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Abstract 6 

Enrichments of highly reactive iron (Fe) (sum of Fe (oxyhydr)oxide, carbonate and sulfide minerals) in 7 

marine sediments and sedimentary rocks are commonly interpreted as an indication of anoxic 8 

conditions in the bottom water at the time of deposition. The model system for this proxy rationale is 9 

the semi-restricted Black Sea, where sediments underneath the anoxic and sulfidic (i.e., euxinic) 10 

deep-water are enriched in reactive Fe, which was mobilized from the surrounding shelf areas. To 11 

test whether such a shelf-to-basin Fe shuttle can operate in semi-restricted basins without euxinic 12 

deep water, we investigated sedimentary Fe speciation and Fe isotope compositions in sediments of 13 

the Guaymas Basin, Gulf of California. Sediments on the slope underneath the eastern equatorial 14 

Pacific oxygen minimum zone and sediments within the oxic deep basin are both enriched in reactive 15 

Fe, with reactive Fe making up 45 ± 11 % of the total Fe pool. The following mechanisms may 16 

contribute to these Fe enrichments: (1) Release of dissolved Fe from anoxic shelf and slope 17 

sediments followed by lateral transport of dissolved and/or particulate Fe in the water column; (2) 18 

preferential transport of fine-grained, terrigenous particles with a high reactive Fe content into the 19 

basin; (3) microbially mediated conversion of non-reactive silicate minerals to reactive Fe minerals 20 

during transport; (4) hydrothermal venting and lateral Fe transport within the deep water. The first 21 

process can explain reactive Fe enrichments in slope sediments, whereas all processes may 22 

contribute to sedimentary Fe enrichments in the deeper basin.  23 

The δ56Fe value of sediments increases from shelf to slope and decreases from the slope into the 24 

basin. This lateral pattern of δ56Fe, as well as the pattern of Fe enrichment, is similar to that observed 25 

in other marine systems with a Fe shuttle. However, the size of the Fe enrichment, and the range in 26 

δ56Fe (-0.06 to +0.16‰) is smaller. This difference is due to higher terrigenous sedimentation rates in 27 

the Guaymas Basin and, therefore, more intense dilution of shuttle-derived reactive Fe. We argue 28 

that, depending on the extent of bathymetric restriction and terrigenous background sedimentation, 29 

reactive Fe enrichments can form under a broad range of redox conditions and in diverse 30 
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sedimentary environments. The concepts applied in this study can be used to identify those 31 

circumstances in the paleo-record.     32 

Key words: reactive iron, iron shuttle, paleo-redox, oxygen minimum zone, hydrothermal vent. 33 

1. Introduction 34 

Iron (Fe) is an essential micronutrient in the ocean, and can limit nitrogen fixation and primary 35 

production (Falkowski et al., 1997; Moore and Doney, 2007; Boyd and Ellwood, 2010). While 36 

atmospheric dust has long been considered the main source of bioavailable Fe to the ocean (Jickells 37 

et al., 2005), recent work has highlighted the importance of continental margin sediments and 38 

hydrothermal vents as sources of Fe to marine phytoplankton (Moore and Braucher, 2008; Tagliabue 39 

et al., 2010; Dale et al., 2015; Tagliabue et al., 2017). In ocean regions with Fe-limited primary 40 

production (e.g., high-nutrient-low-chlorophyll (HNLC) regions), external Fe supply plays a critical role 41 

for the extent to which carbon dioxide can be removed from the upper ocean and atmosphere via 42 

export production. Therefore, paleoclimatologists and paleoceanographers have a keen interest in 43 

understanding how Fe transfer from source to sink areas is recorded in sedimentary archives (e.g., 44 

Murray et al., 2012; Martínez-García et al., 2014; Scholz et al., 2014a). 45 

The solubility of Fe in seawater and sediment pore waters reaches a maximum under anoxic (zero 46 

oxygen) to weakly sulfidic (below saturation of Fe monosulfide minerals, FeS) conditions. Therefore, 47 

Fe can be released from anoxic sediments (Elrod et al., 2004; Severmann et al., 2010, Noffke et al., 48 

2012) and then be transported within the water column, either as dissolved ferrous Fe (Fe(II)) under 49 

low-oxygen conditions, or as organically complexed, colloidal or nanoparticulate ferric Fe (Fe(III)) 50 

under oxic conditions (Lohan and Bruland, 2008; Boyd and Ellwood, 2010; Noble et al., 2012; Kondo 51 

and Moffett, 2015). If dissolved, colloidal or nanoparticulate Fe is subsequently transferred into an 52 

ocean region with a lower capacity for Fe transport, e.g., because of oxic or strongly sulfidic 53 

conditions, authigenic Fe minerals ((oxyhydr)oxides, sulfides, carbonates) are precipitated and 54 

deposited at the seafloor. Under such conditions, the accumulation of highly reactive Fe (FeHR, 55 

defined as the sum of Fe bound to (oxyhydr)oxides, carbonates and sulfide minerals) can be 56 

decoupled from the terrigenous Fe input, thus leading to elevated ratios of FeHR to total Fe (FeT) and 57 

FeT to Al compared to terrigenous particles or sediments that are unaffected by additional Fe input 58 

(Lyons and Severmann, 2006; Poulton and Canfield, 2011; Raiswell and Canfield, 2012). The 59 

prototypical location of this so-called “benthic Fe shuttle” is the anoxic-sulfidic (i.e., euxinic) Black 60 

Sea, where shelf-derived Fe accumulates in sediments of the deep basin as pyrite (FeS2) (Anderson 61 

and Raiswell, 2004; Raiswell and Anderson, 2005; Lyons and Severmann, 2006). Using the euxinic 62 

Black Sea as a paradigm, elevated FeHR/FeT and FeT/Al in combination with a high extent of 63 
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pyritization of the reactive Fe pool (Fepy/FeHR) are widely used as proxies for anoxic and sulfidic 64 

conditions in the water column of paleo-marine systems (Raiswell and Canfield, 2012). In an 65 

analogous manner, elevated FeHR/FeT in combination with a low Fepy/FeHR is interpreted as an 66 

indicator for anoxic but non-euxinic, so-called ferruginous conditions. This redox state, where 67 

dissolved ferrous Fe dominates over oxygen, nitrate and hydrogen sulfide (H2S), does not exist in the 68 

modern ocean but may have been dominant through much of Earth’s history (Poulton and Canfield, 69 

2011).  70 

Since the Black Sea was established as a paradigm for the benthic or “shelf-to-basin” Fe shuttle, a 71 

number of studies have demonstrated that Fe transfer from source to sink areas is a common feature 72 

in the ocean and not necessarily restricted to environments where H2S or dissolved ferrous Fe are the 73 

dominant redox species. For example, in the oxygen minimum zones (OMZ) of upwelling regions, 74 

sedimentary Fe release is particularly intense (Elrod et al., 2004; Severmann et al., 2010; Noffke et 75 

al., 2012, Dale et al., 2015) and sediments at the boundaries of OMZs tend to be enriched in reactive 76 

Fe relative to terrigenous material (Scholz et al., 2014b; Scholz, 2018). Furthermore, water column 77 

studies, mostly conducted within the GEOTRACES program, demonstrated far-field transport of Fe 78 

from sedimentary and hydrothermal sources (Noble et al., 2012; Conway and John, 2014; Resing et 79 

al., 2015; John et al., 2018).  Whether or not Fe shuttling results in a sedimentary fingerprint at a 80 

given location critically depends on the local balance between non-lithogenic (i.e., shuttle-derived) 81 

and lithogenic (i.e., terrigenous) Fe flux (Lyons and Severmann, 2006; Scholz, 2018). For example, in 82 

the semi-enclosed Black Sea, shelf-derived Fe is inevitably channeled into the basin, where detrital 83 

sedimentation rates are low. This combination of basin geometry and low terrigenous Fe and Al 84 

supply is highly favorable for generating elevated FeHR/FeT and FeT/Al (Scholz, 2018). In principle, 85 

however, sedimentary Fe enrichments are virtually unrelated to the redox state of the deep-water in 86 

the Fe sink area. Even if the deep-water was oxic, shelf-derived Fe could not escape burial in the 87 

basin. One could therefore hypothesize that reactive Fe enrichments are not necessarily indicative of 88 

euxinic (or ferruginous) anoxia, but rather related to enhanced Fe supply from non-lithogenic 89 

sources, which can be achieved under a broad range of redox conditions in the sink area.  90 

Our study area, the Guaymas Basin in the Gulf of California (Fig. 1A), is an ideal system to test this 91 

hypothesis. Similar to the Black Sea, the Guaymas Basin has a semi-restricted bathymetry and the 92 

deep-water is separated from neighboring basins and the open ocean by a sill. At intermediate 93 

depth, the Eastern Equatorial Pacific OMZ impinges the seafloor, which is expected to result in 94 

sedimentary Fe release. Moreover, the Guaymas Basin is an early rifting environment (Curray and 95 

Moore, 1982), where circulation of hydrothermal fluids through young oceanic crust and overlying 96 

hemi-pelagic sediments can mobilize Fe into the oxic deep-water. In a previous study, Campbell et al. 97 
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(1988) found that the basin sediments are strongly enriched in manganese (Mn) relative to 98 

terrigenous material deriving from both hydrothermal and sedimentary sources. Overall, the 99 

Guaymas Basin shares many characteristics with predominantly oxic ocean basins like the Pacific but 100 

is relatively small and semi-restricted like the euxinic Black Sea. In the present article, we address the 101 

following questions: Are sediments in the Guaymas Basin characterized by variability in FeT/Al and 102 

FeHR/FeT, which can be attributed to a shelf-to-basin Fe shuttle or hydrothermal Fe input? Is it 103 

possible to distinguish these two non-lithogenic sources of reactive Fe by the aid of Fe speciation and 104 

sedimentary Fe isotopes? Our ultimate goal is to better understand how basin-scale Fe transport is 105 

recorded in sedimentary paleo-archives. 106 

2. Study area and samples 107 

The Gulf of California (Fig. 1A) is located between the Mexican mainland and the Baja California 108 

peninsula. Circulation and primary productivity in this area are modulated by the atmospheric 109 

Monsoon circulation over southwestern North America (Thunell, 1998). During the winter season, a 110 

high pressure system overlying the southwestern USA forces northeasterly winds, which transport 111 

surface waters in the Gulf of California in a southward direction. The southward emplacement of 112 

surface water drives upwelling of nutrient-rich subsurface water and high rates of primary and export 113 

production (Marinone, 2003). By contrast, during summer season, the region north of the Gulf of 114 

California is characterized by low atmospheric pressure. Consequently, the direction of winds and 115 

surface currents reverse, which leads to a cessation of upwelling and low rates of primary production 116 

(Thunell, 1998; Marinone, 2003). Below the seasonally varying surface water masses is the oxygen-117 

depleted North Pacific intermediate water between 500 and 1000 m water depth (Bray, 1988). 118 

Analogous to the Eastern Equatorial Pacific outside the Gulf of California, oxygen concentrations 119 

increase again below the OMZ. During the productive winter season, sedimentation in the Gulf of 120 

California is dominated by biogenous material (diatomaceous ooze), whereas in the rainy summer 121 

season terrigenous material is supplied by river runoff and intermittent dust storms (Thunell et al., 122 

1993). The lack of bioturbation within sediments underneath the OMZ leads to the formation of 123 

laminated sediments, which reflect the seasonally changing climatic and oceanographic conditions in 124 

the Gulf of California (Calvert et al., 1966). 125 

The Guaymas Basin in the central Gulf of California is an early rifting environment with spreading 126 

rates of about 6 cm yr-1 between the Pacific and North American plates (Curray and Moore, 1982). Its 127 

spreading axis consists of two graben systems, the northern and southern trough, separated by a 128 

strike-slip fault. In the early 1980s, hydrothermal vents were discovered in the southern trough (close 129 

to DSDP Site 477) (Fig. 1) (Von Damm et al., 1985). Due to high sedimentation rates within the basin 130 

(up to 2.8 m kyr-1) (Calvert et al., 1966), hydrothermal fluids percolate through newly formed oceanic 131 
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crust and several hundred meters of organic matter-rich hemipelagic sediments (Simoneit et al., 132 

1988). Due to interactions of hydrothermal fluids with and precipitation of metal sulfides within the 133 

sediments overlying the intrusion zone, emanating hydrothermal fluids are relatively poor in ore-134 

forming metals compared to bare ridge crest hydrothermal systems (e.g., tens of μM of Fe instead of 135 

hundreds to thousands of μM at the East Pacific Rise) (Von Damm et al., 1995). During RV Sonne 136 

cruise SO241 in June and July 2015, a new hydrothermal vent area was discovered next to the 137 

northern trough (Bernd et al., 2016; Geilert et al., 2018). The hydrothermal fluids discharged in this 138 

northern vent field are similar to those sampled earlier at the southern trough. 139 

The samples presented in this article (Table 1) were collected during RV Sonne cruise SO241 along 140 

two transects across the eastern shelf and slope of the Guaymas basin (Fig. 1B) and across the basin, 141 

northern trough and hydrothermal vent field (Fig. 1C). The ‘shelf site’ is located in a shallow 142 

embayment off the coast of the Mexican mainland. Sediments at this site are sandy, presumably 143 

reflecting strong bottom currents causing winnowing of fine-grained material. Due to the anoxic 144 

bottom water, sediments at the ‘OMZ site’ are laminated. The water depth and environmental 145 

setting at this station are similar to DSDP Site 480. Another core with low bottom water oxygen 146 

concentrations was taken at the lower rim of the OMZ (‘OMZ rim site’). This site is located well above 147 

the depth of the sill (~1500 m water depth) (Fig 1A), which separates the Guaymas basin from the 148 

neighboring Carmen Basin. The ‘basin site’ and ‘graben site’ are located within the western basin 149 

plain and northern trough, respectively.  Sediments in these areas are bioturbated and bottom water 150 

oxygen concentrations range from 35 to 40 μM. The ‘vent field site’ is located within the newly 151 

discovered vent field east of the northern trough (Bernd et al., 2016; Geilert et al., 2018). Sediments 152 

in this area consist of debris of collapsed vent edifices covered by a thin layer of hemipelagic 153 

sediments.       154 

3. Methods 155 

3.1. Shipboard sampling and operation 156 

The water column was sampled using a video-guided rosette of 11 x 10 l Niskin bottles equipped with 157 

a Seabird 9plus CTD and additional sensors measuring, among others, oxygen and turbidity (Linke et 158 

al., 2015). Water samples were collected from the Niskin bottles for on-board analyses of oxygen, 159 

nitrate (NO3
-), nitrite (NO2

-) and phosphate (PO4
3-). About 5 l of water were used to collect particles 160 

on acid-cleaned polyether sulfone filters (0.2 μM, 47 mm diameter) (PALL corporation) by offline 161 

filtration. The filtration units were acid-cleaned prior to each use. To determine current directions 162 

and velocities in the Guaymas Basin above the hydrothermal vent field, a lander-mounted upward-163 

looking 300 kHz ADCP (Teledyne RDI, Workhorse Sentinel Acoustic Doppler Current Profiler) was 164 
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deployed about 500 m southeast of the vent field site. The ADCP lander recorded data for the 165 

lowermost ~100 m of the water column at 2 m resolution over a time period of about 40 hours.   166 

Short sediment cores with supernatant bottom water were retrieved using a video-guided multiple 167 

corer (MUC). Upon recovery on deck, sediment cores were transferred to a cool lab, where the 168 

temperature was adjusted to seafloor conditions. The bottom water was siphoned off with a syringe 169 

attached to a Tygon tube and stored for later analyses along with pore water samples. Sediment 170 

subsampling was done in an argon-flushed glove bag as described in Scholz et al. (2011). The pore 171 

water was separated from the solid phase by centrifuging for 20 minutes at 4000 rpm. Centrifuge 172 

vials were then transferred to a second glove bag and the supernatant water was filtered through 173 

cellulose acetate syringe filters. One ml of pore water was mixed with ascorbic acid in the glove bag 174 

for on-board analysis of dissolved ferrous Fe (Fe2+). Subsamples for dissolved metal analyses were 175 

stored in acid-cleaned LDPE vials and acidified with concentrated HNO3 (supra pure). A sediment 176 

subsample was stored in air-tight plastic containers for the determination of water content and 177 

porosity as well as for solid phase analyses after the cruise. 178 

3.2. Chemical and isotopic analyses 179 

A Winkler titration was applied on-board to determine oxygen concentrations in the water column. 180 

Concentrations of NO3
-, NO2

-, ammonia (NH4
+), PO4

3-, Fe2+ and H2S (∑H2S = H2S + HS- + S2
-) in water 181 

column and/or pore water samples were analyzed on-board by standard spectrophotometric 182 

techniques (Stooky, 1970; Grasshoff et al., 2002). Dissolved Mn concentrations were determined at 183 

GEOMAR by inductively coupled plasma optical emission spectroscopy (ICP-OES, VARIAN 720-ES). 184 

Total organic carbon (TOC) was analyzed using an element analyzer (Euro EA, HEKAtech) after 185 

removal of inorganic carbon with 1 M HCl. To determine particulate Fe, Mn, aluminum (Al) and 186 

titanium (Ti) concentrations in the solid phase, water column particulate matter collected on filters 187 

and sediment samples were digested on a hotplate and the resulting solutions were analyzed by ICP-188 

OES. Water column particulate matter was digested in an acid mix consisting of 1 ml concentrated 189 

HNO3 (sub-boiled distilled), 0.4 M HF (Suprapur) and 0.6 ml deionized water as described in Cutter et 190 

al. (2017). Sediment samples were digested in HNO3 (sub-boiled distilled), HF (Suprapur) and HClO4 191 

(analytical grade). For quality control, Certified Reference Materials SDO-1 (Devonian Ohio Shale, 192 

USGS) and MESS-3 (marine sediment, Canadian Research Council) were digested and analyzed along 193 

with sediment samples. Since there is no Certified Reference Material for water column particulate 194 

matter, we evaluated the accuracy and precision of our procedure by digesting an in-house standard 195 

from Oregon State University (MT5-NS-1750M), which consists of particulate matter collected in a 196 
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sediment trap in the eastern North Pacific. Recommended and measured concentrations are 197 

reported in Table 2.  198 

A sequential extraction scheme was applied to determine operationally defined pools of reactive Fe 199 

minerals in sediment samples (Poulton and Canfield, 2005). In brief, Fe bound to carbonate minerals 200 

(Fecarb) was extracted with sodium acetate, Fe bound to (oxyhydr)oxide minerals (Feox) was extracted 201 

with hydroxylamine-HCl (FeOx1) and sodium dithionite (FeOx2) and magnetite Fe (FeMag) was extracted 202 

with ammonium oxalate. Extraction solutions were analyzed for Fe concentration by ICP-OES with 203 

yttrium as an internal standard. Concentrations of Fe bound to pyrite (Fepy) were determined by the 204 

chromium reduction method (Canfield et al., 1986). The sum of these four fractions represents the 205 

highly reactive Fe pool (FeHR) which can be compared to the total Fe concentration (FeT) obtained by 206 

total digestion. Our in-house standard OMZ-1 (Peru margin sediment) and the Certified Reference 207 

Material PACS-3 (marine sediment, Canadian Research Council) were extracted during each batch of 208 

sequential extractions. The results for the sum of highly reactive Fe without Fe bound to pyrite (Fepy) 209 

were consistent with data generated at the University of Southern Denmark (SDU) for the same 210 

standard material (GEOMAR, OMZ-1: 0.47  0.02 wt. %, n = 18, PACS-3: 1.25  0.01 wt.%, n = 7; SDU, 211 

OMZ-1: 0.44  0.05 wt. %, n = 3, PACS-3: 1.26  0.04 wt.%, n = 12). The accuracy of the Fepy method 212 

was evaluated by determining the pyrite content of mixtures of pure pyrite and quartz sand, and Fepy 213 

was typically within 5% of target values. 214 

For Fe isotope analyses, digestion solutions were purified following the method described in 215 

Schoenberg and von Blanckenburg (2005) using anion exchange columns containing 1 ml BioRad 216 

AG®1-X8 200-400 mesh resin. After pre-cleaning with diluted HNO3, HCl and H2O, the resin was 217 

conditioned with 5 ml of 6 M HCl. About 50 mg of Fe in 6 M HCl was loaded onto the resin and 218 

stepwise washed with a total of 6 ml 6 M HCl to elute matrix elements. Iron was eluted with 2 ml of 219 

H2O and 4 ml of 5 M HNO3. The Fe eluate was then dried down and re-dissolved in 2 % HNO3 for 220 

isotope measurements. Iron isotope measurements were performed on a Thermo Scientific Neptune 221 

Plus multicollector-inductively coupled plasma-mass spectrometer (MC-ICP-MS) at GEOMAR using 222 

the standard-sample-bracketing method (Schoenberg and von Blanckenburg, 2005). Solutions of 223 

samples and standards were measured in high-resolution mode (M/ΔM > 9000) in 20 cycles over 224 

three minutes at a concentration of 4.5 μg g-1 and at a signal of approximately 13 V on 56Fe. Signal 225 

intensities of masses 53Cr, 54Fe, 56Fe, 57Fe, 58Fe as well as 60Ni were acquired in static mode. Isobaric 226 

correction accounting for trace abundances of Cr and Ni in sample solutions were applied during data 227 

reduction. Iron isotope data are reported in per mil delta notation relative to the reference standard 228 

IRMM-014 (δ56Fe = (56Fe/54Fe)sample/(56Fe/54Fe)standard -1 x 103). Procedural blanks were generally less 229 

than 0.5 % of the total amount of Fe that passed through the Fe purification procedure and is, thus, 230 
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negligible for the samples’ Fe isotope compositions. The external reproducibility was determined by 231 

repeated analyses of the BHVO-1 standard (Basalt, Hawaiian Volcanic Observatory, USGS), which 232 

gave δ56Fe = +0.11 ± 0.06 ‰ (2 SD, n = 23). This values is in agreement with an average of +0.11 ± 233 

0.01 ‰ reported by Craddock and Dauphas (2010). Repeated analyses of the SDO-1 standard 234 

(Devonian Ohio Shale, USGS) gave a δ56Fe of +0.02 ± 0.02 ‰ (2 SD, n = 7), which is in agreement with 235 

an average of -0.05 ± 0.14 ‰ reported by Severmann et al. (2010). The long-term external 236 

reproducibility of BHVO-1 (0.06 ‰) is used to illustrate analytical uncertainty in the figures.  237 

4. Results 238 

4.1. Water column 239 

Oxygen concentrations decrease from close to saturation at the surface to values below the 240 

detection limit (~2 μM) at 550 to 750 m water depth (Fig. 2). Water masses in the shallow subsurface 241 

and within the OMZ are characterized by a nitrate deficit relative to phosphate (N* = NO3
- - 16 x PO4

3-242 

) compared to the average nitrogen to phosphorus ratio of phytoplankton (so-called Redfield ratio). 243 

The nitrate deficit (negative N*) indicates that these water masses are affected by denitrification 244 

(Gruber and Sarmiento, 1997). Below the OMZ, oxygen concentrations increase to values of the 245 

order of 35 to 40 μM in the deep-water. Turbidity is elevated within the productive surface ocean 246 

and increases progressively with depth below the water mass boundary between North Pacific 247 

Intermediate Water and Pacific Deep-water (Bray et al., 1988). A further increase in turbidity is 248 

observed below the depth of the sill and within the deep-water of the northern trough. Our water 249 

column observations (Fig. 2) are generally consistent with previous studies in the Gulf of California 250 

(Campbell and Gieskes, 1984; White et al., 2013).  251 

Particulate Mn (pMn) and Fe (pFe) data are presented as concentrations per volume of seawater and 252 

as pFe and pMn to particulate Al (pAl) ratios (Fig. 2). By normalizing pFe and pMn to pAl, we can 253 

differentiate particles of terrigenous origin (ratio equals upper continental crust, UCC) (McLennan, 254 

2001) from particles that contain excess Fe or Mn due to oxidation and precipitation of sediment-or 255 

hydrothermal-derived Fe and Mn in the water column. Since filtration was realized offline, oxidation 256 

and precipitation of dissolved Fe and Mn during sample handling may have contributed to elevated 257 

Fe/Al and Mn/Al. However, since Al is not redox sensitive and, therefore, is not released from 258 

reducing sediment or precipitated within the water column, elevated pMn/pAl and pFe/pAl ratios are 259 

generally indicative of the presence of Mn and Fe from non-lithogenic sources. In agreement with 260 

previous studies (Campbell et al., 1988), both pMn/pAl and pMn increase from crustal-like values in 261 

the surface ocean and North Pacific Intermediate Water to highly elevated values in the deep-water 262 

within the basin. Elevated pMn/pAl ratios relative to UCC are observed both at the vent field site and 263 
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at the basin site. Particulate Fe concentrations increase with depth throughout the water column. In 264 

contrast to pMn/pAl, however, pFe/pAl is only elevated at the vent field site, whereas at the basin 265 

site, pFe/pAl ratios are close to the UCC. Somewhat elevated pFe/pAl ratios are observed at 266 

intermediate depth, roughly coincident with the OMZ.  267 

4.2. Sediment pore water 268 

Pore water profiles of major redox species (Fig. 3) provide information about the intensity of organic 269 

matter degradation and the predominant biogeochemical processes in the sediment at the various 270 

sites. The layer where nitrate reduction takes place (nitrogenous zone), as revealed by decreasing 271 

NO3
- concentrations and a transient occurrence of NO2

-, becomes progressively thicker from the shelf 272 

and slope sites (≤1 cm) to the basin and graben sites (up to 5 cm). Sediments on the shelf and slope 273 

are characterized by elevated pore water Fe concentrations close to the sediment surface (up to ~60 274 

μM at 5 cm at the OMZ site), whereas at the basin and graben sites slightly elevated Fe 275 

concentrations are observed well below the surface (up to ~10 μM at 10 cm). Pore water Mn 276 

concentrations are low at the shelf site and within the OMZ (<2 μM) and progressively increase 277 

towards the deeper sites, where dissolved Mn concentrations up to 280 μM are detected. At the 278 

vent field site, relatively high pore water Mn concentrations (up to 80 μM) are observed in the 279 

uppermost 5 cm, whereas below this depth, pore waters are characterized by highly elevated Fe 280 

concentrations up to 190 μM. Hydrogen sulfide is detected below a sediment depth of 10 to 20 cm 281 

within the OMZ, at the OMZ rim and at the basin site. Downward concentration gradients of NH4
+ 282 

from decaying organic matter decrease from the slope to the basin. Overall, our observations are 283 

indicative of a decreasing intensity of organic matter degradation from the slope to the basin, which 284 

is also consistent with decreasing TOC concentrations (Table 1). 285 

At the shelf, OMZ, OMZ rim and vent field sites a significant concentration gradient of dissolved Fe 286 

between the bottom water and uppermost pore water sample is observed. This gradient can be used 287 

to calculate a diffusive benthic flux across the sediment-water interface based on Fick’s 1st law of 288 

diffusion (Table 3). The benthic fluxes calculated for the OMZ and OMZ rim sites are comparable to 289 

those reported for other OMZs by the same method (e.g., <0.1 - 2 μmol cm-2 yr-1 in the OMZs off Peru 290 

and Mauritania) (Schroller-Lomnitz et al., 2019). However, due to the coarse depth resolution of pore 291 

water profiles and disregard of advective transport, diffusive fluxes are generally associated with a 292 

large uncertainty. In-situ benthic fluxes determined at the same site by using benthic incubation 293 

chambers tend to be higher (Severmann et al., 2010; Noffke et al., 2012; Lenstra et al., 2019). This 294 

general trend could either be related to the shortcomings of diffusive flux calculations, or an artificial 295 

drawdown of oxidants during the incubation. A relatively high diffusive benthic Fe flux is calculated 296 

for the vent field site (Table 3).       297 
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4.3. Sediment solid phase 298 

Sedimentary Mn/Al exponentially increases from values below the UCC ratio at the shelf and OMZ 299 

sites to values above UCC at the graben site (Fig. 4). The extent of Mn enrichment relative to UCC is 300 

about equal at the vent field site and at the basin site. Similar to Mn/Al, FeT/Al increases with water 301 

depth (Fig. 4). However, the extent of FeT enrichment relative to UCC at the OMZ rim, basin and 302 

graben sites is less pronounced compared to Mn. Sedimentary FeT/Al ratios at the vent field site by 303 

far exceed the ratios at the basin and graben sites. Sedimentary FeHR/FeT ratios increase from values 304 

equal to modern continental margin sediment with oxic bottom water (a data compilation for 305 

sediments from Long Island Sound, shallow Baltic Sea, Mississippi Delta and the NW Mediterranean) 306 

(Raiswell and Canfield, 1998) at the shelf site to values above this reference value at the remaining 307 

sites (Fig. 4). Increasing FeHR/FeT ratios from shelf to basin are accompanied by decreasing Ti/Al 308 

ratios. Titanium primarily resides in heavy minerals within the coarse-grained sediment fraction, 309 

whereas Al is mainly contained in fine-grained clay minerals (Boyle, 1983). Therefore, decreasing 310 

Ti/Al ratios are indicative of a decrease in grain size from shelf to basin. Mean Fe isotope values of 311 

individual cores increase from the shelf site (δ56Fe = +0.07 ± 0.02 ‰, 1 SD, n = 5) to the OMZ site 312 

(δ56Fe = +0.11 ± 0.02 ‰, 1 SD, n = 5) and then decrease between the OMZ rim (δ56Fe = +0.07 ± 0.07 313 

‰, 1 SD, n = 5), basin (δ56Fe = +0.03 ± 0.04 ‰, 1 SD, n = 5) and graben sites (δ56Fe = -0.03 ± 0.02 ‰, 1 314 

SD, n = 5) (Fig. 4). Sediments at the vent field site show the lowest Fe isotope values observed in this 315 

study (mean δ56Fe = -0.35 ± 0.03 ‰, 1 SD, n = 5). 316 

5. Discussion 317 

5.1. Sedimentary manganese and iron enrichments in the Guaymas Basin 318 

Sediments of the Guaymas Basin are enriched in Mn, FeT and FeHR relative to UCC and modern 319 

continental margin sediments with oxic bottom water (Fig. 4), which could reflect delivery of Mn and 320 

Fe from non-lithogenic sources. Campbell et al. (1988) established a Mn mass balance for sediments 321 

in the Guaymas Basin and concluded that sedimentary Mn enrichments are primarily related to 322 

hydrothermal discharge with additional contributions (roughly 25 %) from sedimentary Mn release at 323 

the shelf and slope, followed by downslope transport. Efficient spread of vent-derived Mn 324 

throughout the basin is also indicated by coincident and similar anomalies of pMn and pMn/pAl in 325 

hydrothermal plumes and at more distal locations (compare basin and vent field site in Fig. 2) 326 

(Campbell and Gieskes, 1984). Manganese oxidation in hydrothermal plumes of the Guaymas Basin is 327 

relatively fast and mediated by Mn-oxidizing microbes (Dick et al., 2009). It has been hypothesized 328 

that the filamentous morphology of Mn-rich particles resulting from this process facilitates long-329 

range transport and, thus, spread of hydrothermal Mn throughout the basin (Campbell et al., 1988).   330 
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Campbell et al. (1988) did not report sedimentary Fe concentration or speciation data but noted that 331 

pFe in the deep-water of the Guaymas Basin is correlated with lithogenic elements such as Al and Ti. 332 

Consistent with this observation, deep-water pFe/pAl ratios at the basin site are similar to the ratio 333 

of UCC (Fig. 2). According to Campbell et al. (1988), lower concentrations of vent-derived pFe 334 

compared to pMn are related to extensive Fe sulfide precipitation in the sediments and, therefore, 335 

relatively low dissolved Fe concentrations and Fe to Mn ratios in hydrothermal fluids in the Guaymas 336 

Basin compared to bare ridge-crest hydrothermal systems (Von Damm et al., 1985). In addition, the 337 

pronounced difference in pFe/pAl between the vent field site and basin site (Fig. 2) imply that the 338 

spread of vent-derived Fe in the deep water is less efficient compared to Mn.  339 

Pore water profiles at the shelf and slope sites indicate a diffusive flux of Fe across the sediment-340 

water interface (Fig. 3, Table 3) and elevated pFe/pAl ratios within the OMZ are consistent with a 341 

sedimentary source of pFe. These observations indicate that re-precipitation of sediment-derived Fe 342 

and lateral transport of dissolved and/or particulate Fe is another mechanism that could explain 343 

sedimentary Fe enrichments in the Guaymas Basin. In the following discussion, we aim to disentangle 344 

sedimentary from hydrothermal contributions to sedimentary Fe enrichments in the Guaymas Basin. 345 

5.2. Sedimentary versus hydrothermal iron sources 346 

Transport of non-lithogenic FeHR from a sedimentary or hydrothermal source and accumulation in the 347 

basin should result in a characteristic trend of FeT/Al versus FeHR/FeT, which can be calculated using 348 

the following set of equations (Scholz, 2018): 349 

/ = ∙ ∙ + ( ∙ )∙  
 (1) 350 

/ = ∙ ∙ ∙ + ( ∙ )∙ ∙ + ( ∙ )  

 (2) 351 

In these equations, MAR is the sediment mass accumulation rate (in g cm-2 yr-1), Al is the aluminum 352 

concentration (in mg g-1), (FeT/Al)in and (FeHR/FeT)in are the initial ratios prior to deposition of non-353 

lithogenic Fe (i.e., corresponding to the terrigenous input), RRFe is the rain rate of non-lithogenic Fe 354 

(in mmol cm-2 yr-1) and MFe is the molar mass of Fe (55.845 mg mmol-1). Adopting a range of RRFe 355 

yields a trend line of FeT/Al versus FeHR/FeT (Fig. 5), which can be used to evaluate whether a 356 
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combination of FeT/Al and FeHR/FeT can be assigned to a net loss or gain of non-lithogenic reactive Fe. 357 

Importantly, the shape of the trend line and its position within the FeT/Al versus FeHR/FeT space solely 358 

depends on (FeT/Al)in and (FeHR/FeT)in but are unaffected by MAR, Al and RRFe (see Scholz et al. (2018) 359 

for further details). The use of FeHR/FeT and FeT/Al as sedimentary proxies for non-lithogenic Fe 360 

delivery is based on the notion that reactive Fe minerals that precipitate in the water column are 361 

mixed with sediments whose Fe content is determined by terrigenous input. We therefore use the 362 

FeT/Al of UCC (FeT/Al = 0.44) (McLennan, 2001) and FeHR/FeT of modern continental margin 363 

sediments with oxic bottom water (FeHR/FeT = 0.28) (Raiswell and Canfield, 1998) as initial values 364 

(open star in Fig. 5). Sediments plotting above and to the right of the terrigenous input have received 365 

a net gain of non-lithogenic reactive Fe, whereas sediments plotting below and to the left of the 366 

terrigenous input are characterized by a net loss of reactive Fe (e.g., through sedimentary Fe 367 

release). 368 

Sediments within the OMZ and at the OMZ rim plot along the trend line corresponding to non-369 

lithogenic Fe delivery (Fig. 5). As these sites are located well above the sill (Fig. 2) and, thus, outside 370 

of the influence of hydrothermal vents (Campbell et al., 1988), a hydrothermal source of the 371 

sedimentary Fe enrichment can be excluded. Reducing sediments on the shelf and slope of the 372 

Guaymas Basin release Fe to the water column (Fig. 3 and Table 3) and elevated pFe/pAl within the 373 

OMZ (Fig. 2) suggest that sediment-derived Fe is re-precipitated in the water column. We therefore 374 

attribute sedimentary Fe enrichments within the OMZ and at the OMZ rim to downslope shuttling of 375 

sediment-derived Fe. Similar to other continental margin settings, where sedimentary Fe release and 376 

downslope shuttling have been reported, Fe enrichments are most pronounced at the boundary 377 

between anoxic and oxic bottom waters (i.e., at the OMZ rim site). Following previous studies, we 378 

hypothesize that downslope transport is mediated via continuous Fe release, precipitation, 379 

deposition and re-release (Scholz et al., 2016). Precipitation of dissolved Fe within the anoxic bottom 380 

water may proceed via multiple mechanisms including, e.g., micro-aerophilic and nitrate-dependent 381 

Fe oxidation (Konhauser et al., 2011; Raiswell and Canfield, 2012; Scholz et al., 2016). At the lower 382 

rim of the OMZ, increasing oxygen and nitrate concentrations in the bottom water (Fig. 2) induce an 383 

increased flux of these oxidants into the surface sediment (note steep nitrate gradient at OMZ rim 384 

site in Fig. 3). Therefore, a shift from sedimentary Fe release to Fe accumulation takes place (Scholz 385 

et al., 2016). In areas where dissolved Fe release is prevented by oxygen and nitrate penetration into 386 

the surface sediment, re-suspension of Fe-rich particles at the sediment surface by bottom currents 387 

may mediate further downslope transport (Lenstra et al., 2019).  388 

Sediments at the basin and graben sites display elevated FeHR/FeT but the corresponding FeT/Al ratios 389 

are too low to yield a match with the trend line for non-lithogenic Fe delivery (Fig. 5). This Fe 390 
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speciation signature is inconsistent with Fe supply from hydrothermal venting or reducing sediments 391 

as the sole sources of excess FeHR. We can estimate the fraction of non-lithogenic excess FeHR and 392 

lithogenic excess FeHR by comparing observed mean FeHR/FeT with predicted FeHR/FeT based on 393 

Equations (1) and (2) (Table 4). At the OMZ and OMZ rim sites, 100 % of the sedimentary Fe 394 

enrichments can be attributed to a non-lithogenic source. By contrast, at the Basin and Graben sites, 395 

only about 30 % of the excess FeHR may be explained by non-lithogenic Fe delivery whereas the 396 

remainder is delivered with a FeT/Al ratio similar to UCC. Anderson and Raiswell (2004) made a 397 

similar observation in the Black Sea. Based on a reactive Fe mass balance, these authors concluded 398 

that only about 40 % of the reactive Fe enrichment in the pelagic Black Sea can be explained by 399 

release of dissolved Fe from shelf sediments and re-deposition within the deep basin. The remainder 400 

was attributed to an unusually high reactivity of the lithogenic Fe delivered to the basin relative to 401 

continental margin sediments with oxic bottom water. This finding can be confirmed by comparing 402 

the range of FeT/Al and FeHR/FeT observed in the Black Sea (Raiswell and Canfield, 1998; Lyons and 403 

Severmann, 2006) (note, FeHR/FeT and FeT/Al were determined on different samples) with the trend 404 

line for non-lithogenic Fe delivery (Fig. 5). Indeed, much of the data range covered by the Black Sea is 405 

located to the right of the trend line, indicating that an important fraction of the reactive Fe 406 

enrichment cannot be assigned to a non-lithogenic source. 407 

Anderson and Raiswell (2004) noted three possible reasons for the unusually high reactivity of the 408 

lithogenic Fe supply to the pelagic Black Sea: (1) microbial oxidation of ferrous Fe in primary silicate 409 

minerals, (2) microbial reduction of ferric Fe in clay minerals and (3) preferential transport of fine-410 

grained and Fe-rich lithogenic material across the shelf and into the basin. Consistent with this latter 411 

scenario, most of the FeHR carried by rivers is contained in the fine-grained fraction (Poulton and 412 

Raiswell, 2005). It is well established that these fine-grained particles can by-pass the shelf and slope 413 

environment, whereas the coarse-grained sediment fraction is generally retained on continental 414 

margins (Seibold and Berger, 1993). In a recent study, Lenstra et al. (2019) demonstrated that much 415 

of the reactive Fe transport across the Black Sea shelf is mediated by repeated resuspension and 416 

deposition of fine-grained particles that are enriched in Fe (oxyhydr)oxide and Fe-rich clay minerals. 417 

In the Guaymas Basin, increasing FeHR/FeT ratios from shelf to basin are accompanied by decreasing 418 

Ti/Al ratios (Fig. 4), the latter of which is indicative of decreasing grain size. We cannot exclude a 419 

microbial influence on the reactivity of terrigenous Fe based on our data set. However, considering 420 

the clear trend in Ti/Al (Fig. 4) and broad parallels to the Black Sea Fe speciation signature (Fig. 5), we 421 

conclude that grain-size fractionation is likely an important mechanism contributing to elevated 422 

FeHR/FeT in the Guaymas Basin.  423 
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The non-lithogenic excess FeHR at the basin and graben sites can be derived from hydrothermal 424 

venting or sedimentary Fe release on the surrounding shelf and slope. Sediments underneath 425 

hydrothermal plumes at mid-ocean ridges are typically enriched in Fe, even far away from the vent 426 

field. For example, Cave et al. (2002) observed FeT/Al ratios of 2.3 to 3.0 within a distance of 2 to 25 427 

km from the Rainbow hydrothermal field at the Mid-Atlantic Ridge. The basin and graben sites are 428 

located at a distance of 12.5 and 5.6 km from the newly discovered vent field. Therefore, a notable 429 

hydrothermal influence on Fe accumulation could be expected. However, sediments underneath the 430 

Rainbow hydrothermal plume are located far away from terrigenous sediment sources and are, thus, 431 

characterized by very low Al concentrations (~6 mg g-1) and sediment mass accumulation rates (~2 g 432 

cm-2 kyr-1) (Cave et al., 2002). Using a similar approach to the one outlined above (Equation (1)), Cave 433 

et al. (2002) estimated a hydrothermal Fe rain rate of 3.7 · 10-4 - 7.2 · 10-4 mmol cm-2 yr-1 for 434 

sediments underneath the Rainbow hydrothermal plume. Applying the same non-lithogenic Fe rain 435 

rate to sediments of the Guaymas basin, which are characterized by considerably higher Al 436 

concentrations (~30 mg g-1) and mass accumulation rates (~280 g cm-2 kyr-1) (Calvert et al., 1966), 437 

would yield a FeT/Al of 0.442 - 0.445, which is analytically indistinguishable from UCC. Moreover, the 438 

upward looking ADCP deployed southeast of the vent field revealed that deep-water currents are 439 

predominantly directed in a northeastward direction and, thus, away from the basin and graben sites 440 

(Fig. 6). It is therefore questionable whether Fe transported within hydrothermal plumes can 441 

contribute to the accumulation of excess FeHR at these locations. The rate of sedimentary Fe release 442 

from reducing shelf and slope sediments of -1.0 - -5.6 · 10-4 mmol cm-2 yr-1 (Table 3) is of the same 443 

order as the hydrothermal Fe rain rate underneath the Rainbow hydrothermal plume. As 444 

demonstrated above, much of this sediment-derived Fe is re-precipitated at the OMZ rim close the 445 

source. However, the area covered by shelf and slope sediments surrounding the Guyamas Basin is 446 

considerably larger than the sink area within the deep basin and offshore export of non-lithogenic Fe 447 

is consistent with elevated pFe/pAl in particles below the OMZ and above the sill (Fig. 2). Therefore, 448 

it is likely that both sedimentary Fe release and hydrothermal venting contribute to enrichments of 449 

non-lithogenic Fe within the deep Guaymas Basin. 450 

Sediments at the vent field site are characterized by highly elevated FeT/Al (>150) compared to UCC, 451 

while FeHR/FeT ranges from 0.41 to 0.75 (Fig. 4). Extrapolating the trend line of non-lithogenic Fe 452 

delivery (Fig. 5) to highly elevated FeT/Al reveals that sedimentary FeHR/FeT would have to be ~1 if all 453 

of the excess Fe was present as Fe (oxyhydr)oxide or sulfide minerals that had precipitated from vent 454 

fluids. The mismatch indicates that a fraction of the excess Fe at the vent field site is contained in 455 

minerals that were not recovered by the sequential extraction. Previous studies demonstrated that 456 

hydrothermal fluids in the Guaymas Basin are oversaturated with respect to Fe-rich silicate minerals 457 

(e.g., ferrosilite, fayalite, greenalite) (Von Damm et al., 1985). Moreover, Fe-rich silicate minerals 458 



15 
 

were identified in plume particles at other hydrothermal vent fields (Gartman et al., 2014). We, 459 

therefore, assume that an important fraction of the hydrothermally derived Fe at the vent field site is 460 

present in Fe-rich silicate minerals. 461 

5.3. Isotopic fingerprint of the shelf-to-basin iron shuttle in the Guaymas Basin 462 

Previous studies in semi-restricted euxinic basins (Black Sea, Gotland Deep in the Baltic Sea) 463 

(Severmann et al., 2008; Fehr et al., 2008) and on the open-marine Peruvian continental margin 464 

(Scholz et al., 2014b) found that Fe shuttling in these systems is associated with characteristic Fe 465 

isotopic fingerprints. These fingerprints, i.e., the regression slopes between source and sink area, can 466 

be used as a framework for the interpretation of Fe isotope variability in the Guaymas Basin (Fig. 7A) 467 

(note, Black Sea and Gotland Deep (not shown) trends are essentially identical).  468 

In euxinic basins, increasing FeT/Al ratios from shelf to basin are accompanied by decreasing δ56Fe, 469 

which overall results in a negative correlation between these two parameters. Reductive Fe 470 

dissolution within marine sediments preferentially mobilizes the light Fe isotope (e.g., Severmann et 471 

al., 2006; Staubwasser et al., 2006; Rouxel et al., 2008a; Homoky et al., 2009) and the Fe efflux from 472 

reducing sediments, therefore, has a light Fe isotope composition relative to average igneous rocks 473 

(Severmann et al., 2010). Using this light isotope composition as a conservative source signature, the 474 

light Fe isotopic fingerprint of sedimentary Fe enrichments in the Black Sea basin (Fig. 7A) was 475 

assigned to lateral Fe supply from reducing shelf sediments (Severmann et al., 2008). On the 476 

Peruvian continental margin, sedimentary Fe enrichments below the lower boundary of the OMZ are 477 

isotopically heavier than sediments within the OMZ (Fig. 7A) (Scholz et al., 2014b), where reactive Fe 478 

is reductively mobilized across the sediment-water interface (Noffke et al., 2012). In the sink area 479 

below the OMZ, reactive Fe is deposited as Fe (oxyhydr)oxide and transformed to authigenic silicate 480 

minerals (mainly glauconite) during early diagenesis (Scholz et al., 2014c). Most experimental and 481 

field studies found that precipitation of Fe (oxyhydr)oxides from aqueous Fe(II) results in an 482 

isotopically heavy Fe precipitate (e.g., Bullen et al., 2001; Croal et al.,2004; Rouxel et al., 2008a; 483 

Busigny et al., 2014; Chever et al., 2015). Assuming that only a fraction of the Fe transported 484 

downslope is retained and buried below the OMZ, Scholz et al. (2014b) attributed the positive 485 

correlation between FeT/Al and δ56Fe across the continental margin to non-quantitative re-486 

precipitation of sediment-derived Fe as Fe (oxyhydr)oxide below the OMZ and offshore transport of 487 

the remaining Fe. This scenario was later supported by John et al. (2018), who reported a plume of 488 

isotopically light dissolved Fe emanating from the Peruvian continental margin into the open Pacific 489 

well below the depth of the OMZ (1000 - 3000 m water depth).  490 
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The range of δ56Fe observed in Guaymas Basin sediments is smaller than observed for sediments 491 

from the Black Sea and Peruvian continental margin (note differing axes scales in Figs. 7A and B). Iron 492 

isotope data for the Guaymas Basin plot within a triangle defined by the regression slopes of the 493 

FeT/Al versus δ56Fe relationships observed in the Black Sea and on the Peruvian continental margin 494 

(Fig. 7B) (the average FeT/Al and δ56Fe of the shelf site is used as the intercept point). This 495 

observation may be indicative of similar fractionation mechanisms. Data from the OMZ and OMZ rim 496 

sites plot close to the regression line of Peru margin data. Sedimentary Fe release followed by lateral 497 

Fe transport and partial re-deposition or retention (Scholz et al., 2014b) at these sites is consistent 498 

with the decrease in benthic Fe efflux and slight increase in sedimentary Fe enrichment from OMZ 499 

site to OMZ rim site (Table 3, Fig. 4 and 5). Data from the basin and graben sites plot closer to the 500 

regression line of Black Sea data. Part of this trend can be related to an accumulation of isotopically 501 

light Fe that was released from sediments on the surrounding shelfs and slopes. Much like in the 502 

pelagic Black Sea, any Fe supplied from the surrounding shelfs and slopes cannot escape burial in the 503 

basin. Therefore, this Fe is likely to have a relatively low δ56Fe value that reflects its sedimentary 504 

source. In addition to this redox-related isotope signature, preferential transport of fine-grained and 505 

FeHR-rich terrigenous particles into the basin or microbial conversion of silicate minerals to Fe 506 

(oxyhydr)oxide or sulfide minerals (see previous section) may also contribute to the light Fe isotope 507 

composition of sediments in the Guaymas Basin (and the Black Sea). Such a scenario is supported by 508 

studies on Fe isotope fractionation in soils, which demonstrated that weathering processes 509 

preferentially transfer the light Fe isotopes from primary silicate minerals to fine-grained secondary 510 

clay and (oxyhydr)oxide minerals (Wiederhold et al., 2007; Kiczka et al., 2010, 2011).  511 

Another potential source of isotopically light Fe to basin sediments is hydrothermal venting. 512 

Sediments at the vent field site, which consist mostly of black smoker debris, have a δ56Fe of ~-0.39 513 

to -0.31 ‰. These values are within the range of δ56Fe values for vent fluids from bare rock 514 

hydrothermal systems (e.g., Severmann et al., 2004; Bennett et al., 2009; Rouxel et al., 2008b, 2016). 515 

In a plot of δ56Fe versus Al/FeT, most of the sediment samples from the basin and graben sites plot on 516 

a line between the average values of the shelf and vent field sites (Fig. 8). The corresponding mixing 517 

relationship implies that the Fe isotope composition of sediments at the graben site could 518 

theoretically be explained by binary mixing between shelf sediments (70 - 80 %) and hydrothermal Fe  519 

that has not been isotopically fractionated by reaction with sediments (20 - 30 %). While a maximum 520 

proportion of ~30% non-lithogenic Fe at the graben site supports our other, independent estimate 521 

from the FeT/Al versus FeHR/FeT relationship in Fig. 6 (Table 4), we note that the isotope composition 522 

of hydrothermally sourced Fe may be moderated as the vent fluids pass through sediments and the 523 

δ56Fe value of vent fluids discharged at the seafloor is unknown. Moreoever, the isotope composition 524 

of the hydrothermally sourced Fe that is transported within hydrothermal plumes is expected to 525 
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change as a result of Fe (oxyhydr)oxide (δ56Fe of dissolved Fe decreases) or Fe sulfide (δ56Fe of 526 

dissolved Fe increases) precipitation (Rouxel et al., 2016; Lough et al., 2017). Any vent-derived Fe 527 

accumulating at the basin and graben sites is, thus, unlikely to have the same isotope composition as 528 

the smoker debris at the vent field site. Furthermore, it should be noted that the offshore dissolved 529 

Fe plume on the Peruvian margin reported by John et al. (2018) has essentially the same isotope 530 

composition as hydrothermal sediments at the vent field site (δ56Fe = ~-0.2 - -0.5 ‰). Considering 531 

these arguments and the fact that bottom currents at the vent field site are predominantly directed 532 

away from the graben and basin sites (Fig. 6), we argue that hydrothermal contributions to the 533 

isotope signal are likely to be of minor importance. 534 

5.4. Implications for the interpretation of iron-based paleo-proxies  535 

Sedimentary Fe speciation has been widely used to identify anoxic (FeHR/FeT > 0.22 - 0.38) and 536 

ferruginous (Fepy/FeHR < 0.7 - 0.8) or euxinic (Fepy/FeHR > 0.7 - 0.8) conditions in the water column at 537 

the time of deposition (Fig. 9) (Poulton and Canfield, 2011; Raiswell and Canfield, 2012). Sediments in 538 

the Guaymas Basin have a Fe speciation signature that is indicative of ferruginous depositional 539 

conditions (Fig. 9), theoretically implying that dissolved ferrous Fe dominates over oxygen, nitrate 540 

and hydrogen sulfide in the water column (Poulton and Canfield, 2011; Raiswell and Canfield, 2012). 541 

In contrast to this notion, however, bottom water redox conditions in the reactive Fe source and sink 542 

areas are weakly oxic to anoxic and nitrate-reducing (O2: 0 - 40 μM, NO3
-: ≥30 μM) (Fig. 2). Similar to 543 

the Black Sea (Anderson and Raiswell, 2004), an important fraction of the lateral displacement of 544 

reactive Fe is not related to Fe precipitation in the water column but rather to grain size fractionation 545 

or microbially mediated conversion of non-reactive silicate minerals to reactive Fe (oxyhydr)oxide 546 

minerals. These observations highlight that reactive Fe enrichments in ancient sediments and 547 

sedimentary rocks can imply more diverse environmental conditions than is captured by the terms 548 

‘ferruginous’ and ‘euxinic’. The trend line for non-lithogenic Fe delivery used in this study can be 549 

applied to identify those diverse environmental conditions in the paleo-record.  550 

6. Summary and conclusions 551 

Sediments in the Guaymas basin are enriched in reactive Fe relative to terrigenous material and 552 

continental margin sediments with oxic bottom water. The following processes may contribute to the 553 

net accumulation of reactive Fe in sediments on the slope and within the basin: 554 

(1) Release of dissolved Fe from reducing shelf and slope sediments followed by lateral transport of 555 

dissolved and/or particulate Fe in the water column. 556 
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(2) Preferential transfer of fine-grained terrigenous particles that are rich in reactive Fe into the 557 

basin. 558 

(3) Microbially mediated conversion of non-reactive silicate minerals to reactive Fe minerals during 559 

transport. 560 

(4) Discharge of Fe at hydrothermal vents and lateral transport of dissolved and/or particulate Fe 561 

within the deep water. 562 

The first process can explain reactive Fe enrichments in sediment at the Guaymas basin slope 563 

whereas all processes may contribute to sedimentary Fe enrichments within the deep basin. Shuttle-564 

related Fe speciation and isotope signals in the Guaymas Basin are relatively small compared to those 565 

in Black Sea and Peru margin sediments. This difference is mainly related to the higher mass 566 

accumulation rate of terrigenous material (Guaymas Basin: ~280 g cm-2 kyr-1; Black Sea: ~5 g cm-2 kyr-567 
1; Peru margin: ~50 g cm-2 kyr-1) (Calvert et al., 1966. Calvert et al., 1991; Scholz et al., 2011). Due to 568 

the higher background sedimentation rate, a similar flux of excess reactive Fe generates a smaller 569 

signal in FeT/Al, FeHR/FeT and δ56Fe (Scholz, 2018). Iron isotope data of sediments in the Guaymas 570 

Basin reflect the same fractionation mechanisms that were found to be associated with Fe shuttling 571 

in the Black Sea and on the Peruvian margin. This observation confirms that redox conditions in the 572 

source (Black Sea: oxic; Peru margin and Gulf of California: oxic to anoxic and nitrate-reducing) or 573 

sink (Black Sea: euxinic; Peru margin and Gulf of California: oxic) area are of subordinate importance 574 

for the generation of a shuttle-related sedimentary fingerprint. Instead, the degree of bathymetric 575 

restriction and rate of terrigenous sedimentation dictate whether a resolvable imprint of the shelf-576 

to-basin Fe shuttle is generated or not. 577 
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Figure captions 796 

Figure 1. (A) Bathymetric map of the Guaymas Basin within the Gulf of California (bathymetric data 797 

from GEBCO). Sampling stations are depicted by stars (multiple corer), yellow-filled circles (CTD 798 

rosette) and green-filled circles (ADCP lander). The location of DSDP Site 480 within the OMZ and 799 

DSDP Site 477 within the hydrothermal vent field of the southern trough are shown as well. Water 800 
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and sediment sampling was conducted along two transects on the eastern slope of the Guaymas 801 

Basin (B) and across the basin and northern trough (C). 802 

Figure 2. Water column profiles of salinity, temperature, oxygen (sensor measurement) and turbidity 803 

at the graben site as well as composite profiles of oxygen (Winkler titration), nitrate deficit relative to 804 

phosphate (N* = NO3
- - 16 x PO4

3-), turbidity as well as particulate Mn to Al (pMn/pAl in mg/mg) and 805 

Fe to Al (pFe/pAl in mg/mg) ratios at multiple sites. Vertical solid lines depict the pMn/pAl and 806 

pFe/pAl of the upper continental crust (McLennan, 2001). Particulate Mn and Fe concentrations are 807 

shown in inlet diagrams. Strongly deviating values of turbidity, pFe/pAl and pFe (red diamonds) at 808 

the vent field site are shown with a separate x-axis. Horizontal arrows depict the water depth of 809 

sediment cores (Table 1). Horizontal dashed lines depict the depth of the water mass boundary 810 

between North Pacific Intermediate Water and Pacific Deep-water and the depth of the sill that 811 

separates Guaymas Basin from Carmen Basin. The data shown in this figure are contained in the 812 

Electronic Annex. 813 

Figure 3. Pore water profiles of NO3
- , NO2

-, Fe2+, Mn, H2S and NH4
+ at all sediment core stations. The 814 

uppermost data points in each profile represent bottom water values. Note differing concentration 815 

scales at different sites. The data shown in this figure are contained in the Electronic Annex. 816 

Figure 4. Plots of Mn/Al (note logarithmic axis), FeT/Al, FeHR/FeT, Ti/Al (all element ratios in mg/mg) 817 

and δ56Fe versus water depth for all sediment core stations. Strongly deviating values of FeT/Al and 818 

δ56Fe at the vent field site are shown with a separate y-axis. Horizontal dashed lines depict the upper 819 

continental crust (element ratios) (McLennan, 2001), modern continental margin sediment with oxic 820 

bottom water (FeHR/FeT = 0.28) (Raiswell and Canfield, 1998) and average igneous rocks (δ56Fe = 821 

+0.09 ‰) (Beard et al., 2003). The data shown in this figure are contained in the Electronic Annex. 822 

Figure 5. Plot of FeHR/FeT versus FeT/Al featuring a trend line corresponding to the delivery of non-823 

lithogenic reactive Fe. Sediments that receive excess reactive Fe through lateral transport of 824 

dissolved or particulate Fe originating from reducing sediments or from hydrothermal sources are 825 

expected to plot on this trend line (Scholz, 2018). The open star (terrigenous input) depicts the 826 

FeHR/FeT of continental margin sediments with oxic bottom water (Raiswell and Canfield, 1998) and 827 

the FeT/Al of the upper continental crust (McLennan, 2001). The range of FeHR/FeT and FeT/Al 828 

reported for sediment from the euxinic Black Sea is shown for comparison (Raiswell and Canfield, 829 

1998; Lyons and Severmann, 2006) (note, FeHR/FeT and FeT/Al were not determined on the same 830 

samples). 831 

Figure 6. Deep water current directions (0° equals north) and velocities (color) southeast of the vent 832 

site during the 40-hour deployment of the ADCP lander. The distance from the center equals the 833 
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time, during which currents were directed into a given direction in percent of the total deployment 834 

time. The fraction of a given range of current velocities during the total deployment time is given in 835 

percent in parentheses in the legend. The location and distance of the basin and graben sites relative 836 

to the ADCP lander (vent field site) are shown as well.  837 

Figure 7. Plot of FeT/Al versus δ56Fe for sediments from: (A) the Black Sea (Severmann et al., 2008) 838 

and Peruvian continental margin (Scholz et al., 2014b) and (B) the Gulf of California (this study). 839 

Uncertainties on published data are not shown for clarity. The regression slopes of Black Sea and 840 

Peru margin (OMZ, below OMZ) data are shown in (B) using the average FeT/Al and δ56Fe at the shelf 841 

site as the intercept. Note differing axes scales in (A) and (B). The black box in (A) depicts the range of 842 

data shown in (B).   843 

Figure 8. Plot of δ56Fe versus Al/FeT. The black line depicts a mixing trend between sediments at the 844 

shelf (0 %) and vent field (100 %) sites. The gray array depict the range of δ56Fe observed in a 845 

dissolved Fe plume emanating from the Peruvian margin into the open Pacific (John et al., 2018). 846 

Figure 9. Plot of Fepy/FeHR (extent to which highly reactive Fe has been converted to pyrite) versus 847 

FeHR/FeT featuring fields that are used to identify oxic, ferruginous and euxinic depositional 848 

environments in the paleo-record (Raiswell and Canfield, 2012). Gray arrays represent transitional 849 

ranges, where data could be consistent with either redox state. The data shown in this figure are 850 

contained in the Electronic Annex.    851 
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