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Abstract

Cure models are able to model heterogeneity which arises from two sub-
groups with different hazards. One subgroup is characterized as long-term
survivors with a hazard equal to zero, while the other subgroup is at-risk
of the event. While cure models for continuous time are well established,
cure models for discrete time points are rarely prevalent. In this article
I describe discrete cure models, how they are defined, estimated and can
be applied to real data. I propose to use penalization techniques to stabi-
lize the model estimation, to smooth the baseline and to perform variable
selection. The methods are illustrated on data about criminal recidivism
and applied to data about breast cancer. As one result patients with no
positive lymph nodes, a very small tumor, which can be well differentiated
from healthy cells and with ethnicity which is neither black or white have
the best estimated chances to belong to the long-term survivors of breast
cancer.

Keywords: Cure Model, Discrete, Survival Analysis, Variable Selection, lasso

1 Introduction

In traditional survival analysis it is assumed that all analyzed subjects may be
affected by the event of interest at sometime. Thus all subjects are at-risk of that
event. But it happens frequently that a certain subgroup of the population never
experience the event of interest. This subjects are called “cured”, “long-term
survivors” (LTS) or “not-at-risk”.

Traditional examples can be found in clinical studies where some patients
are long-term survivors of a severe disease as cancer and never suffer from the
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recurrence of it. In the social sciences one could be interested in analyzing the
recurrence of released prisoners (see Rossi et al., 1980). Some of the released
prisoners will be arrested again and others never do. Another example can be
found in the educational sphere. Some students may be never able to solve
a certain task, because it is too difficult for them, while others can solve the
problem.

While cure models for continuous time are widely used and described for
example by Amico and Keilegom (2018), Sy and Taylor (2000), Kuk and Chen
(1992) and Maller and Zhou (1996), cure models for discrete time points are
rarely prevalent. Tutz and Schmid (2016) give an overview about discrete time
modelling and Muthén and Masyn (2005) about discrete-time survival mixtures.
Actually in a lot of settings the time is not measured in continuous time but in
discrete time points. In most cases a study ask their participants at fixed time
points as months or years if they are still cured by the disease or still not in
jail. If it is a retrospective study, the respondents may have also difficulties in
remembering the exact time, but give an approximated response. Furthermore
discrete survival analysis has the advantage that the interpretation may be easier
since the hazard can be interpreted as probability and time depended variables
can be introduced quite easily. The model used in this article is not designed for
re-occurrence of an event (see Willett and Singer, 1995) or competing events (see
Tutz and Schmid, 2016).

In this article I describe discrete cure models, how they are defined, estimated
and how variable selection and smoothing can be performed. Thus we get a very
flexible and easy-to-interpret tool for understanding complex discrete survival
data situations. The discrete cure model has been mentioned by Tutz and Schmid
(2016). Steele (2003) also applied a discrete-time mixture model with long-term
survivors, but uses a different estimation method.

The article is organized as follows: First the discrete cure model is described
and an overview of the discrete data structure is given. Then the model is il-
lustrated by an application about criminal recidivism (Section 4). In Section 5
variable selection with an adopted version of lasso is proposed, followed by the
description of the estimation of the (penalized) discrete cure model. In Section 7
the proposed selection technique is used to improve the model for criminal re-
cidivism, followed by a further application about breast cancer (in Section 8).
After some comments to the identifiability of discrete cure models the article is
concluded.

2 The Discrete Cure Model

The cure model is defined as a finite mixture of survival functions. Typically it
consists of two latent classes: One sub-population at risk and one sub-population
characterized as long-term survivors or “cured”. The survival function of the
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cured remains at 1 whereas the survival function of the non-cured population
decrease over time t so that the observed survival function of the cure model is
defined as

S(t|x) = π(z)S1(t|x) + (1− π(z)) · 1, (1)

where π(z) is the weight for the non-cured population determining for each ob-
servation the probability belonging to this group. The weights can be calculated
using individual specific covariates z by

π(z) =
exp(zTβ)

1 + exp(zTβ)
.

The discrete survival function is the probability that the event has not been
occurred at time point t:

S(t|x) = P (T > t|x) =
t∏

s=1

(1− λ(s|x)),

which can be expressed by the discrete hazard λ(t|x). It is defined as the
probability that an event occurs at time T , given that time T is reached
conditional on some covariables x:

λ(t|x) = P (T = t|T ≥ t,x) = h(γ0t + xTγ)

=
exp(γ0t + xTγ)

1 + exp(γ0t + xTγ)
, t = 1, . . . , t∗.

γ0t is the so called baseline hazard. The logistic distribution function h() =
exp()/(1 + exp()) leads to the logistic discrete hazard model. However, one may
also choose other link functions as the clog-log link to obtain the group propor-
tional hazard model (see Tutz and Schmid, 2016).

There are two covariable sets x and z in the cure model. They can be identical,
overlap or completely different. But they have very different functions, xTγ is
used to estimate the survival function of the non-cured population so that this
predictor influence the probability of an event in the non-cured population. On
the other hand zTβ determine the probability of being cured or not. In Section 5
I propose variable selection via penalization to decide which variables should be
included in which part of the model.

3 Data Structure in Discrete Survival Analysis

In discrete survival analysis a certain data structure is usually very helpful. Let
yis be an indicator of the occurrence of an event so that

yis =

{
1, if individual fails at time s
0, if individual survives time s

3



Thus each observation i generates a specific vector (yi1, . . . , yiti) with the entries
0 or 1 and the length ti. For a non-censored observation the vector has the form
(0, . . . , 0, 1) because at time ti the event occurs. Censored observations can be
individuals who drop out during the study without observing an event or the
study concludes when some participants have not experienced an event yet. For
the censored observations the vector contains only zeros until the individual is
censored: (0, . . . , 0). The length ti is variable and depends on how long each
individual is observed. If the person drops out of the study in the first time
interval the length of yis is one. Table 1 illustrates the data structure for T = 3
time points and three individuals i. The first individual is observed for all three
time points and experience the event at time point 3. Consequently, yi has
the form (0, 0, 1) with ti = 3. Each row contains the information about one
specific person at one specific time point. Thus observations have as many rows
as observed time points. The second observation i = 2 drops out of the study after
two time points. Thus, there are only two rows for observation 2 and yi = (0, 0),
because no event take place. Since xi1 is a time-constant variable the value is the
same for one person and different time points1.

i yi t = 1 t = 2 t = 3 xi1 = Age ti
1 0 1 0 0 20

t1 = 31 0 0 1 0 20
1 1 0 0 1 20
2 0 1 0 0 30

t2 = 2
2 0 0 1 0 30
3 0 1 0 0 55 t3 = 1

Table 1: Example for data structure in long format

In Section 6.1 it will be shown that the likelihood by using yis is equivalent
to the likelihood of a binary response model with observations yis.

To include time-varying covariables for the population under risk in the dis-
crete cure model we just have to add a new column xi2 to the data structure.
While the value of the time-constant covariables is repeated for observation i
for each row, the values of time-varying covariables can change with each row of
the same observation i. In Table 2 the time-varying covariable “employment” is
added by xi2. If the person has a job at time t the value is one otherwise zero.
For example person 1 is unemployed at time t = 1 and gets hired at t = 2. At
time t = 3 person 1 is unemployed again.

1Note that this data structure may be adjusted for the need of the software which is used.
For example MRSP by Pößnecker (2019) requires that yi has always the length T and missing
values are filled up with NA. In this case y2 would be (0, 0, NA) and y3 = (0, NA,NA)
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i yi t = 1 t = 2 t = 3 xi1 = Age xi2 = Emp ti
1 0 1 0 0 20 0

t1 = 31 0 0 1 0 20 1
1 1 0 0 1 20 0
2 0 1 0 0 30 1

t2 = 2
2 0 0 1 0 30 1
3 0 1 0 0 55 0 t3 = 1

Table 2: Example for data structure with time-depending covariable

4 Illustrative Example: Criminal Recidivism

For illustration I use data about criminal recidivism, which is available in the
R-package RcmdrPlugin.survival by Fox and Carvalho (2012). The data was
generated within the scope of the “Transitional Aid Research Project” and des-
cribed by Rossi et al. (1980). The aim of this project was to reduce the recidivism
of prisoners and to examine the effect of financial aid. The data set used here
consist of 432 released prisoners, who were observed during one year after release.

We know for each week if the person has been rearrested or not, which leads
to 52 time points. Since there are not events at every time point, the time is
reduced to 49. Half of the convicts received financial aid. Other variables are the
age of the person at the time of release, the race (“black”, “others”), the marital
status (“married”, “not married”) and the level of education (“6th grade or less”,
“7th to 9th grade”, “10th to 11th grade”, “12th grade or higher”). Furthermore
it was reported if the convicts worked full-time before incarceration (“no”, “yes”),
if they were released on parole (“no”, “yes”) and the number of convictions prior
to the current incarceration. An overview of the available variables can be found
in Table 3 and Table 4.

Minimum 1st Quantile Median Mean 3rd Quantile Maximum

Age (at release) 17 20 23 25 27 44
Prior convictions 0 1 2 3 4 18

Table 3: Descriptive statistics of quantitative explanatory variables for the

recidivism data

First I will focus on a few important variables which are included in both parts
of the model. In Section 5 we will see how this model can be further improved
by using variable selection and smoothing techniques. Financial aid is one of the
main variables in this setting. If financial aid has a positive effect, one can assume
that it increases the probability of being cured and decreases the probability of
an event. If someone has enough money for his/her basic needs, it may be less
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Category observations Proportions (in %)

Financial aid No 216 50
Yes 216 50

Race Black 379 88
Others 53 12

Work experience No 185 43
Yes 247 57

Married Yes 53 12
No 379 88

On parole No 165 38
Yes 267 62

Education ≤6th 239 55
7-9th 24 6
10-11th 119 28
12th+ 50 12

Table 4: Descriptive statistics of discrete explanatory variables for the Recidi-

vism data

probable that the person commits a crime. Similar applies for work experience.
Someone, who has work experience, should be hired easier than someone without
any work experience. So the hypothesis is that work experience reduces the
probability of being arrested. In contrary the number of prior convictions may
increase the probability of being non-cured and the probability of an event after
release, since multiple offender may have more difficulties than first offender to
change their lifestyle. Finally, age is included to account for demographic effects.

The result of the model, which includes these variables, can be found in Ta-
ble 5. The standard errors are calculated by 600 bootstrap samples. Although
the same variables are used for both parts of the model the meaning is completely
different. The parameters in the upper part correspond with the probability that
the person is part of the non-long-term survivors. If the person received financial
aid the chance to be non-cured compared to be cured is reduced by the multi-
plicative factor exp(−0.2147) = 0.8068. Thus the probability to be long-term
survivor seems to be increased by financial aid. The number of prior convictions
shows a positive effect so that the more prior convictions someone has committed
the higher the probability of being non-cured. However, none of the estimates
are statistically significant, since all confidence intervals include zero, so that the
coefficients need to be interpreted with care.

In the lower part of the table the effects on the hazard function are displayed.
Positive values correspond with a higher (and earlier) risk of arrest while negative
values reduce the risk of recidivism. Here financial aid and prior work experience
seem to coincide with a lower risk of an event. The number of prior convictions
and a greater age seem to increase the probability of recidivism at any time t
compared to an event later than t. Although these effects are again statistically
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non-significant the results are consistent with the hypotheses.

Estimates BS.sd BS.2.5 BS.97.5

Intercept 0.1319 0.5188 -0.0753 1.4505

β̂

Financial aid: yes -0.2147 0.1312 -0.3167 0.1794
Age -0.0522 0.0240 -0.0538 0.0355
Work experience: yes 0.2426 0.2079 -0.1257 0.7782
Number prior convictions 0.1023 0.0556 -0.0154 0.1793
Financial aid: yes -0.1186 0.2605 -0.8841 0.1261

γ̂
Age 0.0154 0.0362 -0.1237 0.0306
Work experience: yes -0.9839 0.4536 -1.7538 0.1102
Number prior convictions 0.0412 0.0444 -0.0167 0.1615

Table 5: Model 1 - Estimates for recidivism. First group of estimates indicates

effects on being non-long-term survivor, second group indicates effects on the

event fall-back. BS.sd, BS.2.5, BS.97.5 refer to the bootstrap standard error and

the quantiles for 2.5% and 97.5%, respectively.

Figure 1 illustrates some parameter estimates. On the left hand side the effect
of “financial aid” and “work experience” is displayed in the two-dimensional space
of non-cured on the y axis and risk of an event on the x axis. The stars correspond
to 0.95 confidence intervals using the 2.5% and 97.5% quantiles of the bootstrap
samples. At the dashed lines no effect is found, because exp(0) = 1. Since each
confidence intervals cover this lines, it is easy to see that none of the effects
is statistically significant. However, since the effect of financial aid is in both
dimensions below 1, it indicates that there might be reduction of the chances in
both dimensions.

On the right hand side of Figure 1 the estimated effect of financial aid on the
survival function of the cure model is displayed. In this figure the variable work
experience is set to “no” and the other two variables to their median value of
23 for age and 2 for prior convictions. Thus financial aid increases the survival
function and leads to a higher survived proportion at the end of the study.

The discrete cure model is a very helpful tool to gain better insights in this
complex data situation and can be easily interpreted. In contrast to cure models
for continuous time the hazard can be always interpreted as probability. However,
there may be also some challenges. First the variable selection is an crucial point
and it might be difficult to decide which variables should be included in which
part of the model. Second the baseline hazard may need very much parameters
and may result in a quite rough function. Furthermore time points where no
event take place may cause difficulties in the estimation process since the corre-
sponding intercept should be minus infinity. All this issues can be addressed by
the proposed penalization technique in the next section.
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Figure 1: Illustration of parameters estimates in model 1

5 Penalization for Variable Selection and Smoothing

Penalization in discrete cure models can fulfill two main goals. First it is possible
to select variables in a data driven way. Usually it is not obvious which covariates
should be included in which part of the model. Using the proposed version of lasso
(Tibshirani, 1996) for cure models can solve this issue. Second penalization can
reduce the degrees of freedom concerning the intercepts. In discrete cure models
there are intercepts for each transition from time t to t + 1. This may result
in a large number of parameters which may not be necessary, in a quite rough
baseline function and in computational difficulties if no event take place. Thus
it is proposed to penalize the squared distances of two neighbouring intercepts.
The penalized likelihood is given by

lp(β,γ) = l(β,γ)− Jλ(β,γ),

where l(β,γ) denotes the unpenalized log-likelihood and Jλ(β,γ) a specific pen-
alty term.

Let the vectors βj and γj refer to the effect of j-th variable so that β =
(β1, . . . ,βg) and γ = (γ1, . . . ,γh). The corresponding vectors zi and xi are
partitioned into zi = (zi1, . . . ,zig) and xi = (xi1, . . . ,xih) such that each compo-
nents refer to a single variable. For example xij can represent for observation i all
dummy variables that are linked to the j-th variable. dfβj

and dfγj
are defined as

the number of parameters collected in the corresponding parameter vector βj and
γj, respectively. So if the j-th x-variable is marital status with the 4 categories
“single”, “married”, “divorced” and “widowed”, the length of xij and the degrees
of freedom dfβj

would be both 3. To ensure that the selection does not depend
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on the scale of the variables, all continuous and categorical variables need to be
standardized.

The proposed penalty term is given by

Jλ(β,γ) = λβ

g∑

j=1

√
dfβj

∥∥βj
∥∥
2

+ λγ

h∑

j=1

√
dfγj

∥∥γj
∥∥
2

(2)

+ λ0

t∗∑

t=1;s>t

∥∥γ0t − γ0s
∥∥2
2
. (3)

It consists of three summands connected to the parameters β of the mixture
weights, γ of the hazard function and γ0 = (γ01, . . . , γ0(t∗)) of the baseline hazard.
Each component posseses its own tuning parameter λβ, λγ and λ0, which regulate
the amount of shrinkage. ‖‖2 is the unsquared L2-Norm so that the penalty
enforces the selection of variables in the spirit of the group lasso (Yuan and Lin,
2006) rather than selection of single parameters. A large λ value corresponds
with large shrinkage, which may also lead to more parameters set to zero. On
the other hand a λ value closer to zero results in a an estimate closer to the
unpenalized ML-estimate with low shrinkage and less variable selection since less
parameter groups are set to zero.

The first two penalty terms are constructed to shrink and select variables for
the model components and refer to the values of each parameter vector. The aim
of the third penalty term is the smoothing of the baseline hazard so that this
term penalizes the squared distances of two neighbouring intercepts and not the
intercepts itself. This penalty term can be also defined by matrices, which leads
to

λ0

t∗∑

t=1;s>t

∥∥γ0t − γ0s
∥∥2
2

= λ0(R · γ0)T (R · γ0)

and with t∗ = 4 one obtains the following matrix:

R =



−1 1 0 0
0 −1 1 0
0 0 −1 1




An alternative strategy for smoothing the baseline hazard may be the use
of splines as illustrated for example by Berger and Schmid (2018). However,
using the squared distances is purely discrete and does not need any underlying
continuous assumption about time. Furthermore there is no limitation at the
borders of time space.

Since cross validation can be computational time consuming in mixture mo-
dels it is proposed to use AIC or BIC as selection criteria. To account for the
fit as well as for the complexity of the model it is necessary to define them in an
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appropriate way. Parameters, which are shrank should counted less than unpe-
nalized parameters, which is captured by the effective degrees of freedom. The
AIC and BIC are defined as

AIC(β̂, γ̂) = −2l(β̂, γ̂) + 2edf(β̂, γ̂),

BIC(β̂, γ̂) = −2l(β̂, γ̂) + log(n)edf(β̂, γ̂),

where edf(β̂, γ̂) is the effective degrees of freedoms of the cure model. For each
parameter set β̂ and γ̂ the effective degrees of freedoms are calculated separately
by

edf(β̂, γ̂) = edf(β̂) + edf(γ̂)

= 1 +

g∑

j=1

edf(β̂j) + edf(γ̂0) +
h∑

j=1

edf(γ̂j),

where 1 refers to the intercept β0 and edf(β̂j) to the effective degrees of freedom

of the j-th parameter group of β̂. edf(γ̂0) denotes the effective degrees of freedom
of the baseline and edf(γ̂j) to the j-th parameter group of γ̂. Following Yuan and
Lin (2006) the effective degrees of freedom of each parameter group are given by

edf(β̂j) = 1(‖β̂j‖2 > 0) + (dfβj
− 1)

‖β̂j‖2
‖β̂ML

j ‖2
,

edf(γ̂j) = 1(‖γ̂j‖2 > 0) + (dfγj
− 1)

‖γ̂j‖2
‖γ̂ML

j ‖2

edf(γ̂0) = 1 + (dfγ0 − 1)
(R · γ̂0)T (R · γ̂0)

(R · γ̂ML
0 )T (R · γ̂ML

0 )
,

The idea is to relate the penalized estimates to the unpenalied maximum
likelihood estimates (ML). For example, if the baseline parameters γ0 are not
penalized, γ0 and γML

0 will be identical, which lead to edf(γ̂0) = dfγ0 . If the
baseline parameters are penalized at most, the baseline hazard is almost constant
and only one degree of freedom remains. In general if a variable is not penalized
the edf are identical to dfβj

and dfγj
, respectively.

Since there are three independent tuning parameters there would be a three-
dimensional grid for selection the best combination of tuning parameters. Since
the smoothing is less crucial it can be recommended to fix λ0 at some medium
level to reduce the model complexity and computing time.
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6 Estimation

6.1 Construction of the log-likelihood

The likelihood of the discrete cure model can be derived from the unconditional
probability of the occurrence of an event

P (T = t|x) = λ(t|xi)
t−1∏

s=1

(1− λ(s|xi))

If an observation is not censored and no event is observed the contribution is
(1−λ(s|xi)) for at least ti−1 time points. If an event take place the contribution
is λ(t|xi). Using the information provided by yis (introduced in Section 3) the
likelihood of the discrete survival model of one specific observation i can be
written as

Ldisci =

ti∏

s=1

λ(s|xi)yis(1− λ(s|xi))1−yis

This likelihood is equivalent to the likelihood of a binary response model with
observations yis. As long as yis = 0 the contribution to the likelihood function is
1− λ(s|xi). If an event is observed λ(s|xi) is added to the log-likelihood. In the
cured population the probability of an event is zero so that the likelihood of the
long-term survivors can be simplified to2

LLTSi =

ti∏

s=1

0yis(1− 0)1−yis

The likelihood of the cure model combines LLTSi and Ldisci to

Li = π(zi)

(
ti∏

s=1

λ(s|xi)yis(1− λ(s|xi))1−yis
)

(4)

+ (1− π(zi))

(
ti∏

s=1

0yis11−yis

)

Note that this equation only holds for modelling the failure time. One could
also include the contribution of the censoring process itself as shown in Tutz and
Schmid (2016).

2Note that 00 := 1, 10 := 1 and log(0)→ −∞
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The complete log-likelihood for all observations is given by

lc(θ) =
n∑

i=1

(
log(π(zi)) + log

( ti∏

s=1

λ(s|xi)yis(1− λ(s|xi))1−yis
)

+ log(1− π(zi)) + log
( ti∏

s=1

0yis11−yis
))

=
n∑

i=1

(
log(π(zi)) +

ti∑

s=1

(
log
(
1− λ(s|xi)

)
+ yis log

( λ(s|xi)
1− λ(s|xi)

))

+ log(1− π(zi)) +

ti∑

s=1

(
yis log(0)

))

:=
n∑

i=1

(
log(π(zi)) + log(S(yi|xi)) + log(1− π(zi)) + log(SLTS(yi))

)
, (5)

where θ includes all parameters. lc(θ) can be estimated using the EM-algorithm
described in the next section. For readability reason only the last line is used for
the further description.

6.2 Estimation via EM-Algorithm

The EM-algorithm by Dempster et al. (1977) is used to estimate lc(θ) by treating
the unknown class membership as a problem with incomplete data. ζi denote the
unknown mixture component that indicate whether observation i belongs to the
non-cured population

ζi =

{
1, observation i is from the non-cured population
0, observation i is from the cured population

With equation 5 follows

lc(θ) =
n∑

i=1

(
ζi
{

log(π(zi))+log(S(yi|xi))
}

+(1−ζi)
{

log(1−π(zi))+log(SLTS(yi))
})

In case of penalization the proposed penalty terms are added to lc(θ). The
penalized log-likelihood is

lp(θ) =
n∑

i=1

(
ζi
{

log(π(zi)) + log(S(yi|xi))
}

+ (1− ζi)
{

log(1− π(zi)) + log(SLTS(yi))
})

− λβ
g∑

j=1

√
dfβj

∥∥βj
∥∥
2
− λγ

h∑

j=1

√
dfγj

∥∥γj
∥∥
2
− λ0

t∗∑

t=1;s>t

∥∥γ0t − γ0s
∥∥2
2
.
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If the estimation is not penalized, the penalty terms can be omitted.
Within the EM algorithm the log-likelihood is iteratively maximized by using

an expectation and a maximization step. During the E-step the conditional
expectation of the complete log-likelihood given the observed data y and the
current estimate θ(s) = (β(s),γ(s)),

M(θ|θ(s)) = E(lp(θ)|y,θ(s))

has to be computed. Because lp(θ) is linear in the unobservable data ζi, it is only
necessary to estimate the current conditional expectation of ζi. From Bayes’s
theorem follows

E(ζi|y,θ) = P (ζi = 1|yi,xi,θ)

= P (yi|ζi = 1,xi,θ)P (ζi = 1|xi,θ)/P (yi|xi,θ)

= πiS(yi|xi,θ)/{πiS(yi|xi) + (1− πi)SLTS(yi)} = ζ̂i.

This is the posterior probability that the observation yi belongs to the non-
long-term survivor component of the mixture. In general it is permitted that an
observation, for which an event is observed, might have a ζ̂i lower than one to
account for all possible data structures including events by mistake. However,
since the log-likelihood contribution of SLTS(yi) would be close to minus infinity
if an event take place this would occur very rarely and the algorithm usually
avoids to assign such values for observations with observed events.

For the s-th iteration one obtains

M(θ|θ(s)) =
∑n

i=1

{
ζ̂
(s)
i log(πi) + (1− ζ̂(s)i ) log(1− πi)

}

−λβ
∑g

j=1

√
dfβj
‖βj‖2

}
M1

+
∑n

i=1 ζ̂
(s)
i log(S(yi|xi))

−λγ
∑h

j=1

√
dfγj
‖γj‖2 − λ0

∑t∗

t=1;s>t

∥∥γ0t − γ0s
∥∥2
2

}
M2

+
∑n

i=1(1− ζ̂
(s)
i ) log(SLTS(yi))

}
M3

M1, M2 and M3 can be estimated independently from each other. The R-
package MRSP by Pößnecker (2019) contains functions to estimate M1 and M2

including the mentioned penalty terms. Not every package would be suitable
since the derivatives of M1 and M2 do not exist because of the group lasso penalty
term. This problem can be solved with the fast iterative shrinkage-thresholding
algorithm (FISTA) of Beck and Teboulle (2009) which is implemented in the
MRSP package and is used for the maximisation problem of β and γ. It can be
generally formulated as

θ̂ = argmax
θ∈Rd

lp(β,γ) = −argmin
θ∈Rd

lp(β,γ) = argmin
θ∈Rd

− l(β,γ) + Jλ(β,γ). (6)
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FISTA belongs to the class of proximal gradient methods in which only the un-
penalized log-likelihood and its gradient is necessary. A detailed description can
be found in Schneider et al. (2019). For given θ(s) one computes in the E-step

the weights ζ̂
(s)
i and in the M-step maximizes M(θ|θ(s)). The E- and M-steps are

repeated alternatingly until the relative tolerance

∣∣∣ lp(θ
(s+1))− lp(θ(s))

rel.tol/10 + |lp(θ(s+1))|
∣∣∣ < rel.tol

is small enough to assume convergence. λβ, λγ and λ0 span a three-dimensional
grid of tuning parameter space. Dempster et al. (1977) showed that under weak
conditions the EM algorithm finds a local maximum of the likelihood function.
Hence it is always advisable to use meaningful start values to find a good solution
of the maximization problem.

7 Illustrative Example: Penalization for Recidivism Data

Here I demonstrate, how the proposed penalization technique from Section 5
works and how it can improve the model of recidivism of prisoners. In Section 4
the chosen variables are used in both parts of the model. While most estimates
were in line with the hypotheses, none of them were statistically significant. Now
all those variables mentioned in Table 3 and 4 are included in the selection process.
In addition to the previous variables marital status, race, released on parole and
the level of education are available. The penalty terms ensure that only complete
variables can be chosen but not single categories of one variable. The tuning
parameter for the baseline hazard of the non-long-term survivor component λ0 is
set to 2, while the other two tuning parameters span a two-dimensional grid with
λβ and λγ range from 150 to 0.01 using 15 discrete values, respectively. λβ and
λγ are transformed by λ̃ = log(λ+ 1)) to obtain a logarithm scale.

Figure 2 shows the results of the selection process using 15× 15 = 225 tuning
parameter combinations. If λ̃β = λ̃γ ≈ 5 a pure intercept model is fitted. If both
tuning parameters are close to zero an almost unpenalized model is estimated.
The highest BIC values are detected in the corners of the graph in which at least
one λ̃ is close to zero. That implies that models where all available variables are
included in at least one component are not an appropriate choice according to
BIC. It is possible to detect a clear region of very low BIC values. The minimum
is found for λ̃β ≈ 2.48 and λ̃γ ≈ 1.89 at BIC = 1372.70. This is a strong reduction
compared to the unpenalized model 1 with BIC value of 1673.36.

To get more insights in the mechanism of the variable selection Figure 2 is
cut into slices and we look at the development of both coefficient sets β and γ.
For that matter one λ value is fixed at the chosen value while the other λ varies
from high penalty (5.02) to low penalty (0.01). Each line type in the coefficient
path represent one parameter group. In the first row of Figure 4 the γ estimates
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Figure 2: Criminal recidivism: Grid of λ values to find the best tuning para-

meter combination according to BIC

for the standardized covariates are displayed. In the second row the β coefficients
can be found and the last row contains the boxplots of the estimated π. On the
left hand side λ̃γ is set to 1.89 and λ̃β varies. On the right hand side λ̃β is fixed
at 2.48 and λ̃γ is changing.

Usually the lower the tuning parameter the more coefficients are different
from zero. But one should keep into mind that the estimates of β and γ are not
completely independent from each other. Looking at the left hand side of Figure 4
one can see that the γ estimates are quite unsteady although the corresponding
λ̃γ is fixed. But the mixture weights determined by the β coefficients change.
At λ̃β = 5.02 no β coefficient is selected and for all observations a constant π
around 0.38 is estimated. Then π increases to 0.53, before the first β coefficient is
selected and the weights become more and more individual specific. In this case a
high variation in the π boxplots can be seen as a higher individual differentiation
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which is desirable. However, each additional coefficient not only needs to improve
the model fit but also reduces the BIC value to be selected. Thus the BIC is used
to find a trade-off between model fit and number of parameters.

On the right hand side of Figure 4 λ̃β is fixed and λ̃γ varies. Here the weights
π and β coefficients are almost constant. At the time when “not married” is
selected in the γ part of the model two β coefficients are set to zero. Thus the
interdependence works in both ways.

Since the graph illustrates the coefficient paths for the standardized covari-
ates, we can also compare the absolute values of the estimates. In case of the
β coefficients at the left hand side of Figure 4 it is obvious that age and “prior
convictions” are the first parameters which are selected. At λ̃β ≈ 2.48 the para-
meter “financial aid” is the smallest one out of the three coefficients. Thus age
and “prior convictions” have a stronger impact than “financial aid”. On the right
“work experience” seem to have the greatest effect in the γ dimension followed
by “not married”.

Penalized Refit
Covariates Non-LTS(β) Hazard(γ) Non-LTS(β) Hazard(γ)

Constant 0.0075 0.1067
Financial aid: yes -0.1543 -0.2857

Age -0.0410 -0.0477
No prior convictions 0.0556 0.1064

Work experience: yes -0.6216 -0.8843
Married: No 0.5461 0.9952

Table 6: Comparison of penalized and upenalized coefficients of the cure model

for recidivism data

Covariates Estimates BS.sd BS.2.5 BS.97.5

Constant 0.1067 0.3518 0.0323 1.3252

β̂
Financial aid: yes -0.2857 0.2667 -0.9565 0.1124

Age -0.0477 0.0202 -0.0939 -0.0162
Number prior convictions 0.1064 0.0607 0.0291 0.2550

Work experience: yes -0.8843 0.3422 -1.4758 -0.0793
γ̂

Married: No 0.9952 0.4367 0.1772 1.8567

Table 7: Model 2: Refit of the cure model for recidivism data with penalized

intercepts

Table 6 gives the estimates of the selected model. For β only “financial aid”,
age and “prior convictions” are selected. “Work experience” and “not married”
are chosen for modeling the hazard. It is an coincidence that in this case none
of the variables is selected in both parts of the model. The first two estimation

16



columns show the penalized estimates while the last two column contain the
unpenalized estimates of the refit. The disadvantage of penalized estimates is that
they are not unbiased but on the other hand they may lead to a smaller variance.
Usually the unpenalized absolute estimates for one parameter group are larger
than the penalized. However, if someone wants to have traditional standard errors
and confidence intervals, it is plausible to refit the model without penalization to
obtain unpenalized estimates and to be able to calculate standard errors. Table 7
contains the unpenalized estimates with Bootstrap standard errors and confidence
intervals. They are obtained by 600 non-parametric samples of the data. Someone
should keep into mind that these Bootstrap results ignore the model search and
that the intercepts γ0 are not displayed but their differences are still penalized.
Now all coefficients are statistically significant to 5% level except of “financial
aid”. I would recommend to use the calculated bootstrap confidence intervals
determined by the 2.5% and 97.5% quantiles of the bootstap distribution, because
according to my experience the sampled distributions are often very skewed and
the estimated coefficient value do not need to be in the middle of the sampled
distribution. If this interval contains zero the corresponding coefficient is non-
significant to the level 5%, which only applies for “financial aid”.

The interpretation of the coefficients is the same as in Section 4. Age and
financial aid reduce the probability to be non-cured while the number of prior con-
victions increase the probability. If someone is married and has work experience
the probability of an event in the non-cured population is reduced.

0 10 20 30 40 500.
00

0.
05

0.
10

0.
15

0.
20

Weeks

(B
as

el
in

e−
)H

az
ar

d

0 10 20 30 40 500.
00

0.
05

0.
10

0.
15

0.
20

Weeks

(B
as

el
in

e−
)H

az
ar

d

Figure 3: Criminal recidivism: Comparison of the baseline hazard of the unpe-

nalized model and the refitted penalized model

Finally Figure 3 illustrates the effect of smoothing the baseline by penalizing
the difference between neighbouring intercepts. On the left the baseline hazard
of the unpenalized model is displayed. It is a quite rough function with many ups
and downs. On the right the penalized hazard baseline is shown, which is much
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smoother, but keep the nature of the original function at the same time. The
tuning parameter for smoothing can be enlarged to get a even smoother curve.

The proposed penalization technique could improve the original model sub-
stantially and results in an easy-to-interpret model.
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Figure 4: Criminal recidivism: Standardized coefficient paths of β and γ and

π for fixed λγ (left) and fixed λβ (right) in the cure model
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8 Application: Breast Cancer

Breast cancer is the most common cancer for women in developed countries. The
average risk for a American woman to develop breast cancer sometime in her life
is around 12% (see Akram et al., 2017). Thus, it is extremely relevant, which
variables may be associated with being a long-term survivor from breast cancer
and how variables are associated with the survival time of the patients. I use data
of the SEER data base and the proposed methods to evaluate these questions.

SEER is the “Surveillance, Epidemiology, and End Results” Program (www.
seer.cancer.gov), which collects information on cancer in the U.S. population
on an individual basis. The time from diagnosis to death from breast cancer in
years is given and I draw a random sample of 6, 000 breast cancer patients who
entered the SEER data base between 1997 and 2011 (using SEER 1973 − 2011
Research Data, version of November 2013). Since only the time span matters, the
year of diagnosis can vary between the persons. The observed time may be also
right-censored, when an event has not been observed (yet). Furthermore only
female patients, younger than 76 years with first malignant tumor and without
distant metastases were included so that there is a realistic chance to be a long-
term survivor. Events can take place from the first until the 15th year.

Minimum 1st Quantile Median Mean 3rd Quantile Maximum

Age at diagnosis (years) 18 48 56 56 64 75
Tumorsize (mm) 1 10 16 21 25 230

Number examined nodes 1 3 7 9 14 57

Table 8: Descriptive statistics of quantitative explanatory variables for the

breast cancer data (SEER)

Table 8 and 9 shows the covariates, which might be selected. Most of the
variables are related to the medical data. The primary site denotes where the
breast cancer was found. The most frequent locations are C504 which is the
upper outer quadrant of the breast and C508 which is the overlapping lesion of
breast. The tumor grade specifies how well the tumor can be differentiated from
healthy cells ranging from “well” over “moderately” to “poorly”. It is known
which radiation therapy and in which order was applied. Then it is reported how
many lymph nodes were examined and how many positive lymph nodes were
found. The latter variable has four categories: None, one to three, four to six
and seven or more positive lymph nodes. The T-stage variable classify the tumor
according to AJCC 6th in four categories relying mainly on the size of the tumor
and its extension. Further variables are the hormone receptor status (positive or
negative) of estrogen (ER) and progesterone (PR), the laterality (right or left),
the tumorsize (in mm), the age at diagnosis (in years), the race (white, black,
others) and the marital status (single, married, separated, divorced, widowed).
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Category Observations Proportions (in %)

Marital status single 803 13
married 3898 65
separated 50 1
divorced 717 12
widowed 532 9

Race white 4836 81
black 536 9
others 628 10

Primary Site C500 areolar 27 0
C501 subareolar 289 5
C502 Upper inner 718 12
C503 Lower inner 356 6
C504 Upper outer 2201 37
C505 Lower outer 437 7
C506 Axillary tail 41 1
C508 Overlapping lesion 1203 20
C509 Entire breast 728 12

Laterality right 2877 48
left 3123 52

Tumor Grade 1 well 1300 22
2 moderately 2569 43
3 poorly 2131 36

Radiation therapy 1 None 2106 35
2 Beam 3715 62
3 Implants 82 1
4 Combinations 42 1
5 Other 55 1

Radiation Sequence 1 None 2170 36
2 Other 37 1
3 Rad. after surgery 3793 63

ER status positive 4760 79
negative 1240 21

PR status positive 4241 71
negative 1759 29

Number positive nodes 0 4018 67
1-3 1416 24
4-6 274 5
7+ 292 5

T-Stage I 3922 65
II 1701 28
III 281 5
IV 96 2

Table 9: Descriptive statistics of discrete explanatory variables for the breast

cancer data (SEER)
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Figure 5: Breast cancer: Grid of λ values to find the best tuning parameter

combination according to BIC

Figure 5 shows the result of the grid search for 15 × 15 tuning parameter
combinations. On the left the surface is illustrated and on the right the corre-
sponding contour plot. As in the illustrative example the tuning parameter for
the baseline hazard is fixed at 2. The transformed tuning parameters for the
other two dimensions λ̃ = log(λ + 1) vary between 5.02 (high penalty) and 0.01
(low penalty). Including all variables in both parts of the model using a very
low penalty leads to the highest BIC displayed in the right corner of the surface
in Figure 5. But also using a very high penalty for both dimensions (left corner
of the surface) does not lead to a desirable result. Although both tuning para-
meters are important to find the lowest BIC value, a too low λ̃β leads to higher
BIC values regardless of λ̃γ. Thus specifying the probability of being a long-term
survivor seems to be more relevant.

The lowest BIC was found at 4525.62 with the tuning parameters λ̃β ≈ 2.66
and λ̃γ ≈ 2.87. After selecting the variables the model was refitted using only
a penalized baseline, but no penalization term for the other coefficients. The
parameter estimates of this refitted model are displayed in Table 10. The boot-
strap confidence intervals rely on the bootstap 2.5% (BS.2.5) and 97.5% (BS.97.5)
quantiles of 600 non-parametric bootstrap samples. Note that these bootstrap
samples do not account for the selection process since only the selected variables
are included.

The result of the proposed variable selection is a selection of only 20 out of
68 possible coefficients related to covariates. Moreover it can be decided which
covariate effects the probability of being a non-long-term survivor captured by
β, which covariate is important for the occurrence of an event modeled by γ and
which covariates are necessary in both components. Here only the race and the
number of positive nodes are selected for modeling non-LTS. The tumor grade,
size of tumor and T-stage are chosen in both components and the laterality, ER
and PR status are only chosen for the event occurrence.

Positive estimates in the upper part of the table are related with an increase
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Covariates Estimates BS.sd BS.2.5 BS.97.5

Constant -2.7980 0.1133 -3.0630 -2.6120

β̂

Race: Black 0.3157 0.0928 0.1446 0.5036
Race: Others -0.4800 0.0857 -0.6744 -0.3351

Number of pos. nodes: 1-3 0.5516 0.0938 0.3994 0.7743
Number of pos. nodes: 4-6 0.9564 0.1524 0.7339 1.3237
Number of pos. nodes: 7+ 1.8370 0.1791 1.5765 2.2828

Tumor Grade: II 0.1317 0.1069 0.0243 0.4291
Tumor Grade: III 0.5968 0.1012 0.4458 0.8494

Size of tumor 0.0141 0.0031 0.0076 0.0197
T-Stage: II 0.2178 0.0712 0.0688 0.3496

T-Stage: III -0.1057 0.0875 -0.2926 0.0533
T-Stage: IV 0.5393 0.1146 0.3595 0.8198

Tumor Grade: II 0.3625 0.2727 -0.1719 0.8821

γ̂

Tumor Grade: III 0.9388 0.2791 0.4019 1.4753
Size of tumor 0.0051 0.0057 -0.0022 0.0204

T-Stage: II 0.3293 0.1640 -0.0188 0.6223
T-Stage: III 0.5239 0.4156 -0.5143 1.1599
T-Stage: IV 1.4500 0.3698 0.6414 2.2179

Laterality: Left 0.3762 0.1279 0.2050 0.7069
ER status: negative 0.8662 0.1617 0.4472 1.0762
PR status: negative 0.5684 0.1485 0.3306 0.8956

1− π̄ 0.8498 0.0066 0.8313 0.8571

Table 10: Parameter estimates of the refitted cure model for breast cancer.

Only the baseline is penalized. The standard errors and confidence intervals are

obtained by bootstrap samples

of the probability of being a non-LTS and in the lower part with an increase of
the probability of an event namely death by breast cancer. Thus the number
of positive nodes have an positive effect of being a non-LTS. The more positive
nodes are found the higher the probability that the person is non-cured. If one
to three nodes are positive the chance to be non-LTS compared to be LTS is
increased by the factor exp(0.5516) = 1.74 compared to patients without positive
nodes. If the number of positive nodes are seven or more the multiplicative factor
is with exp(1.8370) = 6.28 much higher. Compared to white ethnic black people
have a higher chance of being non-LTS while “others” have a lower chance.

Figure 6 illustrates the effect of tumor grade and T-stage in both dimensions.
On the y axis the effect of being non-LTS is marked. The x axis shows the effect
of an event. Generally the higher the category of tumor grade and T-stage the
higher the chances in both dimensions. The only exception is tumor grade III
which reduce the chance of non-LTS compared to tumor grade I. However the
main driven factor of the T-stages categories I to III is the size of the tumor so
that the negative effect of T-stage III can be compensated to some extend by the
effect of tumorsize. The highest category of T-stage and tumor grade show the
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strongest effects in both dimensions.
If the cancer is detected on the left the chance of the event “death by breast

cancer” at time t (compared to an event death by breast cancer later than t) is
increased by exp(0.3762) = 1.46 compared to laterality right. One reason may be
that it is more difficult to treat cancer on the left side since the cancer is closer
to the heart so that the radiation therapy for example need to be applied with
more care than on the right. The negative status of both hormone receptors ER
and PR increase the risk of the event, too. As long as the status of one of the
hormone receptors is positive, it is possible to use drugs to fight the cancer. If the
status is negative, hormone therapy does not work. The so called triple-negative
breast cancers are defined by negative ER, PR and HER2. This type of cancer
usually grows and spreads faster than other types of breast cancer and hormone
therapy can not be applied. Because HER2 is only reported for observations from
the year of diagnosis of 2010 onwards, the parameter could not be considered in
this application.

According to the model the best chances of belonging to the long-term survivor
group have patients with no positive lymph nodes, a very small tumor, which can
be well differentiated from healthy cells and with ethnicity which is neither black
or white. If the person does not belong to the long-term survivors the best
survival chances are estimated for patients with a small tumor, which can be well
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differentiated from healthy cells, located at the right hand side and characterized
by a positive ER and PR status. However, one should keep in mind that these
results are not based on a randomized trial.
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0.
0

0.
2

0.
4

0.
6

0.
8

λ~β

π

5.02 3.59 3.03 2.48 0.71
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Figure 7: Breast cancer: Standardized coefficient paths of β and γ and π for

fixed λγ (left) and fixed λβ (right) in the cure model

Figure 7 illustrates the standardized coefficient paths for this model. Since
there are two varying tuning parameters it is necessary to introduce some con-
straints. On the left the coefficient paths are displayed when λ̃γ is hold constant
at 2.87. On the right λ̃β is fixed at 2.66 and λ̃γ varies. The first row contains
the estimates of γ, the second the estimates of β and the last one the boxplots
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of π. Each line type correspond with one covariable which can consist of more
than one coefficient as T-Stage for example. On the left the effect of entering
β coefficients is remarkable. At λ̃β = 3.42 some β coefficients enter the model
so that the median π drops dramatically. From there on the π are calculated
for each observation individually. The values of γ coefficients change as well at
this point although λ̃γ is kept constant. The estimated weights defined by β may
have a strong influence on the γ estimates. On the right hand side λ̃β is fixed
and λ̃γ varies. Here the effect of changing γ has less effect on β because γ has
no direct relation to π which stay almost constant. However, it can be seen that
the values of γ and β sometimes change the sign or become smaller with smaller
penalty. This might be caused by inter dependencies between γ and β or by the
data structure, when covariates influence each other by correlation.

9 Identifiability

Identifiability of cure models for continuous time was shown by Li et al. (2001)
and Hanin and Huang (2014). It is assumed that there are at least three discrete
time points (t ≥ 3) and there is an effect γ 6= 0 of a continuous covariate x. Let
the cure model be represented by two parameterizations

πβS(γ0t + xTγ) + (1− πβ) = πβ̃S(γ̃0t + xT γ̃) + (1− πβ̃)

There are values δ0r, δ such that γ̃0r = γ0r+δ0r, γ̃ = γ+δ. With ηr(x) = γ0r+xγ
one obtains for all x and r

πS(ηr(x))− π̃S(ηr(x) + δ0r + xδ) = (π − π̃).

Let us consider now the specific values xz = −γ0r/γ + z/γ yielding for all values
z and r

πS(z)− π̃S(z + δ0r + xzδ) = (π − π̃).

By building the difference between these equations for values z and z − 1 one
obtains for all values z

π(S(z)− S(z − 1)) = π̃(S(z + δ0r + xzδ)− S(z − 1 + δ0r + xzδ)).

The equation has to hold in particular for values z = 1, 2, . . . . Since the logistic
distribution function F (η) = exp(η)/(1 + exp(η)) is strictly monotonic and the
derivative is different for all values η it follows that δ0r = δ = 0 and π = π̃.

10 Concluding Remarks

It has been shown that the discrete cure model can be used to model heterogeneity
which arises from long-term survivors and patients at-risk in a discrete time
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setting. In the discrete survival analysis the hazard can be always interpreted
as probability which makes any interpretation more intuitive. The instabilities
of the model as no event occurrence at a certain time point or the number of
parameters to estimate a rather rough baseline hazard can be overcome by the
proposed penalization techniques. Furthermore it is possible to carry out variable
selection so that there is a data driven way to decide which variable should be
included in which part of the model. The variables can be chosen for one of
the model components as well as for both model components. The proposed
methods show stable and easy-to-interpretate results in the applications. Thus it
is possible to reduce the number of coefficients substantially and evaluate which
covariates are associated with long-term survivors and the event of risk.

In case of breast cancer patients with no positive lymph nodes, a very small
tumor, which can be well differentiated from healthy cells and with ethnicity
which is neither black or white have the best chances to belong to the long-term
survivors. The best survival chances in the group of non-LTS are estimated for
patients with a small tumor, which can be well differentiated from healthy cells,
located at the right hand side and characterized by a positive ER and PR status.

However, further research is necessary to evaluate the effect of the smoothing
parameter on the general results and to develop computational efficient bootstrap
samples which take the model search into account. In general, discrete cure
models are the appropriate method, if the time is discrete and if there are two
subgroups where one is characterized as long-term survivors.

Acknowledgements: Thanks to Gerhard Tutz and Paul Fink for fruitful discussions.
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