas  -LATEX -shelfs,  GoM center)  are  less  threatening as  ocean currents  steer  the

released material toward the GoM interior (or even outside the GoM). Our study highlights that a

tracer release occurring in “deep waters” may have a basin-scale impact. We show that the coastline

of the western and southern part of the Bay of Campeche, the region close to the Mississipi mouth

and the Cuba Island are the most exposed.

Our study presents limitations. The most obvious is that the complexity of the physico-chemistry of

the transported material, e.g oil (e.g Spaulding, 2017) is not taken in account, as we focus on the

role  of  the  ocean  circulation  in  transporting  a  purely  passive  tracer.  Not  accounting  for  oil

dissolution  and  weathering  results  in  biases  toward  a  over/under  estimating  the  impacts  of

long/short-transport  oiling. Another  important  limitation  is  the  model  resolution.  While  our

mesoscale  (1/12°)  model  displays  consistent  patterns  of  ocean  circulation  with observations

(Damien et al., 2018), Bracco et al. (2018) results indicate that the submesoscale processes (< 3 km)

can have an important role in the open ocean /shelf exchanges in the northern GoM. Sensitivity tests

to  determine  the  impact  of  higher  resolution  in  the  whole  GoM  are  needed.   Our  study  can

nevertheless help as a benchmark when using for instance better model resolution and/or a realistic oil spill

model. 
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An aspect which is not assessed here is the potential fate of the so-called “deep plumes”, formed

during the release of oil in deep waters as the mixture of buoyant compounds and dense sea

water becomes neutrally buoyant (Socolofsky et al., 2011).  In the case of the DWH, about

half of the total discharged oil formed a deep plume, located at about 1000 m depth (e.g Reddy et

al., 2011; Ryerson et al., 2011; Paris et al., 2012). This deep plume, even if it does not

reach the shoreline, may sediment on the floor and cause ecological damages (Valentine

et al., 2014). In situ experiments based on the release of a dye close to the sea floor of the

DWH location showed a slow transport in the water column and the whole GoM (Ledwell et al.,

2016).

Despite these limitations, we believe that the results derived from our modelling experiments and

more particularly the methodological concept described here could be useful to optimize the coastal

planning and are  valuable  to  preventively  mitigate  the  effect  of  a  spill  on  the  environment.  A

relevant question is for instance to determine what is the “best” place to implement a major facility

or a marine protected area (see the review of Coleman et al., 2011; Ortiz-Lozano et al., 2013) which

should  remain  as  free  as  possible  of  pollutants  over  long (decades)  time scales.  The exposure

considered from a release location perspective is valuable for governmental agencies, the oil and the

insurance industry in order to allow a better preparedness regarding the potential environmental and

economical (Smith et al., 2010) cost of a major incident occurring at a specific location as our study

shows  that  oil  exploitation  occurring  in  specific  regions  may  be  associated  with  a  higher

environmental cost.

As a final consideration, coastal regions are both the primary area of ocean resources and the place

where highly complex and fragile ecosystems are located. Quantifying the risks associated with

incidental pollution is challenging especially in the context of the on-going climate change and the

increased anthropogenisation, fostering stressors such as marine deoxygenation (Breitburg et al.,

2018; Scavia et al., 2017) which may reinforce the negative impact of a pollution event. Having a

clear overview of the environmental exposure linked with anthropogenic activities is necessary to

reduce and mitigate the impact of these activities on the environment and increase sustainability.
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The data (model outputs) that support the findings of this study are available from the authors upon

request. The circulation fields and the simulated chlorophyll concentration are obtained from the

experiments performed in Damien et al., (2018). 

Code availability 

The code of the NEMO (Nucleus for European Modelling of the Ocean) framework is available at

https://www.nemo-ocean.eu/. 
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