
Notes on the

SWTPC MP-N Calculator Interface

and the

Calc-1 Program

prepared for.

Dr. Daniel W. Scott

CSCI tI.90.001

by

Daniel Paul Long

May 8, 1979

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UNT Digital Library

https://core.ac.uk/display/225551637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Notes on the

SWTPC MP-N Calculator Interface

and the

Calc-1 Program

I assembled an SWTPC MP-N Calculator Interface and

implemented it using the Calb-1 Program supplied with

the kit. The following are my corrections to the doc-

umentation and my observations about the interface

board and software.

This interface was bought to perform floating-point

arithmetic and for its function capabilities such as

SIN, COS, and e. My application required an integer

truncation function that is not performed by this cal-

culator, so I wrote a small assembly language subroutine

to do it. A potentially irritating problem is that the

calculator chip does not automatically convert to scien-

tific notation if the numbers become too big to display

in floating point. The control program must keep track

of the display mode.

My application requires fast numerical processing,

so, after observing the calculator's computational

speed using the Calc-1 program, I decided that its

trigonometric functions were too slow. I developed

another approach to the problem using pure assembly

language rather than partially relying on peripheral

hardware processing.

-I-

Though I found no major flaws with the Cale-1 software,

I did find some mistakes in its documentation. In Table V,

the ASCII to Calculator Instruction Lookup Table, there

are three errors: the hex value in the table where MSB

is 0 and LSB is D should be 21, where MSB is 1 and LSB

is 8 should be 2F, and where MSB is 2 and LSB is E, the

hex value should be OA. I added a one page summary of

the Calc-1 instruction set to the documentation because

the supplied documentation is somewhat confusing.

The Calc-1 program uses a part of RAM also used by

the monitor. This provides problems when Calc-1 is

halted to record it on cassette tape and resume

after it has been record#Phis can be alleviated by

changing the "LDX PARADR" instructions in lines 250,

850, 1660, and 1980 to "LDX #$8000," or, in hex,

"FE A002" to "CE 800C." However, the interface must

now always be plugged into I/O port 3. The data at

hex address 028A is output to the terminal to clear

the screen. The ADM terminals we mems use a different

character to clear the screen, so I changed the data

at that address to hex 1A. Calc-1 also uses address

modification within itself so that, as a result, it cannot

be implemented in ROM.

I tested the MP-N interface with the Calc-1 program

by making various operand and operator entries and

checking the results against the results I obtained

-3-

with my own pocket scientific calculator. I noticed

no major discrepancies between the two sets of, results.

S W T P C

MP-N Calculator Interface

Documentation

CENCr

Assembly Instructions MP-N Calculator Interface Kit

The Southwest Technical Products MP-N Calculator Interface interfaces the
SWTPC 6800 Computer System thru a peripheral interface Adaptor (PIA) to the

National Semiconductor MM57109 Number Oriented Processor. This "processor" is
a Reverse Polish Notation (RPN) calculator chip without the internal keypad inter-
facing circuitry which has mede interfacing to calculator chips so difficult in the
past. This chip allows data and instruction entry in conventional binary form and
speeds entry with the elimination of the debounce circuitry built into conventional
calculator chips. It is called a processor because it has instructions and control
lines which allow it to operate in conjunction with ROM and RAM as a stand alone
numerical.. processor. It may however be operated as a computer peripheral for nu-
merical calculation and this is the configuration in which the chip has been imple-
mented.

All interfacing from the 6800 Computer System to the calculator chip has been
done thru a 6820 PIA. Both the PIA and calculator chip reside on a 3 " X 5
double sided, plated thru hole circuit board plugged onto one of the seven avail-
able interface card positions on the mother board of the 6800 Computer. All data
and instructions fed to and all results received from the calculator chip are

handled by your own assembler or machine language program. The calculator features
reverse Polish notation, floating point or scientific notation, up to an eight
digit mantissa and two digit exponent, trig functions, base 10 and natural logarithms,

and overflow indicator.

PC Board Assembly

NOTE: Since all of the holes on the PC board have been plated thru, it is
only necessary to solder the components from the bottom side of the board. The

plating provides the electrical connection from the "BOTTOM" to the "TOP" foil of
each hole. Unless otherwise noted it is important that none of the connections be

soldered until all of the components of each group have been installed on the board.
This makes it much easier to interchange components if a mistake is made during
assembly. Be sure to use a low wattage iron (not a gun) with a small tip. Do not
use acid core solder or any type of paste flux. We will not guarantee or repair any
kit on which either product has been used. Use only the solder supplied with the kit
or a 60/40 alloy resin core equivalent. Remember all of the connections are soldered

on the bottom side of the board only. The plated-thru holes provide tile electrical

connection to the top foil.

() Before installing any parts on the circuit board, check both sides of the board
over carefully for incomplete etching and foil "bridges" or "breaks". It is un-

likely that you will find any, but should there be one, especially on the "TOP"
side of the board, it will be very hard to locate and correct after all of the
components have been installed on the board.

() Starting from one end of the circuit board install each of the three, 10 pin
Molex female edge connectors along the lower edge of board. These connectors

must be inserted from the "TOP" side of the board and must be pressed down
firmly against the circuit board, so that each pin extends completely into the.
holes on the circuit board. Not being careful here will cause the board to s.
either wobble and/or be crooked when plugging it onto the mother board. It is

-1-

either wobble and/or be crooked when plugging it onto the mother board. It is
suggested that you solder only the two end pins of each of the three connectors

until all have been installed at which time if everything looks straight and
rigid you should solder the as yet unsoldered pins.

() Insert the small nylon indexing plug into the lower edge connector pin
indicated by the small triangular arrow on the "BOTTOM" side of the circuit
board. This prevents the board from being accidently plugged on incorrectly.

() Attach all of the resistors to the board. As with all other components unless

noted, use the parts list and component layout drawing to locate each part
and install from the "TOP" side of the board bending the leads along the

"BOTTOM" side of the board and trimming so that 1/16" to 1/8" of wire

remains. Solder.

() Install the capacitors on the circuit board. Be sure to orient electrolytic

capacitor C4 so its polarity matches with that shown on the component layout
drawing. Solder.

() Install the transistor and diode. These components must be oriented to match

the component layout drawing. Solder.

() Install integrated circuit IC2 on the circuit board. This component must

be oriented so its metal face is facing the circuit board and is secured
to the circuit board with a #4 - 40 X 1/4" screw, lockwasher and nut. A
heatsink is not used. The three leads of the integrated circuit must be

bent down into each of their respective holds. Solder.

NOTE:MOS integrated circuits are susceptible to damage by static electricity.

Although some degree of protection is provided internally within the integrated

circuits, their cost demands the utmost in care . Before opening and/or 0
installing any MOS integrated circuits you should ground your body and all metallic

tools coming into contact with the leads, thru a 1 M ohm 1/4 watt resistor (supplied
with the kit). The ground must be an "earth" ground such as a water pipe, and not

the circuit board ground. As for the connection to your body, attach a clip lead
to your watch or metal ID bracelet. Make absolutely sure you have the 1 Meg ohm

resistor connected between you and the "earth" ground, otherwise you will be creating
a dangerous shock hazard. Avoid touching the leads of the integrated circuits

any more than necessary when installing them, even if you are grounded. On those

MOS IC's being soldered in place, the tip of the soldering iron should be grounded
as well(separately from your body ground), either with or without a 1 Meg ohm resistor.
Most soldering irons having a three prong line cord plug already have a grounded

tip. Static electricity should be an important consideration in cold, dry environments.

It is less of a problem when it is warm and humid.

() Install MOS integrated circuits IC1, IC3, IC4 and IC5 following the precautions

given in the preceding section. As they are installed, make sure they are

down firmly against the board before soldering all of their leads. Do not
bend the leads on the back side of the board. Doing so makes it very difficult
to remove the integrated circuit should replacement ever be necessary. The
"dot" or "notch" on the end of the package is used for orientation purposes

and must match with that shown on the component layout drawing for the IC.

Solder.

() Working from the "TOP" side of the circuit board, fill in all of the feed- '
thru's with molten solder. The feed-thru's are those unused holes on the '

-2-

board whose internal plating connects the "TOP" and "BOTTOM" circuit connections.

Filling these feed-thru's with molten solder guarantees the integrity of the
connections and increases the current handling capability.

() Now that all of the components have been installed on the board, double check

to make sure all have been installed correctly in their proper location.

() Check very carefully to make sure that all connections have been soldered.

It is very easy to miss some connections when soldering which can really cause

some hard to find problems later during checkout. Also look for solder

"bridges" and "cold" solder joints which are another common problem.

Since the MP-N circuit board now contains MOS devices, it is susceptible

to damage from severe static electrical sources. One should avoid handling the board

any more than necessary and when you must, avoid touching or allowing anything to

come into contact with any of the conductors on the board.

Using the Calculator Interface

Table I gives a complete list and descrition of the calculator chip's

instruction set. Remember that some of the instructions

are for stand alone processing systems and are not used on this interface. All
numerical entry is in Reverse Polish Notation (RPN) and anyone familiar with Hewlett

Packard calculators should have no problem with the data entry sequence. For those
not familiar with RPN, the following should be helpful:

To add 7 + 8, enter the following
7 enter 8 + (4 entries)

The answer is now stored in the X accumulator within the calculator chip

The OUT instruction may be used to output the answer

To find the inverse sine of 0.5, enter the following:

0.5 INV SIN (5 entries)

The answer is now stored in the X accumulator within the calculator chip.

The OUT instruction may be used to output the answer.

In order to simplify the interfacing between your program and the calculator

interface, you will probably want to incorporate the following subroutines into

your program.

INITAL SUBROUTINE

The INITAL or initialize subroutine configures the PIA interfacing to the
calculator chip. This subroutine need only be used once; and is best placed

somewhere at the beginning of your program. It is responsible for initializing the

data direction registers and control registers of the PIA. The subroutine requires

that the index register be loaded with the "lowest" address of the PIA interfacing

to the calculator chip prior to execution.

This "lowest" address depends upon which interface port position the MP-N

calculator card is plugged. The table below give the "lowest" address of each

interface card position.

Address Assignments

8000
8004
8008
800C
8010
8014
8018
801C

INITIAL LEIA

LDA
STA

L'A

STA

LiLDA
RT

O., X~

1, X
#

, A

#54

a

H

A

A

A

A

A

A

:NIT EIDE OF FIA

INIT E- .EIEEE OF FIA

NEC' F./

EAR

OUTINS SUBROUTINE

The OUTINS or out instruction subroutine is used to get program data and

instructions into the calculator. To send a digit or instruction to the calculator

chip, use Table II to find the OP code of the instruction you wish to send. Load

this OP code into the A accumulator and jump or branch to the OUTINS subroutine.

If you have a string of data you wish to send, just recycle thru this subroutine

as many times as necessary. The subroutine takes care of all of the READY and HOLD

signals to the calculator chip so there is no worry of sending data faster than

the calculator chip can accept it. The subrputine destroys the contents of the B

accumulator during execution while the contents of the A accumulator and index register

are not destroyed.

OUTIN; LEA

;T A
L EIA
LgA
STA

WAIT10 LDA
LF' L

LDEA
LDA
:TA
RT$

1, X
FUTINl
L, X

, X
$:C
1, X
1, X
WAIT1C'
0, X
#$='=
1,X

WnIT Frte.D

FORWARD IN$TRUC:TICN TO C.ALC
CLEAR FLAG BEIT
LOW HOLD-NE' READ'
E;RING3 HOLD LINE LOW

LOOK FOR READEY LOW
CLEAR FLAGC E;IT
HIGH HOLE-F'O READEY
RETURN HOLD LINE HI GH

PORTO
PORT 1
PORT2
PORT3

PORT4
PORT5
PORT6
PORT

7F
00

01

0002
34

02

I .1*.

A7;_~1 r_

A7;

:39

E6 01
2A FC
A7 00
E6 00
:6 3C

E7 01
E6 01
2A FC
E6 00
Cl: 36
E7 01
39

C:

L-;

L-'

-4-

SETMEM SUBROUTINE

The SETMEM or set memory subroutine initializes the memory locations to which

the calculator's output data will be stored. This subroutine must be executed

immediately before the OUTANS subroutine is used. Although it can be changed,

memory locations 6020 thru 002B have been designated the temporary storage locations

for the calculator's output data. The subroutine sets memroy location 0020 to a 00
while locations 21 thru 2B are set to 20 (ASCII spaces). This subroutine destroys

the contents of the index register and B accumulator. The contents of the A

accumulator are not destroyed.

7F 0020 S;ETMEM CLF R 2c CLEAR\ *C'o2C'
CE 0020 L'X #T$2O TCT rM CF E:UFFER
C6 20 LE'A E #&2C
08 LOOP'1 INX
E7 00 STA E: 0, X TORE ASF'ACE
GC 002E: CPX #$2E: CHECK: FOR TOF OF SUFFER
26 F8 E:NE LOOF1

OUTANS SUBROUTINE

The OUTANS or output answer subroutine outputs the contents of the X

register within the calculator chip in BCD to memory locations 0020 thru 002B.

Since the mantissa digit count of the calculator is variable, the previous SETMEM

subroutine blanks out any digit location not filled by the OUTANS subroutine.

It is very important that the SETMEM subroutine be used each time before executing

the OUTANS subroutine. The OUTANS subroutine outputs data in two different formats

depending upon whether the calculator chip is in the floating point or scientific

mode. The calculator initially starts out in the floating point mode where it will

remain until changed by the TOGM (2216) instruction. This calculator does not

automatically convert to scientific notation if the numbers become too big to handle

in floating point as many do AnMCLR (2F1 6) instruction will always reset the
calculator chip to the floating point mode regardless of what mode it was in

originally. Since the calculator chip does not tell you what mode it is in when

it is outputting data, your program must know so you can process the data accordingly.

Table IV shows the format in whicn the data is stored. At the end of the OUTANS

subroutine, the N bit of the condition code register is set if an error has trans-

pired since the last execution of the OUTANS subroutine. You may use a BMI instruction

to catch and branch to an error routine to note the error. You should then send

an ECLR (2B16) instruction to the calculator chip to reset the calculator

chip's error flag. Disregarding the error flag on the calculator chip will
cause no problems. The chip will continue to function regardless of the state

of the flag. The subroutine requires that the index register be loaded with

the "lowest" address of the PIA interfacing to the calculator chip prior

to execution. Since the SETMEM subroutine usually run prior to this destroys

the contents of the index register, don't forget to reload the index register before

branching to the OUTANS subroutine. The OUTANS subroutine destroys the

contents of both the A and B accumulators during execution while the contents of

the index register is not changed.

E$ 0)1
'A FC
A6 00
Li 16y, 1
A7 00
C6 3 E
E7 01
E . 01
2A FC:
E6 C)
'w'6 OF
A7 00
E6 0:3

E C6 01
2E: 16
20 F6.
A6 02

16

:4 OF
SA 30
54
54
54
54
CA 20
F7 1(
=l7 00
20 E2
8& $6
A7 01
A6 00
:39

CiITANS LEIA E-

LE'A A
LEIA A
ETA A
LDA E:
$TA B

WAIT:30 LEIA E:

LDA fE;
LEA A
_; TA A

WAIT LDA -:
E:MI
LLDA -:
E:MI
ERA

CiLTDIG LDA A
TAE:
AND A
ORA A

LS;R E

LSR E:

L=R E.
L'R E:

OR'A E;
_; TA E:

PC'INT2 STA A
E:RA

CCJNFLI LDA A
CTA A
LEIA A
RT'

X, X

iUT
A

o X

1, X
1 A

WAIT:

,) XF

, X
- , ti

OIUTDI
1, X
C:CNFLG
WAIT:;

,X

$CF
4$3 .;C

t INCREMENT AEiRE:E;EE Y $20
POINT- i STORE CUT DATA :E:EQUENTIALLY
$ C
WAIT:

, X
HIOH HCLE-FPi$ READ"
E-;RINO HOLD LINE HIGH
CLEAR -LA EI T

-6-

CLEAR FLAGE EIT
;END AN CUT

t.:W HOLE-FO: READY
ERING HOLE LINE LOW
WAIT FOR EEC:ONE READY

CLEAR FLAi L-IT

'END A NOF
LO:K. FOR R/W E=TRO:E;E
TRANM;FER C ALC ['ATA TO MEMORY
LOO. FOR READY STROBE
PRINT MEMORY CONTENT

LOAD OUT DATA INTO A

ELIMINATE UPPER 4 EIT
CONVERT TO ASC:II DATA

C6

Number Entry Rules

When a digit, decimal point, or T is entered with an 0-9, DP, or PI

instruction, the stack is first pushed and the X register cleared: Z-+T,
Y-+ Z, X4Y, 0-X. This process is referred to as "initiation of number
entry." Following this, the digit and future digits are entered into the
X mantissa. Subsequent entry of digits or DP, EE, or CS instructions do
not cause initiation of number entry. Digits following the eighth mantissa
digit are ignored. This number entry mode is terminated by any instruciton
except 0-9, DP, EE, CS, PI, or HALT. Termination of number entry means

two things. First, the number is normalized by adjusting the exponent and
decimal point position so that the decimal point is to the right of the first
mantissa digit. Second, the next digit, decimal point, or rr entered will
cause initiation of number entry, as already described. There is one exception
to the number entry initiation rule. The stack is not pushed if the instruction

prior to the entered digit was an ENTER. However, the X register is still
cleared and the entered digit put in X.

The ENTER key itself terminates number entry and pushes the stack.
The OUT instruction terminates number entry and prepares the stack for pushing
upon the next entry of data. This means that if you use the ENTER and OUT
instrucitons consecutively, the stack gets pushed twice which is not what you
want. tf you wish to ENTER data and immediately OUT the result, use only the
OUT instruction. The OUT performs the entry. If you do not wish to OUT

the ENTER'ed data, just use the ENTER instruction by itself.
The AIN and IN instructions should not be used for number entry. Provisions

have not been made for their use on this interface.

How It Works

Peripheral Interface Adaptor (PIA) ICi interfaces the MM57109 calculator chip,
IC3, to the SWTPC 6800 buss. The first six bits of the A side of the PIA are used
to feed instructions to the calculator chip while the eighth is used as an input
to monitor the ERROR output of the calculator. Control line CAl outputs HOLD
signals to, while control line CA2 inputs READY signals from the calculator chip.
The first four bits of the B side of the PIA are used to input BCD digit data while
the last four bits input digit addresses. The CB1 line inputs READ/WRITE signals
while the CB2 control line is not used. Hex inverter/buffer, IC4, is used primarily
as the 320 to 400 Khz single phase oscillator required by the calculator chip.
One section is used to invert the HOLD signal going to the calculator. Shift
register IC5 generates the POR signal required for proper startup and initialization.
+5 VDC Power required by the board is supplied by voltage regulator IC2 while

-4 VDC voltage is supplied by transistor QL and it; associated components. Figure I
shows a block diagram for the internal construction of the calculator chip.

-7-

Parts List MP-N Calculator Interface

Resistors

47K ohm / watt resistor

1K
10K
10K
10K
10K
10K
22K
22K
22K
22K
12K
27

3.3K
10K
47K
10K

It

11

11

II

11

II

11

II

I1

It

"t

"I

11

11

11

11

11

11

11

II

11

It

11

11

11

11

11

11

11

If

Capacitors

0.1 mfd capacitor
100 pfd capacitor
0.1 mfd capacitor

10 mfd@ 15 VDC electrolytic

Diodes and Transistors

4.7 volt 400 mw zener diode 1N5230 or 1N4732

1N4148 silicon diode

2N5087 transistor

Integrated Circuits

6820 MOS peripheral interface adaptor .Z \
7805 voltage regulator

MM57109 FAN MOS calculator chip

4009 or 14009 MOS hex inverter

74C165 MOS shift register

-8-

R1

R2

R3
R4
R5
R6

R7

R8
J R9

RIO
R11
R12

7 R13

R14
, R15

R16
'I R17

NJ

-

V

AI-

J

V

C4

C2 :

C4*

D1
D2*

D3*
D4*
D5*
D6*

D7*
Q1*

IC1*
IC2*
IC3*
IC4*
IC5*

f.

-- o oOppp-

oQ6

cl
oVIE

x5

Q 0

L

f' 4

O I

a

iCi

MP-N CALCULATOR INTERFACE
hi i uh

+8 UNR IC2 +5 OUT

D G T ND R17

+5

201

1 36
RSO I3
RS1 .

D I

D1 1 32

D2 31

D3
30

D 4 1L 29
D5 t 28

D 1 27D6 ... LI
D7 .. 26

21
R/W -

02 I 2

22
+5

24

1/Of 23

RESET
3

38

IRQ .-

37

Vcc

R/W

DO

D2

D3

D4
D}

D6
D7

R/W

CPA2
PAD
PAl
PA2

CBJ

PA4

PA7

CB1

CB2

PB0

PB1
P82
PB3
PB4
PB5
PB6
PB7

Vss

EN ABLE

Cso
CSJ

CS2

RESET

IQA
IRQB

40 IC4E 1

2 D5 D6 D7 4

3 1 2

4 1 3

5 I 4

6 II 5
7 I_24

8
9 13

18 10
191 6

10 1 117
11 i I 18
12 a 1 I * 19
13 1 a a I 1 20
14 1 g I I I Tt-1 28
15 t I : t 1 27
16 ' 1 1 I ' S t 1 26
17 1 a a 1 a a a a I 2 5

D4 D D2

2

-5

15

Vcc

READY

12
13
4

15
6

ERROR

R/ W
SYNC

DO1
D02
D03
D04
DA 1
DA 2
D A 3

IC3

OSC

+5

16 5 14

Vcc G D

CLOCK
IC 5 SHIFT/LOAD

OUT

9G

83 4R16

11

-4 -4

R12

+5

VCDI4 CB I4

-4 C2

F' - - -~DA4 Vd
VdC3 C4

21

D1 =
R1 R11

R15

Q1

-4 -4 -4 VDC OUT R13 R14

-12 1

4

POR

L

CALC-1 Program

In order to see how the calculator chip is used and how to incorporate these

subroutines into a program, the CALC-1 program listing is given. CALC-1 allows

the operator to use the calculator chip just as you would a standard RPN desk
calculator with the same features. All communication to the chip is done thru the

terminal's keyboard with all results displayed on the terminal's display. Since

the terminal's keyboard just has standard ASCII characters rather than the labeling
found on calculator keys; selected ASCII characters have been substituted for normal

calculator function keys. It is the job of the CALC-1 program to accept all data
and instruction commands from the terminal's keyboard, send them to the calculator

chip and display all results on the terminal's display. The program resides from
memory locations 0020 thru 02CO which is approximately 700 bytes of code. Since

most of the lower 256 bytes are used for the ASCII character lookup table and some

of the upper is used for terminal interfacing, you should be able to incorporate

the package into your program using somewhat less memory than was used here.

The program starts at line 50 by storing the ASCII lookup table from
memory locations 0080 thru 00FF. This table covers the entire 128 character ASCII

set. Whenever an ASCII character is received from the keyboard it is OR'ed with
80, and the resulting address contains the selected command or instruction for the

calculator chip. Line 210 ORG's the program at memroy location 0100 where the terminal's

screen is cleared and titled. Line 250 loads the index register extended with the

contents of memory locations A002 and A003 with 800C, the starting address of Port 3.

If you wish to plug the calculator board onto an I/O port other than PORT 3. Use

the table below to find the address to be loaded into memory locations A002 and

A003 prior to executing the program.

PORTO 8000
PORTi 8004(Serial control interface only)

PORT2 8008
PORT3 800C
PORT4 8010
PORT5 8014
PORT6 8018
PORT 801C

Lines 280 thru 370 contain the INITAL subroutine described in detail earlier. lines
380 thru 410 accept entered keyboard commands, lookup the selected calculator instr-
uctions and deposit the data or instruction in the A accumulator. Lines 440 thru 550
contain the OUTINS subroutine described in detail earlier. Lines 550 thru 740 check
to see what instruction or data has been entered so the result may be output if
appropiate. Line 710 looks for the TOGM instruction so the program knows which dis-

play mode to use when outputting data. Lines 770 thru 840 contain the SETMEM subroutine
described in detail earlier. Since the SETMEM subroutine destroys the contents of the
index register, line 850 reloads it before proceeding to the OUTANS subroutine con-

tained in lines 880 thru 1200. Line 1210 checks to see of the ERROR flag was set during
the last output sequence. If so, program control is transferred to lines 1220 thru 1350

where an error message is output and the error flag cleared by sending an ECLR instr-

uction to the calculator chip. Line 1380 tests to see if the calculator is in the
floating point or scientific mode. If floating point, control is transferred to lines

1400 thru 1670. If scientific, control is transferred to lines 1680 thru 1990. In
both modes the data is output to the display in the selected mode and program control

is transferred back to line 380 where new commands or data may be entered.

PAGE 001 CALC-1

0C)O O
000 20
0000 0

l

NAM
OFT
OFT

FC:E:
00040 0080
0005C) 0080 0

0081 0
0082 0
0083 0

0084 0
0085 0
0c):E:6 C

0087 C
000600 CSS C

0089 C
O08A C
OOE: C
00 C
OOSED

OOSE C

0O:F

C),-/C
00)91 C

0094

C)O97.
0097

009A

009C

009E

009CE

009F

O(:)00 OOAO

OCA1
OOA2

(:(:A4

00A5
OCASF

OOA6
OOA7

00100 OOAS
OOA9
OOAA
OOAB
OOAC
COAoD
OOAE
OOAF

00110 OOBO
OOB11

F
F
F
'F
F
)F

)F
)F
)F
)F
)F
)F
oF
21

OF
OF
OF

OF

21
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF

00

21
OF

OF

OF

OF

OF

OF

OF

OF

OF

39

OF

3A

OA

3C

00

01

ALC:-1

$0F, ($:)F, $0F, $0F, $0F, s)F, $0F, $OF

$C)F, $(:F, $C:F, $F, s0F, $21, $0F, $OF

F, $0F, 0F, $F, $F, $)F, $ F(: , $F

$2F, $CF (F F, $)F, $)F, $C)F, $()F

$21 , {::F, (F,,)F. $ F, $JF, (0F, $)F

F C

FC E:

F, CF , $, $:9, $0F, $0A, $(oAn, $ 07

$oc, $c1, 502, $02:, $04, s05, $06, $07

C

C

C

FC

F C: -

FC-:

PAGE 002 CALC-1

00132 02
00133 03
0084 04
0015 05
0016 06
0017 07

00120 B808
OOB9 09
OOBA OF
00BB OF
OOBC OF
OOBD OF
001E 22
OOBF OF

00130 OOCO OF
OC1 IB
00C2 36
0003 25
00C4 2D
C0C5 OB
OOC:6 2C
00C7 1C

00140 OOCS8 1
00C9 20
OCA OF
OOC3 OF
CCCC OF
OOCD 18
OOC:E 35
OOCF 23

00150 OOO OD
OOD1 33
OOD2 37
OOD3 24
OOD4 26
GOD5 32
OOD6 34
OOD7 31

00160 OOD8 30
OOD9 213
OOIA OC
0O1 OF
OODC OF
OODD OF

OODE 38
OODF OF

00170 OOEO OF
OGE1 OF
00E2 36
00E3 25
00E4 2D
OE5 013
00E6 2C
00E7 IC

F CE

FC:: 1

FC :E:

$O8, $09, $OF, $GF, $CF, $0F, $22, $OF

$C0F, $1E, $3,, $25, $20, $GE:, $2C:, $1C

i E, $20C, CF, $0F, $0F, 318, $35, $23

FCE-" $C'i, 433, *37, *24, *26, *32, $34, 31

FCB:E

FCE

$, $ C, $()F, $F, *0F, $:3, CF

$0F, $0F, $ 6, 25, 32E, *0E:, $2C, $1C:

FAGE 003 CALC-1

00i80OOE8 if'
00E9 20
OOEA OF
OOEB OF
OEC OF
OOED 18
OOEE 35
OEF 23

00190 COFO OD
OOF1 33
OOF2 37
OOF3 24
00F4 26
OOFS 32
00F6. 34
00F7 31

00200 OOFS 30
OOF9 2E
OOFA OC
OOF; OF
OOFC OF
OOFD OF
OOFE OF
OOFF OF

00210 0100
00220 0100 SE
00230 0103 CE
00240 0106 BD
00250 0109 FE
00260 01CC: SD
00270 010E 20

00280 0110 86
00290 0112 A7
00300 0114 86
00310 0116 A7
00320 0118 86
00330 011A A7
00340 011C 86
00350 011E A7
00360 0120 A6
00370 0122 39
00380 0123 BD
00390 0126 SA
00400 0128 B7
00410 012B 96
00412 012D 81
00414 012F 27
00420 0131 8D
00430 0133 20
00440 0135 E6
00450 0137 2A
00460 0139 A7
00470 013B E6
00480 013D C6

FCE;

FC: E

F C:

A047
0287
E07E

02
1$

7F
00
36.
01
00
02
34
03
02

E1AC
so
012C
00
21
43
02
17
01
FC
00
o
3C

ORG
START LD E;

JSR
L El X
E-SR
BRA

INITAL LDA A
S;TA A
LEA A
STA A
LEA A
=;TA A
LDA A
STA A
LEA A
RT:S

COMAND JSR
ORA A
STA A

POINT LDA A
CMF A
E:E C
ESR
ERA

OUTING LDA E:
EPL
STA A
LEDA E:
LDA C:

$1c, ,20, $OF, OF, OF, $18, 535, $23

SOD, $33, $37, 24, $ 2, $32, 534, $31

$3O, $2E:, $O0, $F, 30F, SOF, SOF, $OF

$01C00
A047
#CLRE.CN

FDATAI
FARADR
INITAL
C:CMAND
#$7F

C, X
#$36

1?1, X

#$00

2, X
#$34
', X

'-, x

INEEE
#$;C0
POINT+1
$C)0
#$21
ZERMEM
OUT INS
CHRC:HK
1, X
OUTI NS
0, X
0, X
#r3C

DECREMENT ::TACK

CLEAR AND TITLE TERM.

INIT. A SIDE OF FIA

HIGH HOLD-PiOS READY

INIT. B SIDE OF PIA

NEG R/W

CLEAR R/W FLAG

GET OPERATOR DATA
POSITION TO THE TOP OF TALE

WAIT FOR READY

FORWARD INSTRUCTION TO CALC.
CLEAR FLAG EIT
LOW HOLD-NEG READY

PAGE 004 CALC:-1

00490
00500
00510
00520
00530
00540
00550
0056.0
00570
00575

00590
006.00
00620
00630
00640
00650
006.6.0
006.70
00680
00.90
00700)
00710
00720)

007 30 am

00740
0075)
00760
00770
00780
0079 :/
00800
00810
00820

00840
008 C)
00860
0087 C)

00890
00900
0091 C
00920
00930
00940
001":50

00960
00970)
0098C)

00990
01000
01010
01020)

013F E7
0141 E6.
0143 2A
0145 E6
0147 C6
0149 E7
014D: 39
014C 81
014E 26
0150 7F
0153 7D
0156. 26
0153 31
015A 27
015C 81
015E 26
0160 73
016.3 20)
0165 81
0167 27
0169 81
016L, 23
016.D 81
016F 26.
0171 73
0174 7F
0177 3D8
0179 20
017E., 7F
017E C:E
0181 C6
0183 08
0184 E7
0186 3C
0139 26.
01C8 E 3:9
01C: FE
018F 3D6
0191 20
0193 E6
0195 2A
0197 A6
0199 86
019E A7

019D C6
019F E7
01A1 E6
01A3 2A
01A5 E6
01A7 86
0149 A7
01A1 E6
01AD 2r,
01AF EC.

E:R I NG? HOLE .INE LOW

LO C'. FOR READE'Y LOW
.LEAR F.3 1'BI T

HIGH HCILEI-F'0: READY
RETURN HOLE' LINE HIGH

C:HEC FOR FREV IOUE 3M' IN: TR

01
01
FC
00
3:6,
01

2F
03
02AE
02AF
1 0:
OF
C7
13
05
02AF
BEE
20
E-:A
OE:
/-6

22

03
02AE
02AF
02
11
0020
0020
20

00
002 E
FS

A002
02
3D
01
FC:
00
16
00
3E
01
01
FC
00
OF
00
03
06.
01

S:TA E:
WAIT10:;LDA E

E;FL
LE'A E:
LDE' E
; T AE;

RTS
CHRC:HK: :MF A

E-:NE
:LR

SK I F'75 T:_;T
E:NE

C:CNT50 C:MF' A

C:MF A

E-:NE

.K IF'25 :MF' A
13E -
C: MF' A
E-:L'=
C:MF' A
E:NE
O:IM

ZERMEM :LR
E-_;R
ERA

';ETMEM C:LR

LE' E-
LDA E;

LOIOPi INX
3TA E;

=: F X
E:NE

LODADR LEX

E-RA

OUIIT AN:_; LEA CE:
E:F'L
LDfA A

LDA A

;T A A
LDA EE

; T A
WAIT30 LDA ;

E-:F'L
LDAE- :
LDA A
;TA A

WAIT LDA E-
E:MI
LEIA E'

1, X

1.X) XA

1, X

#$2F
E4IF75
F':RMA T

ZERMEM
#* 0F
C :iMAND

SK[IP25

C. iM AN El
I:I:MAPND #$20:

CI:MAND

C'MAND
#22
ZERMEM
FORMAT
SMDC :

'E:ETMEM
LODADR

$20

x$20
#$20'

), X
#4*2 E;

LOIOIF' 1

FPARADIR

CIUT:HR
1, X
OIT AN:=
0, X
4*16
C:, X

1, X
C', X

1,X

; X

0, X

E T MOiRE A'T
LO":f. FOR TCCGM

IF NUME;ER

ZERO E.MEh:

CLEAF 002C:
E::T TOM iF ;BUFFER

TORE A AEF'ACE

:HE:[FOR TO F CF EU-:LFFER

CLEAR FLAG E;IT

LOW HOLE-FOE; READY
ER ING HOLE' LINE LOW
WAIT FOR E;EC:ON D READY

CLEAR FLAG BIT

:;E N D A N I F

LOOK FOR R/W ':;TROE;E

TRANM:;FER C:ALC DATA TO MEMORY
LUiOK F R READY :E;TROiE

GET MORE CA TgA

CE T MORE LEA T A

IF NOP

IF : MEC,

'E T MORE DATA IF INV

PAGE 005 C:ALC-1

01040
01050
01060
01070 C
01080

01090

01100

01110
01120
01130
01140
01 150
01160
01170
01150
01 1:0
012 C)
01:210
01 2210

01240
01250
0)1260
01270

01 27 C)
01290

01 310
01:320
0 1 330
0 1340
01350
01360
C 1370
C) 1 ;c
C)1 390
0 140()
C) 1410
01420
014:30
01440
01450
01460
01470
0 480
0 1490
01500
01510

01520
01530
01540
01550
01560

01 E1
01E:3
0115
011,7
011,8
01EA
011GC:
01 3 '
01BE
OIE:F
0 1 0
01C:2
01C5
01C7
01C:9
O1C:E:
C) 1 CD
O1CF
O1DO
01 D2
0104
01116
0108
01 DA
01DC
CO1DE
01 E
01 E2
0 1 E4
01 E6
01E8
01EA
01 ED
O1FO
01F3
C)1F6

01 F9
C1FG
01 FE
0200
0202
0204
0206
0208
020A
020D
020E
0210
0212
0214
0216
0218
021A
02113

2 :
20
A6

16
84
5A
54
54
54
54

F7
97

20
c6.
A7

A6

2A

E6.
2A

86
A7
E6
C6
E7
E6
2A

E6
C:6
E7
CE
1-D
CE
ED
7 '
21E
CE
A6

84
26
86
20
86
CD

08
E6
C4
E7
C6
E0
D7
08
A6

16 EMI
F6 BRA
02 CLITIIG LDA A

TAE:
OF AND A
:30 OR A

L$R E
LR EC
LSR E
LR C

20 ORAE -
01C6 TA E
00' F'OINT2 TA A

E2 BRA
36 CONFLG LDA A
01 ;TA A
00 LDA A

R T_
1E ULITCHR E:F'L
01 WAIT70 LE'A C:
FC EP:F'L
2E LDA A
00 ;TA A
00 LDA E:

C0 LDAE -:
01 : TA E:

01 WAIT71 LEI A:
FC E:FL
00 LDA E:

36 LIA C:
01 c;TA E:

02E:0 LEX
E07E JSR
02A8 CONT1 LEDX
E07E JS:R
02AE TST
3F E:MI
0022 FLO'NT LEIX
00 LDA A
08 AND A
04 ENE
20 LDA A
02 E:RA
2D MINFNT LDA A
ElEl PRINT J$R

[PIND INX
00 LEIA E-
OF ANDE -:
00 $TA 1E
2F LEIA E:
00 EUL11 1E
21 TA C-:

DIGLOF' INX
00 LDA A

C NFL'

WAIT2
A

i0F

#$

FOI NT2+1
$0
WAIT:.

1, X
0, X

CONT 1
1, X
WA I T70
#$2B C

0, X
C, X

1,x
i, X

WA IT71
0, X

1, X
#ERRM8'G
F'ATA 1
CRLF
F'A T A 1
F CRMAT
CINrOT

#$22
C), X
#$ 0:
MINF'NT
$2 C
FR INT I
* $2 CT
OUITEEE

0, X

0, X
#$2

#$2E'

FRINT MEMORY CONTENT

LOAD CUT DATA INTO A

ELIMINATE UPPER 4 E;IT:_:
CONVERT TO ASC II DATA

INCREMENT ADDiREE;:;EB EY $20
;TORE OUT DATA SEQUENTIALLY

HIGH HOLD-PO.S READY
RING HOLE' LINE HIGH
CLEAR FLAT G BIT

=;I.::IF IF NO ERROR
WAIT FOR READY

ERROR CLEAR I NETRUT I ON

CLEAR FLAG BIT

LCIW HOLC+-NEG READY
RING HOLD LOW

CLEAR FLAG EIT
HIGH HOLD-F'O READY
RETURN HOLD HIGH

FLOA T ING Pia I NT NOTAT ION
INPUT MANTI$= A IGN DATA
MA:k. BIT 4

LOAD A $FACE

LOAD A MINIU_
PRINT CHARACTERR

STORE DEC. FT POSITION IND.

0, X

PAGE 006 CALC-1

C)1770
0158C)
01590
01600
C) 161 C)
01620
01630
01640
0 1650
01 660
01670
01680
C) 16' 0
01700
0171 C)
0 1720
01730
01740
01750
0176C)
0177 C)
01780
01790
O1800
0181 C)
01820
01830
01840
01850
01860
01870
C) 1880
01890
01900
0191Q
01920
01930
C)1940

01950
01960
01970
C) 1980

01990(

021E
0220
0222
0224
0226
0229
022C
022E
0231
0234
0237
023A
023C
023E
0240
0242
0244
0246
02 49
024C
024D
024F
0252
0255
0257
0259
025C
025F
0261
0263
0266
0268
026A
026C
026E
0271
0273
C)0276
0278
027 E
027E
0281
0284

02000 0287
0288
0289
028A
028B

02010 028C:
028D
02SE
02SF
0290
0291

ED
9C
26
86
ED
8C0
26
CE
ED
FE
7E
96
84
26
86
20
86
ED
CE
08
A6

ED
8C
26
86
ED
8C
26
86
BD
96
84
27
86
ED
96
ED
96
SD
CE
E:D
FE
7E
OD
OA

10
1A
00
53
57
54
50
43
20

E1 E1
20
05
2E
ElD1
002E
EC
02A8
E07E
A002
0123
22
08
04
20
02
2D
ElDi
0023

00
El 1
0024
05
2E
E1D1
002B
EE

45
E1D1
22
01
05
2D
E1D1
20
E1D1
21
E1 D1
02AC8
E07E
A002
0123

J.R
i=:F' X
E:NE
LDA A

ENDC:H1 CFX
ENE
LDX

JSR

LDX

JMF
SCINOT LEA A

AND A

ENE
LDA A

ERA

NEG'FNT LDA A
F'RINT2 J R

LDX
NUMLCIP INX

LDA A

JSR
+_:F' X
ENE

SKIFPDF' CF'X
E:NE
LEIA A

JSR

LDA A

AND A

LDA A

JSR

SKPS GN -LDA A

LDA A

J SR

LDX

JSR

CLR N FLNF

F:C:

JiUTEEE

ENIICH1
#$2E
CIUTEEE
#$2L
DIGILOF'
*tCRLF
F'LATA 1
FPARA'LR

i2 i

#$

NEIGFNT

FRINT2

#2E+

OUT EEE
#2

c, X
CIUTEEE
#$24
E.. IPFLiF
#$2E

OUT1EEE
V1.- 2E
NLMLOF
#$45
CIUT EEE
$22
$01

#$2D,
IIUTEEE

CIUT EEE
$21
i:OUTEEE
#C:RLF
FLDATA1
FARADR
C:OMANDi

OUTFUT AS I I NUME*ER
TIME FOR DE:. PT. 7

CHECK: FCIR LA:T IC'I T
G ET NEXT DIGIT

FRIIN T C:R./LF

LOjK: i FORi:: NEIAT I E MANTI :Eg

FICE IF NIT

FRINT :EiN

LI+_O[:. FOIR DEC. FT. LIGI IT

PRINT DEC. FT.
CHE:f FOR LAS:;T DIGIT

FRINT AN E
LCiAD SIGN E:YTE

PR INT A -

FRINT EXPONENT ME+L

FRINT EXPONENT L:SL+

FRINT C:R./LF

$OD, $)A, $1b0 $1A, $OC

:;WT PC 6$0;C0 C:ALC-1 CALCULATOR'

FAE 007 CALC-1

02'92

0294
0295

0.29e6
0297
0298
0299
029A
029 E:
029C:
02:,
029E
029F
02A0
02A1
0 rf A2
02A3
02A4
02A5
02A6
02A7

02020 02AS
02A9
02AA
02AB
C02AC:
02AD

02030 02 AE
02040 02AF
02050 02E30

02E1
02S2
02 3

02060 02134
02B5
C) 2:L.
02137
021$S

02070 02139
02050
02090
02100
02110
02120
02130
02140
02150E
02160
START
INITIAL
C:OMAND
PIDINT

IT INS

.r
30

41
40
43
2 'l

2C)
43,

41
4C
43

25

4C
41
54
4F
52
OD
OA

00
00
00
04
00
00

OA
00
00
45
52
52
4F
52
04
E07E
A002
E1AC
E1lD1

CRLF FCE:

FORMAT
SM=C;
ERRM$G

FC:
FC:
FC 0:

FCC.

FDATA 1
F'ARA DR
INEEE
OLUTEEE

A04 c
AO4: 0100
A002
A002 800C

FCE
ETUI

EQU

FDE

ENI

$(:)', .. $00_, $00, .$0, $04

$0

*C)E, *C0i . $C:0, $..,i

E RRC'N

$04
$E 07E
$Ac:O2

$E1AC
$E 11

$A 1C4"
* 01CK

0100
0)110
0123
0126
0135

PAGE 008

WAIT1O 0141
CHRCHK 014C
SKIP75 0153
CONT50 0158
SKIP25 0165
ZERMEM 0174
SETMEM 017B
LOOPi 0183
LODADR O18C
LITANS 0193

WAIT30 O1A1
WAIT 01AB
CLITDIIG 01B5
FOINT2 01C5
CONFLG 01C9
OUTCHR 01DO
WAIT70 01D2
WAIT71 O1EO
CONT1 O1FO
FLOPNT O1FB
MINPNT 0208
PRINT 020A
DPIND 020D
DIGLOP C21A
ENDCH1 0229
SCINOT 023A
NEGPNT 0244
FR INT2 0246
NUMLOP 024C
SKIPDP 025C
SKPSGN 0271
CLRSCN 0287
CRLF 02Aw
FORMAT 02AE
SMDC 02AF
ERRMSG 0600
PDATA1 EO7E
PARADR A002
INEEE E1AC
OUTEEE E1DI

TOTAL ERRORS 00000

CALC-1

RPN-the only language that lets you "speak"wltli confidence

and consistency to a Pocket-sized computer calculator.

In 1967, Hewlett-Packard embarked on a major new
development effort: to design a family of advanced com-
puter calculators powerful enough to solve complex en-
gineering/scientific problems yet simple enough to be
used by anyone who works with numbers.

As part of this effort, HP carefully evaluated the
strengths and weaknesses of the various languages which
an operator might use to communicate with an electronic
calculating device. Among those studied were:

computer languages such as BASIC and FORTRAN,
various forms of algebraic notation, and
RPN (Reverse Polish Notation), a parenthesis-free
but unambiguous language derived from that devel-
oped by the Polish mathematician, Jan Lukasiewicz.

As might be expected, each of these languages was
found to excel in a particular application. For its biggest
programmable desktop calculators, HP selected BASIC.
For its other powerful desktop calculators, with less ex-
tensive storage capacity, HP chose algebraic notation.

But, given the design constraints of a pocket-sized
scientific computer calculator, RPN proved the simplest,
most efficient, most consistent way to solve complex
mathematical problems.

Only RPN offers these powerful advantages
Compared to alternative logic systems, Hewlett-Packard
believes that only RPN--in combination with a 4-register
operational memory stack - gives you these powerful
advantages.

. You can always enter your data the same way, i.e.,
from left to right-the same way you read an equa-
tion. Yet, there is no need for a parenthesis key; nor
for a complicated "operational hierarchy."

2. You can always proceed through your problem the
same way. Once you've entered a number, you ask:
"Can I perform an operation?" If yes, you do it. If

no, you press ENTER+ and key in the next number.
3. You always see all intermediate answers - as they

are calculated -so that you can check the progress
of your calculation as you go. As important, you
can review all numbers stored in the calculator at
any time by pressing a few keys. There is no
"hidden" data.

4. You don't have to think your problem all the way
through beforehand unless the problem is so com-
plex that it may require simultaneous storage of
three or more intermediate answers.

5. You can easily recover from errors since all opera-
tions are performed sequentially, immediately after
pressing the appropriate key.

The RPN method consists of four, easy-to-remember
steps. Once learned, it can be applied to almost any
mathematical expression.

6. You don't have to write down and re-enter intet.
mediate answers, a real time-saver when working
with numbers of eight or nine digits each.

7. You can communicate with your calculator con-
fidently, consistently because you can always pro-
ceed the same way.

If all this sounds too good to be true, bear with us -
you'll soon get the chance to see for yourself. But first,
we need to describe how RPN and the 4-register opera-
tional stack operate.

The RPN method - it takes a few minutes to
learn but can save years of frustration.
Yes, the RPN method does take some getting used to.
But, once you've learned it, you can use the RPN method
to solve almost any mathematical expression-con-
fidently, consistently.
There are only four easy-to-follow steps:

1. Starting at the left side of the problem, key in the
first or next number.

2. Determine if any operations can be performed. If
so, do all operations possible.

3. If not, press ENTER! to save the number for future

use.
4. Repeat steps I through 3 until your calculation is

completed.
A diagram of the RPN method is shown above.

Simple arithmetic.the RPN way.
Just to show how it works, let's try the RPN method on
two simple problems (we'll use them again in the com-
parisons that begin on the next page).

Problem: 3 X 4 = 12

RPN solution:

Step

1. Key in first number.
2. Since only one number has been

keyed in, no operations are
possible. Press ENTER* .

3. Key in next number.
4. Since both numbers are now in

calculator, multiplication can be
performed.

See
Press Displayed

3 3

ENTERt

4

3

4

12

Problem: (3X4)+(5X6)=42

RPN solution:
See

Step Press Displayed

1. Key in first number.[3
2. No operations possible. Press

ENTER!]. ENTER+] 3

3. Key in second number. [] 4
4. Since both numbers are in

calculator, first multiplication
is possible.[12

5. Key in next number. (First inter-
mediate answer will be auto-
matically stored for future use.) 5

6. No operations possible. Press

[ENTEA4 .NTER 1 5
7. Key in next number. U]6S. Second multiplication is possible

since both numbers are in calcu-
lator. []30

9. Addition is possible since both
intermediate answers have been
calculated and are stored in4-
register operational stack. [] 42

If you've followed us this far, you've noticed two im-
portant facts:

1. Both of these problems were solved in the same,
consistent manner, using the same simple set of rules.

2. All intermediate answers were displayed as they were
calculated, and stored and retrieved as needed to
complete the calculation. With RPN and a 4-register
operational memory stack, there is almost never a
need to write down intermediate answers.

How the operational stack works.

The four registers of HP's exclusive operational stack
can be represented by the following diagram.

TVj Top

Z

X Display

When a number is keyed in, it goes into the X register
for display. Pressing the 7ENTERS key duplicates the con-
tents of the X register into the Y register and moves all
other numbers in the stack up one position.

When an operation key(+,-Y,)x , +-, 2) is pressed

the operation is performed on the numbers in the X and
Y registers, and the answer appears in the X register for
display. Numbers inthe other registers automatically
drop one position.

To demonstrate these points, we'll show what happens
to the stack as we solve the problem: (3 X 4) + (5 X 6)

42.

ZK -

Y 3 3
F - j

X 31 3'4 12
31 [ENTER.]I 141 F 1

--

12 12
12 5 5 12

S F - -TE R, - - 1

As you can see, all numbers are automatically posi-
tioned in the stack on a last-in-first-out basis, in the
proper order for subsequent use.
Now that we've described how RPN logic operates, we

car proceed with our problem-by-problem comparison of
this system versus two others used in today's scientific
pocket calculators.

We think you will find it interesting.

i- --
I

_ _..

Calc-1 Instuction Set

Full Name ASCII Character

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
Decimal point
Enter exponent E
Change sign Z
Constant PI P
Set mantissa digit count M
X exchange M A
Memory store G
Memory recall H
Inverse mode I
Enter sp or cr
Toggle mode
Roll stack 0
Sine X S
Cosine X C
Tangent X T
Error clear Y
Radians to degrees F
Degrees to radians D
Master clear cntrl X
X exchange Y X
E to X W
Ten to X U
Square Q
Square root V
Natural log of X N
Base 10 log of X B
One divided by X R
Y to X ^
Plus +
Minus
Times *
Divide /

Table I

MM57109 Instruction Description Table (Continued) I indicates 2-word instruction)

CLASS SUBCLASS MNEMONIC* OCTAL OP FULL NAME DESCRIPTION
CODE

Branch

I/O

1/O

1/O

Mode
Control

Count

Multi-digit

Single-digit

Flags

IBNZ

DBNZ

IN

OUT

AIN

SF1
PF1

SF2
PF2

PRW1

PRW2

TOGM

SMDC'

INV

31

32

27

26

16

47
50

51
52

75

76

42

30

40

Increment memory
and branch if
M-# 0
Decrement
memory and
branch if M # 0
Multidigit
input to X

Multidigit output
from X

Asynchronous
Input

Set Flag 1
Pulse Flag 1

Set Flag 2
Pulse Flag 2

Pulse R/W 1

Pulse R/W 2

M + 1 - M. If M = 0, skip second instruction
word. Otherwise, branch to address specified
by second instruction word.
M 1 - M. If M = 0, skip second instruction
word. Otherwise, branch to address specified
by second instruction word.
The processor supplies a 4-bit digit address
(DA4-DA1) accompanied by a digit address
strobe (DAS) for each digit to be input. The
high order address for the number to be input
would typically come from the second instruc-
tion word. The digit is input on 04-01, using
ISEL = 0 to select digit data instead of in-
structions. The number of digits to be input
depends on the calculation mode (scientific
notation or floating point) and the mantissa
digit count (See Data Formats and Instruction
Timing). Data to be input is stored in X and the
stack is pushed (X - Y Z T). At the con-
clusion of the input, DA4-DA1 = 0.
Addressing and number of digits is identical to
IN instruction. Each time a new digit address is
supplied, the processor places the digit to be
output on D04 - DOl and pulses the R!W line
active low. At the conclusion of output, D04-
DO1 - 0 and DA4-DA1 0.
A single digit is read into the processor on D4-
Dl. ISEL = 0 is used by external hardware to
select the digit instead of instruction. It will not
read the digit until AUR = 0 (ISE L = 0 selects
ADR instead of 15), indicating data valid. F2 is
pulsed active low to acknowledge data just read.
Set F1 high, i.e. F1 = 1.
F1 is pulsed active high. If F1 is already high,
this results in it being set low.
Set F2 high, i.e. F2 = 1.
F2 is pulsed active high. If F2 is already high,

this results in it being set low.
Generates R/W active low pulse which may be
used as a strobe or to clock extra instruction
bits into a flip-flop or register.
Identical to PRW1 instruction. Advantage may
be taken of the fact that the last 2 bits of the
PRWI op code are 10 and the last 2 bits of the
PRW2 op code are 01. Either of these bits can be
clocked into a flip-flop using the R/W pulse.
Change mode from floating point to scientific
notation or vice-versa, depending on present
mode. The mode affects only the IN and OUT
instructions. Internal calculations are always in
8-digit scientific notation.
Mantissa digit count is set to the contents of the
second instruction word (=1 to 8).
Set inverse mode for trig or memory function
instruction that will immediately follow. Inverse
mode is for next instruction only.

.. rte . rr. . r r ..

:4 '
i<

Table I

MM57109I Instruction Description Table (Indicates 2-word instruction)

CLASS I SUBCLASS

Digit
Entry

Move

MNEMONIC"

NOP

HALT

ROLL

POP

XEY

XEM

MS

MR

LSH

RSH

OCTAL OP
CODE

FULL NAME

00
01
02
03
04
05
06
07
10
11
12
13
14

15
41

77

17

43

56

60

33

34

35

36

37

Pope

Left Shift Xm

Right Shift Xm

DESCRIPTION

Mantissa or exponent digits. On first digit (d)
the following occurs: Z -+ T

Y-+ Z
X -.Y
d -X

See description of number entry on page 11.

Digits that follow will be mantissa fraction.
Digits that follow will be exponent.
Change sign of exponent or mantissa.
Xm = X mantissa
Xe - X exponent
CS causes -Xm - Xm or -Xe - Xe depending
on whether or not an EE instruction was
executed after last number entry initiation.
3.14 15927 - X, stack not pushed.
Terminates digit entry and pushes the stack.
The argument entered will be in X and Y.

Z -- T

Y-. Z
X- Y

Do nothing instruction that will terminate digit
entry.
External hardware detects HALT op code and
generates HOLD = 1. Processor waits for HOLD
= 0 before continuing. HALT acts as a NOP and
may be inserted between digit entry instructions
since it does not terminate digit entry.
Roll Stack.

I,-X

T Y

Pop Stack.

Z - Y

T - Z

O-*T
Exchange X and Y.

X Y--Y

Exchange X with memory.
X -+-M

Store X in Memory.
X - M

Recall Memory into X.
M- X

X mantissa is left shifted while leaving decimal
point in same position. Former most significant
digit is saved in link digit. Least significant digit
is zero.
X mantissa is right shifted while leaving decimal
point in same position. Link digit, which is
normally zero except after a left shift, is shifted
into the most significant digit. Least significant
digit is lost.

No Operation

Halt

Table I

MM57109 Instruction Description Table (Continued) (' Indicates 2-word instruction)

CLASS SUBCLASS MNEMONIC' COE FULL NAME DESCRIPTION
MNEMOMC OTLD FULNM

71

72
73
74
70
40, 71

40, 72
40, 73
40, 74
67

Memory Plus

Memory Minus
Memory Times
Memnrv Divide

Math

Clear

Branch

F (X,Y)

F (X,M)

F (X) Math

F (X) Trig

Test

+

x

/
YX
INV +'

INV -'
INV x'
INV /
1/X

SORT
SO
lox
EX
LN
LOG
SIN

COS
TAN
INV SIN'
INV COS'
INV TAN'
DTR
RTD
MCLR

ECLR
JMP'

TJC'

TERR'

TX -0'

TXF'

TXLTO'

Add X toY X + Y - X. On+,-,x,/andYX
instructions, stack is popped as follows:

T-Z
O-T

Former X, Y are lost.
Subtract X from Y. Y - X - X
Multiply X times Y. Y x X - X
Divide X into Y. Y + X - X
Raise Y to X power.YX - x
Add X to memory. M + X - M
On INV +, -, x and / instructions, X, Y, Z,
and T are unchanged.
Subtract X from memory. M - X - M
Multiply X times memory. M x X - M
Divide X into memory. M + X - M
1 + X - X. On all F (X) math instructions Y, Z,
T and M are unchanged and previous X is lost.

X2 - x

lox - x

ex - X
In X - X

log X - X

SIN(X) - X. On all F(X) trig functions, Y, Z, T,

and M are unchanged and the previous X is lost.
COS(X) - X
TAN(X) -X
SIN~1 (X) - X

COS~ 1(X) -. X
TAN- 1 (X) -- X

Convert X from degrees to radians.
Convert X from radians to degrees.
Clear all internal registers and memory. initialize
I/O control signals, MDC = 8, MODE = floating
point. (See initialization.)
0 - Error flag
Unconditional branch to address specified by
second instruction word. On all branch instruc-
tions, second word contains branch address to
be loaded into external PC.
Branch to address specified by second instruc-
tion word if JC (16) is true (=1). Otherwise,
skip over second word.
Branch to address specified by second instruc-
tion word if error flag is true (= 1). Otherwise,
skip over second word. May be used for
detecting specific errors as opposed to using the
automatic error recovery scheme dealt with in
the section on Error Control.
Branch to address specified by second instruc-
tion word if X - 0. Otherwise, skip over second
word.
Branch to address specified by second instruc-
tion word if IXi < 1. Otherwise, skip over
second word. (i.e. branch if X is a fraction.)
Branch to address specified by second instruc-
tion word if X < 0. Otherwise, skip over second
word.

64
63
62

61

65
66

44

45
46

40, 44 nverse sine X

40, 45 Inverse cosine X
40.46 I

55

54
57

53

25 Jump

20 Test jump

condition

24 Test error

21 Test X=0

23 Test IXI< 1

22 Test X < 0

Table II

MM57109 Instruction Summary Table (* = 2-word instruction)

14-11[1615
0 1 2 3

MN

AINL

H A LT

TJ C'

TX--O

TXLTO

TXF.

TERR'

JMP'

OUT'

IBNZ'

DBNZ

LSH

RSH

SF1

PF1

SF2

PF2

POP

M+ 1

(M-)

PRW 1

PRW2

NOP
I _____________ L .1

0
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

, ::.

7

.

J(.

" '

r" !

+,

".

F i ,

'
'

n

l

, ,

Y l, ~

ii ,

.

'r,.

i

{

,,:

I

sV 0 o fO OZA!9>f~

Table III -- CALC-1 Instruction to ASCII Character Lookup Table

FULL NAME

Async
Halt

Input

Test Jump
Test X-0
Test X<O
Test 1 X 1<1
Test Error
Jump
Multidigit Out
Mul diit In

Inc & Branc i
Dec & Branch if M=0

Lert shift Xm
Right shift Xm

Set fag

Pulse Flag 1
Set Flag 2
Pulse Fla 2

Pop?

HEX OP CODE

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF

10
11
12
13
14
15
16
17
18
19
1A
lB
1C
LD
1E
IF

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F

MNEMONIC

00
01
02
03
04
05
06
07
08
09
DP
EE
CS
PI
AIN
HALT

TJC
TX-0
TXLTO
TXF
TERR
JMP
OUT
IN
SMDC
IBNZ
DBNZ
XEM
MS
MR
LSH
RSH

INV
EN
TOGM
ROLL
SIN
COS
TAN
SF1
PFL
SF2
PF2
ECLR
RTD
DTR
POP
MCLR

ASCII CHARACTER

0
1
2
3
4
5
6
7
8
9

E
Z
P

M

A
G
H

I
cry, or Car a e.

0
S
C
T

Y
F
D

Cntrl X

299G!

Table III - CALC-1 Instruction to ASCII Character Lookup Table

NAME HEX OP CODE MNEMONIC ASCII CHARACTER

30 XEY X
31 EX w
32 1QX U
33 SQ Q

qxa 34 SQRT V
atu 35 LN N
se 36 LOG B

37 1/X R
to 38 YX

lus 39 +
3A

e 3B X *
3C

u se R/W 1 3D PRW1
Pulse R/W 2 3E PRW2
No Operation 3F NOP

Table IV - Floating Point Mode OUT data storage

Memory Location DP POS D7 D6 D5 D4 D3 D2 D1 DO

20 0 0 0 0 0 0 0 0
21 0 0 1 0 0 0 0 0
22 0 0 1 1 Sm 0 0 0
23 0 0 1 1 Dp POS
24 0B 0 0 1 1 BCD digit(left most)
25 OA 0 0 1 1 BCD digit
26 09 0 0 1 1 BCD digit
27 08 0 0 1 1 BCD digit
28 07 0 0 1 1 BCD digit
29 06 0 0 1 1 BCD digit
2A 05 0 0 1 1 BCD digit
2B 04 0 0 1 1 BCD digit(right most)

Table IV - Scientific Mode OUT data storage

Memory Location D7 D6 D5 D4 D3 D2 D1 DO

20 0 0 1 1 Most signif. exp. digit
21 0 0 1 1 Least signif. exp. digit
22 0 0 1 1 Sm 0 0 Se
23 NOT USED
24 0 0 1 1 BCD digit (left most)
25 0 0 1 1 BCD digit
26 0 0 1 1 BCD digit
27 0 0 1 1 BCD digit
28 0 0 1 1 BCD digit
29 0 0 1 1 BCD digit
2A 0 0 1 1 BCD digit
2B 0 0 1 1 BCD digit (left most)

Notes:

1) If the Mantissa Digit Count (set by SMDC instruction, initially 8)
is less than 8, the unused digit memory locations will be filled
with ASCII spaces (2016)

2) Sm is the sign of the mantissa. 0 - positive 1= negative

3) Se is the sign of the exponent 0 - positive 1= negative

4) DP POS is the decimal point position. The decimal point should

follow the digit whose address is stored in memory location 24 when in the
Scientific mode. In the Floating Point mode AND the data in memory location
23 with OF and subtract the result from 2F and OR this with 20. The

decimal point should follow the digit whose address is given by the
result.

Table V - ASCII to CALCULATOR INSTRUCTION LOOKUP TABLE

LSB MSB 0 1 2 3 4 5 6 7

0 OF OF 21 00 OF OD OF OD
I OF OF OF 01 lb 33 OF 33
2 OF OF OF 02 36 37 36 37
3 OF OF OF 03 25 24 25 24
4 OF OF OF 04 2D 26 2D 26
5 OF OF OF 05 OB 32 OB 32
6 OF OF OF 06 2C 34 2C 34
7 OF OF OF 07 1C 31 IC 31
8 OF 2F OF 08 LD 30 1D 30
9 OF OF OF 09 20 2B 20 2B
A OF OF 3B OF OF OC OF OC
B OF OF 39 OF OF OF OF OF
C OF OF OF OF OF OF OF OF
D 21 OF 3A OF 18 OF 18 OF
E OF OF OA 22 35 38 35 OF
F OF OF 3C OF 23 OF 23 OF

Example: An ASCII P is a hex 50 which points in the table to a OD which is
the constant PI instruction for the calculator chip

TABLE VI- ERROR CONDITIONS

The ERROR flag on the calculator chip is set when:

1) LN X when X (0 LOG X when X < 0

2) Any result(i0-99 Any result > 10 99

3) TAN 900 , 2700, 4500 , etc.

4) SIN X, Cos X, TAN X when IXI> 90000

5) SIN~ 1 X, COS-1 X whenjXt>IorIXI(10-50

6) SQRT X when X (0

7) dividing by 0

8) Outputting a number in floating point mode if the number of mantissa
digits to the left of the decimal point is greater than the mantissa
digit count.

Figure I

Vss -- *v 5V

VOC--4 4V

Osc1
CLOCK INT

GEN I.. NTE

SYNC
4

POR INITIALIZA1ION

6 JC
1,li nn

13/03
12"02

11/01

ARI1HME TIC
UNIT

ERNAL CLOCKS

MICROPROGRAM
STORAGE ROM

CONTROL
LOGIC

-. 1

~4 iT IGT DAT A

F---

CONTROL
SIGNALS

4-- HOLD

-- RDY

-* ISEL

-- 4 R/W

-- + DAS

F1

'f FLAGS F2

ERROR

X

V

STACK

Z RE

M MEMORY

DAl (LEAST)

DIGITI.--. DA2
.- ADDRESS

COUNTERf - DA3

DA4 (MOST)

-- OI(LEAST)

DIGIT 002
DATA

003

004 (MOSI)

EGIT MANTISSA
SISTER FILE

Ask

IMF

I

ASCII to Hexadecimal Conversion Table

LSB 0 1 2 3 4 5 6 7

0 NUL DLE SP 0 e P _ P

1 SOH DC1 _ 1 A Q a q

2 STX DC2 " 2 B R b r

3 E T X DC3 __ 3 C S c s

4 EOT DC4 $ 4 D T d t

5 END NAK %5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ' 7 G W 9 w

8 BS CAN (8 H X h x

9 HT EM) 9 I y i y

A LF SUB * J Z j z

B VT ESC + ; K C k L
C FF FS _ < L \ I I

D CR GS - = M m)

E SO RS _>_ N A n
F S I US / ?) _ 0 DEL

Elmo

MMM4

MEMO

MEW

mmmm

mmmw

