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ABSTRACT

Jingxiang Chen: Machine Learning Techniques for Heterogeneous
Data Sets

(Under the direction of Yufeng Liu and Michael R. Kosorok)

Over the past few decades, machine learning tools are under rapid development in various

application fields to support statistical decision making. In this dissertation, we aim at

investigating new supervised machine learning techniques which can contribute to analysis of

complex datasets.

First, we discuss a new learning method under Reproducing Kernel Hilbert Spaces (RKHS)

to achieve variable selection and data extraction simultaneously. In particular, we propose

a unified RKHS learning method, namely, DOuble Sparsity Kernel (DOSK) learning, to

overcome this challenge. We prove that under certain conditions, our new method can

asymptotically achieve variable selection consistency. Numerical study results demonstrate

that DOSK is highly competitive among existing approaches for RKHS learning.

Second, we study on how machine learning can be applied to heterogeneous data analysis

by detecting an optimal individual treatment rule for the ordinal treatment case. One of

the primary goals in precision medicine is to obtain an optimal individual treatment rule

(ITR). Recently, outcome weighted learning (OWL) has been proposed to estimate such an

optimal ITR in a binary treatment setting by maximizing the expected clinical outcome.

However, for the ordinal treatment settings such as dose level finding, it is unclear how to use

OWL. We propose a new technique for estimating ITR with ordinal treatments. Simulated

examples and an application to a type-2 diabetes study demonstrate the highly competitive

performance of the proposed method.

Third, we also focus on analyzing the heterogeneous data but in a different point of view.
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In particular, we develop a new exploratory machine learning tool to identify the heterogeneous

subpopulations without much prior knowledge. To achieve this goal, we formulate a regression

problem with subject specific regression coefficients and use adaptive fusion to cluster the

coefficients into subpopulations. This method has two main advantages. First, it relies on

little prior knowledge on the underlying subpopulation structure. Second, it makes use of the

outcome-predictor relationship and hence can have competitive estimation and prediction

accuracy. To estimate the parameters, we design a highly efficient accelerated proximal

gradient algorithm. Numerical studies show that the proposed method has competitive

estimation and prediction accuracy.
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CHAPTER 1: INTRODUCTION

Over the past few decades, machine learning tools are under rapid development in various

application fields to support statistical decision making. Covering a board range of methods,

machine learning contains but is not limited to supervised learning, unsupervised learning,

semi-supervised learning, and reinforcement learning. In particular, when each observation

in the data set has at least one response variable, This type of problems is often referred

to as supervised learning. Typical examples of supervised learning include regression and

classification. On the other hand, when there are no response variables, the goal is often to

study the intrinsic pattern of predictors. This group of learning techniques are often called

unsupervised learning, which include principal component analysis and clustering, among

others, as special cases. When some observations have responses and some do not, it is

often named semi-supervised learning. In dynamic systems, sometimes the goal is to train

a machine that can determine the ideal behavior within a specific context to maximize its

performance according to the feedback from the environment. This group of learning methods

is called reinforcement learning. See Hastie et al. (2011), Chapelle et al. (2006), and Sutton

and Barto (1998) for a comprehensive review. However, there can still be some cases that

remain unclear on how to be categorized. For example, Wei and Kosorok (2013) introduced

a new category named latent supervised learning, which aims to identifying the subgroup

structure at the cases when the underlying group labels remain unmeasured and can only be

induced from a surrogate outcome and predictors.

Overall speaking, many of the machine learning methods aim at solving certain statistical

problems by formulating them into machines, each of whose cores includes one or a series

of optimization problems. Training such a machine is actually the process of implementing

certain numerical algorithm to solve the corresponding optimization problem that depends
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on certain training datasets. In many cases, such optimization problems consist of two

components: the loss term and the penalty term. The loss term is usually used to achieve the

goal of fitting, such as the quadratic loss under least squares estimate, the check loss under

quintile regression, and the hinge loss under support vector machines. The penalty term is

used to pursue alternative learning goals such as the L1 penalty for variable selection, L2

penalty or group lasso penalty for grouping effect, and fusion penalty for sparsity of coefficient

differences. In addition, many penalty terms in nonparametric models, such as kernel learning

and smoothing splines, can be used to prevent overfitting by control the model complexity.

In this thesis, the primary focus is to investigate on how machine learning techniques can

contribute to analysis of complex datasets, with special interest in heterogeneous datasets.

1.1 Double Sparsity Kernel Learning

Recent advances in technology have enabled scientists to collect massive datasets with high

dimensions. For example, in online movie evaluation systems, the data sets can contain rating

information from millions of users on thousands of movies. Extracting knowledge from such

large data sets poses unprecedented challenges to existing learning techniques. To overcome

new difficulties in mining big data sets, in the last few decades, many methodologies have

been proposed in the machine learning literature. In the first part, we focus on supervised

learning with one response variable. In particular, the learning goal is often to train a function

using a training data set, such that for new observations, one can use this function to predict

the unobserved responses. See Hastie et al. (2011) for a comprehensive review of supervised

learning techniques.

For many applications in supervised learning, appropriate variable selection is very

important to the prediction performance of the estimated function. In particular, for real

data sets, many predictors do not contain useful information with respect to the response.

Hence, these redundant predictors should be excluded when we make further prediction.

For instance, in classification problems, Fan and Lv (2008) showed that prediction using all

variables may behave similarly to random guessing, due to the noise accumulation. How to

2



perform variable selection has drawn much attention in the literature. Traditional methods

for variable selection include forward and backward selections, among others. Recently,

model fitting using sparse regularization has become very popular in the learning framework.

The corresponding optimization problems of these techniques are equivalent to minimizing

objective functions in the loss + penalty form. The loss term measures the goodness of fit

of the estimated function, and the penalty term aims to select important variables in the

learning problem, which further controls the complexity of the function space to prevent

overfitting.

For different learning tasks, one uses different loss functions. For example, in least squares

regression, one uses the squared error loss, and in standard Support Vector Machines (SVM,

Boser et al., 1992), we use the hinge loss. For the penalty term, the choice depends on the

corresponding functional space. In particular, if the response depends on the predictors

linearly, linear learning should be used. Otherwise, one can employ various nonlinear learning

methods such as splines (De Boor, 2001) in regression. In this paper, we focus on learning in

Reproducing Kernel Hilbert Spaces (RKHS, Aronszajn, 1950; Kimeldorf and Wahba, 1971).

This is a very general setting, and many nonlinear learning techniques can be regarded as

special cases of RKHS learning. For example, it covers penalized linear regression, additive

spline models with or without interactions, and the entire family of smoothing splines. RKHS

learning has been extensively used in the literature, and has achieved great successes. See,

for example, Schölkopf and Smola (2002), Shawe-Taylor and Cristianini (2004a), and Hastie

et al. (2011).

For linear learning, variable selection with sparse regularization has been extensively

studied. See, for example, Tibshirani (1996), Fan and Li (2001), Zou and Hastie (2005),

Wu et al. (2009), Zhang (2010), Fan and Lv (2010), and the references therein. For RKHS

learning, however, the problem of variable selection has received much less attention. In the

literature, Guyon et al. (2002) suggested an extension of variable selection from linear learning

to kernel learning using the Recursive Feature Elimination (RFE) approach. Lin and Zhang

3



(2006) developed the Component Selection and Smoothing (COSSO), and proposed to use

the sum of component norms as the sparse penalty, instead of the squared norm penalty in

standard RKHS learning. Zhang et al. (2011) proposed a structure selection method that can

automatically determine whether the signal for one predictor is linear or nonlinear. Recently,

Allen (2012) developed an interesting framework of variable selection in RKHS learning. In

particular, Allen (2012) imposed a weight on each predictor, and proposed to train the model

with a sparse penalty on the weight vector. When a fitted weight is zero, the corresponding

predictor is regarded as unimportant in the learning problem, and is removed from further

analysis. Allen (2012) provided the Kernel Iterative Feature Extraction (KNIFE) algorithm

to solve the corresponding optimization.

Despite the current progress in variable selection for RKHS learning, many challenges

remain. First, theoretical properties of sparse penalties in linear learning have been well

studied in the literature. For example, Fan and Li (2001) and Zou (2006) proved the oracle

property of their proposed methods, and Zhao and Yu (2006) showed selection consistency for

LASSO problems. In contrast, theoretical properties of existing variable selection approaches

for RKHS learning are much less developed. In particular, it is desirable to explore conditions

under which one can have consistency for kernel variable selection. Moreover, Allen (2012)

proposed to use the standard squared norm penalty on the learning function to avoid

overfitting, besides the sparse penalty on the variable weight vector. However, as Zhang

et al. (2015) pointed out, this approach uses all observations to represent the fitted function.

This can lead to suboptimal prediction performance as the underlying function can be well

approximated by a data sparse representation in the dual space (see Zhang et al., 2015, and

Section 2.2.2 for more details). Therefore, it can be beneficial to have a regularization method

that can automatically select data points for RKHS learning. To circumvent this difficulty,

Zhang et al. (2015) proposed a data sparsity constraint for data extraction. However, Zhang

et al. (2015) did not consider the problem of kernel variable selection, and the data sparsity

method can have suboptimal performance when there are noisy covariates. Therefore, it is
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desirable to design a new method that can perform variable selection and data extraction

simultaneously. Motivated by the two dimensions of redundancy, Chapter 2 of this thesis

aims to develop a machine learning technique, named double sparsity kernel learning, that

can perform both variable selection and data extraction simultaneously.

1.2 Generalized Outcome Weighted Learning

In clinical research, precision medicine is a medical paradigm that promotes personalized

health care to individual patients. Its recent development originates from the fact that

treatment effects can vary widely from subject to subject due to individual level heterogeneity.

For example, Ellsworth et al. (2010) found that women whose CYP2D6 gene has a certain

mutation state are not able to metabolize Tamoxifen efficiently, and this makes them an

improper target group for this therapy. In this way, one of the primary goals for precision

medicine is to establish rules so that patients level characteristics can be used directly to

find optimal treatments (Mancinelli et al., 2000). Recent literature indicates that statistical

machine learning tools can be useful in building such rules. However, the primary focus

has been on the binary treatment case, and the ordinal setting has not been fully explored.

Ordinal treatments are commonly seen in practice. For example, some drugs for the same

disease can be ranked by their medicinal strengths and multiple doses of the same treatment

can be ranked by the dose level. However, the dose-response relationship is usually discussed

from a population perspective in practice (Robins et al., 2008). In precision medicine, it

is desirable to pursue the dose level that is best suited for each individual patient. In this

paper, we develop a statistical learning model which can properly handle optimal treatment

detection for both binary and ordinal treatment scenarios.

Various quantitative methods have been proposed in the statistical learning literature to

estimate ITRs. For example, one group of methods aims to construct interpretable results

by using tree-based methods to explore heterogeneous treatment effects (Su et al., 2009;

Laber and Zhao, 2015). Another group of methods focuses on establishing a scoring system

to evaluate patients’ benefits from certain treatments (Zhao et al., 2013). However, these
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two groups of methods do not propose any optimization function from which the optimal

treatment solution can be found. As an alternative, Qian and Murphy (2011) proposed a

value function of the average reward that patients receive from their assigned treatments so

that the rule discovery process is transformed into an optimization problem. Zhang et al.

(2012) developed inverse probability of treatment weights to robustly estimate such value

functions, and Zhao et al. (2012) proposed outcome weighted learning (OWL) to transform

the rule detection problem into a weighted classification problem. In particular, the OWL

approach uses a hinge loss function to replace the original 0-1 loss function in Qian and

Murphy (2011), and thus the corresponding computation becomes feasible. Recently, Chen

et al. (2016) adjusted OWL to continuous dose cases to find the best dose.

Although Zhao et al. (2012) proposed a smart idea on how the ITR can be estimated,

there are still some challenges in practice. The first challenge is that OWL’s ITR estimate

might be suboptimal when some patient rewards are less than zero. In this setting, a global

minimization of the loss function cannot be guaranteed since the objective function is no

longer convex. If one chooses to manually shift all of the rewards to be positive, the estimated

ITR tends to retain what is actually assigned (Zhou et al. (2017)). This phenomenon can

become more severe when the sample size is small and the covariate dimension is large.

To alleviate this problem, Zhou et al. (2017) recently proposed residual weighted learning.

However, their resulting object function is non-convex, and consequently, global minimization

is still not guaranteed.

When we have multiple ordinal treatments, it would be useful to extend the objective

function of OWL to solve the ITR estimation problem. Under this case, direct extensions

of binary OWL may not work well because it ignores how different the actual assigned

treatment is from the optimal treatment. This can lead to information loss. An ordinal

treatment, a categorical treatment with a defined order to its categories, can be different

from nominal treatment and continuous dose in precision medicine. On one hand, an ordinal

treatment can give more restrictions on treatment effect estimate when compared with nominal
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treatments; on the other hand, it is not appropriate to simply consider an ordinal treatment

as a continuous variable because the labels do not contain information about difference scales

between each two treatment levels. In that case, the discussion remains valuable that how

to extend the objective function of OWL to solve the ITR estimation problem for ordinal

treatments. Such an extension is non trivial in practice. This is because the objective function

of standard OWL maximizes the average reward by adjusting only the observations where

the optimal treatment is identical to the actually assigned treatment. In other words, it

ignores how different the actual assigned treatment is from the optimal treatment, which

leads to information loss. Several methods have been proposed to consider such differences

among treatments. In the literature of standard ordinal classification, one idea in statistical

learning is the data duplication strategy introduced by Cardoso and Pinto da Costa (2007).

This strategy borrows the idea from proportional odds cumulative logistic regression, which

restricts the estimated boundaries not to cross with each other. Furthermore, the ordinal

response is relabeled as a binary variable and duplicated in the covariate data to generate a

higher dimensional sample space. Then, an all-at-once model is fitted in the transformed

sample space to produce a corresponding ranking rule for the original response. Although such

data duplication methods are shown to be effective in solving complex ordinal classification

problems, it remains unclear how this idea can be utilized in OWL to help find the optimal

ITR among multiple ordinal treatments. In the second part of the thesis, we propose a new

method called generalized outcome weighted learning (GOWL), which aims to fill the gap of

how to use OWL for ordinal treatments.

1.3 Latent Supervised Clustering

Except for estimating the ITR, another goal of precision medicine is to identify the

heterogeneity in the population and achieve subpopulation detection. Recently, various

machine learning methods have been introduced and applied to investigate on this problem.

In supervised learning field, linear regressions with two-way interactions between predictors

are widely used but are restricted to certain parametric assumptions, such as that the
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underlying heterogeneity is determined by those interactions (Greenland (2009)). Besides,

some nonparametric methods such as random forest are also popular in literature while the

results remain less interpretable in practice (Wager and Athey (2015)). In addition, there are

also numerous studies on unsupervised learning field in which clustering analysis can be a

good representative. Clustering analysis is commonly used to detect the similarity of features

that can lead to underlying subpopulation structures such as producing the heatmaps for

gene expression results (Perou et al. (2000)). Some traditional clustering methods, such as

hierarchical clustering, enjoy the benefit of weak parametric assumptions on the features and

also does not require the number of clusters to be specified ahead of time. Recently, Guo

et al. (2010) , Hocking et al. (2011) and Chi and Lange (2015) suggested a new clustering

method named convex clustering to formulate clustering as a convex optimization problem

via pairwise fusion penalty. The algorithm they proposed tremendously boosted the efficiency

of the clustering process especially for large data sets. However, such unsupervised machine

learning tools can produce meaningful and desirable results only when the subpopulations

are determined by the features alone. In practice, the subpopulation identification can also

heavily depend on the outcomes or even the relationship between outcomes and predictors,

as many examples show in precision medicine that aim to detect the targeted subpopulations

of certain drugs.

Other than supervised learning and unsupervised learning, Wei and Kosorok (2013) recently

introduced a new category of machine learning methods named latent supervised learning to

relax the parametric assumptions while keep interpretability in the supervised learning tools

as mentioned previously. This category of methods assumes that each observation corresponds

to an unobserved index label, i.e. the latent outcome, which identifies the subpopulation that

it belongs to and also determines the underlying distribution of the observed outcome when

adjusting for predictors. In particular, Wei and Kosorok (2013) further assumes that the

distribution of the observed outcome follows a mixture Gaussian distribution with two latent

components. Furthermore, these latent groups are determined by a linear combination of
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observed features, such as gene expression information. In this way, studying such a linear

combination can help divide the entire population into subpopulations that correspond to

different treatment effects. There are also some extensions on the original latent supervised

learning idea. For example, Altstein and Li (2013) applied this idea to the time-to-event

response, and Shen and He (2015) suggested a logistic-normal mixture model rather than the

Gaussian model for a better performance. These methods all showed competitive performance

to detect the underlying subpopulation boundaries.

However, some drawbacks still exist for latent supervised learning. First, most of such

methods still require certain parametric assumptions for the underlying subpopulation

boundaries and can only deal with the cases when the number of latent subpopulations

is known. In exploratory studies, it can be very common that such latent subpopulation

information is hard to induce from the observed data directly. Second, all the latent supervised

learning methods so far rely on certain distribution assumptions on the outcomes as well. Such

assumptions can be too strong in practice especially at the time of complex heterogeneous

structures. In the third part of the thesis, we focus on similar datasets with unobserved

subpopulation label as latent supervised learning but plan to address these two drawbacks

simultaneously. In particular, we would like to propose a novel exploratory tool, named latent

supervised clustering, to estimate the heterogeneous effects at the same time of clustering the

samples into subpopulations without much prior knowledge on the underlying boundaries.

1.4 Outline of Thesis

The outline of the thesis is as follows. In Chapter 2, we discuss a new learning method to

achieve variable selection and data extraction simultaneously. In Chapter 3, we study on

how machine learning can be applied to heterogeneous data analysis in the first direction

discussed. In particular, we are interested in detecting an optimal individual treatment rule

for the ordinal treatment case. In Chapter 4, we follow the second direction and propose a

new machine learning method, named latent supervised clustering, whose goal is to identify

the heterogeneous effect of the predictors on outcomes by clustering the subject-specific
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regression coefficients. In Section 5, we discuss some future work that can be further explored.

Technique lemmas and proofs are provided in the appendices.
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CHAPTER 2: DOUBLE SPARSITY KERNEL LEARNING

2.1 Introduction

In this chapter, we propose a new DOuble Sparsity Kernel (DOSK) learning method

to fill this gap. We provide an efficient algorithm to solve the corresponding optimization

problem. Through numerical examples, we show that our DOSK method can often select

useful predictors accurately, and the sparsely represented functions can have very good

prediction performance. Moreover, under some conditions, we prove that our DOSK method

can enjoy many desirable statistical properties, including variable selection consistency.

The rest of the chapter is organized as follows. In Section 2.2, we briefly introduce

standard kernel learning methods, and discuss variable selection and data extraction for

learning in a RKHS. Then, we propose our DOSK method, and develop our algorithm for

the corresponding optimization problem. We establish some theoretical properties of DOSK,

such as selection consistency, in Section 2.3. Simulated and real data examples are used to

demonstrate the effectiveness of our new method in Section 2.4. We provide some discussions

in Section 2.5. All technical proofs are collected in the appendix.

2.2 Methodology

We first give a brief review of standard kernel learning in Section 2.2.1. Then we propose

our DOSK method in Section 2.2.2. We discuss how to solve the corresponding optimization

problem in Section 2.2.3.

2.2.1 Standard Learning in RKHS

Suppose each observation in the training data set (xi, yi); i = 1, . . . , n is obtained from a

fixed but unknown distribution P (X, Y ), where X ∈ Rp is a vector of predictors, and Y is

the response. The learning goal is to find f(·) based on the training data set, so that for a

new observation with only x available, the prediction of Y based on f(x) can be accurate.
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For example, in regression, one often uses f(x) to estimate the response Y , and in binary

margin-based classification where Y ∈ {+1,−1}, one can let sign{f(x)} be the predicted

label for x. For many learning problems, the goodness of fit of f can be measured by a

loss function L{Y, f(X)}. For different learning tasks, one uses different loss functions. For

instance, in standard regression problems where the goal is to estimate the conditional mean

of Y with given x, it is common to use the squared error loss L{Y, f(X)} = {Y − f(X)}2.

In classification problems, one can use the hinge loss L{Y, f(X)} = {1 − Y f(X)}+ for

support vector machines (SVM, Boser et al., 1992), and the deviance loss L{Y, f(X)} =

log[1 + exp{−Y f(X)}] for logistic regression (Lin et al., 2000).

The optimization problem of a learning technique typically involves minimizing an objective

function in the form of loss + penalty. In particular, the objective function can be written as

min
f∈F

1
n

n∑
i=1

L{yi, f(xi)}+ λJ(f), (2.1)

where F is the function space for learning. Here the penalty term J(f) regularizes f(·) in order

to prevent overfitting, and the tuning parameter λ balances L(·, ·) and J(f) with the aim to

achieve a good prediction performance. The choice of the penalty term varies based on F . For

example, in standard linear regression, one often assumes that the conditional mean of Y is a

linear function of x, and it is common to use F = {f : f(x) = xTβ + β0; β ∈ Rp, β0 ∈ R}.

There are many popular choices for J(f) in the linear learning literature. See, for example,

Tibshirani (1996), Fan and Li (2001), Zou and Hastie (2005), Zhang (2010), among others. If

a linear function cannot estimate the response well, one often considers a nonlinear function

space F . In this chapter, we focus on learning in RKHS. For more details about RKHS, we

refer the readers to Wahba (1990), Shawe-Taylor and Cristianini (2004a), and the references

therein.

For learning in a RKHS H, it is common to use the squared norm penalty J(f) = ‖f‖2
H,
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where ‖f‖H is the norm of f in H. In other words, (2.1) can be written as

min
f∈H

1
n

n∑
i=1

L{yi, f(xi)}+ λ‖f‖2
H. (2.2)

Kimeldorf and Wahba (1971) showed that under mild conditions on L, the estimated function

f̂ from (2.2) has the form f̂(x) = ∑n
i=1 α̂iK(xi,x), where K(·, ·) is the kernel function

associated with H, xi’s are the observed predictor vectors in the training data set, and αi’s

are the parameters to estimate. Moreover, define K to be the gram matrix with the (i, j)th

element K(xi,xj); i, j = 1, . . . , n, and α = (α1, . . . , αn)T . One can verify that the penalty

‖f‖H in (2.2) can be written as α̂TKα̂. Consequently, (2.2) is equivalent to the following

problem,

min
α∈Rn

1
n

n∑
i=1

L{yi, f(xi)}+ λαTKα.

In practice, however, many commonly used kernel spaces, for example the well known

Gaussian RKHS, do not include offsets or intercepts (Minh, 2010). This can lead to suboptimal

results for some learning problems. For instance, in quantile regression, if one is interested in

estimating the 100τ% quantile of the response with τ close to 0 or 1, a regression function

without an intercept can have inferior performance. Therefore, in this chapter, we consider

learning in RKHS with intercepts. In particular, in (2.1), we assume that f = f̃ + b ∈ H⊕R,

and let J(f) be the squared norm of f̃ , where f̃ is the projection of f onto H. The

Representer’s Theorem (Kimeldorf and Wahba, 1971) shows that under mild conditions,

f̂(x) = ∑n
i=1 α̂iK(xi,x) + b̂, where b is the intercept term, and J(f̂) = α̂TKα̂. Hence,

for standard RKHS learning, the optimization problem (2.2) with an intercept in f can be

written as

min
α∈Rn,b∈R

1
n

n∑
i=1

L{yi,
n∑
j=1

αjK(xi,xj) + b}+ λαTKα. (2.3)
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2.2.2 Double Sparsity Kernel Learning

Despite the success of standard kernel learning methods, many challenges remain. First,

the standard squared norm penalty cannot perform automatic variable selection. When the

underlying signal depends only on a small fraction of the predictors (note that the corre-

sponding relationship can be nonlinear), learning with all predictors can lead to overfitting,

and consequently unsatisfactory results. In the literature, Zhang et al. (2011) and Allen

(2012), among others, proposed different methods for variable section in RKHS learning.

In particular, to perform variable selection in kernel learning, Allen (2012) proposed the

idea of variable weighted kernel learning as follows. For a weight vector w ∈ Rp and any

x1,x2 ∈ Rp, we define the variable weighted kernel function Kw(x1,x2) = K(w�x1,w�x2),

where w� x denotes the element-wise product of vectors. In other words, the jth element

of w, wj, represents the weight of the jth predictor of X in the kernel function. For any

positive definite kernel function K, one can verify by Mercer’s Theorem that the newly

defined variable weighted kernel Kw(·, ·) naturally introduces a RKHS over the domain of X.

For identifiability, we impose the constraint that wj ∈ [0, 1] for all j. In the variable weighted

kernel function, if wj = 0, then the jth predictor of X has no impact on f or the prediction.

Therefore, one can impose an L1 type penalty on the vector w to achieve variable selection

in RKHS learning. In particular, Allen (2012) proposed KNIFE for learning in a RKHS with

variable selection, with the following optimization

min
α,b,w

 1
n

n∑
i=1

L
{
yi,

n∑
j=1

Kw(xi,xj)αj + b
}

+ λ1‖w‖1 + λ2α
TKwα

 , (2.4)

where λ1 and λ2 are tuning parameters, and w ∈ [0, 1]p.

To better illustrate the variable weighted kernel function, we consider several commonly

used RKHSs as examples. Define xik to be the kth element of xi. The linear variable

weighted kernel is Kw(xi,xj) = ∑p
k=1w

2
kxikxjk, the polynomial variable weighted kernel is

Kw(xi,xj) = {c+∑p
k=1w

2
k(xikxjk)}d with c ∈ R and d ∈ N, the Gaussian variable weighted
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kernel is Kw(xi,xj) = exp{−γ∑p
k=1(wkxik − wkxjk)2} with γ ∈ R+, and the Laplacian

variable weighted kernel is Kw(xi,xj) = exp(−γ∑p
k=1 |wkxik − wkxjk|) with γ ∈ R+.

Recently, Zhang et al. (2015) showed that in some cases, using the squared norm penalty

‖ · ‖2
H for learning in RKHS can lead to suboptimal results. In particular, in a given learning

problem, let f ∗(x) be the minimizer of the conditional expected loss. In other words,

f ∗(x) = E[L{Y, f(X)} | X = x] for any x (e.g., f ∗(x) is the conditional mean of Y (x) in

standard regression). Zhang et al. (2015) observed that if f ∗(x) can be well approximated

by a function with a sparse representation in the RKHS (in other words, f ∗(·) can be well

approximated by ∑n
i=1 αiK(xi, ·) + b for only some nonzero αi), learning with the squared

norm penalty can have the potential danger of overfitting. To overcome this difficulty, one

can apply an L1 penalty on the vector α for data selection of the estimated function. For

RKHS learning problems, Zhang et al. (2015) proposed the data sparsity constraint with the

following optimization

min
α,b

 1
n

n∑
i=1

L
{
yi,

n∑
j=1

K(xi,xj)αj + b
}

+ λ‖α‖1

 , (2.5)

where K(·, ·) is the standard kernel function and ‖α‖1 = ∑n
i=1 |αi|. Using the quantile

regression as an example, Zhang et al. (2015) showed that, in certain cases, learning with the

data sparsity constraint in (2.5) can improve the prediction performance.

Although data extraction was used in Zhang et al. (2015), their method does not consider

variable selection. Hence, when there are noise predictors in x, the proposed approach can

be suboptimal. To our knowledge, not much work has been done on simultaneous data

extraction and variable selection in the literature. To fill this gap, we propose our DOuble

Sparsity Kernel learning (DOSK) method as follows

min
α,b,w

 1
n

n∑
i=1

L
{
yi,

n∑
j=1

Kw(xi,xj)αj + b
}

+ λ1‖α‖1 + λ2‖w‖1 + λ3α
TKwα

 , (2.6)

with λi ≥ 0; i = 1, 2, 3, Kw(x1,x2) = K(w� x1,w� x2) as defined earlier with w ∈ [0, 1]p.
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The framework of our DOSK (2.6) is very general, in the sense that it includes many

existing approaches as special cases. In particular, when λ1 = λ2 = 0, (2.6) reduces to the

standard squared norm penalized kernel learning (2.3). When λ1 = 0, (2.6) reduces to the

KNIFE approach (2.4) proposed by Allen (2012). If λ2 = λ3 = 0, (2.6) becomes the data

sparsity learning (2.5) in Zhang et al. (2015). Because DOSK is a general framework of

RKHS learning, one can use various approaches to solve the optimization problem (2.6),

based on the choice of the loss function L(·, ·), w and λl; l = 1, 2, 3. For example, in linear

kernel learning with λ2 6= 0, one can verify that (2.6) is a biconvex problem with respect to

(αT , b)T and w, and can be solved by the alternate convex search algorithm (Gorski et al.,

2007). For more general DOSK problems, we propose a unified algorithm to solve (2.6) in

the Section 2.3.

Note that although we impose multiple penalties in (2.6), our DOSK method can cir-

cumvent the difficulty of over-penalization by choosing (λ1, λ2, λ3) carefully. In particular,

in Section 2.3, we show that if the tuning parameters are chosen appropriately, our DOSK

method can enjoy many desirable theoretical properties.

2.2.3 Computational Algorithm for DOSK

The major difficulty of solving the optimization (2.6) is that even L is convex, the

composite loss function L
{
y,
∑n
j=1Kw(x,xj)αj + b

}
may not be convex with respect to

(wT ,αT , b)T . Consequently, many existing algorithms for convex optimizations (Boyd and

Vandenberghe, 2004) cannot be used directly. On the other hand, one can verify that if the

loss function L is convex, the optimization (2.6) is convex respect to (αT , b)T for a fixed w.

Hence, a natural way to circumvent the difficulty of non-convex optimization is to update

w and (αT , b)T recursively. This, however, cannot be done directly, as for a general kernel

function K(·, ·), L
{
y,
∑n
j=1Kw(x,xj)αj + b

}
is not biconvex with respect to w and (αT , b)T .

One way to tackle this problem is that for fixed (αT , b)T , we can find a linear approximation

of the variable weighted kernel function Kw in a small neighbourhood of (wT ,αT , b)T (Allen,

2012). Thus, to update w, one can employ the linear approximation of Kw to make the

16



corresponding objective function convex. Note that in the literature, the idea of local linear

approximation has been widely used to solve optimizations for many learning problems. See,

for example, An and Tao (1997), Zou and Li (2008), Lee et al. (2012), among others.

To introduce our algorithm for DOSK, we need some further notation. Let the ob-

jective function in (2.6) be φ(α, b,w). Define an n × p matrix A(w), whose ith row is∑n
j=1 αj∇wKw(xi,xj)T , and an n × n matrix B(w) with the (i, j)th element B(i, j) =

Kw(xi,xj)−∇Kw(xi,xj)Tw. Here ∇wKw(xi,xj) is the gradient vector of Kw(xi,xj) with

respect to w. By Taylor’s expansion, one can verify that for w1 and w2, we have

Kw1α = A(w2)w1 +B(w2)α+ o(‖w1 −w2‖2). (2.7)

Define cw2(w1) = A(w2)w1 +B(w2)α, which is a linear function of w1. When w1 and w2

are close, we can use c as the local linear approximation of Kwα in our DOSK optimization

algorithm. In particular, we outline the general algorithm to solve (2.6) in the algorithm of

DOSK below.

Algorithm of DOSK:

1. Initialize w(0), α(0) and b(0) with wj ∈ [0, 1] for 1 ≤ j ≤ p.
2. The α step: fix w(t−1) and b(t−1), and find α(t) = argminα φ(α, b(t−1),w(t−1)).

The optimization problem is convex, and independent of the λ2‖w‖1 term in (2.6).
3. The b step: fix w(t−1) and α(t), and find

b(t) = argminb 1
n

∑n
i=1 L

{
yi,
∑n
j=1Kw(t−1)(xi,xj)α(t)

j + b
}
. This is a convex

optimization with one parameter, and can be solved by standard methods.
4. The w step: fix b(t) and α(t), and define cw(t−1)(w) = A(w(t−1))w +B(w(t−1))α(t).

Let {cw(t−1)(w)}i be the ith element of cw(t−1)(w). Under the constraint w(t) ∈ [0, 1]p,
find
w(t) = argminw

1
n

∑n
i=1 L[yi, {cw(t−1)(w)}i + b(t)] + λ2‖w‖1 + λ3wTA(w(t−1))α(t).

This is a standard quadratic programming problem.
5. Repeat steps 2-4 until convergence.

In the α and b steps in the algorithm above, the corresponding objective functions are
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convex, therefore after updating the parameters, the value of φ decreases. On the other hand,

in the w step, we replace the original objective function φ by its local linear approximation, and

solve a quadratic programming problem. Denote the solution to this quadratic programming

problem by w(QP ). In the algorithm of DOSK, the updated w(t) = w(QP ) can have some

distance from w(t−1), hence the original φ function is not guaranteed to decrease. One possible

way to overcome this difficulty is that in the w step, instead of having w(t) = w(QP ), we

can treat w(QP ) − w(t−1) as a direction in which φ tends to decrease, and determine the

appropriate step size by conducting a line search. In particular, we present the revised

algorithm as below.

Revised Algorithm of DOSK:

1. Initialize w(0), α(0) and b(0) with wj ∈ [0, 1] for 1 ≤ j ≤ p.
2. The α step: fix w(t−1) and b(t−1), and find α(t) = argminα φ(α, b(t−1),w(t−1)).

The optimization problem is convex, and independent of the λ2‖w‖1 term in (2.6).
3. The b step: fix w(t−1) and α(t), and find

b(t) = argminb
∑n
i=1 L

{
yi,
∑n
j=1Kw(t−1)(xi,xj)α(t)

j + b
}
. This is a convex

optimization with one parameter, and can be solved by standard methods.
4. The w step: fix b(t) and α(t), and define w(temp) = w(t−1).

(a) Define cw(temp)(w) = A(w(temp))w +B(w(temp))α(t). Let {cw(temp)(w)}i be the ith
element of cw(temp)(w). Under the constraint w ∈ [0, 1]p, find
w(QP ) = argminw

1
n

∑n
i=1 L[yi, {cw(temp)(w)}i + b(t)] + λ2‖w‖1 +

λ3wTA(w(temp))α(t).
(b) Define ∆w = w(QP ) −w(temp). Find the best step size s by

s = argminu≥0 φ(α(t), b(t),w(temp) + u∆w).
(c) Set w(temp) = w(temp) + s∆w.
(d) Repeat steps (a)-(c) until convergence, and set w(t) = w(temp).

5. Repeat steps 2-4 until convergence.

In the revised algorithm of DOSK, one can verify that after updating the parameters,

the φ function value would not increase. This helps to guarantee that we can obtain a
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stationary point of the objective function using the revised algorithm. In particular, we have

the following theorem.

Theorem 2.2.1. Suppose that the loss function L in (2.6) is a convex and continuously

differentiable function, and the variable weighted kernel Kw is a convex or concave and

continuously differentiable function of w. Then the solution from the revised algorithm is a

stationary point of the objective function.

Remark 1: Theorem 2.2.1 is valid for many loss functions, e.g., the squared error loss in

standard regression, and the deviance loss in logistic regression. For many other loss functions

that are not differentiable, such as the hinge loss in SVM, or the check loss function in

quantile regression, one can consider an alternative continuous approximation to the loss

function. For example, Wang et al. (2007) proposed the hybrid huberized hinge loss for SVM.

One can verify that the hybrid huberized loss meets the condition in Theorem 2.2.1, and

the corresponding solution is a stationary point. Moreover, for many commonly used kernel

functions, the assumptions on Kw in Theorem 2.2.1 are satisfied. For example, one can verify

that the variable weighted kernel introduced by the Laplacian RKHS, or by the linear kernel

when all elements in x are non-negative, is convex with respect to w.

Remark 2: The revised algorithm of DOSK replaces the quadratic programming step in the

first algorithm of DOSK by the descent direction and line search method. This approach is

guaranteed to decrease the objective function value at each iteration step, at the cost of a

more complex computation. On the other hand, our numerical experience shows that the

first algorithm almost always decreases the objective for commonly used kernels and loss

functions. Therefore, we use the first algorithm of DOSK in the numerical examples, whereas

in each step we check if the objective function decreases. If not, we then employ the line

search approach as in the revised algorithm instead.

Remark 3: Since the objective function can be non-convex, it is possible that the numerical

solution is just a stationary point, not the global minimum. To increase the chance of

finding the optimal solution, we suggest to use multiple different starting points, compare the
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corresponding results, and choose the fitted model with the smallest objective function value.

2.3 Statistical Learning Theory

In this section, we explore the theoretical properties of the proposed DOSK method. In

particular, we first study the convergence rate of the excess risk for various learning problems

under certain conditions, and then show that DOSK can enjoy selection consistency for high

dimensional learning problems. Moreover, we show that the expected loss using the estimated

function f̂ , E[L{y, f̂(X)}], can be well approximated by the empirical loss on the training

data, in the sense that the corresponding difference converges to zero with a fast convergence

rate.

To state our theory, we first introduce some technical assumptions, and provide detailed

discussions on why these conditions are needed. We also discuss some cases where these

conditions are met. We would like to point out that most of the assumptions in this chapter

are mild and reasonable, which can be satisfied or checked for various real applications.

To begin with, we need to present some further notation. Let w∗ = (wT
(1),wT

(0))T be the

underlying variable weight vector, where elements in w(1) are non-zero, and elements in w(0)

are zero. In other words, the predictors in x that correspond to w(0) are noise covariates.

Accordingly, one can define x = (xT(1),x
T
(0))T , such that predictors in x(1) contain useful

information for the learning problem. In this chapter, we focus on the case that the number

of useful predictors is finite (i.e., |w(1)| <∞). Furthermore, with a little abuse of notation,

we let ‖f‖H = ‖f̃‖H, where f̃ is the projection of f onto H.

We impose our first assumption on the distribution of X and X(1), where X and X(1)

correspond to the p dimension random vector and the vector containing important variables.

Assumption 1: Every element in X ranges in [0, 1]. Furthermore, the distribution of X(1)

is absolutely continuous with respect to the Lebesgue measure, where the corresponding

Radon-Nikodym derivative is bounded away from 0.

In Assumption 1, we restrict our consideration on X ∈ [0, 1]p. One can verify that our

theory can be naturally generalized to the case where the elements in X are uniformly
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bounded. We defer the discussion on the second part of Assumption 1 until after Assumption

4.

In the next assumption, we impose some constraints on the kernel function K(·, ·).

Assumption 2: The kernel function K(·, ·) is separable and supK(·, ·) <∞. Furthermore,

the kernel function Kw∗(x, ·) is Lipshcitz with respect to x(1), i.e. the useful variables vector,

in terms of the L2 norm.

The first part of Assumption 2 is very mild, and has been frequently used in the literature.

See, for example, Steinwart and Scovel (2007a), Blanchard et al. (2008a), Zhang et al. (2015),

among others. It suggests that the corresponding RKHS H is not too complex, in the sense

that its diameter would not be infinity. The second part is used to ensure that the best

learning function using n observations can converge to the underlying function in a fast rate.

See the proof of Lemma A.0.2 for more details. This assumption is valid for many commonly

used kernel functions such as the Gaussian kernel and the polynomial kernel.

In Assumption 3, we assume that L can be treated as a univariate function. This is a

very mild condition, and is valid for many learning problems. For example, in standard

least squares regression, we have L(u) = u2 where u = (f − y), and in logistic regression,

L(u) = log{1 + exp(−u)} where u = yf and y ∈ {+1,−1}.

Assumption 3: The loss function L(u) has a second order derivative with 0 < L′′(u) <∞

for every u.

Assumption 3 is needed to ensure that the expected loss function is strictly convex around

the underlying optimal solution. Moreover, the second order differentiability helps to control

the convergence rate of the estimated function f̂ to the best function. See the discussion of

Assumption 5 for more details.

Next, we consider assumptions on the function f(x). Recall that the learning goal is to

obtain f̂(x) from the training data set for good prediction performance. Therefore, we consider

the “best" function f0, in the sense that its corresponding expected loss E[L{Y, f0(X)}] is the

minimum among all possible E[L{Y, f(X)}]. Consequently, f0 can have the best prediction
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performance under mild conditions. For instance, in classification, f0 can achieve the minimal

classification error rate, given that the loss function L is Fisher consistent (Liu, 2007). We

will prove that under certain conditions on f0, the estimated function f̂ would converge to f0

with a desirable convergence rate.

Assumption 4: The underlying function f0 has a sparse representation in the RKHS. In

particular, there exist γ1, . . . , γm, z1, . . . ,zm, and b0 such that f0(x) = ∑m
j=1 γjKw∗(zj,x)+b0.

Here m is a fixed integer, γj 6= 0, and zj ∈ [0, 1]p for j = 1, . . . ,m.

As a remark, we note that some RKHSs are very rich, in the sense that many functions

can be well approximated by f ∈ H. For example, Steinwart and Scovel (2007a) proved

that all step functions can be approximated by f in the Gaussian RKHS arbitrarily well

under mild conditions, and this result can be generalized to the case of continuous functions.

However, if f0 does not have a sparse representation in the RKHS, the function in H that

approximates f0 well may have an infinite norm. When f̂ approaches f0 as n→∞, ‖f̂‖H

would be unbounded. Consequently, the variation of f̂ due to the randomness of the sample

can be very large. In the literature, Bartlett et al. (2005), among others, pointed out that

large variation of f̂ can lead to suboptimal prediction performance. Assumption 4 ensures

that the underlying function f0 has a finite norm in the RKHS. In the proof of Theorem 2.3.1,

we show that with an appropriate λ1, the data selection can provide a sparsely represented

function f̂ whose norm can be bounded away from infinity. This is crucial to prove the

convergence of f̂ to f0, which further leads to the selection consistency of our DOSK method.

The next assumption ensures that in the updating scheme, f̂ would converge to the global

solution, once we are at a point that is close enough. To state this assumption, we first

introduce some further notation. Define ‖·‖∗,2 to be the restricted L2 norm with respect to the

partition of w. In particular, ‖x− z‖∗,2 = ‖x(1) − z(1)‖2. For any n� m, we define (α∗n, b∗n)

as follows. Notice that the empirical loss function value does not change if we switch the order

of the pairs (xi, yi) and (xj, yj) for i 6= j. Hence, without loss of generality, we can assume

that xj is the observation that is closest to zj in terms of the ‖ · ‖∗,2 norm among the training
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data set {(xi, yi); i = 1, . . . , n}, for j = 1, . . . ,m. When n� m, we can assume that each xj

is distinct (in other words, xj would not be closest to zu and zv simultaneously, compared to

other observations). Next, define (α∗n, b∗n) such that α∗n = (γ1, . . . , γm, 0, . . . , 0)T with length

n, b∗n = b0, and let fα∗n,b∗n(x) = ∑n
i=1 α

∗
jKw∗(xi,x) + b∗n. The definition of (α∗n, b∗n) helps to

show that the approximation error of the DOSK method under Assumption 4 converges to 0

very quickly. See the proof of Lemma A.0.4 in the appendix for more discussions.

Before stating Assumption 5, we would like to discuss the second part of Assumption 1,

which ensures that with large enough n, the underlying function can be well approximated by

the sparsely represented function fα∗n,b∗n(x) from our training data. In particular, Assumption

1 guarantees that as n→∞, fα∗n,b∗n(x) can approach f0(x) with a rate very close to OP (n−1)

in terms of the ‖·‖2 norm. See Lemma A.0.2 and the corresponding proof for more discussions.

Assumption 5: For any p and n� m, there exists a neighborhood N of
(
(w∗)T , (α∗n)T , b∗n

)T
,

such that inN , the expected loss function E [∑n
i=1 L{Yi, f(Xi)}] is strictly convex with respect

to (wT ,αT , b)T .

Assumption 5 is necessary for our theory, because if the loss function is not strictly convex,

a small perturbation in the training data set can lead to a significant change of f̂ . See, for

example, the discussion on a similar issue for quantile regression using the check loss function

in Li and Zhu (2008). Consequently, the convergence rate of f̂ to f0 can be difficult to obtain.

To our knowledge, there has been no theoretical result on selection consistency that does not

rely on the assumption or fact of local convexity. Notice that Assumption 3 is important to

the validity of Assumption 5, because if L is not strictly convex, it is likely that the expected

loss function is not convex even if the kernel function is locally convex. For instance, if we use

the hinge loss L(u) = [1− u]+ which is piecewise linear, Assumption 5 cannot be satisfied.

Next, we impose constraints on the signal strength in the learning problem. For variables

weighted learning, the jth predictor provides useful information if and only if the weight wj

is positive. Variable selection consistency means that sign(ŵj) = sign(wj) for all j with a

high probability, where sign(0) = 0. The next assumption is an important part of sufficient

23



conditions for variable selection consistency.

Assumption 6: For any wj in w(1), ∂E[L{Y,f0(X)}]
∂wj

|wj=0, wi=w∗i , i6=j< 0, and for any wj in w(0),
∂E[L{Y,f0(X)}]

∂wj
|wj=0, wi=w∗i , i6=j≥ 0. Here w∗i is the ith element of w∗.

In Assumption 6, we measure the signal strength of wj by its partial derivative with

respect to the expected loss function evaluated at w∗ (except the jth weight is at zero). In the

literature, there are many existing assumptions on the signal strength that are (essentially)

similar to Assumption 6. For example, one can verify that for regular linear regression with

the squared error loss, Assumption 6 reduces to that the non-zero coefficients are bounded

away from zero. This is analogous to the assumptions considered in Fan and Peng (2004)

and Fan and Lv (2010), among others. Furthermore, we require the partial derivative with

respect to the noise covariates are non-negative.

In the last assumption, we focus on regression problems, where Y = f0(X) + ε(X) with

ε(X) being the random error term. Notice that we include both the homoscedastic and

the heteroscedastic cases here, as ε can have different distributions for different X. If the

distribution of ε has a very heavy tail, there is a large probability that we observe a yi

that is very far away from f0(xi). This outlier can lead to a severely biased estimation f̂ .

Assumption 7 aims to control the probability of an extreme yi, which can help to bound

the magnitude of the estimated b̂. Recall that if a random variable U is sub-Gaussian with

parameter s, then pr(|U | > u) ≤ 2 exp(−u2/s) for large enough u.

Assumption 7: In a regression problem, the error term ε(X) follows a sub-Gaussian

distribution with a universal parameter s <∞ for any X.

Assumption 7 is very general, as many distributions are sub-Gaussian. For example, in

linear regression, we often assume that ε ∼ N(0, σ2) with finite σ. This is a homoscedastic case

of Assumption 7, and normal random variables are known to be sub-Gaussian. Furthermore,

all random variables with bounded ranges are sub-Gaussian, and distributions with small

kurtosis are sub-Gaussian.

We are ready to present our main theorems. The first theorem studies the convergence
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rate of f̂ to f0. Recall that a ∨ b = max(a, b) for a, b ∈ R.

Theorem 2.3.1. Suppose Assumptions 1-7 hold, and log(p)/
√
n→ 0 as n→∞. If we choose

λ1 = O{log(n)−1}, λ2 = O[{log(p) ∨ log(n)}/
√
n], and λ3 = o(λ1) in (2.6), we have that the

corresponding global solution (ŵT , α̂T , b̂)T to (2.6) satisfies that ‖f̂ − f0‖2 = OP{log(n)/
√
n},

where f̂(x) = ∑n
j=1 α̂jKŵ(x,xj) + b̂.

Theorem 2.3.1 suggests that f̂ converges to f0 at a rate very close to the “parametric rate"

OP (n−1/2). Comparing Theorem 2.3.1 with the theoretical results in Zhang et al. (2015), one

can see that the multiple penalties in (2.6) do not affect the performance of f̂ , as long as the

corresponding λ’s are appropriately selected. This helps to justify that our DOSK method

can avoid the issue of over-penalization by carefully choosing the tuning parameters.

Next, we study the selection consistency of our DOSK method. Our results suggest that

we can have selection consistency if p is of a polynomial order of n.

Theorem 2.3.2. Suppose Assumptions 1-7 hold. Furthermore, assume that log(p)/
√
n→ 0

as n→∞. If we choose λ1 = O{log(n)−1}, λ2 = O[{log(p) ∨ log(n)}/
√
n], and λ3 = o(λ1)

in (2.6), we have that the corresponding global solution (ŵT , α̂T , b̂)T to (2.6) satisfies that,

with probability tending to 1 as n → ∞, sign(ŵj) = sign(w∗j ) for j = 1, . . . , p, where w∗j is

the jth element of w∗.

Theorem 2.3.2 shows that our DOSK method can enjoy the desirable asymptotic selection

consistency at the global solution. In other words, if the sample size is large, one can often

correctly identify the important and unimportant variables in the learning problem. This can

help researchers to obtain a better understanding of the relationship between predictors and

the response, and provide a more interpretable model for future prediction.

The next theorem studies the prediction performance of the obtained f̂ . In particular, since

one uses the loss function L to measure the goodness of fit of f̂ , it is desirable to obtain a bound

for the expected loss E[L{Y, f̂(X)}]. For example, in regression problems, E[L{Y, f̂(X)}]

indicates the average prediction error using f̂ . In margin-based classification where the loss
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function L dominates the 0− 1 loss function (which is further equivalent to the prediction

error rate), E[L{Y, f̂(X)}] can be regarded as an upper bound of the future misclassification

rate. In the next theorem, we show that under the assumptions specified above, the empirical

measurement n−1∑n
i=1[L{yi, f̂(xi)}] converges to its expectation E[L{Y, f̂(X)}] at the rate

OP [{log(p) ∨ log(n)}/
√
n].

Theorem 2.3.3. Suppose Assumptions 1-7 hold. Furthermore, assume that log(p)/
√
n→ 0

as n → ∞. If we choose λ1 = O{log(n)−1}, λ2 = O[{log(p) ∨ log(n)}/
√
n], and λ3 =

o(λ1) in (2.6), we have that the corresponding global solution (ŵT , α̂T , b̂)T to (2.6) satisfies

that, |E[L{Y, f̂(X)}] − n−1∑n
i=1[L{yi, f̂(xi)}]| = OP [{log(p) ∨ log(n)}/

√
n], where f̂(x) =∑n

j=1 α̂jKŵ(x,xj) + b̂.

Theorem 2.3.3 shows that the empirical average loss n−1∑n
i=1[L{yi, f̂(xi)}] from the

training data set, can be a good estimate of the expected loss E[L{Y, f̂(X)}]. As discussed

above, this empirical loss can provide valuable information on the prediction performance of

f̂ .

As a remark, we would like to point out that our theorems can be generalized to the case of

local solutions, provided that similar conditions as in Assumptions 4-6 are met. For example,

the convexity of local solutions can be stated in an analogous manner as in Assumption

5, and the corresponding signal strength can be measured by the partial derivatives as in

Assumption 6.

2.4 Numerical Analysis

In this section, we use regression and classification as examples of learning techniques,

and explore the numerical performance of our proposed DOSK method using simulated and

real data sets. In Section 2.4.1, we study the empirical prediction behavior of DOSK using

synthetic data sets, and in Section 2.4.2, we examine the performance of DOSK in real

data applications. We compare our method with some existing approaches in the literature.

In particular, for regression problems, we compare our DOSK method with the standard

linear ridge regression, LASSO, standard L2 kernel learning as in (2.3), COSSO and KNIFE.
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Moreover, we implement the Sure Independence Screening (SIS) and Recursive Feature

Elimination (RFE) methods with L2 kernel learning. Notice here the generalization of SIS

from linear learning to kernel learning is analogous to the approach discussed in Guyon

et al. (2002). We employ the squared error loss function for all regression techniques. For

classification methods, we use the SVM hinge loss for DOSK, and compare with the standard

kernel SVM, kernel SIS SVM, kernel RFE SVM and KNIFE SVM.

In all numerical examples, we select the tuning parameters as follows. For our DOSK

method, because there are three tuning parameters λ1-λ3 and potential kernel parameters

(such as the γ parameter in the Gaussian kernel), we fix λ3 = 0.5, and let other parameters

be selected from a set of candidates. In particular, we let λ1 vary in {0, 0.25, 0.5}, and let

λ2 vary in {2i; i = −3,−2, . . . , 2, 3}. As we will show in Section 4.1 that the selection of

λ3, the tuning parameter for the quadratic kernel regularization term, does not appear to

play an essential role in maximizing the prediction accuracy of DOSK as long as its value is

taken within a certain range. For the kernel parameters, because we use the Gaussian and

Laplacian kernels (whose kernel functions are discussed in Section 2.2.2) in our analysis, we

let the parameter γ vary in {0.1, 0.2, . . . , 0.9, 1}, a candidate set whose range always covers

1/2σ̂2 where σ̂ is the median of the Euclidean distances between each pair of the observations.

In our experience, this tuning procedure works reasonably well for the numerical examples in

this chapter. For real applications, one can perform finer tuning procedures using a larger

candidate set of tuning parameters. For other existing approaches except SIS and RFE, the

tuning parameters are chosen in an analogous manner. The best set of tuning parameters

that minimizes the prediction error in five fold cross validations on the training data set is

then selected, and we report the corresponding prediction errors on a separate testing data

set. Here the prediction error for regression examples is measured by the Mean Prediction

Error (MPE, Hastie et al., 2011), 1
n

∑n
i=1{f̂(xi)− yi}2. The error measure for classification

problems is the misclassification rate (MCR), 1
n

∑n
i=1 I[yi 6= sign{f̂(xi)}], where I(·) is the

indicator function.
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2.4.1 Simulated Examples

In this section, we conduct four simulated examples to demonstrate the performance

of our DOSK method. The first two examples are regression problems, and the last two

are classification problems. In each example, we let the responses depend only on several

predictors, and we add noise covariates in the date sets. We denote by p0 the number of

noise predictors. To assess various methods, we repeat each example 50 times and report

the average prediction errors on the training and testing data sets. Furthermore, for all

the methods that have variable selection, we report the True Positive (TP) rates and False

Negative (FN) rates of predictors to compare the corresponding performance on variable

selection.

Regression Example 1: For this example, the response depends only on one predictor. In

particular, we have yi = 10 sin(xi1)I(0 < xi1 < 2π) + εi where xi1 is the first predictor of the

ith observation. Here xij follows a uniform distribution within [−2π, 4π] for j = 1, · · · , 1 + p0,

and the error term ε is generated from the standard normal distribution. In this example, we

let p0 = 2 and p0 = 8, and choose the size of the training data set to be 50 and 100. The size

of the testing set is 10 times larger than that of the training set. We use the Laplacian kernel

in this example.

The numerical results for Regression Example 1 are reported in Table 2.1. One can see

that the ridge regression and LASSO perform poorly using linear learning, as the underlying

function f0 is highly nonlinear. Note that the standard kernel learning method with the L2

penalty has very small prediction error rate on the training data set. This shows that the

corresponding models can fit the training observations very well. However, the errors on the

testing data set are very large. This suggests that without appropriate variable selection, the

performance of standard kernel learning can be greatly undermined by overfitting. Moreover,

the SIS and RFE approaches can also have overfitting issues, which are partly due to their

large FN rates. Compared to these methods, KNIFE and our DOSK work competitively. Note

that the prediction error of COSSO is also good with a large sample size (n = 100). However,
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the corresponding variation is significantly larger than that of KNIFE or DOSK. This suggests

that decomposing the nonlinear function into a sum of orthogonal components can be instable

for some kernels. Furthermore, as the underlying function can be well approximated by

functions that have sparse presentations, our DOSK method works better than KNIFE. This

is similar to the findings in Zhang et al. (2015). To demonstrate the effect of data selection,

in Figure 2.1, we plot the fitted regression function f̂ from our DOSK method in a typical

replicate, and the underlying function f0 as a comparison. Moreover, we plot all the training

observations, and highlight the selected ones, whose corresponding α̂j’s are non-zero. One

can see that because we are using the Laplacian kernel which has a singularity at 0 and

smooth elsewhere, the data sparsity penalty tends to choose the observations that are closer

to the “sharp turns" of f0 for representation. This helps to build a model that is smooth

when the curvature of f0 is small, thus prevents overfitting from using all observations in the

kernel function representation. In addition, according to Figure 2.1, some points located in

the fluctuating region of the curve were selected. This might be due to the existence of other

eight noisy variables. This further shows that variable sparsity can be important besides data

sparsity.

Regression Example 2: In this example, the response Y depends on 4 predictors. In

particular,

yi = 10
4∑
j=1

exp(−x2
ij) + εi,

where the error term follows standard normal distribution, and xij follows a uniform distri-

bution in [−6, 6] for j = 1, . . . , 4. The number of noise covariates and sizes of the training

and testing data sets are the same as in Regression Example 1. We use the Gaussian kernel

in this example. The prediction performance and variable selection results for Regression

Example 2 are reported in Table 2.2, and one can draw similar conclusions as in Regression
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p0 Method
n = 50 n = 100

Train MPE Test MPE TP FN Train MPE Test MPE TP FN

2

Linear Ridge 15.89 (4.46) 17.96 (1.33) - - 16.29 (3.46) 17.82 (1.16) - -

LASSO 15.89 (4.47) 17.96 (1.32) 1 0.49 16.29 (3.46) 17.82 (1.17) 1 0.5

L2 Kernel 2.06 (0.45) 11.17 (2.00) - - 2.09 (0.38) 7.36 (1.55) - -

SIS 8.22 (5.50) 12.20 (7.13) 0.42 0.29 5.39 (5.85) 7.54 (7.51) 0.68 0.16

RFE 4.77 (3.91) 10.57 (6.05) 0.44 0.30 3.10 (3.51) 5.44 (5.02) 0.7 0.16

COSSO 7.05 (6.56) 11.99 (10.32) 0.56 0.39 0.96 (1.29) 1.99 (2.58) 0.98 0.53

KNIFE 3.66 (0.48) 6.14 (2.00) 1 0.14 2.35 (0.19) 3.03 (0.57) 1 0

DOSK 1.42 (0.21) 3.40 (2.92) 1 0.04 0.92 (0.13) 1.42 (0.19) 1 0

8

Linear Ridge 13.77 (2.89) 18.09 (1.55) - - 16.11 (2.78) 17.68 (1.03) - -

LASSO 13.77 (2.89) 18.12 (2.15) 1 0.87 16.13 (2.77) 17.61 (1.02) 1 0.88

L2 Kernel 0.05 (0.01) 17.26 (1.52) - - 0.05 (0.01) 15.76 (1.05) - -

SIS 3.94 (2.04) 16.18 (4.44) 0.46 0.31 3.07 (1.90) 9.01 (3.95) 0.86 0.26

RFE 9.83 (4.97) 16.18 (12.30) 0.54 0.24 6.44 (5.73) 10.29 (6.03) 0.86 0.25

COSSO 12.27 (40.97) 19.93 (12.30) 0.54 0.24 6.44 (5.73) 10.29 (8.66) 0.76 0.25

KNIFE 2.40 (0.53) 13.89 (3.64) 1 0.42 1.58 (0.18) 2.69 (1.99) 1 0.22

DOSK 2.70 (0.59) 10.80 (5.59) 0.95 0.29 1.12 (0.20) 2.15 (2.81) 1 0.20

Table 2.1: Results of Regression Example 1. The numbers in parentheses show the corre-
sponding standard deviations. MPE stands for mean prediction error, TP and FN represent
true positive rates and false negative rates, respectively.

Example 1.

Classification Example 1: In this example, we consider a binary classification problem,

where the prior probabilities pr(Y = +1) = pr(Y = −1) = 1/2. The posterior probabilities

pr(Y = +1 | X = x) depend on two predictors. In particular, the distribution of x·1 and

x·2 for the first class is N{(0, 0)T , I2}, where x·j represents the jth predictor, and I2 is the

2× 2 identity matrix. For the second class, the distribution of x·1 and x·2 is proportional to

the restricted joint normal distribution N{(0, 0)T , I2} | 9 < (x2
·1 + x2

·2) < 16. To illustrate the

marginal distribution of x·1 and x·2, we plot the first two covariates for a typical sample in

Figure 2.2. In this example, we let p0 = 0, 4, 8, and add independent noise variables following

N (0, 0.1) in the data set. The number of observations in the training data set is 200, and in

the testing 2000. Note that a similar example was previously used in Hastie et al. (2011).

The Gaussian kernel is used.

30



−5 0 5 10

−
1

0
−

5
0

5
1

0

x

y

True
Fitted

Figure 2.1: Plot of the underlying f0 (solid) and fitted f̂ by DOSK (dashed) when n = 100
and p0 = 2. Observations with non-zero α̂j’s are highlighted in red. One can see that the
data sparsity penalty tends to choose observations that are closer to 0, π/2, 3π/2 and 2π for
the function representation.

The simulation results are reported in Table 2.3. One can see that when there are no

noise predictors, all the methods can provide similar classification performance, with our

DOSK method being slightly better. When the number of noise covariates increases, the

prediction performance of L2 kernel SVM, SIS and RFE deteriorates. On the other hand,

the KNIFE method and our DOSK work competitively. Moreover, in this example, the

classification boundary (x2
·1 + x2

·2 = 9) is relatively simple (see Figure 2.2 for an illustration).

Hence, functions with sparse representations in the dual space can separate the two classes

well. Consequently, our DOSK method works better than the KNIFE approach. In terms of

variable selection, KNIFE and DOSK both perform very well, and are significantly better

than the other methods.

Classification Example 2: We consider a similar example as in Classification Example 1.
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p0 Method
n = 50 n = 100

Train MPE Test MPE TP FN Training MPE Test MPE TP FN

2

Linear Ridge 30.20 (7.34) 35.01 (2.54) - - 32.11 (5.91) 33.97 (2.09) - -

LASSO 30.19 (7.34) 35.00 (2.57) 0.99 0.50 32.10 (5.91) 33.97 (2.09) 1 0.50

L2 Kernel 0.05 (0.02) 28.01 (2.57) - - 0.04 (0.01) 23.94 (2.09) - -

SIS 1.07 (2.09) 30.92 (3.53) 0.34 0.31 1.92 (2.70) 29.61 (3.62) 0.29 0.41

RFE 8.75 (8.22) 32.15 (4.05) 0.34 0.32 14.32 (9.20) 30.34 (3.53) 0.30 0.27

COSSO 14.56 (4.60) 31.45 (11.10) 0.49 0.17 16.33 (8.93) 21.09 (9.62) 0.48 0.11

KNIFE 6.56 (1.33) 21.26 (3.12) 1 0.49 5.99 (0.54) 12.99 (1.29) 1 0.18

DOSK 2.14 (0.61) 18.25 (3.70) 1 0.54 2.60 (0.31) 9.86 (1.44) 1 0.12

8

Linear Ridge 26.28 (7.09) 33.95 (3.05) - - 30.06 (5.60) 34.21 (1.73) - -

LASSO 26.26 (7.07) 33.94 (3.04) 1 0.88 29.06 (5.41) 33.17 (1.69) 1 0.88

L2 Kernel 0.05 (0.02) 33.97 (3.05) - - 0.04 (0.01) 26.23 (1.73) - -

SIS 0.05 (0.03) 33.63 (2.94) 0.32 0.33 0.04 (0.01) 33.71 (1.84) 0.31 0.35

RFE 10.54 (7.79) 32.90 (3.50) 0.33 0.18 13.92 (10.32) 32.25 (3.30) 0.32 0.19

COSSO 18.36 (7.82) 35.54 (6.68) 0.31 0.25 16.41 (7.13) 27.14 (7.13) 0.51 0.18

KNIFE 5.47 (0.78) 25.53 (4.03) 0.99 0.46 5.53 (0.50) 14.52 (2.41) 1 0.17

DOSK 1.54 (0.33) 23.97 (6.10) 0.99 0.36 2.37 (0.28) 10.70 (3.20) 1 0.15

Table 2.2: Results of Regression Example 2. The numbers in parentheses show the corre-
sponding standard deviations. MPE stands for mean prediction error, TP and FN represent
true positive rates and false negative rates, respectively.

In particular, we let the classification signal depend on 4 predictors. For the first class, the

distribution of x·1 to x·4 is N{(0, 0, 0, 0)T , I4}. The corresponding distribution of the second

class is proportional to N{(0, 0, 0, 0)T , I4} | 9 < ∑4
j=1 x

2
·j < 16. We let p0 = 0, 4, 8 in this

example. The classification results are reported in Table 2.4, and one can draw a similar

conclusion as that of Classification Example 1.

Next, we would like to use simulated examples to discuss the computational complexity

and the compare the runtime of DOSK with other methods. According to the algorithm of

DOSK, the linear approximation in the w step simplifies the original non-convex optimization

problem into a quadratic programming program with linear constraints. Similar to KNIFE,

the order of the computational cost per iteration of DOSK should be equivalent to that of the

kernel regression using the quadratic loss. Similarly, the computational cost of DOSK would

perform the same as the standard SVM using the hinge loss. In practice, the actual runtime

of DOSK can depend on the number of iterations used before convergence. Therefore, a
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p0 Method Train MCR Test MCR TP FN

0

L2 Kernel 2.94 (0.93) 2.92 (0.50) - -
SIS 2.94 (0.93) 2.92 (0.50) 1 0

RFE 2.94 (0.93) 2.92 (0.50) 1 0
KNIFE 4.00 (2.92) 4.32 (3.94) 0.98 0
DOSK 1.63 (0.73) 1.72 (0.34) 1 0

4

L2 Kernel 1.63 (0.89) 6.68 (0.75) - -
SIS 2.31 (1.22) 5.23 (1.50) 1 0.69

RFE 9.48 (12.84) 12.02 (12.40) 0.8 0.36
KNIFE 3.33 (1.30) 3.31 (0.50) 1 0
DOSK 2.07 (0.12) 2.02 (0.56) 1 0

8

L2 Kernel 0.08 (0.21) 15.07 (1.89) - -
SIS 0.96 (1.00) 9.53 (4.45) 1 0.66

RFE 5.42 (8.97) 12.18 (9.16) 0.86 0.46
KNIFE 3.48 (1.87) 3.89 (2.97) 0.99 0
DOSK 1.58 (1.63) 1.79 (0.34) 1 0

Table 2.3: Results of Classification Example 1. The numbers in parentheses show the
corresponding standard deviations. MSC stands for Mis-Classification Rate, TP and FN
represent true positive rates and false negative rates, respectively.

proper starting point w(0) can save the computational time significantly.

In order to assess the actual runtime performance of DOSK, we use the same four

simulated examples above and fix the noise dimension as p0 = 8. We also include two real

data applications: the CPUs and Ecoli datasets. To have a general idea of the runtime

in finding the best tuning parameters, we record the average time (in seconds) that each

method takes for each tuning parameter value combination. For regression examples, the

linear ridge and LASSO are implemented by the R package glmnet. The L2 Kernel method

is also implemented by glmnet but includes some extra kernel matrix calculation. SIS,

RFE and COSSO are implemented by the corresponding R packages SIS, caret, and COSSO

respectively. KNIFE and DOSK are implemented using R entirely. For classification examples,

L2 Kernel, SIS and RFE are all primarily fitted by the R package e1071 with some extra matrix

calculation. KNIFE and DOSK are implemented by a R wrapper of the Matlab package CVX

to conduct the two quadratic programmings in each iteration. As to the stopping criterion,

we always use the default settings when there is a corresponding R package. For KNIFE and
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Figure 2.2: Plot of the underlying classification boundary (solid circle) and estimated boundary
by DOSK (dashed circle) when n = 200 and p0 = 8. Observations with non-zero α̂j’s are
highlighted in green.

DOSK, we set the maximum iteration number to be 300 and the stopping rule as when the

L2-norm of the objective function change is less than 0.001. The average runtime of all the

methods for each tuning parameter set is listed in Table 2.5.

Based on the results in Table 2.5, it is not surprising to see that the linear ridge and

LASSO take much less time than all the other methods since the core of the package glmnet

contains a set of Fortran subroutines, which is much faster than the corresponding R code.

The L2 kernel method, SIS, and RFE are slower not only because they have more complexity

but also due to the extra matrix calculation in R. Similar arguments can also be made for

these methods in classification, which are implemented by the libsvm C++ code. The results

of COSSO heavily depend on the selection of the knots number. As to KNIFE and DOSK,

they perform almost equivalently in terms of computational time under both the regression

and classification examples. This comparison result is consistent to our previous discussion on
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p0 Method Train MCR Test MCR TP FN

0

L2 Kernel 6.34 (0.15) 8.08 (0.80) - -
SIS 6.34 (0.15) 8.08 (0.80) 1 0

RFE 6.34 (0.15) 8.08 (0.80) 1 0
KNIFE 7.30 (1.70) 8.85 (0.87) 1 0
DOSK 4.37 (1.74) 5.81 (0.73) 1 0

4

L2 Kernel 1.58 (1.08) 14.56 (1.23) - -
SIS 2.59 (1.02) 13.49 (1.87) 1.00 0.84

RFE 10.82 (3.96) 19.96 (6.87) 0.76 0.52
KNIFE 7.73 (1.88) 9.41 (1.66) 1 0
DOSK 4.94 (1.68) 6.00 (0.84) 1 0

8

L2 Kernel 0.02 (0.01) 22.28 (1.65) - -
SIS 2.02 (5.64) 19.60 (3.72) 0.96 0.72

RFE 8.12 (2.10) 22.93 (6.21) 0.76 0.50
KNIFE 7.21 (1.72) 9.03 (1.20) 1 0
DOSK 5.04 (1.75) 5.93 (0.64) 1 0

Table 2.4: Results of Classification Example 2. The numbers in parentheses show the
corresponding standard deviations. MSC stands for Mis-Classification Rate, TP and FN
represent true positive rates and false negative rates, respectively.

the comparable computational complexity. Note that KNIFE and DOSK have long runtime

under classification examples because there is some additional communication cost needed

for calling the Matlab package CVX from R.

As to the tuning parameter selection, we fix λ3 = 0.5 to save the computational time.

Note that there are three tuning parameters λ1, λ2, λ3 in (2.6) for the proposed DOSK. Based

on our numerical experiment, the performance of DOSK is not sensitive to the choice of λ3,

the tuning parameter for the quadratic penalty term. For illustration, we draw four contour

plots of the mean prediction errors for Regression Example 2 when p0 = 8 in Figure 2.3. In

particular, we set λ3 as {0, 0.25, 0.5, 1} respectively for each plot and calculate the optimal

prediction error among all combinations of λ1 and λ2 with τ being 1/2σ̂2, where σ̂ is the

median of the pairwise Euclidean distances for the simulated samples. From the result, one

can observe that the best (λ1, λ2) combination is almost always near the coordinate (0.5, 0.5)

for all these λ3 values. Because we fix λ3 to be 0.5 in DOSK, KNIFE and DOSK have the

identical number of parameters to be tuned in practice. This choice appears to work well in
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all the experiments we tried. As a consequence, these two methods need approximately the

same time in finding the best λ’s.

Figure 2.3: Contour plots of the mean prediction errors of DOSK for Regression Example 2
where p0 = 8. Here λ3 is set as {0, 0.25, 0.5, 1} for the four panels and the kernel bandwidth
τ = 1/2σ̂2, where σ̂ is the median of the pairwise Euclidean distances of the simulated
samples.

2.4.2 Real Data Applications

In this section, we apply our DOSK method to four real data sets and explore the

corresponding prediction performance. In particular, the first two real data sets are about

regression problems, and the last two are for classification applications.

Regression Examples: Ozone Data and CPUs Data
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We consider the ozone pollution data in Los Angels (Breiman and Friedman, 1985), and

the Central Processing Units (CPUs) performance prediction data (Ein-Dor and Feldmesser,

1987) as our regression applications. The ozone data set includes 330 observations, and

each observation contains the daily measurement of ozone reading (the response) in 1976.

Furthermore, 8 predictors that have potential impact on the ozone readings are also available,

such as temperature, inversion base height, etc. The CPUs performance data set can be found

in the UCI machine learning Repository (Bache and Lichman, 2015). The corresponding

response variable contains 209 different CPUs’ published relative performance on a benchmark

mix. The data set also includes 7 predictors, such as the cache size, minimum main memory,

and cycle time, among others, which may be useful in predicting a computer’s performance.

Before the analysis, we standardize the data sets, such that the range of each predictor is

in [0, 1]. Because we do not have separate training and testing data sets, for each replicate

we randomly split the data into two equal parts, and use one for training and the other

for testing. We choose the best tuning parameters in a similar way as in the simulated

examples, by 5-fold cross validations on the training sets. The Laplacian kernel is used for

both examples. We compare our DOSK method with LASSO, standard L2 kernel learning,

SIS regression with L2 kernel learning, RFE with L2 kernel learning, COSSO and KNIFE.

The average prediction errors in 50 replicates are summarized in Table 2.6. For the ozone

data, the DOSK method performs better than the existing approaches in terms of the average

prediction error. For the CPUs data, one can see that the standard L2 kernel learning may

have a potential overfitting issue, which is similar to the simulation results. In terms of

variable selection, we report the predictors that are selected more than 45 times out of the 50

replicates. In the CPUs data set, each method selects a small subset of the predictors in the

models. In particular, SIS tends to fit a model with minimum main memory and maximum

main memory. The RFE and LASSO approaches select maximum main memory, cache size,

and maximum number of channels as the important variables. For COSSO, KNIFE and our

DOSK methods, the maximum main memory and cache size are the selected variables. This is
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Examples Reg-1 Reg-2 CPUs Class-1 Class-2 Ecoli
Methods Time Time Time Methods Time Time Time

Linear Ridge 0.26 0.36 0.22
LASSO 1.12 0.87 0.57
L2 Kernel 13.65 13.09 11.94 L2 Kernel 4.39 4.41 2.18

SIS 11.18 13.31 13.50 SIS 17.13 17.91 13.73
RFE 41.25 69.27 57.71 RFE 28.42 39.87 16.72

COSSO 34.23 39.37 42.84
KNIFE 82.2 83.88 82.16 KNIFE 145.68 162.41 86.10
DOSK 98.46 97.36 81.25 DOSK 153.94 156.16 91.45

Table 2.5: Average runtime (in second) of each method per tuning parameter combination in
the selected numerical studies. Here n = 100 and p0 = 8 for all simulated examples.

consistent with the insights given in Ein-Dor and Feldmesser (1987). In other words, to specify

the performance of a computer, only a few components are necessary. Interestingly, LASSO

works slightly better than SIS, RFE, or the COSSO methods in prediction. One possible

explanation is that the response is not highly nonlinear in this example, and kernel learning

methods without stable variable selection can lead to suboptimal results. In contrast, KNIFE

performs competitively, while our DOSK enjoys the best accuracy. This suggests that variable

weighted kernel learning can provide stable selection performance for real applications.

Ozone CPUs
Methods Train MPE Test MPE Train MPE Test MPE
L2 Kernel 12.51 (1.27) 17.37 (1.68) 0.01 (0.002) 0.40 (0.24)
LASSO 19.34 (1.36) 20.80 (1.69) 0.11 (0.04) 0.21 (0.09)

SIS 18.72 (1.61) 21.47 (1.78) 0.11 (0.03) 0.33 (0.21)
RFE 13.89 (1.44) 18.37 (1.73) 0.02 (0.01) 0.35 (0.20)

COSSO 17.56 (2.14) 20.45 (1.96) 0.12 (0.07) 0.28 (0.12)
KNIFE 11.03 (1.09) 17.08 (1.90) 0.10 (0.01) 0.17 (0.08)
DOSK 11.21 (1.41) 16.92 (1.65) 0.09 (0.02) 0.16 (0.10)

Table 2.6: The mean prediction error (MPE) for the ozone and CPUs data sets.

Classification Examples: Breast Cancer Wisconsin Data and Ecoli Data

For classification applications, we use the diagnostic Wisconsin breast cancer data set

(Street et al., 1993) and the Ecoli data set (Nakai and Kanehisa, 1991) for illustration. These
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Breast Cancer Ecoli
Methods Train MCR Test MCR Train MCR Test MCR
L2 Kernel 0.39 (0.24) 7.78 (1.42) 0.22 (0.33) 13.24 (4.42)

SIS 1.27 (0.73) 4.20 (1.09) 0.95 (0.68) 2.13 (1.21)
RFE 1.33 (0.56) 4.26 (1.00) 0.95 (0.68) 2.13 (1.25)

KNIFE 1.77 (0.54) 4.04 (0.78) 1.69 (0.81) 2.26 (1.27)
DOSK 2.40 (0.60) 3.97 (1.11) 1.52 (1.02) 1.95 (1.02)

Table 2.7: The Mis-Classification Rate (MCR, in percentages) for the breast cancer and Ecoli
data sets.

two data sets can also be found in the UCI machine learning Repository. The breast cancer

data set has diagnosis results (malignant or benign) for 569 patients. The data also contain

30 predictors computed from a digitized image of a fine needle aspirate of a breast bass, such

as mean distances from center to points on the perimeter, standard deviation of gray-scale

values, etc. The Ecoli data set has 8 categories of proteins, and we use two categories,

namely, cytoplasmic proteins and inner membrane proteins without signal sequence, for

demonstration in our analysis. The total number of samples of these two classes is 220,

and the data set includes 7 predictors, such as different measures of signal protein sequence

recognition, consensus sequence score, amino acid content in certain outer proteins, among

others.

We use DOSK with the SVM hinge loss, and compare our method with standard L2

kernel SVM, SIS, RFE and KNIFE. Similar to the regression examples, we standardize all the

predictors before our analysis. Furthermore, we randomly split the data sets into two equal

parts, and use one for training (5 fold cross validations to select the best tuning parameters)

and the other for testing. We report the average prediction error rates for various methods in

Table 2.7, and one can see that the standard kernel SVM with the L2 norm penalty can have

a potential overfitting issue on these two data sets, which is consistent with the simulation

results. Compared with other methods, our DOSK performs competitively.
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2.5 Discussion

In this chapter, we propose a new DOSK method in kernel learning that can perform

variable selection and data extraction simultaneously. We show that under certain conditions,

the new DOSK method can achieve selection consistency, and the estimated function can

converge to the underlying function with a fast rate. We also develop an efficient algorithm

to solve the corresponding optimization, which is guaranteed to converge to a local opti-

mum. Numerical results show that our DOSK method is highly competitive among existing

approaches.

As a remark, our DOSK method can be generalized to alleviate the computational burden

for applications with massive data sets. Without loss of generality, take regression as an

example. Suppose one needs to estimate a nonlinear underlying function, and the data

set contains many observations and predictors. To perform kernel regression with such big

data can be computationally inefficient. One way to circumvent this difficulty is to split the

predictors into several parts or dividing the observations into several subsets, learn on each

part individually, and then combine the results. In particular, each time one can perform our

DOSK method on one piece of the data set. Because our DOSK method can have double

sparsity in predictors and dual variables, for each sub-regression, it is possible to find a

sparsely represented function that only involves a subset of observations and predictors. Then

we can combine the selected observations and predictors to train for a global estimator. One

can see that this approach can greatly reduce the computational time for problems with

massive data sets. Further research can be pursued in this direction.
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CHAPTER 3: ESTIMATING INDIVIDUALIZED TREATMENT RULES
FOR ORDINAL TREATMENTS

3.1 Introduction

Heterogeneous data analysis becomes popular recently due to the development of precision

medicine. Precision medicine is a medical paradigm which suggests personalized health care

to different patients. Its recent development originates from the fact that the treatment effect

can vary widely from subject to subject due to individual level heterogeneity. For example,

Ellsworth et al. (2010) found that women whose CYP2D6 gene has a certain mutation are

not able to digest Tamoxifen efficiently and this makes them an improper target group for

this therapy. In this way, one of the primary goals for precision medicine is to establish rules

such that patient personal characteristics can be used directly to find optimal treatments

(Mancinelli et al. (2000); Simoncelli (2014). From statistics perspective, there are at least

two directions that one can follow to achieve this goal. The first direction is to estimate the

optimal individual treatment rule (ITR) directly regardless of how different the treatment

effect is between the observations that correspond to different optimal treatments. Some

representative literature contains Qian and Murphy (2011); Zhao et al. (2012); Zhang et al.

(2012). In contrast, the other direction focuses on detecting the optimal treatments by

estimating the heterogeneous outcome-predictor relationship and then derive the optimal

treatment rule, such as (Su et al. (2009, 2011); Lipkovich and Dmitrienko (2014); Zhao et al.

(2013); Shen and He (2015)). These methods usually ask for stronger assumptions on the

datasets than those in the first direction.

In this chapter, we focus on the first direction as mentioned above. In particular, we

propose a new method called generalized outcome weighted learning (GOWL). Specifically, our

first contribution is to create a new objective function for ITR estimation based on the value
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function definition in Qian and Murphy (2011) through making use of the data duplication idea.

We then formulate the optimal ordinal treatment rule detection problem into an aggregation of

several optimal binary treatment rule detection subproblems. Furthermore, considering that

each subproblem corresponds to a level of the ordinal treatment, we prevent estimated decision

boundaries from the subproblems intersecting with each other to circumvent contradictory

results. The second contribution of the chapter is to modify the loss function in Zhao et al.

(2012) to maintain convexity regardless of whether the value of the reward is positive or

negative. This loss function enables GOWL to penalize the treatments corresponding to

negative reward values properly to avoid the rewards shift problem previously described.

To estimate the optimal individual treatment rule in the new optimization problem, we

provide an efficient algorithm using the primal-dual formulation. Moreover, we show that

our method achieves Fisher consistency under mild conditions, which means that the true

optimal treatment can be reached if the entire population is used. In addition, we prove that

the estimated intercepts of the decision functions are monotonic along the treatment level,

which will make the decision boundaries interpretable in practice. We also show that the

proposed method with the Gaussian kernel has the asymptotic convergence rate of n−1/2 for

a well-separated data set under the geometric noise condition (Steinwart and Scovel (2007b)).

The remainder of the chapter is organized as follows. In Section 2, we review the OWL

method and then explain how the modified loss function for GOWL works under the binary

treatment setting. In Section 3, we illustrate how GOWL works for the ITR estimate in

the ordinal treatment setting based on the necessary background information for the data

duplication method. In Section 4, we establish the statistical learning properties of GOWL.

Simulated data examples are used in Section 5, and two applications to an irritable bowel

syndrome problem and a type 2 diabetes mellitus observational study are provided in Section

6. We then provide some discussions and conclusions in Section 7. A separate supplemental

material includes the computational algorithm, additional numerical results and proofs of the

theorems.
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3.2 Generalized Outcome Weighted Learning for Binary Treatments

In this section, we give a brief review of OWL and its corresponding optimization problem.

Motivated by the limitations of OWL, we propose a generalized version of OWL for the

binary treatment case using a modified loss function.

3.2.1 Outcome Weighted Learning

Suppose that we collect the data from a two-arm clinical study where the binary treatment

is denoted by A ∈ A = {−1, 1}. We assume that the patients’ covariates are represented by

an n by p matrix X ∈ X , where X denotes the covariate space, n is the number of patients

enrolled, and p corresponds to the number of covariates. We also use a bounded random

variable R to represent the clinical outcome reward and assume a larger R value is more

desirable. Note that R can depend on both X and A. Under this framework, the ITR is a

mapping from X to A. According to Qian and Murphy (2011), the goal of an optimal ITR is

to find the mapping D = D∗ such that

D∗(X) = arg min
D

{
E

(
R · I(A 6= D(X))

P (A|X) |X,D
)}

, (3.1)

where P (A|X) is the prior probability of treatment A for X. Note that P (A|X) = P (A) under

the independence assumption between A and X. Furthermore, the expectation operation

in (3.1) is conditional on X and D. From now on, we will omit the conditional part of the

expectation to simplify the expressions. To estimate the optimal treatment rule D∗, one

needs to obtain a classifier function f(x) such that D(x) = sign(f(x)). Thus, we have that

I(A 6= D(X)) = I(A · f(X) ≤ 0). To alleviate the non-deterministic polynomial-time (NP)

computational intensity in (3.1), Zhao et al. (2012) proposed OWL by replacing the 0-1 loss

above with the hinge loss used in the Support Vector Machine (SVM, Cortes and Vapnik

(1995)) together with a regularization term to control model complexity. As a consequence,

the regularized optimization problem becomes a search for the decision rule f which minimizes
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the objective function
1
n

n∑
i=1

ri
P (ai|xi)

[1− aif(xi)]+ + λ||f ||2, (3.2)

where (xi, ai, ri); i = 1, · · · , n, is a realization of (X,A,R) with ai ∈ {−1, 1}, the function

[u]+ = max(u, 0) denotes the positive part of u, ||f ||2 is the squared L2 norm of f and λ is

the tuning parameter used to control the model complexity and avoid overfitting. Notice

that to maintain the convexity of the objective function, OWL requires all rewards to be

non-negative.

In practice, when there are negative rewards, one can shift them by a constant to ensure

positiveness. Zhou et al. (2017) noted that such a constant shift process for the rewards may

lead to suboptimal estimates. They noted that the optimal treatment estimates tend to be

the same as the random treatments that are originally assigned. This situation can be further

illustrated by a toy example as follows. Suppose we have two intervention groups (treatment

and placebo) and two patients both being assigned to the treatment group and receiving

rewards of −10 and 10, respectively. Such results imply that the first patient may not benefit

from the treatment due to the corresponding negative feedback. If we follow the reward shift

idea as mentioned above and add 15 to both rewards, then the model will probably draw an

incorrect conclusion that both patients benefit from the treatment since both shifted rewards

are positive. Another drawback of this rewards-shift strategy comes from the fact that there

are an infinite number of constants one can choose for the shift. Different shift constants can

lead to different coefficient estimates when the decision rule f has a certain parametric or

nonparametric form in problem (3.2). To solve this problem, we propose a generalized OWL

in Section 2.2 which does not require rewards to be positive.

3.2.2 Generalized Outcome Weighted Learning

For problem (3.2), note that the OWL objective function is convex only when all of the

rewards are non-negative and such a restriction could make OWL suboptimal when there

are negative rewards, as discussed earlier. To remove such a restriction, we first consider
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reformulating the minimization problem (3.1) into two pieces as

arg min
D

E

{
|R|

P (A|X) [I(R ≥ 0)I (A 6= D(X)) + I(R < 0)I (A = D(X))]
}
. (3.3)

Note that (3.3) is equivalent to (3.1) because the term R·I(R<0)
P (A|X) is free of D(X). Similar to

the discussion in Section 2.1, we can rewrite the optimization problem in (3.3) as follows,

with D(X) = sign(f(X)):

arg min
D

E

{
|R|

P (A|X) [I(R ≥ 0)I (A · f(X) ≤ 0) + I(R < 0)I (A · f(X) > 0)]
}
. (3.4)

Furthermore, to alleviate the computational intensity of solving (3.4), we use a modified loss

function to be minimized with the population form expressed as

E

{
|R|

P (A|X)
[
I(R ≥ 0) [1− Af(X)]+ + I(R < 0) [1 + Af(X)]+

]}
. (3.5)

Here the ITR D in (3.3) is the sign function of the decision rule f in (3.5) by definition.

Therefore, the corresponding empirical sum on the training data becomes

n∑
i=1

{
|ri|

P (ai|xi)
[
I(ri ≥ 0) [1− aif(xi)]+ + I(ri < 0) [1 + aif(xi)]+

]}
. (3.6)

Note that the loss in (3.6) has two parts according to the sign of ri. For observations with

positive rewards, we use ri as their weights for the corresponding loss function and penalize

the mis-classification by the standard hinge loss function l1(u) = [1− u]+ (see the left panel

in Figure 3.1 for how the hinge loss approaches the 1-0 loss). This part is identical to the

hinge loss in OWL. However, for observations with negative rewards, we use −ri as their

weights instead and employ a modified hinge loss l2(u) = [1 + u]+ (see the right plot in Figure

3.1 for how the modified hinge loss approaches the 0-1 loss) which assigns a larger loss to

the observations whose estimated treatment f(xi) matches the observed treatment ai. As
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Figure 3.1: Standard hinge loss l1(u) = [1− u]+ versus 1-0 loss (left) and modified hinge loss
l2(u) = [1 + u]+ versus 0-1 loss (right). The modified hinge assigns large loss values to those
observations whose estimated treatment rule matches the actual treatment assigned.

a consequence, the modified loss function in (3.6) is piecewise convex in terms of aif(xi).

Therefore, a global optimization of the objective function could be guaranteed when standard

convex optimization algorithms are applied. One advantage of using the modified hinge loss

is that the observed rewards are no longer required to be positive so that the problem caused

by the non-unique reward shift can be circumvented. In addition, one can see that the loss

function reduces to the standard hinge loss when all ri > 0. As a remark, we note that Laber

and Murphy (2011) previously used a similar surrogate loss for construction of the adaptive

confidence intervals for the test error in classification.

3.3 Generalized Outcome Weighted Learning for Ordinal Treatments

In this section, we discuss how to extend GOWL from binary treatments to ordinal

treatments. For problems with multiple ordinal treatments, it is important to utilize the

ordinal information. To this end, we borrow the idea of data duplication in standard ordinal

classification and develop our new procedure for GOWL with ordinal treatments.

3.3.1 Classification on Ordinal Response with Data Duplication

For an ordinal response problem, suppose each observation vector is
(
xTi , yi

)
where

i = 1, · · · , n, the predictor xi contains p covariates, and the response yi ∈ {1, · · · , K}.
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Cardoso and Pinto da Costa (2007) proposed a data duplication technique to address this

problem. To apply this idea, one first needs to generate a new data set written as (x(k)
i

T
, y

(k)
i ),

where x(k)
i = (xTi , eTk )T , y(k)

i = sign (yi − k), eTk is a K − 1 dimensional row vector whose

kth element is 1 while others are zeros, and k = 1, · · · , K − 1. Thus, y(k)
i defines a new

binary response indicating 1, · · · , k versus k + 1, · · · , K. Here the sign(x) function is defined

to be 1 when x > 0 and −1 otherwise. Then, the goal of the classification method is to

find a surrogate binary classifier f(x(k)) to minimize ∑n
i=1

∑K−1
k=1 l(y

(k)
i , f(x(k))) + J(f), where

l(·) is the pre-defined loss and J(f) is a penalty term. Once these f(x(k)
i ) are obtained for

k = 1, · · · , K − 1, then the predicted rule D̂(xi) for the original ordinal outcome yi can be

calculated by D̂(xi) = ∑K−1
k=1 I(f(x(k)

i ) > 0) + 1, where I(·) is the indicator function.

3.3.2 Generalized Outcome Weighted Learning

Now consider an extended version of clinical data (X,A,R) in Section 2 with X and

R the same as before but with A being an ordinal treatment with A ∈ A = {1, · · · , K}.

In contrast to standard multicategory treatment scenarios, the K categories of treatments

are ordered in a way that 1 and K are most different, For example, these treatments may

represent different discrete dose levels with A = 1 being the lowest dose and A = K being the

highest dose. Similar to Section 3.1, we define the duplicated random set
(
X(k), A(k), R(k)

)
with its ith realization defined as x(k)

i = (xTi , eTk )T , a(k)
i = sign (ai − k), and r

(k)
i = ri for

k = 1, · · · , K − 1. According to the value function definition from Qian and Murphy (2011),

we let PDk denote the conditional distribution of (X,A,R) on A(k) = D(X(k)). Then, with

the duplicated data set and a map D from each X(k) to {−1, 1} for k = 1, · · · , K − 1, we

propose a new conditional expected reward to be maximized as follows:

K−1∑
k=1

E
(
R|A(k) = D(X(k)), X

)
=

K−1∑
k=1

∫
R
dPDk

dP
dP

=
K−1∑
k=1

∫
R
I(A(k) = D(X(k)))

P (A|X) dP

=
K−1∑
k=1

E

(
R · I(A(k) = D(X(k)))

P (A|X)

)
. (3.7)
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Similar to Qian and Murphy (2011) and Zhao et al. (2012), we refer to (3.7) as the value

function of D and denote it by V(D). In this way, the optimal map D∗ is defined as

D∗ = arg min
D

K−1∑
k=1

E

(
R · I(A(k) 6= D(X(k))

P (A|X)

)
. (3.8)

Once the map D is estimated, one can obtain the corresponding ITR estimate of X by using

D̂(X) = ∑K−1
k=1 I(f(X(k)) > 0) + 1.

Notice that optimal treatment estimation through (3.8) can be effective when the treatment

is ordinal due to the way it utilizes the ordinality information. In particular, the new

minimization problem considers the distance between the estimated optimal treatment and

the actually assigned treatment by counting the number of mismatches between each D(X(k))

and each A(k) for k = 1, · · · , K − 1. In the extreme case when a certain subject has an

extremely large positive reward value, the estimated D(X(k)) would be likely to match A(k) for

all k = 1, · · · , K − 1, which results in D̂(X) = A. In contrast, it may imply that the actually

assigned treatment is suboptimal when the reward outcome takes a small value. Some of the

estimated D(X(k)) will not match the observed A(k) as the estimated rule approximates the

global minimizer of (3.8).

To alleviate the computational intensity of the minimization problem in (3.8), we replace

the 0-1 loss with the modified loss in (3.6) proposed in Section 2.2 and add the model com-

plexity penalty term to avoid overfitting. Thus, the new objective function on (x(k)
i , a

(k)
i , r

(k)
i )

becomes

n∑
i=1

K−1∑
k=1

|ri|
P (ai|xi)

[
I(ri ≥ 0)

[
1− a(k)

i f(x(k)
i )

]
+

+ I(ri < 0)
[
1 + a

(k)
i f(x(k)

i )
]

+

]
+ λ||f ||2, (3.9)

where x(k)
i is the kth duplication of the ith original subject and f(x(k)

i ) is the corresponding

binary classifier. Similarly, the predicted optimal ITR of the ith subject xi can be obtained by

D̂(xi) = ∑K−1
k=1 I(f(x(k)

i ) > 0) + 1. In Section 4, we show that our method is Fisher consistent

in the sense that the estimate matches arg max
D

E(R|X,D) asymptotically under certain mild
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conditions.

To solve the optimization problem in (B.1), we develop an algorithm based on the primal-

dual formula for the SVM (Vazirani, 2013). In particular, due to the convexity of the objective

function, we reformulate (B.1) into a minimization problem with linear constraints, and then

derive the corresponding Lagrange function for the primal and dual problems. To implement

the quadratic programming in the dual problems above, we use the open source package

CVXOPT based on the Python programming in practice. We discuss situations for both

linear and nonlinear decision functions. For the nonlinear case, we apply the kernel learning

approach in Reproducing Kernel Hilbert Spaces (RKHS, Kimeldorf and Wahba (1970)).

Due to the space limitation, we leave all the details of the algorithm into the supplemental

material.

3.4 Statistical Learning Theory

In this section, we show Fisher consistency of the estimated ITR, the monotonic property of

the intercepts, consistency and convergence rate of the risk bound for the estimated ITR using

GOWL. We define some essential notation before getting into the details. First, we define

the risk associated with 0-1 loss in (3.3) as R(f) = ∑K−1
k=1 R(k)(f) = E{∑K−1

k=1
R

P (A|X)I(A(k) 6=

sign(f(X(k))))}, where R(k)(f) = E[ R
P (A|X)I(A(k) 6= sign(f(X(k))))] for k = 1, · · · , K − 1 and

f(X(k)) is an ITR associated decision function. According to the 0-1 risk above, we define

its Bayes risk as R(f ∗) = inff {R(f)|f : X → R} and the corresponding optimal ITR as

D∗(X) = ∑K−1
k=1 I(f ∗(X(k)) > 0)+1. Correspondingly, we define the φ−risk associated with the

surrogate loss in (3.5) as Rφ(f) = ∑K−1
k=1 R

(k)
φ (f) = E{∑K−1

k=1
|R|

P (A|X) [φ(A(k)f(X(k)), R)]} where

R(k)
φ (f) = E[ |R|

P (A|X)φ(A(k)f(X(k)), R)] and φ(u, r) = I(r ≥ 0)[1− u]+ + I(r < 0)[1 + u]+. We

also define the minimal φ−risk as Rφ(f ∗φ) = inff {Rφ(f)|f : X → R} and the corresponding

surrogate optimal ITR as D∗φ(X) = ∑K−1
k=1 I(f ∗φ(X(k)) > 0) + 1. Furthermore, we assume that

the number of treatment levels K is finite in the following discussions. All the details of

theorem proofs are included in the supplemental material.
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3.4.1 Fisher Consistency

Recall that the optimal ITR always corresponds to the treatment that can produce the

best expected clinical reward, i.e. D∗(x) = arg max
k∈A

[E(R|X = x,A = k)]. To derive Fisher

consistency, we need to show that by using the suggested loss φ to replace the 0-1 loss, the

surrogate optimal ITR D∗φ(x) matches D∗(x). We divide the process into two steps: first, we

show in Lemma 3.4.1 that D∗φ(x) = D∗(x) for binary treatments. Second, the result can be

generalized into ordinal treatments with an additional assumption in Theorem 3.4.1.

Lemma 3.4.1. When A ∈ {1, 2}, for any measurable function f , we have D∗φ(x) =

I(f ∗φ(X(1)) > 0) + 1 = D∗(X), where f ∗φ is the minimizer of Rφ(f) in φ−risk with K = 2.

To prove Lemma 3.4.1, one can show that the minimizer f ∗φ should be within the range of

[−1, 1] and then we can show sign(f ∗φ) = sign(E [R|A = 2]− E [R|A = 1]).

Theorem 3.4.1. When A ∈ {1, · · · , K} and K is an integer greater than 2, we have

D∗φ(x) = ∑K−1
k=1 I(f ∗φ(X(k)

i ) > 0) + 1 = D∗(X) under the assumption that E(R|X,A > k) >

E(R|X,A ≤ k) if and only if D∗(X) ≥ k for k = 1, · · · , K − 1, where f ∗φ is a measurable

function that minimizes Rφ(f) in φ−risk.

To show Theorem 3.4.1, we start from the conclusion in Lemma 3.4.1 and obtain D∗(X)

by summing all binary decision functions across k = 1, · · · , K − 1. The assumption on

E(R|X) in Theorem 3.4.1 is necessary when one needs to accumulate all f ∗φ(X(k)) correctly

to reach D∗(X). Essentially, this assumption requires the reward curve decreases at a similar

rate when the treatment is away from the optimal one at both sides of its peak (see the

R1 curve in Figure 3.2). According to this assumption, each binary surrogate classifier

I(f ∗φ(X(k)) > 0) matches the corresponding optimal binary classifier I(f ∗(X(k)) > 0) in each

binary subproblem. We would like to point out that even when the assumption fails in real

applications, Fisher consistency could still be guaranteed by modifying the data duplication

strategy into r(k)
i = ri only if ai ∈ {k, k + 1}. The modified strategy uses partial data in each

binary treatment subproblem so that we only need the reward curve to be monotonically
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Figure 3.2: Examples when the assumption holds and fails for Theorem 3.4.1. In this case,
D∗(X) = 3 and the assumption in Theorem 3.4.1 holds for curve R1 but fails for curve R2.

decreasing when the assigned treatment moves away from the true optimal treatment D∗(X).

Note that the modified duplication strategy uses subsets of data and may work well for large

sample problems. In particular, it is well suited for the cases where there is a sufficient sample

size within each treatment group.

3.4.2 Monotonic Boundary

In Section 3.3, we discussed that the decision function f(X(k)) can be expressed as g(X)+bk

for both linear and nonlinear cases. The following theorem shows that the intercepts bk for

k = 1, · · · , K − 1 can have the monotonic property under certain assumptions so that the

resulting rule has no contradiction. Note that it is only meaningful to consider the monotonic

property of the intercepts when K ≥ 3.

Theorem 3.4.2. If we write the decision function as f(X(k)) = g(X) + bk; k = 1, · · · , K − 1,

and assume that the signs of E [R|A = k] are the same for k = 1, · · · , K, then the optimal

solution (g, b) for minimizing the φ-risk Rφ(f) has monotonic b values. In particular, we have

bk > bk+1 (bk < bk+1) for k = 1, · · · , K − 2 when E [R|A = k] > 0 (< 0) for k = 1, · · · , K.

To understand the condition in Theorem 3.4.2, note that the value of E[R|A = k] is the

average benefit patients receive from taking the treatment k. Violating the conditions in
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Figure 3.3: A simulation example explaining how the monotonic property works. In this
case, there are two covariates and four treatment levels where the numbers represent the
actually assigned treatments. The gray-scale of the numbers indicates the clinical outcome
value and a darker color means a larger reward (see the gray-scale strip). The dashed lines
indicate how the optimal ITR boundaries split the input space. When E [R|A = 2] reduces
to a certain negative value that has a large magnitude, the margin between the estimated b1
and b2 boundaries would decrease to zero and then the monotonic property no longer holds.

Theorem 3.4.2 could destroy the monotonic order of b. For example, when E [R|A = m] for

certain m ∈ {2, · · · , K − 1} is observed to be negative while all the other E[R|A = k] are

positive, no patient will be assigned with the treatment m as the optimal treatment and the

corresponding b would not be monotonic. The covariate information has been integrated out

in the condition because a monotonic boundary can guarantee a minimal risk which only

depends on the decision function f but not the X by definition.

To further illustrate the condition in Theorem 3.4.2, Figure 3.3 demonstrates a simulated

example with two covariates and four treatment levels where the numbers represent the

actually assigned treatments. The gray-scale of the numbers indicates the clinical outcome

value and a darker color means a larger reward (see the gray-scale strip). The dashed lines

indicate how the optimal ITR boundaries split the input space into four regions where the

optimal treatment rule changes from D∗(x) = 1 in the top right area to D∗(x) = 4 in the
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bottom left. Starting with all positive E[R|A = k], if we decrease E[R|A = 2] while keeping

the other E[R|A = k] values constant, the margin between b1 and b2 will be narrower. Such

a change indicates that a smaller proportion of the population will be assigned A = 2 as

the optimal treatment. In the extreme case where E[R|A = 2] is negative and small enough

compared with the other two treatments, the boundaries of b1 and b2 will overlap, violating

the monotonic property. Under this circumstance, the rewards can contradict the ordinality

of the treatments.

Finally, we would like to emphasize that Theorem 3.4.2 only presents a sufficient condition

for the monotonicity of the intercepts. In particular, the signs of E[R|A = 1] and E[R|A = K]

do not impact the monotonicity of the intercepts. For example, if E[R|A = 1] is the only

non-positive one among all E[R|A = k], k = 1, · · · , K, the first boundary b1 would need to

be at an extreme large value to prevent any subject from choosing A = 1 as the optimal

treatment. Such a scenario is not interesting in practice despite the fact that the monotonicity

still holds with bk > bk+1 for k = 1, · · · , K − 2.

3.4.3 Excess 0-1 Risk and Excess φ−Risk

The following theorem shows that for any decision function f , the excess risk of f under

the 0-1 loss, R(f)−R(f ∗), can be bounded by the excess risk of f under the surrogate loss,

Rφ(f)−Rφ(f ∗φ).

Theorem 3.4.3. For any measurable function f : X → R and any probability distribution of

(X,A,R), we have Rφ(f)−Rφ(f ∗φ) ≥ R(f)−R(f ∗) ≥ 0.

Because some of our theoretic discussions are based on the φ−risk, it is necessary to

first show how the 0-1 loss risk R(f) could be controlled accordingly. The proof of Theorem

3.4.3 uses the idea of partition and integration by dividing Rφ(f) into K − 1 parts with

Rφ(f) = ∑K−1
k=1 R

(k)
φ (f). For each part R(k)

φ (f), we generalize the idea of Zhao et al. (2012)

and make use of the risk bound theories in Bartlett et al. (2006) to derive the relationship

between the two excess risks.
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3.4.4 Consistency and Convergence Rate

Denote f̂n as the sample solution for our proposed GOWL as a minimizer of (B.1) with

f ∈ H. We next discuss the consistency of φ−risk with f̂n in the following Theorem 3.4.4.

Theorem 3.4.4. Assume the tuning parameter λn is selected such that λn → 0 and nλn →∞.

Then for any distribution of (X,A,R), we have that Rφ(f̂n)→ inf
f∈H̄
Rφ(f) in probability as

n→∞, where f̂n is the empirical minimizer of (B.1) and H̄ denotes the closure of a selected

space H.

By theorem 3.4.4, minimization of the φ−risk depends on the selection of H. Additionally,

if f ∗φ , the global minimizer of φ−risk, belongs to the closure of lim sup
n→∞

H, where H can depend

on n, then we have inf
f∈H̄
Rφ(f) = Rφ(f ∗φ) and thus lim inf

n→∞
Rφ(f̂n) = Rφ(f ∗φ) in probability.

This result will lead to lim inf
n→∞

R(f̂n) = R(f ∗) in probability by Theorem 3.4.3. In particular,

the above conditions are met when H is an RKHS with the Gaussian kernel of which the

bandwidth decreases to zero as n→∞ (see Zhao et al. (2012) for a related discussion).

In the next theorem, we discuss the convergence rate of the excess 0-1 risk R(f̂n)−R(f ∗)

based on the geometric noise assumption for each measure P (k) introduced in Steinwart and

Scovel (2007b). For our problem, we define the decision boundary for the optimal ITR as

{2η(x(k))−1 = 0} in each classification subproblem between {1, · · · , k} and {k+1, · · · , K} for

k = 1 · · · , K − 1, where η(x(k)) = E[R|X(k)=x(k),A(k)=1]−E[R|X(k)=x(k),A(k)=−1]
E[R|X(k)=x(k),A(k)=1]+E[R|X(k)=x(k),A(k)=−1] + 1

2 . Furthermore,

we define the purity of the corresponding data set as ∆(x(k)) = |2η(x(k)) − 1|. Note that

∆(x(k)) can be viewed as a measure of closeness of x(k) to the corresponding kth decision

boundary. Using these notations, we state the geometric noise assumption in our problem

for each duplicate k for k = 1, · · · , K − 1 as follows: Let X(k) ∈ Rp be compact, we define

that the measure Pk has geometric noise exponent qk > 0 if there exists a constant Ck > 0

such that E[|2η(X(k)) − 1| exp(−∆(X(k))2

t
)] ≤ Ckt

qkp/2, for t > 0. According to Steinwart

and Scovel (2007b), the geometric noise exponent describes the concentration and the noise

level of the data generating distribution near the decision boundary. As we will discuss

further, the geometric noise exponent qk of the distribution of (X(k), A(k), R(k)) depends on
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how the density of the data set decreases when the point gets close to the boundary. In the

extreme case, qk can be arbitrarily large when η(x(k)) is continuous and ∆(x(k)) > δ > 0 for

some constant δ > 0 (i.e., the distinctly separable case). In addition to the geometric noise

condition, we also consider the RKHS associated with the Gaussian kernel as in Steinwart

and Scovel (2007b) in Theorem 3.4.5. We use σn to denote the kernel bandwidth for the

Gaussian kernel.

Theorem 3.4.5. Suppose that the distribution of (X(k), A(k), R(k)) satisfies the geometric

noise assumption with exponent qk ∈ (0,∞) for k = 1, · · · , K − 1. Then for any δ > 0

and ν ∈ (0, 2), there exists a C, which depends on ν, δ, the dimension p, and P (A|X),

such that for ∀τ ≥ 1 and σn = λ
− 1

(q+1)p
n for the Gaussian kernel, we have Pr∗(R(f̂n) ≤

R(f ∗) + ε) ≥ 1 − e−τ , where q = arg maxqkλ
qk/(qk+1)
n , Pr∗ denotes outer probability and

ε = C(λ
− 2

2+ν+ (2−ν)(1+δ)
(2−ν)(1+q)

n n−
2

2+ν + τ
nλn

+ λ
q
q+1
n ).

Taking a closer look at the ε expression in Theorem 3.4.5, we can find that the first two

terms can be treated as the bound for the stochastic error, whereas the last term is an error

bound for the noise associated with the corresponding RKHS. There is a trade off between

the two components. For example, the noise bound term will decrease and the stochastic

error will inflate if the RKHS is selected to be more complex. Based on the ε expression, one

can tell that an optimal choice of λn is n−
2(1+q)

(4+ν)q+2+(2−ν)(1+δ) and the corresponding rate of the

excess risk can be expressed as R(f̂n)−R(f ∗) ≤ Op(n−
2q

(4+ν)q+2+(2−ν)(1+δ) ). By the geometric

noise exponent property, such q can be sufficiently large when different optimal treatment

groups are separated well enough just as in the distinctly separable case we discuss previously.

In this way, the rate of convergence can be almost Op

(
n−1/2

)
when we let δ and ν be small.

3.5 Simulation Study

In this section, we conduct simulation studies with both linear and nonlinear ITR

boundaries to assess the finite sample performance of the proposed GOWL. In both cases,

we first generate a training set with the covariates X1, · · · , Xp from a uniform distribution

U (−1, 1) and the treatment A from a discrete uniform distribution ranging from 1 to K,
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where K = 2, 3, 5 and 7 respectively. In each example, X and A are independent. For each K,

we choose two training sample sizes to represent the small and large sample scenarios. The

reward R follows N(Q(X,A), 1) with Q(X,A) = µ(X) + t(X,A), where µ(X) is the overall

effect of X and t(X,A) is the interaction that determines the true optimal treatment. We

maintain approximately 70% of the generated rewards as positive. For simplicity in simulation

studies, except for the training set, we also generate an independent equal-size tuning set

and a much larger testing set (10 times as large as the training set) with the same variables

in each scenario. The tuning set is used to select the optimal tuning parameter λ and the

Gaussian kernel bandwidth σn. In particular, we choose λ from { i
n
; i = 0.1, 1, 10, 100, 500}

and σn from {0.1, 1, 10}, where n is the tuning size. The testing set is used to check the

prediction performance of the models. For real data application, cross-validations are used

for tuning parameter selection.

For comparisons, we manually modify some existing methods so that they can be used

to detect the ITR for ordinal treatments. Specifically, we pick OWL and l1 penalized least

squares including one way covariate-treatment interaction terms (PLS-l1, Qian and Murphy

(2011)) to conduct a series of pairwise comparisons between {1, · · · , k} and {k + 1, · · · , K}

for k = 1, · · · , K − 1. The final estimated optimal treatment is obtained by summing

through all pairwise prediction results. For OWL, the original reward outcome is shifted

to be all positive. For both OWL and GOWL, both the linear kernel (OWL-Linear and

GOWL-Linear) and the Gaussian kernel (OWL-Gaussian and GOWL-Gaussian) are used

for estimating the classifier. We select two criteria to evaluate the model performance:

the misclassification rate (MISC), and the MSE of the value function (Value), i.e., the

mean of squares of the difference between the Values under the estimated ITR versus

under the optimal ITR for all replicates. Smaller values are preferred for both criteria

by definition. In particular, the first criterion measures the proportion of correct treat-

ment assignments. The second criterion is a more comprehensive measure on how close

the estimated ITR is to the true optimal ITR. The value function estimate is defined as
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P∗n
[∑K−1

k=1 I
(
A(k) = D(X(k))

)
R/P (A)

]
/P∗n

[∑K−1
k=1 I

(
A(k) = D(X(k))

)
/P (A)

]
, where P∗n de-

notes the empirical average of the testing data set.

3.5.1 Linear Boundary Examples

We consider the following four scenarios with µ(X) and t(X,A) defined as,

1. K = 2: µ(X) = 1+X1 +X2 +2X3 +0.5X4 and t(X,A) = 1.8 (0.3−X1 −X2) (2A− 3) ;

2. K = 3: µ(X) = 2 + 2X1 +X2 + 0.5X3, t(X,A) = 4∑3
i=1 I(g(X) ∈ (bi−1, bi])(2−|A− i|),

g(X) = −X1 + 2X2 +X3 + 0.6X4− 1.5(X5 +X6), b0 = −∞, b1 = −0.5, b2 = 1, b3 =∞;

3. K = 5: µ(X) = 2 + 2X1 + X2 + 0.5X3 and t(X,A) = 4∑5
i=1 I (g(X) ∈ (bi−1, bi]) (2−

|A− i|), where g(X) = −X1 + 2X2 +X3 + 0.6X4− 1.5(X5 +X6), b0 = −∞, b1 = −1.9,

b2 = −0.5, b3 = 0.5, b4 = 1.7 and b5 =∞;

4. K = 7: µ(X) = 2 + 2X1 + X2 + 0.5X3 and t(X,A) = 4∑7
i=1 I (g(X) ∈ (bi−1, bi]) (2−

|A− i|), where g(X) = −X1 + 2X2 +X3 + 0.6X4− 1.5(X5 +X6), b0 = −∞, b1 = −2.1,

b2 = −1.2, b3 = −0.4, b4 = 0.4, b5 = 1, b6 = 2.1 and b7 =∞.

The simulated data sets satisfy that the true boundaries are parallel to each other. The

cut-off values b are set to encourage an evenly distributed true optimal treatment from 1 to

K in samples. Furthermore, t(X,A) are set to ensure that the reward outcome decreases

symmetrically when the assigned treatment moves away from the optimal treatment towards

high or low levels. The training sample sizes are listed in Table 3.1, which range from 30 to

500. We repeat the simulation 50 times and present the testing prediction results in Table

3.1.
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Methods PLS-l1 OWL-Linear OWL-Gaussian GOWL-Linear GOWL-Gaussian

K n MISC Value MISC Value MISC Value MISC Value MISC Value

2

30
0.117 0.128 0.198 0.464 0.196 0.454 0.155 0.166 0.122 0.138

(0.107) (0.111) (0.168) (0.327) (0.148) (0.290) (0.121) (0.133) (0.087) (0.145)

300
0.130 0.018 0.055 0.081 0.105 0.084 0.077 0.014 0.032 0.012

(0.045) (0.005) (0.024) (0.054) (0.073) (0.036) (0.034) (0.009) (0.011) (0.006)

3

30
0.269 0.450 0.425 0.620 0.422 0.633 0.220 0.270 0.235 0.273

(0.152) (0.288) (0.349) (0.413) (0.350) (0.315) (0.150) (0.198) (0.157) (0.118)

300
0.285 0.044 0.261 0.398 0.243 0.468 0.032 0.028 0.055 0.029

(0.071) (0.019) (0.165) (0.271) (0.176) (0.364) (0.021) (0.012) (0.043) (0.013)

5

50
0.608 0.616 0.589 0.878 0.355 0.758 0.351 0.290 0.337 0.267

(0.241) (0.432) (0.330) (0.320) (0.329) (0.345) (0.256) (0.175) (0.229) (0.145)

500
0.436 0.272 0.303 0.305 0.344 0.295 0.163 0.042 0.118 0.030

(0.122) (0.129) (0.263) (0.319) (0.184) (0.283) (0.095) (0.033) (0.095) (0.018)

7

50
0.672 1.609 0.707 0.910 0.721 1.625 0.414 0.404 0.420 0.375

(0.327) (0.855) (0.317) (0.480) (0.303) (0.575) (0.282) (0.244) (0.290) (0.308)

500
0.587 0.371 0.491 0.364 0.522 0.365 0.210 0.098 0.227 0.103

(0.247) (0.280) (0.247) (0.282) (0.179) (0.219) (0.161) (0.072) (0.145) (0.040)

Table 3.1: Results of linear boundary examples: K represents the number of treatment levels;

n represents the training set size; the MISC column gives the mean and standard deviation of

the misclassification rate; and the Value column gives the mean and standard deviation of the

value function MSE. PLS−l1 represents penalized least squares including covariate-treatment

interactions with l1 penalty (Qian and Murphy, 2011); OWL represents the outcome weighted

learning and GOWL represents the proposed generalized outcome weighted learning. In each

scenario, the model producing the best criterion is in bold.

As shown in Table 3.1, the proposed GOWL reveals competitive accuracy rate in predicting
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ITR for testing data sets in most of the cases. In general, when both the sample size n and

number of treatment classes K are small, the PLS-l1 can be competitive because the true

decision boundary is linear. However, when K increases to 5 or 7, GOWL outperforms all

the other methods, especially in terms of the value function of the estimated ITR. Moreover,

for the binary treatment with small n, GOWL performs comparable to PLS-l1 whereas OWL

shows relatively worse results with a larger MSE for the corresponding value function. When

the number of treatment category K increases, the advantage of GOWL becomes more

significant in terms of both the misclassification and value function comparisons. For example,

GOWL can maintain an average misclassification rate as 21% even when K increases to 7.

One reason can be that the parallel decision boundary assumption of GOWL matches the

underlying truth and this can lead to robust estimate even when K is large. Furthermore,

under the true linear boundary cases, the performance of GOWL with the Gaussian kernel

can be comparable to the case with the linear kernel when a proper tuning parameter is used.

Thus a flexible nonparametric estimation procedure can be considered in practice when there

is no prior knowledge about the shape of the underlying ITR boundaries.

3.5.2 Nonlinear Boundary Examples

We also assess the performance of GOWL using nonlinear boundary examples and compare

it with other methods used previously. The results are provided in Table 3.2, where we find

that none of the method performs well when the sample size is very small because the true

boundaries have complex structures. When n becomes large, GOWL with the Gaussian kernel

outperforms PLS-l1 in all cases due to PLS-l1’s wrong model specification. GOWL-Gaussian

shows better performance than OWL-Gaussian in terms of both classification accuracy and

value functions. More details are provided in the supplemental material.
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Methods PLS-l1 OWL-Linear OWL-Gaussian GOWL-Linear GOWL-Gaussian

K n MISC Value MISC Value MISC Value MISC Value MISC Value

2

30
0.496 2.107 0.412 1.791 0.353 1.301 0.438 1.846 0.423 1.580

(0.130) (0.366) (0.086) (0.574) (0.091) (0.580) (0.074) (0.300) (0.069) (0.548)

300
0.396 1.983 0.374 1.815 0.184 0.110 0.339 1.510 0.089 0.015

(0.08) (0.134) (0.076) (0.357) (0.06) (0.096) (0.045) (0.438) (0.024) (0.005)

3

30
0.461 1.191 0.470 2.640 0.468 1.574 0.403 1.214 0.370 0.909

(0.225) (0.347) (0.107) (0.538) (0.106) (0.608) (0.094) (0.445) (0.066) (0.218)

300
0.345 0.645 0.361 1.495 0.362 0.861 0.224 0.403 0.146 0.048

(0.18) (0.239) (0.092) (0.527) (0.089) (0.448) (0.08) (0.136) (0.04) (0.018)

5

50
0.578 0.690 0.642 1.586 0.624 2.020 0.521 1.059 0.525 0.950

(0.226) (0.519) (0.483) (0.713) (0.179) (1.073) (0.124) (0.588) (0.109) (0.326)

500
0.548 0.316 0.468 1.812 0.396 1.348 0.412 0.358 0.246 0.185

(0.28) (0.028) (0.149) (1.035) (0.133) (0.384) (0.193) (0.078) (0.119) (0.136)

7

50
0.727 3.489 0.707 4.172 0.716 2.412 0.590 0.695 0.563 0.503

(0.319) (0.989) (0.578) (0.923) (0.266) (0.685) (0.178) (0.561) (0.163) (0.388)

500
0.665 2.754 0.722 1.757 0.541 1.414 0.610 1.378 0.445 0.795

(0.287) (0.798) (0.238) (0.424) (0.21) (0.253) (0.244) (0.146) (0.168) (0.17)

Table 3.2: Results of nonlinear boundary examples: K represents the number of treatment

levels, n represents the training set size, MISC column gives the mean and standard deviation

of the misclassification rate and Value column gives the mean and standard deviation of the

value function MSE

So far, our focus has been on examples with parallel boundaries. We would like to point

out that the proposed GOWL could also work well when the parallel assumption of the

true boundaries does not hold. Under these circumstances, one can consider using nonlinear

learning so that the estimated boundaries would be flexible enough to approach the underlying
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true boundaries. To illustrate the idea, we use a case with n = 300, p = 2 and K = 3 and

show that the estimated boundaries produced by GOWL can capture the underlying pattern

of the optimal ITR well. More details are given in the supplemental material.

3.6 Dataset Applications

We apply GOWL to an irritable bowel syndrome clinical data set and a type 2 diabetes

mellitus clinical observational study to assess its performance in real studies.

3.6.1 Irritable Bowel Syndrome Dataset

This dataset consists of a dose ranging trial that aims to develop a treatment for irritable

bowel syndrome (IBS) (see Biesheuvel and Hothorn (2002) for more details). The clinical

study enrolled four active treatment arms, corresponding to doses 1, 2, 3, 4 and placebo. The

primary endpoint is a baseline adjusted abdominal pain score with larger values corresponding

to a better treatment effect. There are 369 patients completing the study, with an almost

balanced allocation across the groups of different doses. The final data set only contains three

variables: patients’ gender, treatment, and the adjusted abdominal pain score. Approximately

72% of the observed pain scores are greater than 0.

Given the small covariate dimension, we merge doses 1 and 2 together as the low dose

group and merge doses 3 and 4 together as the high dose group. The average adjusted

abdominal pain scores of the total data set is 0.475, with standard deviation equal to 0.769.

To estimate the optimal ITR, we apply methods including PLS-l1, OWL-Gaussian, and

GOWL-Gaussian, and modify the first two methods in the same way as in the simulation

study. As to the evaluation criterion, we calculate the empirical value functions with the

following cross-validation strategy. In particular, we randomly partition the dataset into 5

equal-sized parts, train the model based on every 4 of them, and predict the value function

using the remaining part. We repeat the partition 50 times and the corresponding means

and standard deviations of the predicted value functions are 0.491(0.029), 0.503(0.004), and

0.537(0.011) for PLS-l1, OWL-Gaussian, and GOWL-Gaussian.

The result shows that GOWL returns the highest predicted value function with a mod-
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erately low standard deviation. By reassigning the treatment, GOWL could improve the

predicted value function by approximately 13%. Furthermore, as to the estimated optimal

treatment assignment, PLS-l1 suggests the optimal treatment to be either placebo or low

dose. OWL assigns almost all the patients to the low dose group whereas GOWL suggests

about 60% patients in high dose and 40% in low dose. In particular, around 70% patients are

female for those recommended to be in high dose group. This conclusion appears consistent

to what Biesheuvel and Hothorn (2002) reported.

3.6.2 Type 2 Diabetes Mellitus Clinical Observational Study

In this section, we apply the proposed method to a type 2 diabetes mellitus (T2DM)

observational study to assess its performance in real life data application. This study includes

people with T2DM during 2012-2013, from clinical practice research datalink (CPRD) (Herrett

et al., 2015). Three anti-diabetic therapies have been considered in this study: glucagon-

like peptide-1 (GLP-1) receptor agonist, long-acting insulin only, and a regime including

short-acting insulin. The primary target variable is the change of HbA1c before and after the

treatment, and seven clinical factors are used including age, gender, ethnicity, body mass

index, high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL)

and smoking status. In total, 634 patients satisfying aforementioned requirements are while

around 5% have complete observations

To handle the missing data issue before analysis, we first remove all the covariates with

missing proportions greater than 70%. Then, we conduct a t test for each covariate to detect

whether its missing pattern impacts the mean of outcome significantly. According to the

Bonferroni multiple-testing adjusted p value, we remove all of the covariates with insignificant

test results. For the continuous variables with significant test p values, we remove all of their

incomplete observations. For categorical covariates having significant test results, we relabel

the missing value as a new class when encoding the covariate. After the data preprocessing,

there are 10 covariates with 142 observations in total.

Similar to the previous analysis, we apply PLS-l1, OWL-Linear, OWL-Gaussian, GOWL-
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Linear, and GOWL-Gaussian to estimate the ITR with the first three methods modified in

the same way. We use the inverse value of the HbA1c change as the reward in estimating

the ITR since a smaller HbA1c is desired. In order to obtain the propensity score P (A|X)

before using OWL and GOWL, we fit an ordinal logistic model with the cleaned data set

using the treatment as the response and all 10 covariates as predictors. As to the criterion,

we calculate the predicted value function using the same formula as in the simulation study

over 50 replications of 5-fold cross-validation. Table 3.3 summarizes the means and standard

deviations of the empirical value functions from the training and validation sets.

Model Training Testing

PLS-l1 2.257 (0.001) 2.206 (0.059)

OWL-Linear 2.335 (0.017) 2.305 (0.072)

OWL-Gaussian 2.456 (0.011) 2.285 (0.049)

GOWL-Linear 2.378 (0.047) 2.332 (0.095)

GOWL-Gaussian 2.486 (0.025) 2.383 (0.060)

Table 3.3: Analysis Results for the T2DM Dataset. Empirical Value Function Results using 5-

fold Cross-Validation with 50 Replications are reported. For comparison, the original assigned

treatment strategy has the value function 2.205 and the randomly assigned treatment method

has average value function 2.104 in testing sets with standard deviation 0.131.

To further demonstrate how much improvement the proposed method obtain, we also

calculate the value function with the original treatments and the average value function with

treatment being randomly assigned 50 times. The empirical means of the value functions are

2.205 and 2.104 with the standard deviation for the random assignment to be 0.131.

According to Table 3.3, GOWL achieves both the highest mean and the lowest standard

deviation of the empirical value function in the prediction results. In addition, the three

linear models are outperformed by the nonlinear models, possibly due to their suboptimal

model specification for this application. As to the distribution of estimated optimal treatment
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assignments, the PLS-l1 only includes long-acting insulin as the optimal treatment. OWL-

Gaussian chooses approximately 83% of the patients to be in either the GLP-1 group or

short-acting insulin group. GOWL-Gaussian assigns approximately 50% patients into the

short-acting insulin group while assigning the rest into one of the other two groups in a more

even way. This conclusion is consistent to some literature on short-acting insulins, which

shows the benefit of reducing HbA1c (Holman et al., 2007). Moreover, it is worth noting that

prandial insulins also have elevated risk of hypo and weight gain, which are crucial safety

and efficacy measurements for diabetes patients. Our study only considers HbA1c change

as the outcome. One can consider more composite metrics, including HbA1c change, hypo

events, and weight gain, to find the corresponding optimal treatment rules.

3.7 Conclusion

In this chapter, we use a modified loss function to improve the performance of OWL and

then generalize OWL to solve the ordinal treatment problems. In particular, the proposed

GOWL converts the optimal ordinal treatment finding problem into multiple optimal binary

treatment finding subproblems under certain restrictions. The estimating process produces a

group of estimated optimal treatment boundaries with monotonic intercepts that never cross.

Such boundaries can make the ITR estimates more stable and interpretable in practice.

There are various possible extensions for GOWL that could be considered. For example,

one can incorporate a variable selection component into the objective function. In the

literature, Xu et al. (2015) proposed variable selection in the linear case and Zhou et al.

(2017) extended the idea for kernel learning. According to their ideas, one nature extension

for GOWL is to include an l1 penalty of the parameters into its optimization problem. In this

way, variable sparsity could be achieved simultaneously when detecting the optimal ITR. The

second possible extension that might improve the performance of GOWL is to modify the

outcome in its optimization problem which is originally the reward R. Specifically, according

to Fu et al. (2016), one can consider fitting a model with R versus X and then put the

residuals as the outcome in the optimization problem of GOWL instead. Such an adjustment
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is likely to further improve the ITR estimation results for some finite sample scenarios.
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CHAPTER 4: IDENTIFYING HETEROGENEOUS EFFECT THAT USES
LATENT SUPERVISED CLUSTERING WITH ADAPTIVE FUSION

4.1 Introduction

In clinical research, precision medicine aims to develop the optimal treatment for each

individual according to subject’s personal characteristics. The motivation originates from

the findings that different groups of patients can respond dramatically different to the same

health care intervention due to specific body mechanism. Take a drug market product for

example, Tamoxifen is developed to prevent and treat breast cancer in women. However, it

is proved to be entirely useless for the subpopulation who has the gene CYP2D6 mutated

because they are not able to digest the effective ingredients (Ellsworth et al. (2010)). From the

example, one can be aware that failure to find the proper subpopulation that the intervention

targets at can lead to overkill of effective drugs due to the false negative results obtained

by testing efficiency on the whole population data instead. In real life, achieving precision

medicine goal is an arduous work because it can take tremendous efforts to detect the targeted

subpopulation for certain health care interventions (Brookes et al. (2004); Lagakos (2006)).

One important reason attributed to such difficulty is the reality that the primary features

distinguishing targeted subpopulation from others are usually either hidden among numerous

other collected features or even remain unmeasured. Therefore, it always remains desirable

and interesting to develop methods that can automatically detect such subpopulations.

In this chapter, we focus on similar datasets with unobserved subpopulation label as latent

supervised learning but plan to address these two drawbacks simultaneously. In particular, we

would like to propose a novel exploratory tool, named latent supervised clustering, to estimate

the heterogeneous effects at the same time of clustering the samples into subpopulations

without much prior knowledge on the underlying boundaries. To achieve these two learning
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goals, we formulate the regression problem that latent supervised learning discusses as a

model that has subject-specific coefficients, which can be treated as the subject-specific

relationships between the outcomes and predictors from the observed data. Then we cluster

such relationships from the perspective of clustering analysis. This method inherits the

advantages of both the latent supervised learning and traditional clustering analysis. On one

hand, it does not require much prior knowledge on the latent subpopulation structures and

instead let the data orient the learning process. On the other hand, it utilize the information

of both predictors and outcomes so that it can be used to fit the predictor effects as well as

produce competitive prediction results.

Note that clustering such outcome-predictor relationships can be very challenge because

they are not observed directly but can only be derived from the observed data. In this

way, one of the most important questions is how to define a distance properly so that the

clustering pattern will be encouraged accordingly. At this point, we would like to adapt

the idea of convex clustering. Convex clustering formulate the clustering process as a

minimization problem with a loss+penalty form with a tuning parameter λn balancing the

two terms. The loss term is the Euclidean distance between the covariates of each observation

xi and its corresponding subject-specific centroid µi. The penalty term includes sum of the

fusion penalty between each pair of (µi,µj) to encourage sparsity of differences. In latent

supervised clustering, we formulate the optimization using a similar form of loss+penalty

but with different definitions on the loss and penalty. For the loss term, we instead define

the distance using the loss function value of the outcome yi and its fitted value by a certain

model f(xi|βi) with subject-specific parameter βi. In this way, a smaller distance of the ith

observation indicates better goodness of fit. The model f(xi|βi) can be either parametric or

non-parametric such as smoothing spline while we only discuss linear functions in this chapter,

i.e. f(xi|βi) = xTi βi. For the subject-specific coefficient βi, we assume that observations

coming from the same subpopulation share the identical value of βi. To encourage such

estimation pattern, we impose an adaptive pairwise fusion penalty on βi in the penalty term.
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The weights for the adaptive terms are determined by the estimators of βi and needs to be

updated every time the value of βi is renewed. In summary, such an optimization formula can

lead to maximize the overall goodness of fit at the same time of minimize the heterogeneity

within each cluster.

The main contributions of this chapter are as follows. First, we propose a novel machine

learning method that aims to identify the heterogeneity by clustering the defined outcome-

predictor relationship. We borrow the convex clustering idea but with different loss and

penalty terms to encourage statistical consistency properties as well as computational efficiency.

Second, we design a novel algorithm to solve the optimization problem. This algorithm has

theoretical guarantee showing that the obtain approximate solution converges to the true

solution of the underlying optimization model at a competitive rate. We would like to point

out that the proposed latent supervised clustering covers the problem that Ma and Huang

(2016) discussed as a special case. They focused on the case when the subpopulations can be

determined by a variant intercept term of a linear model.

The remainder of the chapter is organized as follows. In Section 4.2, we illustrate

formulation of the latent supervised clustering and discuss the corresponding statistical

consistency properties of the estimators. In Section 3, we present the proposed accelerated

proximal gradient algorithm to solve the optimization problem and show its convergence

rate properties. Moreover, we briefly discuss how the starting points of the algorithm are

calculated in practice and how the estimated results can be used for predictions. Simulated

examples and data applications are presented in Section 4 to demonstrate the performance of

the proposed method under finite samples. Some discussions are made in the last section as

a conclusion and more technical details on the proofs are left in the appendix.

4.2 Methodology

This section illustrates the idea of latent supervised clustering and formulates the opti-

mization problem. The statistical consistency properties are also presented with the technical

proofs in the appendix.
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4.2.1 Latent Supervised Clustering

We use the notation (xi, yi), i = 1 · · · , n, to represent the ith observation of the collected

data set (X,y). In particular, xi is a p dimensional vector that indicates the covariates with

heterogeneous effect on the response yi. Now we consider the model,

yi = f(xi;βi) + εi, (4.1)

where the subject index i = 1, · · · , n, xi always contains a subject-specific intercepts as the

first column, βi is the coefficient vector of x for the ith observation, and εi is the noise

term that has zero expectation and bounded variance. We further assume that xi, and εi

are independent of each other. To describe the heterogeneity, we let the predictors xi have

subject-specific effect on the response, which means βi can take different values for different

indices i. Our goal is, as mentioned previously, to estimate and cluster the n coefficient vectors

βi simultaneously, and let the clustering results guide on subpopulation identification. For

model (4.1), the important assumption on the subgroup structure is that the value of βi for

i = 1, · · · , n only depends on the underlying subpopulation that the corresponding ith subject

belongs to. In other words, if we denote a partition of {1, · · · , n} with S = (S1, · · · ,SK)

where K represents the number of subpopulations, then the coefficient vector βi of all the

subjects from the same latent subgroup, i.e. ∀i ∈ Sm for some m ∈ {1, · · · , K}, are supposed

to be identical to each other. Note that the true value of K is usually unknown in practice,

and this could bring difficulty in estimation as previously discussed. In this chapter, we

only consider the class of linear functions, i.e. f(xi;βi) = xTi βi. Note that when the linear

assumption is too strong, one can extend the function to nonlinear such as using the smoothing

spline that f(xi;βi) = ∑m
j=1 βijgj(xi), where g1, · · · , gm are basis functions.

To achieve the learning goal of estimation and clustering for the coefficients βi, we

would like to borrow the idea of the convex clustering (Chi and Lange (2015)) and consider
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optimization problem as below:

min
βi

Qn(βi;λn) 4=
n∑
i=1

[
`(yi,xTi βi) + λn

∑
i<j

wij||βi − βj||1
] , (4.2)

where ` represents a preselected loss function to measure the goodness of fit and the penalty

term is the pairwise fusion penalty adapted by certain nonnegative weights wij to guarantee

consistency as well as achieve satisfactory estimation and computational results. For the

loss term, we compare two popular options: the check loss (Koenker (2005)) that is used in

quantile regression and the quadratic loss that is used in the standard regression. For the

penalty term, we use an adaptive pairwise fusion penalty to adjust for the biasness made by

the L1 penalty. In particular, we suggest wij = min{Bw,
ιm{i,j}

||β̃i−β̃j ||1
}, where ιm{i,j} is a indicator

that the observation j is among i’s m-nearest neighbors by Euclidean distance, and β̃ is an

current estimate of β = {βT1 , · · · ,βTn }T which can start as the local regression coefficients.

The upper bound Bw is added in case some pairs of (β̃i, β̃j) have values that are too close to

each other. Due to the numerous terms of the fusion penalty, this m-nearest neighbors idea

can save tremendous computational time when solving (4.2) while maintaining competitive

performance. We also find that it can perform better if wij is updated in each iteration by

using the latest estimated βi instead of sticking to the initial values.

In practice, one may find some prior knowledge available to show that certain components

in xi can have homogeneous effect on the outcome yi, i.e. the coefficients of some predictors

remain constant across all the subpopulations. In this case, we recommend conducting latent

supervised clustering only for the variables with heterogeneous effect while adjusted for such

homogeneous effect. To illustrate this idea with the similar notations, we suppose the collected

data is (xi, zi, yi) where zi is a q dimensional predictor vector known to have homogeneous

effect. Then, we can rewrite the model (4.1) into yi = f(xi;βi) + h(zi;γ) + εi where γ is the

same coefficient vector for all the observations and h is a measurable function that can lead

to both parametric and nonparametric models. Similar to f , we restrict our coverage to a
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simple but common case when h(zi;γ) = zTi γ. In this scenario, the optimization problem in

(4.2) can be expressed as,

min
βi

Qn(βi;λn) 4=
n∑
i=1

[
`(yi,xTi βi + zTi γ) + λn

∑
i<j

wij||βi − βj||1
] . (4.3)

Moving some redundant components from xi to zi can be crucial in achieving a good

prediction results at the same time of speeding up the computation when the dimension of

the predictors is very large. Even through no prior knowledge can be obtained in distinguish

zi from xi, we find an idea still helpful that is similar to the forward variable screening. In

particular, we can start with a parsimonious xi model and then put one variable from zi to

xi that boosts the prediction the best. We repeat the process until the model performance

is not longer improved significantly by adding more variables into xi. We leave details of

illustrating this idea in the data application section.

As a special case of latent supervised clustering, Ma and Huang (2016) focused on the

problem when the subpopulation can be determined a subject-specific intercept. They

suggested using a concave fusion penalty in the objective function and applied the alternating

direction method of multipliers (ADMM) algorithm to solve the optimization problem. Our

method enjoys several advantages even if one extends their method into model (4.1). First,

our method has significant computational benefits because (4.3) is still convex and our

proposed algorithm does not need to generate the p · n2 additional intermediate parameters

that ADMM does. Second, the quadratic loss suggested by Ma and Huang (2016) can be a

suboptimal choice due to its sensitivity to the outliers. For example, if a subject actually

coming from the first subpopulation is wrongly assigned into the second subpopulation, it

can highly impact the coefficient estimates of the second subpopulation when quadratic loss

is applied. This can be partly attributed to the fact that the least square estimators have

breakdown point to be zero (Huber (2004)). We compare the results of the qudratic loss and

check loss and find the latter one can significantly improve the model performance. Third, it
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is not desirable to penalize all the pairs of (βi,βj) equally. In the ideal case, we hope that

large weights are assigned to the pairs coming from the same subpopulation while zero weights

are used for those coming from different subpopulations. That is one of the motivations to

suggest the adaptive fusion penalty instead and such a proposal could maintain the desirable

consistency properties of the estimators at the same time of bringing in a convex objective

function so that the global minimization can be guaranteed.

4.2.2 Making Predictions on New Observations

The proposed method can also be used to decide the subpopulations and predict the

response of a new observation. One can treat the latent supervised clustering labels in

the training datasets as the estimated underlying outcome, and fit a standard classification

model using the observed predictors. Some popular choices include discriminant analysis

(McLachlan (2004)), k-nearest-neighbor and random forest. Then, one can used the fitted

model to make predictions on which subpopulation the new observed data should be assigned

to. To predict the response yi, one can plug in the corresponding estimated αi and γ.

4.3 Computational optimization algorithms

In Section 4.3, we present our proposed algorithm to solve the optimization problem.

Primarily, we design an accelerated proximal gradient variant of Fast Iterative Shrinkage-

Thresholding Algorithm (FISTA, Beck and Teboulle (2009)) which is shortened as APG. In

addition, a restart step is integrated in to further speed up the convergence rate in practice.

For the check loss scenario, in which the objective function is nonsmooth, we proposed a

surrogate loss for approximation and show that it can also achieve the same estimation results

with certain adjustments on APG. The corresponding convergence rate properties are also

discussed below.
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4.3.1 Properties of the new model

For our notational simplicity, we rewrite the model in a compact form. Let us concatenate

the variables β and γ into one vector ζ 4= (βT ,γ)T . Now, we define

fn(ζ) 4=
n∑
i=1

`(yi,xT
i βi +zT

i γ) and Jn(ζ) 4= λn‖Dwβ‖1 ≡ λn
n∑
i=1

n∑
j=1

wij

p∑
k=0
|βik−βjk|. (4.4)

Then, we can rewrite the optimization problem into the following compact form

min
ζ∈Rnp+q

{
Fn(ζ) 4= fn(ζ) + Jn(ζ)

}
. (4.5)

Under the choice of our loss function `, we make the following observation.

• Problem (4.5) is convex, i.e., both fn and Jn are convex (fn is convex if fn((1− α)ζ +

αζ̂) ≤ (1− α)fn(ζ) + αfn(ζ̂) for all ζ, ζ̂ and α ∈ [0, 1]).

• Jn is nonsmooth (its derivative is continuous). If ` is the quantile check loss, then fn is

also nonsmooth.

• If ` is the quadratic loss, then fn has Lipschitz gradient, i.e., there exists Lfn ≥ 0

such that ‖∇fn(ζ) − ∇fn(ζ̂)‖ ≤ Lfn‖ζ − ζ̂‖ for all ζ, ζ̂. While problem (4.5) with

Lipschitz gradient functions can be solved efficiently by many optimization algorithms

including FISTA (Beck and Teboulle (2009)), the nonsmooth check loss is more difficult

for designing efficiently numerical methods.

• If ` is the check loss, then (4.5) is still convex, but fully nonsmooth (i.e., both fn and

Jn are nonsmooth).

4.3.2 Algorithmic design

Our algorithm mainly relies on the well-known accelerated proximal gradient method in

Beck and Teboulle (2009); Nesterov (2013). However, the following steps are new.
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• We incorporate the algorithm with a restart procedure recently studied in Fercoq and

Qu (2016) to accelerate the performance of the algorithm. Our algorithm has theoretical

guarantee even with restart.

• We design a proximal operator (see Definition below) for the regularizer Jn using an

adaptive fast projected gradient methods with warm-start.

• For the check loss function, we apply smoothing technique to approximate this function

by a smooth function depending on a parameter which can be adaptively updated in

the algorithm.

• We design a new variant of the adaptive method proposed in Tran-Dinh (2016); Tran-

Dinh et al. (2016) to solve (4.5) that has convergence rate guarantee while avoids any

parameter tuning strategy.

The main ingredients of the algorithms consist of

• Evaluate the gradient vector of fn or its smoothed approximation. Evaluate the Lipschitz

constant of this gradient mapping.

• Compute the proximal operator of Jn which is defined as

proxγJn(ζ) := arg min
ζ̂

{
Jn(ζ̂) + 1

2γ‖ζ̂ − ζ‖
2
2

}
, (4.6)

for any ζ and γ > 0.

We will describe these steps separately below. Now, we assume that these ingredients are

given, we can present the main steps of our algorithm for solving (4.5) as follows.

We discuss in details the main steps of Algorithm 1. If fn is a quadratic loss of the form

fn(ζ) = 1
2‖X̃ζ − y‖

2
2. Then, ∇fn(ζ) = X̃T (X̃ζ − y), which is Lipschitz continuous with

Lfn = λmax(X̃T X̃) (the maximum eigenvalue of X̃T X̃). If fn is a nonsmooth check loss, we
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Algorithm 1 Adaptive fast Proximal Gradient algorithm (APG)
1. Choose an arbitrarily initial point ζ0 ∈ R(n+1)d and a desired tolerance ε > 0;

2. Evaluate Lf := λmax(X̃T X̃). Set τ0 = 1, and ζ̂0 := ζ0.

3. If the check loss is used, then input η1.

4. For t = 0, 1, · · · , tmax, perform:

Step 1: Set Lfn := Lf for the quadratic loss, and Lfn := Lf
ηt+1

for the check loss.
Then compute the step-size αt = 1

Lfn
.

Step 2: Compute approximately ζ(t+1) ≈ proxαtJn
(
ζ̂(t) − αt∇fn(ζ̂(t))

)
up to the

accuracy εt.
Step 3: If stopping-criterion is satisfied, terminate the algorithm.

Step 4: If fn is the quadratic loss, update τt+1 := 1
2

(
1 +

√
1 + 4τ 2

t

)
.

If fn is the check loss, update τt+1 as the positive solution of τ 3−τ 2−τ 2
t τ−τ 2

t =
0.
Step 5: Update the accelerated step ζ̂(t+1) := ζ(t+1) + τk−1

τk+1

(
ζ(t+1) − ζ(t)

)
.

Step 6: If fn is the check loss, the update ηt+2 :=
(

τt+1
τt+1+1

)
ηt+1.

Step 7: Perform a restarting step if requested.

5. End of the main loop.

approximate it by a smooth function fn(·; η) as in Subsection 4.3.2 below. The next step is to

compute the proximal operator proxg of g. We separate this step in Subsection 4.3.2 below.

Let ζ∗ be an optimal solution of (4.5) with the optimal value Fn(ζ∗). Then, for any ζ we

have Fn(ζ) ≥ Fn(ζ∗). We say that ζ(t) is an approximate solution to (4.5) with an accuracy

ε ≥ 0, if Fn(ζ(t)) − F (ζ∗) ≤ ε. In (4.5), we unfortunately cannot compute the proximal

operator proxγJn exactly, but rather up to a given accuracy εt > 0 such that

0 ≤ Qn(ζ(t+1); ζ̂(t))−Qn(ζ(t+1)
∗ ; ζ̂(t)) ≤ εt, (4.7)

as can be seen at Step a of Algorithm 1, where Qn(ζ; ζ̂(t)) is a surrogate of Fn around ζ̂(t)
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defined as

Qn(ζ; ζ̂(t)) := fn(ζ̂(t)) +∇fn(ζ̂(t))T (ζ − ζ̂(t)) + Lf
2 ‖ζ − ζ̂

(t)‖2 + Jn(ζ),

and ζ(t+1)
∗ := proxαtJn

(
ζ̂(t) − αt∇fn(ζ̂(t))

)
. We note that Qn(·; ζ̂(t)) is the objective function

of the proximal operator problem at Step (a) of Algorithm 1. It is easy to show that if condition

(4.7) holds, then we have ‖ζ(t+1)−ζ(t+1)
∗ ‖ ≡

∥∥∥ζ(t+1)−proxαtJn
(
ζ̂(t)−αt∇fn(ζ̂(t))

)∥∥∥ ≤ √2αtεt.

Now, we provide a general convergence result for Algorithm 1. This convergence result

can be considered as slight modification of (Schmidt et al., 2011, Proposition 2). The proof

sketch of this theorem can be found in the appendix.

Theorem 4.3.1. Let fn be a quadratic loss, and let {ζ(t)} be a sequence generated by

Algorithm 1 where proxγjn is computed approximately as (4.7) with the accuracy εt ≥ 0. Then,

we have the following guarantee:

Fn(ζ(t))− Fn(ζ∗) ≤ 2λmax(X̃T X̃)
(t+ 1)2

(
‖ζ(0) − ζ∗‖+Rt

)2
, (4.8)

where Rt =
√

2√
Lf

(
2∑t−1

j=0(j + 1)√εj +
√∑t−1

j=0(j + 1)2εj
)
.

Consequently, for any accuracy ε > 0 and any positive constant c ≥ 1, if the inner

accuracy εt at each iteration t is chosen such that εt = c
(t+1)5 , then the number of iterations

needed to achieve an approximate solution ζ(t) of (4.5) with in the accuracy ε does not exceed

tmax =
⌊√

2λmax(X̃T X̃)√
ε

‖ζ(0) − ζ∗‖+ 10
√

2c√
ε

⌋
1.

Smoothing technique for the check loss The check loss ρτ (r) = τrI(r ≥ 0) − (1 −

τ)rI(r < 0) = (τ − 0.5)r + 0.5|r| is nonsmooth. We can smooth this function by a smooth

convex function ρτ (·; η) depending on a given smoothness parameter η > 0. For any fixed

1Here, bac is the closest integer of a.
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value of η > 0, the smoothed function ρτ (·; η) needs to satisfies the following basic properties:

• First, ρτ (·; η) is smooth and convex. Its gradient ∇rρτ (·; η) with respect to r is Lipschitz

continuous with a Lipschitz constant Lρ depending on η.

• Second, ρτ (·; η) well approximates ρτ (·). That is there exists a constant Dρ independent

of η such that ρτ (r; η) ≤ ρτ (r) ≤ ρτ (r; η) + ηDρ for all r.

There are several smoothed functions for ρτ (·). Here are two examples.

• Huber loss: The function ρτ (r; η) =


1
2ηr

2 if |r| ≤ η

|r| − η
2 otherwise

is a smoothed approximation

of ρτ (·) with Lρ = 1
η
and Dρ = 1

2 .

• Logit-type loss: The function ρτ (r; η) =
(
τ − 1

2

)
r + η

2 ln
(
er/η + e−r/η

)
is a smoothed

approximation of ρτ (·) with Lρ = 1
η
and Dρ = ln(2).

Now, we can prove the following properties of ρτ (·; η), whose proof can found in the

appendix.

Lemma 4.3.1. Let us consider fn(ζ; η) 4= ∑n
i=1 ρτ (yi(xTi βi + zTi γ); η) as a smooth version of

the check loss in (4.4) using either the Huber loss or the Logit-type loss. Then, this function

is convex and differentiable. Its gradient ∇ζfn(·; η) is Lipschitz continuous with the Lipschitz

constant Lfn = λmax(X̃T X̃)
η

. Moreover, we have

fn(ζ; η) ≤ fn(ζ) ≤ fn(ζ; η) + nηDρ, (4.9)

for any ζ ∈ R(n+1)p and η > 0.

Associated with fn(ζ; η), we consider the smoothed problem of (4.5) as

min
ζ∈Rnp+q

{
Fn(ζ; η) 4= fn(ζ; η) + Jn(ζ)

}
. (4.10)
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Our goal is to compute an ε-approximation solution ζ(t) to the true solution ζ∗ of the original

problem (4.5) as Fn(ζ(t))−Fn(ζ∗) ≤ ε. The idea is to apply the fast proximal gradient method

to approximately solve this smoothed problem (4.10) and then combines it with a homotopy

scheme to decrease the smoothness parameter η at each iteration t as ηt+1 :=
(

τt
τt+1

)
ηt. The

step-size parameter is updated by using the unique positive solution τt+1 of the cubic equation

c3(τ) = τ 3 + τ 2 + τ 2
t τ − τ 2

t = 0.

The following result tells us that if ζ(t) is an approximate solution of (4.10), then it is

also an approximate solution of the original problem (4.5). The following theorem shows the

convergence of Algorithm 1 whose proof can be found in appendix.

Theorem 4.3.2. Let {ζ(t)} be a sequence generated by Algorithm 1 where proxγJn is computed

approximately as (4.7) with the accuracy εt := c
(t+1)4 for some positive constant c ≥ 1. Then

we have the following guarantee:

Fn(ζ(t+1))− Fn(ζ∗) ≤ 1
(t+ 1)[ Lf2η1

‖ζ(0) − ζ∗‖2 + 2nη1Dρ +
1.9
√
cLf

√
η1
‖ζ(0) − ζ∗‖+ 35c

2η1
+ Γt],

(4.11)

where Lf := λmax(X̃T X̃), Γt = 0 for the Huber loss, and Γt = Dρ(1+4η1 ln(t+1))
2 for the Logit-

type loss. Hence, for any accuracy ε > 0, the number of iterations needed to achieve an

approximate solution ζ(t) of (4.5) with in the accuracy ε does not exceed tmax = O
(

1+Γε
ε

)
,

where Γε = 0 for the Huber loss, and Γε = − ln(ε) for the Logit-type loss.

Evaluating the proximal operator for the regularizer We now describe how to

approximately evaluate the proximal operator of Jn defined by (4.6) that satisfies the

condition (4.7). Since computing ζ(t+1) requires to approximate the solution of the strongly

convex problem (4.6), we instead consider its dual problem

proxγJn(u) = u− γDTν∗(u), where ν∗(u) := arg min
‖ν‖∞≤1

{
γ

2‖D
T
wν‖2 − νTDwu

}
. (4.12)
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Here, for a given γ > 0 and u, we need to solve the dual problem to obtain ν∗(u). Then,

using the first formulation of (4.12) to compute proxγJn(u). Since, we can only approximate

ν∗(u), the proximal operator proxγJn(u) can only be approximated within a given accuracy.

We apply an accelerated projected gradient algorithm to approximate ν∗(u). The algorithm

can be briefly presented in two lines as follows:

Accelerated projected gradient scheme to approximate proxγJn(u): Given u, γ > 0

and an initial point ν(0). Compute LD := λmax(DDT ). Set ν̄(0) = ν̂(0) := ν(0), s0 := 1 and

Γ0 := 0. At each iteration j ≥ 0, we update

1. ν(j+1) := πB∞
(
ν̂(j) − 1

Ld
Dw(DT

wν̂
(j) − u)

)
.

2. ν̂(j+1) := ν(j+1) + sj−1
sj+1

(ν(j+1) − ν(j)) where sj+1 := 1
2(1 +

√
1 + 4s2

j).

3. ν̄j+1 := (1− ωj)ν̄j + ωjν
(j+1), where Γj+1 := Γj + sj+1, and ωj := sj+1

Γj+1
.

Here, πB∞(v) = max{min{v, 1},−1} is the projection of v onto the `∞-unit ball B∞ := {v |

‖v‖∞ ≤ 1}. This algorithm is terminated after jmax iterations. The output of this routine

is ζ(t+1) := ζ̂(t) − αt∇fn(ζ̂(t)) − αtD
T ν̄jmax , which approximates ζ(t+1)

∗ = proxαtJn
(
ζ̂(t) −

αt∇fn(ζ̂(t))
)
.

Now, we analyze the computational effort to achieve the approximation point ζ(t+1) as in

(4.7). By slightly adapting (Tran-Dinh et al., 2016, Theorem 2), we have the following bound

Qn(ζ(t+1); ζ̂(t))−Qn(ζ(t+1)
∗ ; ζ̂(t)) ≤ 2LD‖ν(0)−ν∗t ‖2

(j+1)2 , where ν∗t := ν∗(ζ̂(t)−αt∇fn(ζ̂(t))) defined in

(4.12). In order to achieve an εt-approximate solution ζ(t+1) of ζ(t+1)
∗ at the t-th iteration, we

requires 2LD‖ν(0)−ν∗t ‖2

(j+1)2 ≤ εt. Hence, the number of iteration jmax to achieve this goal is

jmax :=


√

2λmax(DwDT
w)

√
εt

‖ν(0) − ν∗t ‖

 .
By exploiting a warm-start strategy using the previous approximate point ν(t−1) for ν(0), the

distance ‖ν(0) − ν∗t ‖ becomes small. This implies that the maximum number of iterations
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jmax is also small. In our implementation, we can fix this number to a given level such as

jmax = 50 to achieve an approximation ζ(t+1) in (4.7).

4.3.3 Initiating the Starting Points

Section 4.2.1 mentions that a proper selection of the starting valuesβ̃ can be important

for the APG algorithm to converge to the global optimization point at a fast rate. Based on

the assumption that each variable in X are independent of each included variable in Z, we

introduce an ad-hoc method that can be easily applied to find a proper β̃ in practice. We

split the method into two steps as follows:

First, calculate the distance matrix of the data set based on (X,y∗), where y∗ is the

residual of the linear regression between y and Z. We use y∗ instead of y in that the

expectation of y∗ is exactly Xβ. This conclusion holds due to the fact that a linear regression

produces unbiased coefficients estimate when the omitted variables in Z are all independent

of those included in the model. In this way, we treat the response y∗ as a new variable and

calculate the distance matrix on (X,y∗). For example, the Manhattan distance between the

ith and jth subjects is defined as d(i, j) = ‖xi − xj‖1 + α‖y∗i − y∗j‖1 (Borg and Groenen

(2005)). In this paper, we always choose α = 1.

Second, denote β̃ = (β̃1, · · · , β̃n) and calculate each β̃i based on the k-nearest neighbors

of the ith subject with a linear regression model matching the loss function. The k-nearest

neighbor set for the ith subject is defined as the k observations that: first, have the smallest

distance d(i, j) to the ith subject, and second whose response is within the neighbor of yi as

Oε(y∗i ). The reason of the second restriction is to increase the chance that those neighbors

come from the same latent groups as the ith subject does (Figure ). The selection of the

neighbor ball radius depends on the variation of the noise and xTi βi in the simulation studies.

In particular, we vary ε from 0.5 to 6.

4.4 Numerical Analysis

In this section, we consider using examples to test the performance of latent supervised

clustering under finite samples. In Section 4.4.1, we study the estimation accuracy, runtime,

80



and the prediction performance using some synthetic datasets. As to the estimation accuracy,

we focus on both the estimated coefficients and the detected number of subgroups. For the

proposed method, we consider both the smooth approximate check loss and the quadratic

loss as mentioned previously. For estimation accuracy comparison, we employ the method

proposed in Ma and Huang (2016) with mannual extension to multivariate cases, which

considers a general heterogeneous-effect vector xi instead of the intercept only. For prediction

performance comparison, we additionally include two standard methods: linear regression

with all the two-way interactions of xi’s and random forest. In Section 4.4.2, we apply latent

supervised clustering to analyze two real datasets and compare its prediction results with the

models selected in Section 4.4.1.

In the numerical studies below, we pick the tuning parameters of latent supervised cluster-

ing, i.e. (λn,m, ε), as follows. The penalty tuning parameter λn varies in {2−3, 2−2, 2−1, 20};

the number of neighbors is fixed to be m = 10; the radius of the response neighbor ε increases

as xi dimension goes up and is chosen from {2−1, 20, 2, 22}.

4.4.1 Simulations

We conduct eight representative simulated examples to evaluate the performance of latent

supervised clustering under various scenarios. Due to the linearity of the proposed model, we

restrict the outcome-predictor relationship to be linear for all the examples. In summary,

the first two examples are two subpopulation cases with linear boundaries and xi has low

dimension with no noisy component. The third example is modified from Wei and Kosorok

(2013) by adding more covariates in xi. The fourth example discusses a case when zi has

a higher dimension while most of its covariates noisy. The fifth, sixth and eighth examples

demonstrate the cases when the underlying subpopulation boundaries are nonlinear and xi

contains noisy variables. The seventh example covers the nonlinear boundary situation when

number of underlying subgroups increases to five.

For each example, we first generate a training sample to estimate the parameters and

obtain the fusion labels for each observation. We generate each covariate of xi and zi from
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an independent continuous uniform distribution U(−2, 2) and the random noise εi from a

normal distribution N(0, 1). To select the best tuning parameter λn, we generate an equal

size tuning sample and choose the λn that minimizes prediction error for the tuning set. To

calculate the prediction error for each observation in the tuning set, we consider the estimated

parameters for all the detected subpopulations in the training set and choose the one that

produces the smallest mean square error. Then we calculate the average predicted means

square error over all the tuning samples and treat it as the criterion for λn selection.

After we pick the best λn with all the estimated coefficients βi, we generate a test dataset

that is ten times as large as the training one to assess the prediction performance. We divide

prediction into two steps as described previously. First, we treat the clustering label of the

training set as the underlying outcome and fit it with all the predictors using a classification

model. In the simulation studies, we choose k-neatest-neighbor for most of the cases and

use kernel discriminant analysis as an alternative when xi has noisy variable. Second, for

each observation from the testing set, we use the classification model to predict which cluster

it comes from and plug in the corresponding estimated βi to make predictions. The mean

squared prediction error is reported for each model.

As to the comparison of estimation accuracy, we report the average and standard deviation

of the square root of mean squared error (SMSE, Hastie et al. (2009)) of the estimated β

and γ, which are defined as
√

(β̂− β)T (β̂− β)/np and
√

(γ̂ − γ)T (γ̂ − γ)/q respectively.

In addition, we also compare the sample mean and standard deviation (in parenthesis) of the

estimated number of subpopulations K̂. For the runtime comparison, we record the average

run time (in second) of each method under all examples. The simulations are repeated for

300 times. The details of the settings for the eight examples are listed as below.

Example 1 Univariate Linear Regression with Two Subgroups Suppose the under-

lying true model is a linear regression case written as,
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yi =


1− xi1 + zTi γ + εi,

−1 + xi1 + zTi γ + εi,

xi1 ≤ 1

xi1 > 1
,

where γ = (1,−5, 2, 1,−3, 1, 3, 2,−4)T and the random noise εi ∼ N(0, 1);

Example 2 Three Dimensional xi with Noisy Variables in zi We consider a case

when xi has three dimension and zi includes noisy variables. In particular, the true model is

written as,

yi =


1− xi1 − 2xi2 + zTi γ + εi,

−1 + 2xi1 − xi2 + zTi γ + εi,

xi1 + xi2 ≤ 0

xi1 + xi2 > 0
,

where γ = (1,−5, 3, 2, 1, 0, 0, 0, 0)T and the random noise εi ∼ N(0, 1);

Example 3 Higher xi Dimension with Noisy Variables We have xi contain 25

variables with intercept included, and the latent subpopulation is determined by the first five

of them. The true model is,

yi =


−4 + zTi γ + εi,

1 + zTi γ + εi,

1 + xi1 + xi2 − 3xi3 + 2xi4 ≤ 0

1 + xi1 + xi2 − 3xi3 + 2xi4 > 0
,

where γ = (1,−5, 3, 2, 1, 0, 0, 0, 0)T and the random noise εi ∼ N(0, 1);

Example 4 Higher zi Dimension with Three Subgroups Consider a model that has

50 homogeneous variables zTi and three latent subpopulations as,

yi =



1− xi1 + zTi γ + εi,

−1 + zTi γ + εi,

1 + xi1 + zTi γ + εi,

xi1 + xi2 + xi3 ≤ −1

xi1 + xi2 + xi3 > 1

o.w.

,
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where γ = (1,−5, 3, 2, 1,0T45)T , 0T45 represents a 45-dimensional zero vector and the random

noise εi ∼ N(0, 1);

Example 5 Nonlinear Subgroups Boundary with Noisy Variables in xi Consider

a model in which xi has 6 variables with intercept included and the two of them construct a

nonlinear subpopulation boundary,

yi =


1− xi1 − 3xi2 + zTi γ + εi,

1 + 3xi1 + xi2 + 4xi3 − xi5 + zTi γ + εi,

x2
i1 + x2

i2 ≤ 4

x2
i1 + x2

i2 > 4
,

where γ = (1,−5, 3, 2, 1)T and the random noise εi ∼ N(0, 1);

Example 6 Complex Subgroups Boundary with Noisy Variables in xi Consider a

situation that has a more complex nonlinear subpopulation boundary:

yi =


1 + 5xi1 + zTi γ + εi,

−1− 3xi1 + zTi γ + εi,

x2
i1 sin xi2 + x3

3 + log(xi4 + 5) + xi5 ≤ 5

x2
i1 sin xi2 + x3

3 + log(xi4 + 5) + xi5 > 5
,

where γ = (1,−5, 3, 2, 1) and the random noise εi ∼ N(0, 1);

Example 7 Nonlinear Subgroups Boundaries with Five Subgroups Consider a

situation that there are 5 subpopulations with nonlinear boundaries yi = ∑5
k=1 I((x2

i1 +x2
i2) ∈

(bk−1, bk])·(k−3)(1+xi1+· · ·+xi5)+zTi γ+εi where (b0, b1, b2, b3, b4, b5) = (−∞, 2, 3.5, 5, 7,∞),

γ = (1,−5, 3, 2, 1)T , and the random noise εi ∼ N(0, 1);

Example 8 Complex Subgroups Boundaries with Three Subgroups and Noisy

Variables Consider a model in which xi has 11 variables with intercept included and 3
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subpopulations as following,

yi =



1 + xi1 + 3xi2 + 2xi3 + 3xi4 + 2xi5 + zTi γ + εi,

−1 + 3xi1 + xi2 − 5xi3 + 0xi4 − 2xi5 + zTi γ + εi,

1− xi1 − xi2 − xi3 + 5xi4 − 3xi5 + zTi γ + εi,

x2
i1 + exp(xi2) ≤ 2.5

x2
i1 + exp(xi2) > 5.5

o.w.

,

where γ = (1,−5, 3, 2, 1)T and the random noise εi ∼ N(0, 1).

Table 4.1 presents the estimation accuracy of the manual extension of Ma and Huang

(2016) (Concave), latent supervised clustering with quadratic loss (LSC-quad), and latent

supervised clustering with check loss (LSC-check). From the results, latent supervised

clustering with check loss almost always produces better mean square error results for both

β̂ and γ̂. In particular, LSC-quad and LSC-check both perform competitively in the first

two examples when the boundaries are less complex and the dimension of xi is small. The

concave penalty method can also maintain relatively small average of mean square error

while suffers a larger variability, which implies that the concave penalty can lead to unstable

estimation results. When the underlying subpopulation structure becomes more complex, as

the dimension of xi increases as Example 3 or the boundraies become nonlinear as Example 5

and 6 show, the advantage of LSC-check becomes more clear due to its strong stability to the

noises and outliers caused by being clustered in the wrong subpopulation. This demonstrates

the advantage of using a more robust loss as well as adaptive fusion penalty. When there are

over two subpopulations in the setting with even more complex boundaries as Example 7 and

8 show, none of the methods can produce satisfactory estimation accuracy while LSC-check

still outperforms the others. This indicates that one should conduct additional data cleaning

or variable selection steps before fitting latent supervised learning in practice, especially when

the predictors can have complex relationships. As to the estimates of the subpopulation

numbers, the two LSC methods perform better than Concave while all the methods tend to

overestimate this number except for the case of K = 5.
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Examples Concave LSC-quad LSC-check
# (n, p, q,K) β̂ K̂ β̂ K̂ β̂ K̂

1 (100,2,9,2)
0.222 3.04 0.145 2.1 0.115 2.17

(0.153) (0.68) (0.061) (0.48) (0.033) (0.37)

3 (300,24,5,2)
0.408 2.32 0.315 2.21 0.177 2.11
(0.22) (0.68) (0.180) (0.49) (0.122) (0.41)

4 (300,4,50,3)
0.421 2.67 0.235 3.34 0.179 3.12

(0.035) (0.89) (0.041) (0.73) (0.02) (0.38)

6 (300,6,5,2)
0.616 2.73 0.348 2.15 0.239 2.13

(0.161) (0.52) (0.152) (0.22) (0.134) (0.18)

7 (600,6,5,5)
0.790 3.25 0.660 4.25 0.469 4.43

(0.251) (1.54) (0.271) (1.06) (0.157) (0.36)

Table 4.1: Simulation estimation accuracy: the average and standard deviation of the square
root of mean squared error of the estimated β with the best results in bold. The K̂ column
provides the average and standard deviation of the detected number of clusters. Concave
represents the method with concave fusion penalty, LSC-quad and LSC-check represent latent
supervised clustering with quadratic loss and check loss respectively

As to the runtime comparison, Table 4.2 reports the average time that the selected

methods take to return the results with one combination of tuning parameters. It is not

surprising to see that latent supervised learning is faster than the concave penalty method

with ADMM algorithm especially when the sample size n and dimension p become large.

This is because the concave penalty method takes more iterations before convergence, and the

ADMM algorithm needs to create O(n2p) additional intermediate parameters. In addition,

the suggested specification of the weight vector w in latent supervised clustering reduces

the number of the penalty terms tremendously. Within latent supervised learning methods,

LSC-quad performs slightly faster than LSC-check, and this is due to the fact that the smooth

check loss can slightly decrease the convergence speed of the proposed accelerated proximal

gradient algorithm.

As to make predictions for the test data sets, we choose k-nearest-neighbor with k = 10

in most of the cases to predict the underlying label except for Example 3, 7, and 8 due to the

affect of noisy predictors. For these three examples, we choose kernel discriminant analysis

with the tuning parameters selected by the tuning datasets.

We report the mean squared error of prediction in Table 4.3. From the results, LSC
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Examples Concave LSC-quad LSC-check
# n p q K Time(sec.) Time(sec.) Time(sec.)
1 100 2 9 2 18.5 11.0 12.1
2 300 3 9 2 692 71.1 107.3
3 200 24 5 2 16954 2364.1 2433.7
4 300 4 50 3 793.8 161.5 186.5
5 300 6 5 2 2225.1 458.5 537.1
6 300 6 5 2 2244.5 436.7 507.4
7 600 6 5 5 9513 1255.8 1398.8
8 600 11 5 3 40514.5 4803.9 5135.2

Table 4.2: Simulation runtime comparison: average run-time (in second) of the selected
methods for each set of the tuning parameters with the best results in bold. Concave
represents the method with concave fusion penalty, LSC-quad and LSC-check represent latent
supervised clustering with quadratic loss and check loss respectively.

with check loss enjoys the best prediction performance with the minimal prediction error.

For Examples 1 and 2, all the methods produce satisfactory results due to the less noises.

Linear regression with two-way interactions perform as good as LSC in Example 3 because

the underlying boundary fits the interaction assumption exactly. When the underlying

boundaries become nonlinear, as Example 5-8 show, neither linear regression with interactions

nor random forest can produce reliable prediction results because their model assumptions

no longer hold. The performance of LSC is also significant better than the concave penalty

method with lower values of both average prediction error and its variability. Similar to

the estimation accuracy results, none of these methods can produce satisfactory prediction

results when the latent subpopulation structure becomes chaotic as Example 8 shows.

4.4.2 Data Application

In this section, we apply the proposed method to two health care datasets from UCI

Machine Learning Repository (Lichman (2013)) to evaluate its performance. We use the 5-fold

cross-validation to divide the datasets into training and validation sets with 300 replications

and then include the same methods as in the simulation examples with the same tuning

parameter ranges. To predict the cluster labels of observations in the validation sets, we

use k-nearest-neighbor with k = 10. For both the proposed method and the extension
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Example Concave LSC-quad LSC-check Reg-Int RF

1 0.284 0.083 0.057 0.388 0.499
(0.05) (0.004) (0.003) (0.025) (0.081)

2 1.142 0.644 0.486 2.897 1.513
(0.155) (0.093) (0.085) (0.13) (0.126)

3 10.531 6.936 3.481 3.599 9.759
(0.308) (0.202) (0.166) (0.113) (1.505)

4 2.838 0.935 0.776 1.506 7.469
(0.243) (0.105) (0.106) (0.074) (1.21)

5 12.453 10.379 9.985 30.325 46.881
(1.893) (1.778) (1.759) (1.017) (2.835)

6 14.176 11.226 10.305 122.594 24.77
(2.073) (1.295) (1.26) (12.372) (3.999)

7 14.639 12.379 9.75 20.829 16.787
(1.954) (0.91) (0.851) (0.675) (2.041)

8 32.274 21.748 16.92 67.239 42.693
(2.797) (1.495) (1.351) (1.397) (2.894)

Table 4.3: Simulation prediction accuracy: the mean squared prediction errors and standard
deviations of the selected methods with the best results in bold. Concave represents the
method with concave fusion penalty, LSC-quad and LSC-check represent latent supervised
clustering with quadratic loss and check loss respectively, Reg-Int means linear regression
with two-way interactions of xi’s, and RF represents random forest.
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of the method with concave penalty, we follow the suggested “forward screening” idea in

Section 2.1 to identify xi from zi. In particular, we start with a parsimonious model that

has only an intercept term in xi and all the predictors in zi. Then we move variables from

zi to xi one at a time, by choosing the one that boosts the average validation prediction

accuracy the most. The process stops when the validation prediction performance is no longer

improved. We report the mean squared prediction errors of all the methods for both the

training and validation sets as a criterion and also briefly describe the pattern of the detected

subpopulations by latent supervised clustering.

Cleveland Heart Disease This dataset records 303 heart disease patients in Cleverland

with 14 attributes including the binary diagnosis variable. In the attributes, there is one

variable named maximum-heart-rate-achieved which is correlated to presence status of the

heart disease as well as cardiac mortality (Lauer et al., 1999). In this way, we treat this

maximum-heart-rate as the outcome, the diagnosis variable as the underlying label, and

all the other attributes as predictors. It is reasonable to assume that predictors may have

heterogeneous effect between the disease group and the non-disease group. In this way,

the learning goal is to detect such potential subpopulations and predict the outcome. We

implement the proposed method with the “forward screening” idea and the order of the

forward selection result is serum cholestoral (1), gender (2), resting blood pressure (3), the

slope of the peak exercise ST segment (4), age (5), and exercise induced angina (6). Figure

4.1 presents the mean squared prediction errors for both training and validation sets of all

the involved methods. In the figure, the six “LSC-c k” columns represent latent supervised

learning with check loss and k variables in xi that follows the “forward screening” order as

described. One can see that the model achieves the best prediction accuracy for the validation

sets when three variables, i.e. serum cholestoral, gender and resting blood pressure are put

into xi while all the others remain in zi. The training error becomes very small when one

include five variable in xi while the validation error is slightly worse, implying that there
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Figure 4.1: Cleveland Heart Disease: mean squared prediction errors. LSC-c1 - LSC-c6
presents latent supervised clustering with check loss that includes the corresponding number of
variables in xi by the “forward screening” idea, LSC-q represents latent supervised clustering
with quadratic loss, Concave represents the method with concave fusion penalty, Reg means
linear regression with two-way interactions of xi’s, and RF represents random forest.

might be overfitting issues.The column of LSC-q and Concave represent latent supervised

clustering with quadratic loss and the method with concave fusion penalty that correspond

to the optimal tuning results. Both of them perform worse than LSC-c with larger prediction

error and variability. Reg and RF mean linear regression with two-way interactions and

random forest. For this dataset, the two commonly used methods fail to achieve satisfactory

prediction results, which might be due to the underlying subpopulation structure.

Other than the prediction accuracy, we are also interested in whether the detected

subgroups in the sample can be correlated to the underlying heart disease status. We conduct

a χ2 test between the detected subgroup labels and the underlying diagnosis variable for

each time of the cross validation. Figure 4.2 presents the p values of such χ2 tests in one

realization of the cross validation as well as the corresponding scatterplots of the observed

and predicted outcome by LSC-c1, LSC-c3, and LSC-c5 respectively. From the results, the

proposed method always suggests two subpopulations. It is not surprising to see that a

larger dimension in xi can produce a more significant p value because that provides more
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Figure 4.2: Cleveland Heart Disease: scatterplots of the observed and predicted outcome for
one training and validation set with the corresponding p values of the χ2 test. The detected
subgroups are denoted by different colors and are clustered by latent supervised clustering
with check loss and number of variables in xito be 1, 3 , and 5.

information to cluster the heterogeneity. One can also note that the difference between the

outcome values between the two detected groups becomes clearer when the p values becomes

more significant. This is also a reasonable finding because the underlying disease status is

known to affect the maximum heart rate. Eventually, we would like to point out that the

learning goals of clustering the subpopulation and making predictions may not be achieved

by the same model. One can see from Figure 4.2 that LSC-c5 kinds of overfit the training set

even through it may lead to a more convincing subgroup detection result with the smallest p

value.

Pima Indian Diabetes The Pima Indian Diabetes dataset collects 768 females at least 21

years old of Pima Indian heritage with 8 attributes and a class variable indicating whether

tested positive for diabetes. The 2-hour serum insulin is measured among the 8 attributes

and it is considered as a proper surrogate outcome for the underlying diabetes test binary
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indicator. Therefore, we fit the 2-hour serum insulin using all the other attributes except for

the diabetes test binary variable. We remove all the rows that contains missing values and

336 observations are left. Similar to the Cleveland Heart Disease dataset, we use a 5-fold

cross validation to split the dataset and fit the training sets with the selected methods. We

also apply the “forward screening” idea for variable selection in xi and the order is diabetes

pedigree function (1), diastolic blood pressure (2), body mass index (3), age (4), triceps skin

fold thickness (5), and plasma glucose concentration (6). The mean squared prediction errors

are presented in Figure 4.3 for all the methods. Similar to the finding in the Cleveland Heart

Disease dataset, the proposed method with check loss and three variables in xi achieves the

best prediction performance. LSC-c4 and LSC-c5 can have competitive mean squared errors

while the variances are slightly larger. LSC-c6 suffering overfiting problem with its prediction

error larger than that of the proposed method with quadratic loss and the extension of

method with concave penalty. The linear regression with interactions and random forest

produce the worst prediction errors when compared with other methods. In addition, the

proposed methods with optimal tuning parameters always suggested two latent subgroups,

and the detected subgroup labels show significant relationship with the underlying diabetes

test indicator according to the χ2 test. The median of the p values is 0.031 and this can be

treated as an evidence that the identified subgroup can be reasonable.

4.5 Discussions

In this paper, we proposed a novel machine learning method that aims to clustering

the underlying subpopulation structure based on the heterogeneous relationship between

outcome and predictors. Even though the main coverage is restricted to the scenarios of linear

relationship between the outcome and predictors, the proposed method can be a very good

exploratory tool in practice due to its weak assumptions on the underlying subpopulation

structure. We proposed a very efficient algorithm with competitive convergence rate to

solve the optimization problem, and also discuss the statistical consistency properties of

the estimators for the coefficients. In numerical studies, the proposed method demonstrates
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Figure 4.3: Pima Indian Diabetes: mean squared prediction errors. LSC-c1 - LSC-c6 presents
latent supervised clustering with check loss that includes the corresponding number of
variables in xi by the “forward screening” idea, LSC-q represents latent supervised clustering
with quadratic loss, Concave represents the method with concave fusion penalty, Reg means
linear regression with two-way interactions of xi’s, and RF represents random forest.

strong capacity of both subpopulation detection and outcome prediction.

It still remains very interesting in how to encourage the clustering pattern in the estimated

coefficients. For our work, this learning goal is pursued by making use of the convex clustering

idea and adjusting its loss and penalty accordingly. In addition, there are open questions on

whether one can extend the ideas of other clustering methods to achieve the same goal. For

example, if the number of subpopulations is known, one might consider borrowing the idea

of k-means. In particular, one can still start with an initial estimate β̃i as discussed, and

pick k centroids based on such n coefficient vectors. Then one can recursively implement the

following three steps: 1. cluster these βi’s by their distances to the centroids; 2. update the

centroids; 3. update the values of βi by refitting the model within each cluster. Then after

certain iterations, the clustering process might converge and the n coefficient vectors are to

be divided in the k clusters.
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CHAPTER 5: SUMMARY AND FUTURE RESEARCH

In this chapter, we summarize this dissertation and then discuss some open questions

that can be potentially related to future work.

5.1 Summary

In the first chapter, we propose a new DOSK method in kernel learning that can perform

variable selection and data extraction simultaneously. We show that under certain conditions,

the new DOSK method can achieve selection consistency, and the estimated function can

converge to the underlying function with a fast rate. We also develop an efficient algorithm

to solve the corresponding optimization, which is guaranteed to converge to a local optimum.

Numerical results show that our DOSK method is highly competitive among existing ap-

proaches. Note that the hinge loss used in the SVM can also encourage data sparsity because

only the support vectors, a subset of the observations, contribute to the estimation results.

We would like to point out that modeling data sparsity can be challenging for high-dimension

data, especially when there are many noisy variables. One reason is that noisy variables can

mislead the importance of each observation in the modeling process. As a consequence, the

prediction performance of the SVM can also be affected as shown in the numerical studies.

In the second chapter, we use a modified loss function to improve the performance of

OWL and then generalize OWL to solve the ordinal treatment problems. In particular,

the proposed GOWL converts the optimal ordinal treatment finding problem into multiple

optimal binary treatment finding subproblems under certain restrictions. The estimating

process produces a group of estimated optimal treatment boundaries which would never cross

and have monotonic intercepts.

In the third chapter, we proposed a novel machine learning method that aims to clustering

the underlying subpopulation structure based on the heterogeneous relationship between
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outcome and predictors. Even though the main coverage is restricted to the scenarios of linear

relationship between the outcome and predictors, the proposed method can be a very good

exploratory tool in practice due to its weak assumptions on the underlying subpopulation

structure. We proposed a very efficient algorithm with competitive convergence rate to

solve the optimization problem, and also discuss the statistical consistency properties of

the estimators for the coefficients. In numerical studies, the proposed method demonstrates

strong capacity of both subpopulation detection and outcome prediction. The initial value of

βi can also be important in determining the time to convergence of the algorithm. Another

possible way to obtain the initial value is to use a non-parametric Bayesian method with a

proper prior distribution on βi, including potentially priors with compact supports. This idea

could be potentially more stable especially when observations of the same subpopulation also

have large Euclidean distances between each other.

Next we discuss some open questions related to the three topics.

5.2 Future Research

5.2.1 Future Research for Double Sparsity Kernel Learning

It becomes a hot topic in the recent years about how to analyze big data with large

sample size and high dimension. As a remark, our DOSK method can be generalized to

alleviate the computational burden for applications with these massive data sets. Without

loss of generality, take regression as an example. Suppose one needs to estimate a nonlinear

underlying function, and the data set contains many observations and predictors. To perform

kernel regression with such big data can be computationally inefficient. One way to circumvent

this difficulty is to split the predictors into several parts or dividing the observations into

several subsets, learn on each part individually, and then combine the results. This idea

can be particularly useful when the datasets can be partitioned into certain segments such

as time series. For each part, it can be reasonable that some subset of the variables and

observations become important to represent the whole segment. In this way, each time one

can perform our DOSK method on one piece of the data set. Because our DOSK method can
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have double sparsity in predictors and dual variables, for each sub-regression, it is possible to

find a sparsely represented function that only involves a subset of observations and predictors.

Then we can combine the selected observations and predictors to train for a global estimator.

One can see that this approach can greatly reduce the computational time for problems with

massive data sets. In addition, one possible future research direction is to examine how the

data sparsity percentage changes when the variable dimension increases.

5.2.2 Future Research for Generalized Outcome Weighted Learning

There are various possible extensions for GOWL that could be considered. For example,

one can incorporate a variable selection component into the objective function. In the

literature, Xu et al. (2015) proposed variable selection in the linear case and Zhou et al.

(2017) extended the idea for kernel learning. According to their ideas, one nature extension

for GOWL is to include an l1 penalty of the parameters into its optimization problem. In

this way, variable sparsity could be achieved simultaneously when detecting the optimal

ITR. The second possible extension that might improve the performance of GOWL is to

modify the outcome in its optimization problem which is originally the reward R. Specifically,

according to Fu et al. (2016) and Zhao et al. (2015a), one can consider fitting a model with R

versus X and then put the residuals as the outcome in the optimization problem of GOWL

instead. Such an adjustment is likely to further improve the ITR estimation results for some

finite sample scenarios. Another potential extension is to apply GOWL to solve the dynamic

treatment regime problem, i.e. how to maximize the clinical rewards when there are multiple

stages of treatments. The idea of Zhao et al. (2015a) could possibly be adapted to such

developments. In addition, Some further exploratory work can examine how to improve

the performance of the proposed method when some adjacent treatments have very similar

effects, which could lead to an unstable estimated ITR boundary between them. For example,

suppose we have five treatments with Treatments 2 and 3 very similar. In this case, one

can possibly perform a two stage analysis procedure. For the first stage, one can combine

Treatments 2 and 3 as one treatment and perform GOWL. For the second stage, a binary
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ITR model can be used to determine between 2 and 3.

5.2.3 Future Research for Latent Supervised Clustering

It still remains interesting in developing an efficient way to detect the subpopulation by

clustering the estimated coefficients. For our work, this learning goal is pursued by making

use of the convex clustering idea and adjusting its loss and penalty accordingly. In addition,

there are open questions on whether one can extend the ideas of other clustering methods to

achieve the same goal. For example, if the number of subpopulations is known, one might

consider borrowing the idea of k-means. In particular, one can still start with an initial

estimate β̃i as discussed, and pick k centroids based on such n coefficient vectors. Then one

can recursively implement the following three steps: 1. cluster these βi’s by their distances

to the centroids; 2. update the centroids; 3. update the values of βi by refitting the model

within each cluster. Then after certain iterations, the clustering process might converge and

the n coefficient vectors are to be divided in the k clusters.
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APPENDIX A: DOUBLE SPARSITY KERNEL LEARNING

Proof of Theorem 2.2.1. Because the objective function φ is lower bounded by zero, to

prove convergence, it suffices to prove that for each step of updating, the objective function

value is non-increasing. To this end, we will show that φ is non-increasing for Steps 2-4 in

Algorithm 2. First, notice that for fixed w, the corresponding objective functions in the α

step and the b step are convex. Hence, φ is non-increasing for Steps 2 and 3. We will focus

on Step 4 next.

Without loss of generality, suppose that ∇wφ(α(t), b(t),w(t−1)) 6= 0 (otherwise, the algo-

rithm has already converged). We will prove that the directional derivative along ∆w is

negative, with which one can verify that after Step 4, the objective function value would

decrease. To this end, observe that Step 4(a) can be regarded as to minimize ψ(w) = h{g(w)},

where h(·) is a convex and continuously differentiable function and g(·) is a convex or concave

and continuously differentiable function of w. Since both h and g are continuously differen-

tiable, they are locally Lipshcitz continuous, and so is ψ. Furthermore, because h and g are

convex or concave, there exists an open neighborhood of w(t−1), N (w(t−1)), in which h and g

are monotonic (Bertsekas et al., 2003). Therefore, in N (w(t−1)), ψ(·) is monotonic.

Next, we prove that along the direction defined by ∆w, ψ(·) is monotonically deceasing in

N (w(t−1)). To this end, first notice that Step 4 computes a descent direction of ψ̃w(t−1)(w) =

h{g(w(t−1))+∇g(w(t−1))T (w−w(t−1))}. Because the objective function of w(QP ) is quadratic,

thus strictly convex, ψ̃w(t−1)(w) is strictly decreasing along ∆w within N (w(t−1)). Next, by

similar arguments as in the proof of Proposition 1 in Allen (2012), one can verify that ψ(·) is

monotonically deceasing along ∆w within N (w(t−1)), and this completes the proof. �

Proof of Theorem 2.3.1: Before we present our proof, we first give some lemmas.

Lemma A.0.1. Suppose Assumptions 1-7 are valid. With λ1, λ2 and λ3 as in Theorem 2.3.1,

we have that ‖α̂‖1 = OP{log(n)} and |b̂| = OP{log(n)}.

Proof of Lemma A.0.1: With α = 0 and b = 0, we have φ(0, 0,w) = 1
n

∑n
i=1 L(yi, 0) →

E{L(Y, 0)} as n → ∞, which is a constant. On the other hand, α̂ and b̂ are (part of) the
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solution to the objective function in (2.6). Hence,

λ1‖α̂‖1 ≤
1
n

n∑
i=1

L
{
yi,

n∑
j=1

Kŵ(xi, xj)α̂j + b̂
}

+ λ1‖α̂‖1 + λ2‖ŵ‖1 + λ3α̂
TKŵα̂

≤ φ(0, 0,w).

Consequently, we have ‖α̂‖1 = OP{log(n)}. For |b̂|, in regression, because the fitted function

f̂ cannot be uniformly larger or smaller than the observed responses, we have that |b̂| is

at most OP (‖α̂‖1), which is OP{log(n)} (notice that we have assumed that the error term

in regression are bounded for now). For classification problems, similar arguments hold

(f̂ cannot be uniformly positive or negative, otherwise the classification problem is of less

interest), and |b̂| = OP{log(n)}. This completes the proof. �

Lemma A.0.2. Suppose Assumptions 1-7 are valid. We have that ‖fα∗n,b∗n−f0‖2 = OP{log(n)/n}.

Proof of Lemma A.0.2: Notice that γj’s are constants, and the kernel function Kw∗ is

Lipshcitz by Assumption 2. Hence, we have

|fα∗n,b∗n(·)− f0(·)|

=|
m∑
j=1

γj{Kw∗(xj, ·)−Kw∗(zj, ·)}|

=OP (max
j
‖xj − zj‖2),

and the goal is to prove that ‖xj − zj‖2 = OP{log(n)/n} for all j. To this end, note

that pr(‖xj − zj‖2 > d) = (1 − Pd)n, where d is a small positive number, and Pd =

pr(‖z − zj‖2 ≤ d) =
∫
‖z−zj‖2≤d dP . Using Assumption 1, one can verify that we can choose

d = 2 log(n)/n, such that pr(‖xj − zj‖2 > d) = OP (n−2). By the Borel–Cantelli Lemma, we

have ‖xj − zj‖2 = OP{log(n)/n} holds. This completes the proof. �

The next lemma generalizes a theoretical result from the margin-based classifier literature
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to broader ranges of learning problems. In particular, in Zhang and Liu (2013), it was

shown that the convergence rate of excess risks for margin-based classifiers is related to

the convergence rate of the estimated learning function. In Lemma A.0.3, we extend the

discussion to more general situations, in which one uses differentiable loss functions to measure

the goodness of fit of f̂ .

Lemma A.0.3. Suppose Assumptions 1-7 are valid. Moreover, consider a loss function

`{u(f, y)} that is second order differentiable with respect to u, where u(f, y) is a function of

the response y and the learning function f . Assume that u has second order derivative with

respect to f , and the two second order derivatives are both bounded. Then we have that, if the

function f ∗ minimizes E(`),

|E[`{u(Y, f)}]− E[`{u(Y, f ∗)}]| = O{(‖f − f ∗‖2)2},

and if f ∗ is not the minimizer of E(`),

|E[`{u(Y, f)}]− E[`{u(Y, f ∗)}]| = O{(‖f − f ∗‖2)}.

Proof of Lemma A.0.3: This proof is analogous to that of Theorems 5 and 6 in Zhang

and Liu (2013). Hence, for brevity, we only list the key steps. The first step is to introduce

the idea of Bregman divergence. In particular, for a convex differentiable function g(·), its

Bregman divergence dg is defined as dg(f1, f2) = g(f2)− g(f1)− g′(f1)(f1 − f2). Then, one

can prove that the conditional excess risk E[`{u(Y, f)}]− E[`{u(Y, f ∗)}] |X=x equals to the

Bregman divergence d`{f ∗(x), f(x)}. See the proof of Theorem 4 in Zhang and Liu (2013)

for more details. Combining this result with Assumption 3, we can show, in a similar manner

as in the proof of Theorems 5 and 6 in Zhang and Liu (2013), that the claim of Lemma A.0.3

holds. �
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We are ready to prove Theorem 2.3.1. The proof follows a similar line as that of Theorem

1 in Zhang et al. (2015). Therefore, we only list out the key steps here. The first step is to

decompose the excess risk into two parts, the estimation error and the approximation error.

In particular, let fλ be the best prediction function with respect to the penalized loss function

for fixed λ = (λ1, λ2, λ3), i.e., fλ = arginff [E{L(Y, f)} + λ1‖α‖1 + λ2‖w‖1 + λ3α
TKwα].

The estimation error is defined as E{L(Y, f̂)} −E{L(Y, fλ)}, and the approximation error is

defined to be E{L(Y, fλ)} − E{L(Y, f0)}.

Next, consider the function space f̂ lies in, and denote it by Fλ. Define gf(·) =

s−1{L(·, f)− L(·, fλ)}, where s is chosen such that the L2 diameter of G = {gf : f ∈ Fλ} is

1. Using Lemma A.0.1, one can verify that s = OP{log(n)}. From Lemma 2 in Zhang et al.

(2015), we have that the upper bound of the L2 entropy number of G, log[N{η,G, L2(TX)}],

is of the order OP (η−2) (see, for example, Van der Vaart and Wellner, 2000, for introduction

of the entropy numbers). Here TX is the empirical measure of a training set, and the L2 norm

is ‖f‖L2(TX) = {n−1∑n
i=1 |f(xi, yi)|2}1/2. Consequently, one can obtain that the estimation

error is of the order OP{log(n)/
√
n}, by similar arguments as in the proof of Theorem 1 in

Zhang et al. (2015). Therefore, by Lemma A.0.3, ‖f̂ − fλ‖2 = OP{log(n)/
√
n}.

On the other hand, to derive the bound for the approximation error, one can use

Assumption 1, Lemmas A.0.2 and A.0.3. In particular, we have that E[L{Y, fλ(X)}] −

E[L{Y, f0(X)}] converges at a rate faster than that of ‖fα∗n,b∗n − f0‖2
2 (recall the definition of

fλ), which is OP [{log(n)/n}2] = OP{log2(n)/(n2)}. Thus, by Lemma A.0.3, we have that

‖fλ−f0‖2 = OP{log(n)/n}. Consequently, one has that ‖f̂−f0‖2 ≤ (‖f̂−fλ‖2+‖fλ−f0‖2) =

OP{log(n)/
√
n}. This completes the proof. �

Proof of Theorem 2.3.2: In the proof, we first assume that for regression problems, the

distribution of the error has a bounded range. We will consider the more general case of

sub-Gaussian distribution later.

The next lemma, Lemma A.0.4, is an important intermediate step to the proof of

Theorem 2.3.2. With Lemma A.0.4, we can prove that the difference between f̂ and the best
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function f0, in terms of the difference in their expected partial derivatives with respect to

wj , is converging at the rate at least OP{log(n)/
√
n}. This further leads to the fact that the

proposed λ2 in Theorem 2.3.2 can correctly select the important variables x(1) and discard

the noise x(0). Consequently, we can have the desired selection consistency for our DOSK

method.

Lemma A.0.4. Suppose Assumptions 1-7 are valid. With λ1, λ2 and λ3 as in Theorem 2.3.2,

we have that for any j = 1, . . . , p,

∣∣∣∣∣∣
∂E[L{Y, f̂(X)}]

∂wj
− ∂E[L{Y, f0(X)}]

∂wj

 |wj=0, wi=w∗i , i 6=j

∣∣∣∣∣∣ = OP

{
log(n)√

n

}
.

Proof of Lemma A.0.4: The proof follows a similar line as that of Theorem 2.3.1 and

Lemma A.0.3. �

We are ready to present the proof to Theorem 2.3.2.

First, we prove that for any j,

∣∣∣∣∣∣
∂[ 1

n

∑n
i=1 L{yi, f̂(xi)}]

∂wj
− ∂E[L{Y, f0(X)}]

∂wj

 |wj=0, wi=w∗i , i6=j

∣∣∣∣∣∣
=OP

{
log(n) ∨ log(p)√

n

}
. (A.1)

To this end, observe that

∣∣∣∣∣∣
∂[ 1

n

∑n
i=1 L{yi, f̂(xi)}]

∂wj
− ∂E[L{Y, f0(X)}]

∂wj

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∂[ 1

n

∑n
i=1 L{yi, f̂(xi)}]

∂wj
− ∂E[L{Y, f̂(X)}]

∂wj

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∂E[L{Y, f̂(X)}]

∂wj
− ∂E[L{Y, f0(X)}]

∂wj

∣∣∣∣∣∣ . (A.2)

As Lemma A.0.4 bounds the second term on the RHS of (A.2), we proceed to show that the
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first term converges at the rate OP [{log(n) ∨ log(p)}/
√
n]. To this end, we need to introduce

the Rademacher complexity (Mohri et al., 2012). In particular, let σi; i = 1, . . . , n be i.i.d.

random variables, each taking the value 1 with probability 1/2, and −1 with probability 1/2.

Let the set of training observations (xi, yi); i = 1, . . . , n, which are i.i.d. from P , be denoted

by S. Define the function class Hn(λ) as Hn(λ) = {f̂ : f̂ = argminα,b,w φ(λ)}, where φ(λ) is

the objective function in (2.6). With S fixed, we define the empirical Rademacher complexity

of the function class Hn(λ) as

R̂n{Hn(λ)} = Eσ{ sup
f∈Hn(λ)

1
n

n∑
i=1

σif(xi)},

where Eσ represents the expectation with respect to σ = (σ1, . . . , σn). Furthermore, denote

the Rademacher complexity of Hn(λ) by

Rn{Hn(λ)} = ESR̂n{Hn(λ)},

where ES is the expectation with respect to the distribution of the sample S.

To bound the first term on the RHS of (A.2), we have the following lemma.

Lemma A.0.5. Suppose Assumptions 1-7 are valid. With λ1, λ2 and λ3 as in Theorem 2.3.2,

we have that, for any j = 1, . . . , p, with probability at least 1− δ,

∣∣∣∣∣∣
∂[ 1

n

∑n
i=1 L{yi, f̂(xi)}]

∂wj
− ∂E[L{Y, f̂(X)}]

∂wj

∣∣∣∣∣∣ ≤ C1Rn{Hn(λ)}+ Tn(δ)

≤ C1R̂n{Hn(λ)}+ 3Tn(δ/2), (A.3)

where Tn(δ) = C2{n−1 log(n) log(1/δ)}1/2, and C1, C2 are universal constants that are inde-

pendent of n.

The proof to Lemma A.0.5 is quite standard in the literature of Rademacher complexity.

To bound the LHS of (A.3) by C1Rn{Hn(λ)}+ Tn(δ), one can use the McDiarmid inequality
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(McDiarmid, 1989) and the symmetrization technique (Van der Vaart and Wellner, 2000).

To bound C1Rn{Hn(λ)} by C1R̂n{Hn(λ)} + 2Tn(δ/2), one can again use the McDiarmid

inequality. See the proof of Lemma 3 in Zhang et al. (2015) for more details. Notice that

there are two main differences between the proof of Lemma 3 in Zhang et al. (2015) and that

of Lemma A.0.5. First, in Zhang et al. (2015), the Rademacher complexity was defined on

the function class {L(·, f) : f ∈ Hn(λ)}. By Talagrand’s Lemma (Lemma 4.2 in Mohri et al.,

2012), the Rademacher complexity of {L(·, f) : f ∈ Hn(λ)} can be further bounded by that

of Hn(λ), if the loss function L is Lipshcitz. Second, the maximum change in the LHS of

(A.3) if we replace one xi or yi can be bounded by C3 log(n)/n (this is a direct result from

Lemma A.0.1) with C3 being another constant, instead of O(n−1) as in Zhang et al. (2015).

The rest of the proof is analogous to that of Lemma 3 in Zhang et al. (2015), and we omit

the details here. �

The next step is to bound the empirical Rademacher complexity of Hn(λ). To this end,

recall the definition of f̃ , and notice that

Eσ{ sup
f∈Hn(λ)

1
n

n∑
i=1

σif(xi)} ≤ Eσ{ sup
f∈Hn(λ)

1
n

n∑
i=1

σif̃(xi)}+ Eσ{ sup
f∈Hn(λ)

1
n

n∑
i=1

σib}. (A.4)

Hence, we proceed to bound the two terms on the RHS of (A.4). Notice that by Lemma A.0.1,

the first term is equivalent to Eσ{sup‖f̃‖H=OP {log(n)}
1
n

∑n
i=1 σif̃(xi)}, and the second term is

equivalent to Eσ(sup|b|=OP {log(n)}
1
n

∑n
i=1 σib). For the first term, one can use Theorem 5.5 in

Mohri et al. (2012) to obtain that, with Assumption 2 valid, the corresponding empirical

Rademacher complexity is of the order OP{log(n)/
√
n}. For the second term, notice that

the distribution of Rademacher variables is similar to the binomial distribution. Therefore,

we have that for large n, the distribution of sup|b|=OP {log(n)}
1
n

∑n
i=1 σib can be approximated

by that of |Z|, where {C
√
n/ log(n)}Z ∼ N(0, 1), with C a universal constant. Hence, one
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can verify that

Eσ{ sup
|b|=OP {log(n)}

1
n

n∑
i=1

σib} = E(|Z|) = OP{log(n)/
√
n}.

Consequently, we have that Eσ{supf∈Hn(λ)
1
n

∑n
i=1 σif(xi)} = OP{log(n)/

√
n}.

Next, choose δ = 2p−1n−2. One has that Tn(δ/2) = OP [n−1 log(n){log(p) ∨ log(n)}]1/2.

Consequently, with probability at least 2n−2, (A.4) holds true for all the predictors. Combining

this with Lemma A.0.4 and the Borel–Cantelli Lemma, we have that (A.1) is proved.

We now need to show that 1
n

∑n
i=1 L

{
yi,
∑n
j=1Kw(xi, xj)αj+b

}
, as a function of (wT ,αT , b)T ,

is strictly convex in a small neighborhood around
(
(w∗)T , (α∗n)T , b∗n

)T
. Because we have

shown that fα∗n,b∗n(x) converges to f0 in a rate faster than that of f̂ to f0, this guarantees that

once we arrive at a temporary point around
(
(w∗)T , (α∗n)T , b∗n

)T
, the proposed algorithm in

Section 2.2.3 would ensure that the solution f̂ converges to the best function f0. To this end,

observe that in Assumption 5, we assume that E
[

1
n

∑n
i=1 L{Yi, f(Xi)}

]
is strictly convex.

Hence, it suffices to prove that

sup
(wT ,αT ,b)T∈N

| 1
n

n∑
i=1

L
{
yi,

n∑
j=1

Kw(xi, xj)αj + b
}
− E[ 1

n

n∑
i=1

L{Yi, f(Xi)}]| → 0

almost surely. Note that when N is sufficiently small, we have supf∈N |Pf | <∞. Moreover,

by Lemma A.0.1 and similar arguments as in the proof of Theorem 1 in Zhang et al. (2015), one

can have that the L2 entropy of {f : f ∈ N} is log[N{ε,N , L2(Pn)}] = O[log{log(n)}], where

Pn is the empirical measure of the training set. For any M <∞, define fM = f · I(f ≤M),

and NM = {fM : f ∈ N}. One has that log[N{ε,NM , L2(Pn)}] = O[log{log(n)}]. Therefore,

by Theorem 6.2 in Wellner (2005), we have that N is a P -Glivenko-Cantelli class. One can

then verify that this conclusion leads to that for n large, 1
n

∑n
i=1 L

{
yi,
∑n
j=1Kw(xi, xj)αj + b

}
is convex.

Now we have that, by Assumption 6, the partial derivative of the empirical L loss with
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respect to each wj is such that

∂[ 1
n

∑n
i=1 L{yi, f̂(xi)}]

∂wj
|wj=0, wi=w∗i , i6=j� OP

{
{log(p) ∨ log(n)}√

n

}
,

for wj ∈ w(0), and

∂[ 1
n

∑n
i=1 L{yi, f̂(xi)}]

∂wj
− ∂E[L{Y, f0(X)}]

∂wj

 |wj=0, wi=w∗i , i6=j� OP

{
{log(p) ∨ log(n)}√

n

}
,

for wj ∈ w(1). Because the objective function is locally convex, at the optimal point (ŵ, α̂, b̂),

selection consistency is equivalent to that λ2 → 0 at a rate no faster than OP

{
{log(p)∨log(n)}√

n

}
(recall the soft thresholding rule in Tibshirani, 1996). Hence, we have proven the selection

consistency for the DOSK method under the assumption that the distribution of the error

has a bounded range.

Lastly, we need to finish the proof by considering the general case that the distribution

of the error in regression is sub-Gaussian. This can be done by showing that with a high

probability, the actual errors would be bounded in a range. Then we can prove that the

corresponding partial derivatives etc. converge at the same rate, because the probability of

sub-Gaussian random variables being significantly away from 0 converges to zero very fast,

as the bound increases.

Without loss of generality, we assume that ε(X) follows a common sub-Gaussian dis-

tribution with c.d.f. Φε. The generalization of this assumption to the heteroscedastic case

is straightforward, because we are only concerned with the tail probability pr(|ε(X)| > t).

Next, define t∗ = Φ−1
ε

(
0.5 + 0.5(1− δ/2)1/n

)
, where δ is a small positive number. It can be

verified that with probability at least 1− δ/2, all the errors εi; i = 1, . . . , n are in [−t∗, t∗].

Since Φε is the c.d.f. of a sub-Gaussian distribution with a fixed parameter, t∗ diverges at a

rate slower than O{log(n)}. One can check that the RHS of (A.2) can be bounded similarly

as in the corresponding proofs, and this completes the proof. �

Proof of Theorem 2.3.3: The proof of this theorem is analogous to that of Lemma A.0.5

106



and the second half of Theorem 2.3.2 (i.e., obtaining the bound on the empirical Rademacher

complexity of Hn(λ), as well as the convergence rate of Tn(δ/2)). Therefore we omit the

details here. �
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APPENDIX B: ESTIMATING INDIVIDUAL TREATMENT RULES FOR
ORDINAL TREATMENTS

B.1 Computational Algorithm for GOWL

Recall the main optimization problem

n∑
i=1

K−1∑
k=1

|ri|
P (ai|xi)

[
I(ri ≥ 0)

[
1− a(k)

i f(x(k)
i )

]
+

+ I(ri < 0)
[
1 + a

(k)
i f(x(k)

i )
]

+

]
+ λ||f ||2. (B.1)

We now introduce our algorithm to solve (B.1). Due to the convexity of the objective function

in (B.1), we generalize the primal-dual method Vazirani (2013) used in SVM to estimate

the classifier f(x(k)
i ). Starting from (B.1), by introducing a series of slack variable ξ(k)

i and

ψ
(k)
i for all observations i = 1, · · · , n and all duplicates k = 1, · · · , K − 1, we rewrite the

minimization in (B.1) by minimizing the following objective function with respect to f and

all slack variables,

n∑
i=1

K−1∑
k=1

∣∣∣r(k)
i

∣∣∣
P (ai|xi)

[
I(r(k)

i ≥ 0)ξ(k)
i + I(r(k)

i < 0)ψ(k)
i

]
+ λ||f ||2, (B.2)

with ξ(k)
i ≥ 0, ψ(k)

i ≥ 0, ξ(k)
i ≥ 1− a(k)

i f(x(k)
i ), and ψ(k)

i ≥ 1 + a
(k)
i f(x(k)

i ).

Next, we discuss how to solve (B.2) for the linear case in Section B.1.1 and the non-linear

case in Section B.1.2.

B.1.1 Linear Decision Function Estimation

Suppose that the decision function f(x(k)
i ) above is a linear function of x(k)

i with the

slope β̃ and an intercept b̃, i.e. f(x(k)
i ) =

[
x

(k)
i

]T
β̃ + b̃. Before introducing the algorithm,

we express f(x(k)
i ) =

[
x

(k)
i

]T
β̃ + b̃ = xiβ + bk by denoting x(k)

i = (xTi , eTk )T , where eTk is a

K − 1 dimensional row vector whose kth element is 1 while others are zeros. Note that β̃T =

(βT , b1 − b̃, · · · , bK−1 − b̃). In other words, the decision function on the duplicated covariate

set x(k)
i can also be understood as a varying intercept function of xi, i.e. f(x(k)

i ) = g(xi) + bk.

On one hand, such a form of the decision function constructs K− 1 parallel boundaries in the

original sample space to avoid contradicting classifying results. On the other hand, for the
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ordinal treatment scenario, it is usually desirable to have the K−1 intercepts monotonic along

the treatment group in terms of the interpretation, i.e. bi < (>)bi+1 for all i = 1, · · · , K − 2

when K ≥ 3. We show in Section 4 that GOWL enjoys such a property under a reasonable

condition. When the assumption of parallel linear boundaries becomes too strong, one can

use nonlinear learning techniques to achieve more flexible boundaries as in Section 3.3.2.

To solve (B.2) with a linear decision function, we plug the expression of f(x(k)
i ) above

back into (B.2) and reparamatrize the formula as:

min
β̃,ξ,ψ

1
2 ||β̃||

2 + C
K−1∑
i=1

K−1∑
k=1

∣∣∣r(k)
i

∣∣∣
P (ai|xi)

[
I(r(k)

i ≥ 0)ξ(k)
i + I(r(k)

i < 0)ψ(k)
i

] ,

with ξ
(k)
i ≥ 0, ψ(k)

i ≥ 0, ξ(k)
i ≥ 1− a(k)

i f(x(k)
i ), ψ

(k)
i ≥ 1 + a

(k)
i f(x(k)

i ), and (ξ,ψ) denote all slack

variables. By introducing the Lagrange multipliers, we can derive the Lagrange function for

the primal problem as:

LP = 1
2 ||β̃||

2 + C
n∑
i=1

K−1∑
k=1

∣∣∣r(k)
i

∣∣∣
P (ai|xi)

[
I(r(k)

i ≥ 0)ξ(k)
i + I(r(k)

i < 0)ψ(k)
i

]

−
n∑
i=1

K−1∑
k=1

µ
(k)
i ξ

(k)
i −

n∑
i=1

K−1∑
k=1

ν
(k)
i ψ

(k)
i −

n∑
i=1

K−1∑
k=1

α
(k)
i

[
a

(k)
i f(x(k)

i ) + ξ
(k)
i − 1

]

−
n∑
i=1

K−1∑
k=1

η
(k)
i

[
−a(k)

i f(x(k)
i ) + ψ

(k)
i − 1

]
.

The corresponding dual problem can be derived by taking partial derivatives with respect

to (β̃, ξ, ψ) and simplifying the results using the Karush–Kuhn–Tucker conditions. Then,

the dual problem becomes maximizing LD with respect to the slack variables {α(k)
i , η

(k)
i ; i =

1, . . . , n; k = 1, . . . , K − 1}, where

LD =
n∑
i=1

K−1∑
k=1

α
(k)
i +

n∑
i=1

K−1∑
k=1

η
(k)
i −

1
2

n∑
i=1

K−1∑
k=1

n∑
j=1

K−1∑
h=1

α
(k)
i α

(h)
j a

(k)
i a

(k)
j

(
[x(k)
i ]T · [x(h)

j ]
)

− 1
2

n∑
i=1

K−1∑
k=1

n∑
j=1

K−1∑
h=1

η
(k)
i η

(h)
j a

(k)
i a

(k)
j

(
[x(k)
i ]T · [x(h)

j ]
)
,
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with 0 ≤ α
(k)
i ≤

C·r(k)
i

P (ai|xi)I(r(k)
i ≥ 0), 0 ≤ η

(k)
i ≤

C·r(k)
i

P (ai|xi)I(r(k)
i < 0), and ∑n

i=1(α(k)
i −η

(k)
i )a(k)

i = 0.

Note that the parameters in the dual problem above can be solved by applying standard

quadratic programming with linear constrains. Furthermore, the slope estimate can be

obtained via ˆ̃β = ∑n
i=1

∑K−1
k=1 (α̂(k)

i a
(k)
i sign(r(k)

i ≥ 0)x(k)
i ). The intercept vector {b1, · · · , bK−1}

can be estimated by plugging ˆ̃β back into the original maximization in (B.1) and solving a

standard linear programming problem with linear constraints (Vazirani (2013)). Because

there are 2n(K−1) parameters in the dual problem above, with a finite K, the computational

complexity of (B.1) is the same as that of the standard primal-dual problem in the SVM.

B.1.2 Nonlinear Decision Function Estimation

The previous subsection solves (B.2) for the linear case. However, in practice, the linear

assumption can be too strong for some problems. To make our model more flexible, we

perform nonlinear learning by applying the kernel learning approach in Reproducing Kernel

Hilbert Spaces (RKHS). Kernel learning in RKHS is flexible and has achieved great successes

in many nonlinear learning studies (Kimeldorf and Wahba, 1970; Hastie et al., 2011).

Under the binary treatment case, we can show by the Representer Theorem (Kimeldorf

and Wahba (1970)) that under some regularity conditions, the decision function on the data

(x(1)
i , a

(1)
i , r

(1)
i ) can be written in the form that f(x(1)

i ) = ∑n
j=1 k(xi, xj)cj + b̃, where k(·, ·) is

the standard kernel function associated with the RKHS H. When the treatment is extended

into an ordinal variable, we need to define an extended version of the kernel function on the

duplicated covariates x(k)
i to construct the decision function. In particular, we have f(x(k)

i ) =∑n
j=1

∑K−1
h=1 k̃(x(k)

i , x
(h)
j )c̃(h)

j + b̃, where k̃(·, ·) is the extended kernel function with the definition

k̃(x(k)
i , x

(h)
j ) = k(xi, xj) + eTk · eh, and ek is defined as in Section 3.3.1. Similar discussions

were made in Ling and Lin (2006) and Cardoso and Pinto da Costa (2007). According to

the newly defined extended kernel, f(x(k)
i ) can be rewritten as ∑n

j=1 k(xi, xj)cj + bk, where

cj = ∑K−1
h=1 c̃

(h)
j and bk = ∑n

j=1 c̃
(k)
j + b̃. One can tell from the new f(x(k)

i ) expression that

due to the conversion of the ordinal problem into a big binary problem, the corresponding

decision boundaries in the kernel-induced feature space are guaranteed not to cross with
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each other. Consequently, the sets {f(x(k)) < 0} for 1 ≤ k ≤ K − 1 produce more flexible

noncrossing boundaries for the K ordinal treatments in the original space.

Given the expression of f with respect to the kernel representation, we can follow similar

Lagrange optimizer steps as before to obtain the generalized primal-dual formula. We can

derive the dual problem of maximizing LD with respect to all slack variables, where

LD =
n∑
i=1

K−1∑
k=1

α
(k)
i +

n∑
i=1

K−1∑
k=1

η
(k)
i −

1
2

n∑
i=1

K−1∑
k=1

n∑
j=1

K−1∑
h=1

α
(k)
i α

(h)
j a

(k)
i a

(k)
j k̃

(
x

(k)
i , x

(h)
j

)

− 1
2

n∑
i=1

K−1∑
k=1

n∑
j=1

K−1∑
h=1

η
(k)
i η

(h)
j a

(k)
i a

(k)
j k̃

(
x

(k)
i , x

(h)
j

)
,

with 0 ≤ α
(k)
i ≤

C·r(k)
i

P (ai|xi)I(r(k)
i ≥ 0), 0 ≤ η

(k)
i ≤

C·r(k)
i

P (ai|xi)I(r(k)
i < 0), and ∑n

i=1(α(k)
i −η

(k)
i )a(k)

i = 0.

After the dual coefficients are estimated, the decision function can be written as f(x(k)
i ) =∑n

j=1
∑K−1
h=1 k̃(x(k)

i , x
(h)
j )(α̂(h)

j a
(h)
j sign(r(h)

j ≥ 0)).

To implement the quadratic programming in the dual problems above, we use the open

source package CVXOPT based on the Python programming in practice.

B.2 Proofs of Theorems

In this Section, we give the technical proofs for Lemma 3.4.1 and Theorem 3.4.1-3.4.5.

Proof of Lemma 3.4.1 We show the Fisher consistency property of GOWL for the binary

treatment case in Lemma 3.4.1. Note that when A ∈ {1, 2}, the true optimal treatment rule

D∗(x) can be rewritten as

I (E(R|X = x,A = 2)− E(R|X = x,A = 1) > 0) + 1.

Because X contains the intercept term, the duplicated covariate matrix X(k) is degenerated

into X at this time with A(k) = A(1) = sign(A− 1). Starting from the φ-risk Rφ(f), we apply
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the total probability theorem to obtain

E[ |R|
P (A|X)φ

(
A(1)f(X)), R|X

)
] =

∑
a

E{ |R|
P (a|x)φ(A(1)f(X)), R)|X,A(1) = a}P (a|x)

= E{|R|φ(f(X)), R)|X,A(1) = 1}

+E{|R|φ(−f(X)), R)|X,A(1) = −1},

where the summation is taken on a ∈ {−1, 1}, φ (Af(X)), R) = I(R ≥ 0) [1− Af(X)]+ +

I(R < 0) [1 + Af(X)]+ and the event A(1) = 1 is equivalent to that of A = 2. To obtain

an explicit minimizer f ∗φ for the objective function above, we need to discuss its range. In

particular, when f < −1,

E

[
|R|

P (A|X)φ
(
A(1)f(X)), R

)]
= E [RI(R ≥ 0)(1− f(X))|X,A = 2]

−E [RI(R < 0)(1− f(X))|X,A = 1]

= {E [RI(R < 0)|X,A = 1]

−E [RI(R ≥ 0)|X,A = 2]}f(X)

+E [RI(R < 0)|X,A = 1]

−E [RI(R ≥ 0)|X,A = 2] .

In this case, one can tell that E
[
|R|

P (A|X)φ
(
A(1)f(X)), R

)]
is always non-negative. This is

because for R ≥ 0, E
[
|R|

P (A|X)φ
(
A(1)f(X)), R

)]
= −E [R|X,A = 2] f(X)−E [R|X,A = 2] ≥

0 since f < −1. In addition, a similar argument can be made for R < 0. When f > 1, one

can show that E
[
|R|

P (A|X)φ
(
A(1)f(X)), R

)]
≥ 0 still holds based on the same derivation.

When −1 ≤ f ≤ 1, noting that φ
(
A(1)f(X)), R

)
= I(R ≥ 0)

(
1− A(1)f(X)

)
+ I(R <
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0)
(
1 + A(1)f(X)

)
, we have

E

[
|R|

P (A|X)φ
(
A(1)f(X)), R

)]
= E[RI(R ≥ 0)(1− f(X))

−RI(R < 0)(1 + f(X))|X,A = 2]

+E[RI(R ≥ 0)(1 + f(X))

−RI(R < 0)(1− f(X))|X,A = 1]

= {E [R|A = 1]− E [R|A = 2]} f(X)

+E [R|A = 2]− E [R|A = 1] .

The right hand side of the equation above shows that, E
[
|R|

P (A|X)φ
(
A(1)f(X)), R

)]
becomes

zero when f(X) = 1 and takes negative values as long as E [R|A = 2] − E [R|A = 1] < 0.

Therefore, the minimizer of the φ−risk, f ∗φ, should be within the interval [−1, 1]. More

specifically, f ∗φ should satisfy sign(f ∗φ) = sign(E [R|A = 2] − E [R|A = 1]), which indicates

the surrogate ITR D∗φ(x) = I
(
f ∗φ(x) > 0

)
+ 1 = D∗(x).

Proof of Theorem 3.4.1 We show that the Fisher consistency property of GOWL still

holds for the ordinal treatment case in Theorem 3.4.1. By Lemma 3.4.1, for each R(k)
φ for

which k = 1, · · · , K − 1, we note that the minimizer f ∗φ has a universal formula for all

k so that sign(f ∗(x(k))) = sign
(
E(R|X(k) = x(k), A(k) = 1)− E(R|X(k) = x(k), A(k) = −1)

)
.

Therefore, by definition, the surrogate ITR of x is

D∗φ(x) =
K−1∑
k=1

I(E(R(k)|X(k) = x(k), A(k) = 1) > E(R|X(k) = x(k), A(k) = −1)) + 1

=
K−1∑
k=1

I (E(R|X = x,A > k) > E(R|X = x,A ≤ k)) + 1

=
K−1∑
k=1

I(D∗(x) > k) + 1

= D∗(x).
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The second equation holds due to the definition of a duplicated data set that X(k) = (X, k)

and A(k) = sign(A− k). The third equation holds due to the reward distribution assumption

in Theorem 3.4.1. Note that the second and third equations always hold under the modified

duplicate method which defines r(k)
i = ri if ai ∈ {k, k + 1}.

Proof of Theorem 3.4.2 Recall the discussion that the φ−risk can be rewritten as

Rφ = E{
K−1∑
k=1

[ |R|
P (A|X)(I(R ≥ 0)φ1(A(k)(g(x) + bk)) + I(R < 0)φ2(A(k)(g(x) + bk)))]},

where φ1(u) = [1− u]+ and φ2(u) = [1 + u]+. Without loss of generality, we only need to

show that under E(R|A = k) > 0 for k = 1, · · · , K, the φ−risk will not be decreased by

swapping any two neighbors in the intercept vector b under bk > bk+1 for k = 1, · · · , K − 2.

Suppose that we swap bm and bm+1 for any m ∈ {1, · · · , K − 2}, then the new φ−risk based

on the swapped b can be written as

Rs
φ = E{

∑
k 6=m,m+1

[ |R|
P (A|X)(I(R ≥ 0)φ1(A(k)(g(x) + bk))

+I(R < 0)φ2(A(k)(g(x) + bk)))]}

+E[ |R|
P (A|X)(I(R ≥ 0)φ1(A(m)(g(x) + bm+1))

+I(R < 0)φ2(A(m)(g(x) + bm+1)))]

+E[ |R|
P (A|X)(I(R ≥ 0)φ1(A(m+1)(g(x) + bm))

+I(R < 0)φ2(A(m+1)(g(x) + bm)))].

Now we discuss how the two risks above are different based on the values of A(m) and

A(m+1). One can note that A(m) ≥ A(m+1) always holds for any m by the definition that

A(m) = sign (A > m). In this way, there are three possible situations for the values of(
A(m), A(m+1)

)
to take: (1,−1), (−1,−1), and (1, 1). We discuss each situation as follows.

First, given the event A(m)
10 =

{
A(m) = 1, A(m+1) = −1

}
, we have that the difference
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When ψ1(x, b), ψ2(x, b)
g(x) + bm+1 < g(x) + bm ≤ −1 bm − bm+1 > 0
g(x) + bm+1 ≤ −1 < g(x) + bm 2 + bm − bm+1 − φ1(g(x) + bm) > 0
−1 < g(x) + bm+1 < g(x) + bm bm − bm+1 + φ1(g(x) + bm+1)− φ1(g(x) + bm) > 0

Table B.1: All possible ψ1(x, b) and ψ2(x, b) results

between the swapped risk and original φ−risk is

EA(m)
10

(
Rs
φ −Rφ

)
= EA(m)

10
[ |R|
P (m+ 1|x)I(R ≥ 0)(φ1(g(x) + bm+1)− φ1(g(x) + bm))]

+ EA(m)
10

[ |R|
P (m+ 1|x)I(R ≥ 0)(φ1(−(g(x) + bm))

−φ1(−(g(x) + bm+1)))]

+ EA(m)
10

[ |R|
P (m+ 1|x)I(R < 0)(φ2(g(x) + bm+1)− φ2(g(x) + bm))]

+ EA(m)
10

[ |R|
P (m+ 1|x)I(R < 0)(φ2(−(g(x) + bm))

−φ2(−(g(x) + bm+1)))]

= E[RI(R ≥ 0) · ψ1(x, b)|A(m)
10 ] + E[RI(R < 0) · ψ2(x, b)|A(m)

10 ],

where EA(m)
10

(
Rs
φ −Rφ

)
denotes the difference of the two risks under the event A(m)

10 ={
A(m) = 1, A(m+1) = −1

}
, ψ1(x, b) = φ1(g(x) + bm+1)− φ1(g(x) + bm) + φ1(−(g(x) + bm))−

φ1(−(g(x) + bm+1)), and ψ2(x, b) = φ2(g(x) + bm)− φ2(g(x) + bm+1) + φ2(−(g(x) + bm+1))−

φ2(−(g(x) + bm)). The difference of such conditional expected rewards depends on whether

g(x)+bm and g(x)+bm+1 are greater than −1 or not. We summarize the result of each scenario

in Table B.1. One can find that ψ1(x, b) is always equal to ψ2(x, b) and they are always

non-negative. In this way, EA(m)
10

(
Rs
φ −Rφ

)
= ψ1(x, b){E[RI(R ≥ 0)|A(m)

10 ] + E[RI(R <

0)|A(m)
10 ]} = ψ1(x, b)E(R|A(m)

10 ). Thus, one can see that when bm > bm+1, EA(m)
10

(Rs
φ−Rφ) > 0

will hold for arbitrary m = 1, · · · , K − 2 under the assumption that E(R|A(m)
10 ) > 0 where

A(m)
10 = {A(m) = 1, A(m+1) = −1} = {A = m+ 1}.

Under the second situation when the event A(m)
11 =

{
A(m) = 1, A(m+1) = 1

}
holds, the

conditional difference of the two risks can be expressed as
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EA(m)
11

(
Rs
φ −Rφ

)
= EA(m)

11
[ |R|
P (A > m+ 1|x)I(R ≥ 0)(φ1(g(x) + bm+1)

−φ1(g(x) + bm))]

+ EA(m)
11

[ |R|
P (A > m+ 1|x)I(R ≥ 0)(φ1(g(x) + bm)

−φ1(g(x) + bm+1))]

+ EA(m)
11

[ |R|
P (A > m+ 1|x)I(R < 0)(φ2(g(x) + bm+1)

−φ2(g(x) + bm))]

+ EA(m)
11

[ |R|
P (A > m+ 1|x)I(R < 0)(φ2(g(x) + bm)

−φ2(g(x) + bm+1))]

= 0.

Lastly, when the event A(m)
00 =

{
A(m) = −1, A(m+1) = −1

}
holds, EA(m)

11

(
Rs
φ −Rφ

)
= 0

and the deductions are the same as that in the second scenario. Therefore, when EA(k)
10

[R] > 0,

we will have E
(
Rs
φ −Rφ

)
≥ 0, which means bk > bk+1 always holds for k = 1, · · · , K − 1.

The same deduction can be made for bk < bk+1 when the assumption EA(k)
10

[R] < 0 holds.

Proof of Theorem 3.4.3 We first decompose the 0-1 risk based on its definition,

R(f) =
K−1∑
k=1
R(k)(f) =

K−1∑
k=1

E

[
R

P (A|X)I
(
A(k) 6= sign

(
f(X(k))

))]
,

where R(k)(f) = E
[

R
P (A|X)I

(
A(k) 6= sign

(
f(X(k))

))]
. Similarly, the φ−risk could be decom-

posed as,

Rφ(f) =
K−1∑
k=1
R(k)
φ (f) =

K−1∑
k=1

E

[
|R|

P (A|X)φ
(
A(k)f(X(k)), R

)]
,

where R(k)
φ (f) = E

[
|R|

P (A|X)φ
(
A(k)f(X(k)), R

)]
and the φ(·) function has the same definition

as before. Next, we discuss the property of each R(k)(f) piece following a similar idea found
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in Zhao et al. (2012) and then combine to draw the final conclusion.

Without loss of generality, we consider the case where the reward is a discrete variable

and the derivation for the continuous case is analogous. To simplify notation, we let

ηr(x) = Pr(A(k) = 1|R = r,X(k) = x) and qr(x) = |r|Pr(R = r|X(k) = x) for certain k. When

the reward is discrete, the kth component of the Bayes risk is

R(k)(f) =E
∑

r

|r|Pr
(
R = r|X(k)

)
E

I
(
A(k) 6= sign

(
f(X(k))

))
P (A|X) |R = r,X(k)


=E

[∑
r

qr(X(k))E
(

ηr(X(k))
P (A > k|X)I

(
1 6= sign(f(X(k)))

)
+ 1− ηr(X(k))

P (A ≤ k|X)I(−1 6= sign(f(X(k))))
)]

. (B.3)

To further simplify the expression, we define h(x) and ψ(x) such that given r and x, the

following equations are satisfied:

h(x)ψ(x) =
∑
r

qr(x) ηr(x)
P (A > k|x)

h(x) (1− ψ(x)) =
∑
r

qr(x) 1− ηr(x)
P (A ≤ k|x) .

It can be shown that h(x) = ∑
r qr(x)[ ηr(x)

P (A>k|x) + 1−ηr(x)
P (A≤k|x) ] > 0 and ψ(x) = [∑r qr(x)[ ηr(x)

P (A>k|x) +
1−ηr(x)
P (A≤k|x) ]]

−1[∑r qr(x) ηr(x)
P (A>k|x) ]. Therefore, (B.3) becomes

R(k)(f) = E[h(X(k))[ψ(X(k))I(sign(f(X(k))) 6= 1) + (1− ψ(X(k)))I(sign(f(X(k))) 6= 1)]].

(B.4)

We follow the same steps above and obtain that the kth component of the φ−risk is

R(k)
φ (f) = E

{
h(X(k))

[
ψ(X(k))φ

(
f(X(k))

)
+
(
1− ψ(X(k))

)
φ
(
−f(X(k))

)]}
.

We define the new function C (ψ, α) = ψφ(α) + (1− ψ)φ(−α) to rewrite the optimal φ−risk
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as

Rφ(f ∗) =
K−1∑
k=1
R(k)
φ (f ∗) = inf

α∈R

K−1∑
k=1

E
[
h
(
X(k)

)
C
(
ψ(X(k)), α

)]
.

Then the excess φ−risk is

Rφ(f)−Rφ(f ∗φ) =
K−1∑
k=1

E
[
C
(
ψ(X(k)), f(X(k))

)
h(X(k))− inf

α∈R
C
(
ψ(X(k)), α

)
h(X(k))

]
.

According to the result of Bartlett et al. (2006) and the convexity of the loss φ(x), we have

for an arbitrary element x in the duplicated sample space X (k),

h(x) (2ψ − 1) = inf
α:α(2ψ−1)≤0

C (ψ, α)h(x)− inf
α∈R

C (ψ, α)h(x). (B.5)

In this way, according to (B.4) and (B.5), we have for each k = 1, · · · , K − 1,

R(k)(f)−R(k)(f ∗) ≤ E{I[sign(f(X(k))) 6= sign(h(X(k))(ψ(X(k))− 1
2))]

×|h(X(k))(2ψ(X(k))− 1)|}

= E{I[sign(f(X(k))) 6= sign(h(X(k))(ψ(X(k))− 1
2))]

×| inf
α:α(2ψ−1)≤0

C(ψ(X(k)), α)h(X(k))− inf
α∈R

C(ψ(X(k)), α)h(X(k))|}.

Because C(ψ(X(k)), f(X(k)))h(X(k)) ≥ inf
α:α(2ψ−1)≤0

C(ψ(X(k)), α)h(X(k)) holds, when sign(f(X(k))) 6=

sign(h(X(k))(ψ(X(k)) − 1
2)), the second term on the right side of the equal sign above is

bounded by C(ψ(X(k)), f(X(k)))h(X(k))− inf
α∈R

C(ψ(X(k)), α)h(X(k)). Therefore, when we sum

the inequality through k = 1, · · · , K − 1 we will have

R(f)−R(f ∗) =
K−1∑
k=1

{
R(k)(f)−R(k)(f ∗)

}

≤
K−1∑
k=1

E
[
C
(
ψ(X(k)), f(X(k))

)
h(X(k))− inf

α∈R
C
(
ψ(X(k)), α

)
h(X(k))

]
= Rφ(f)−Rφ(f ∗φ).

118



Proof of Theorem 3.4.4 We consider the same decomposition idea used in the proof of

Theorem 4.4 and express the φ−risk as

Rφ(f) =
K−1∑
k=1
R(k)
φ (f) =

K−1∑
k=1

E

[
|R|

P (A|X)φ
(
A(k)f(X(k)), R

)]
.

For the kth component of the φ−risk, we define the loss part as L(k)
φ (f) = |R|

P (A|X)φ(A(k)f,R).

Then for any f ∈ H and any minimizer f̂n of Pn
(∑K−1

k=1 Lφ(f) + λn||f ||2
)
, where Pn denotes

the empirical mean, we have

Pn
(
K−1∑
k=1

L
(k)
φ (f̂n)

)
≤ Pn

(
K−1∑
k=1

L
(k)
φ (f̂n) + λn||f̂n||2

)

≤ Pn
(
K−1∑
k=1

L
(k)
φ (f) + λn||f ||2

)
. (B.6)

The second inequality holds because f̂n minimizes Pn
(∑K−1

k=1 Lφ(f) + λn||f ||2
)
given λn. By

taking the limit superior on both sides of (B.6), we have that the following inequality holds

for any f ∈ H:

lim sup
n→∞

Pn
(
K−1∑
k=1

L
(k)
φ (f̂n)

)
≤ lim sup

n→∞
Pn
(
K−1∑
k=1

L
(k)
φ (f) + λn||f ||2

)
= P

(
K−1∑
k=1

L
(k)
φ (f)

)
.

This yields the fact that

lim sup
n→∞

Pn
(
K−1∑
k=1

L
(k)
φ (f̂n)

)
≤ inf

f∈H̄
P
(
K−1∑
k=1

L
(k)
φ (f)

)
.

Furthermore, since λn → 0 when n → ∞, Theorem 4.5 will be proved if we can show

Pn
(∑K−1

k=1 L
(k)
φ (f̂n)

)
− P

(∑K−1
k=1 L

(k)
φ (f)

)
→ 0 in probability.

To show the convergence condition above, we first prove that ||f̂n||2 can be bounded by

some constant depending on n. By (B.6), if we let f = 0 then the inequality becomes

Pn
(
K−1∑
k=1

L
(k)
φ (f̂n)

)
+ λn||f̂n||2 ≤ Pn

(
K−1∑
k=1

L
(k)
φ (0)

)
= Pn

(
K−1∑
k=1

|R|
P (A|X)φ (0, R)

)
.
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Based on the fact that Pn
(∑K−1

k=1 L
(k)
φ (f̂n)

)
≥ 0 and φ(0, R) is bounded by 2, if we denote

π0 = min {P (ai|xi)} for i = 1, · · · , n (i.e. the smallest prior probability among the K

treatments), then

||f̂n||2 ≤
(K − 1)φ (0)

π0λn

n∑
i=1

|ri|
n
≤ 2 (K − 1)

π0λn

n∑
i=1

|ri|
n
.

Due to the existence of E|R|, ∃N ∈ N+ so that for ∀n > N , there is an upper bound

M such that ||f̂n||2 < M . Furthermore, since the class {
√
λnf : ||λnf || ≤

√
M} is in-

cluded in a Donsker class and ∑K−1
k=1 L

(k)
φ (f) is Lipschitz continuous with respect to f , then

{
√
λn
∑K−1
k=1 L

(k)
φ (f) : ||λnf || ≤

√
M} is also a P-Donsker class. In this way, if we denote P as

the population mean operator, then

√
n (Pn − P)

K−1∑
k=1

L
(k)
φ (f̂n) =

√
λ−1
n

√
n (Pn − P)

(√
λn

K−1∑
k=1

L
(k)
φ (f̂n)

)
= Op(

√
λ−1
n ).

Eventually, moving the
√
n from the left hand sides to the right hand side in the equation

above and taking limits in probability on both sides, we have lim
n→∞

(Pn − P)∑K−1
k=1 L

(k)
φ (f̂n) =

lim
n→∞

Op

(√
(nλn)−1

)
= 0 in probability as nλn →∞.

Proof of Theorem 3.4.5 We apply the same technique used in Vert and Vert (2006),

Steinwart and Scovel (2007b) and Zhao et al. (2012) to show the risk convergence property

presented in Theorem 4.6. According to Theorem 4.4, Theorem 4.6 will be obtained immedi-

ately if we can show the same convergence results for Rφ(f̂n)−Rφ(f ∗φ). We decompose the
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upper bound of Rφ(f̂n)−Rφ(f ∗φ) using the decomposition idea discussed before, then

Rφ(f̂n)−Rφ(f∗φ) ≤
K−1∑
k=1

[
λn||f̂n||2 +R(k)

φ (f̂n)−R(k)
φ (f∗φ)

]

=
K−1∑
k=1

[
λn||f̂n||2 +R(k)

φ (f̂n)− inf
f∈H

(
λn||f ||2 +R(k)

φ (f)
)]

+
K−1∑
k=1

[
inf
f∈H

(
λn||f ||2 +R(k)

φ (f)
)
−R(k)

φ (f∗φ)
]

=
K−1∑
k=1

[
λn||f̂n||2 +R(k)

φ (f̂n)− inf
f∈H

(
λn||f ||2 +R(k)

φ (f)
)]

+
K−1∑
k=1

[
inf
f∈H

(
λn||f ||2 +R(k)

φ (f)−R(k)
φ (f∗φ)

)]
. (B.7)

Now, we are to bound each of the K − 1 pieces on the right hand side of (B.7) under the new

loss function.

We first discuss how to bound the second term in (B.7). Because the distribution Pk has

geometric noise exponent 0 < qk <∞ with constant Ck for each k = 1, · · · , K − 1, then we

can find K − 1 pairs of qk and Ck such that the following inequality holds for all k

E

[
exp

(
−∆(X(k))2

t

) ∣∣∣2η (X(k)
)
− 1

∣∣∣] ≤ Ckt
qkp/2, t > 0.

By Theorem 2.7 in Steinwart and Scovel (2007b), we can show that there exists K − 1

constants cp,k such that for arbitrary λn > 0, we have

K−1∑
k=1

[ inf
f∈H

(λn||f ||2 +R(k)
φ (f)−R(k)

φ (f ∗φ))] ≤
K−1∑
k=1

cp,k(σpnλn + Ck(2p)qkp/2σ−qkpn ). (B.8)

Noting that the kth item in the summation of (B.8) can be considered as O(λqk/(qk+1)
n ) for k =

1, · · · , K−1, we can further bound the summation as follows by defining q = arg max
qk

λqk/(qk+1)
n

and thus,

K−1∑
k=1

[
inf
f∈H

(
λn||f ||2 +R(k)

φ (f)−R(k)
φ (f ∗φ)

)]
≤ O(λq/(q+1)

n ).
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As to bounding the first term in (B.7), we choose to apply Theorem 5.6 of Steinwart and

Scovel (2007b). To meet the assumptions, we first need to define the corresponding F , Z, T ,

G, fT,F and fP,F in Theorem 5.6 of Steinwart and Scovel (2007b) in our new framework.

We define Z as our sample space X in Section 2, T as the empirical measure Pn, F as

BH(
√

M
λn

), the subspace of H which is a ball of H of radius
√

M
λn

(where M is the upper bound

of ||λnf || according to the proof of Theorem 4.5), fP,F as the minimizer of the regularized

φ−risk under F and fT,F as the empirical minimizer f̂n, i.e.,

fP,F = arg min
f∈BH(

√
M
λn

)

(
K−1∑
k=1
R(k)
φ (f) + λn||f ||2

)
.

We define G as the function space considering the loss Lφ(f)+λn||f ||2 where Rφ(f) = ELφ(f).

That is to say,

Gφ,λn =
{
K−1∑
k=1

L
(k)
φ (f) + λn||f ||2 −

K−1∑
k=1

L
(k)
φ (fP,F)− λn||fP,F ||2 : f ∈ BH(

√
M

λn
)
}
.

Then the remaining work is to show the two conditions in Theorem 5.6 of Steinwart and Scovel

(2007b): First, ∃c ≥ 0, 0 < α ≤ 1 and B > 0 such that ||g||∞ ≤ B and EP (g2) ≤ c (EPg)α for

∀g ∈ Gφ,λn . Second, ∃a ≥ 1 and 0 < b < 2 such that supPn∈X logN (B−1Gφ,λn , ε, L2 (Pn)) ≤

aε−b for ∀ε > 0.

For the first condition, because the new φ−loss function in L
(k)
φ (f) is Lipschitz con-

tinuous for k = 1, · · · , K − 1 as discussed early, there exists constants Ck such that∣∣∣L(k)
φ (f)− L(k)

φ (fP,F)
∣∣∣ ≤ Ck |f − fP,F |, therefore

|Lφ(f)− Lφ(fP,F)| ≤
K−1∑
k=1

∣∣∣L(k)
φ (f)− L(k)

φ (fP,F)
∣∣∣ ≤ C||f − fP,F ||,
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where C = ∑K−1
k=1 Ck. In this way,

|g| ≤
∣∣∣∣∣
K−1∑
k=1

L
(k)
φ (f)−

K−1∑
k=1

L
(k)
φ (fP,F)

∣∣∣∣∣+ ∣∣∣λn||f ||2 − λn||fP,F ||2∣∣∣
≤ C||f − fP,F ||+ λn||f ||2 − λn||fP,F ||2 (B.9)

≤ C||f − fP,F ||+ λn||f ||2.

Because we have f ∈ BH(
√

M
λn

), then both f and fP,F are bounded by
√

M
λn

so that

||g||∞ ≤ 2C
√
M

λn
+M.

In other words, the constant B in the first condition can be taken as 2C
√

M
λn

+M . To reach

the second part of the first condition, we take the second moment of (B.9) on both sides and

obtain

E
(
g2
)
≤ E

(
C||f − fP,F ||+ λn||f ||2 − λn||fP,F ||2

)2

≤ E (C||f − fP,F ||+ λn |||f + fP,F || · ||f − fP,F |||)2

≤
(
C + 2λn

√
M

λn

)2

||f − fP,F ||2. (B.10)

To show EP (g2) ≤ c (EPg)α, we need to prove that the right hand side of (B.10) can be

upper bounded by c (EPg)α. Due to the convexity of Lφ(f), we have

1
2
[
Lφ(f) + Lφ(fP,F ) + λn||f ||2 + λn||fP,F ||2

]
≥ Lφ

(
f + fP,F

2

)
+ 1

2
[
λn||f ||2 + λn||fP,F ||2

]
= Lφ

(
f + fP,F

2

)
+ λn||

f + fP,F
2 ||2 +

λn||
f − fP,F

2 ||2.
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Taking expectation on both sides and by the definition of fP,F we have

1
2
[
Rφ(f) +Rφ(fP,F ) + λn||f ||2 + λn||fP,F ||2

]
≥ Rφ

(
f + fP,F

2

)
+ λn||

f + fP,F
2 ||2 +

λn||
f − fP,F

2 ||2

≥ Rφ (fP,F ) + λn||fP,F ||2 + λn||
f − fP,F

2 ||2.

Adjusting the inequality a bit and we obtain

1
2EPg = 1

2
[
Rφ(f)−Rφ(fP,F) + λn||f ||2 − λn||fP,F ||2

]
≥ λn||

f − fP,F
2 ||2. (B.11)

Then combining (B.10) and (B.11), we have

E
(
g2
)
≤ 2

(
C + 2

√
λnM

)2
λ−1
n EPg

Thus, EP (g2) ≤ c (EPg)α holds when α = 1 and c = 2
(
C + 2

√
λnM

)2
λ−1
n . The proof for

the first condition is now completed. For the second condition, the entropy we are concerned

about can be decomposed by the subadditivity property,

logN (B−1Gφ,λn , ε, L2(Pn)) = logN (B−1{
K−1∑
k=1

L
(k)
φ (f) + λn||f ||2} : f ∈ BH(

√
M

λn
), ε, L2(Pn))

≤ logN (B−1Lφ(f) : f ∈ BH(
√
M

λn
), ε, L2(Pn))

+ logN (B−1λn||f ||2 : f ∈ BH(
√
M

λn
), ε, L2(Pn)). (B.12)

Since we have|Lφ(f1)− Lφ(f2)| ≤ C||f1 − f2|| for any f1 and f2, the corresponding b1 =

B−1Lφ (f1) and b2 = B−1Lφ (f2) in
{
B−1Lφ (f) : f ∈ BH

(√
M
λn

)}
must also satisfy ||b1−b2|| ≤

B−1C||f1 − f2||. In this way, the first term in (B.12) can be bounded as

logN (B−1Lφ(f) : f ∈ BH(
√
M

λn
), ε, L2(Pn)) ≤ logN (BH(

√
M

λn
), B
C
ε, L2(Pn))

≤ logN (BH(1), B
C

[
√
M

λn
]−1ε, L2(Pn)).
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If we apply Theorem 2.1 in Steinwart and Scovel (2007b), because B
C

[√
M
λn

]−1
is a constant,

then for ∀0 < ν ≤ 2 and ∀δ > 0, there exists a constant c1 such that for ε > 0:

logN
(
B−1Lφ (f) : f ∈ BH

(√
M

λn

)
, ε, L2 (Pn)

)
≤ c1σ

(1−ν/2)(1+δ)p
n ε−ν .

In this way, there exists a constant c2 such that

logN (B−1Gφ,λn , ε, L2(Pn)) ≤ c1σ
(1−ν/2)(1+δ)p
n ε−ν +

logN (B−1λn||f ||2 : f ∈ BH(
√
M

λn
), ε, L2(Pn))

≤ c1σ
(1−ν/2)(1+δ)p
n ε−ν + log(M

Bε
)

≤ c2σ
(1−ν/2)(1+δ)p
n ε−ν .

The proof for the second condition is accomplished. Having established the two conditions

above, we can apply Theorem 5.6 in Steinwart and Scovel (2007b) directly and reach the

conclusion that there exists a cν > 0 depending only on ν such that for ∀n ≥ 1 and ∀τ ≥ 1,

Pr∗
(
Rφ

(
f̂n
)

+ λn||f̂n||2 > Rφ

(
f ∗φ
)

+ λn||f ∗φ||2 + cνε (n, a,B, c, δ, x)
)
≤ e−τ ,

where

ε (n, a,B, c, δ, x) = B2ν/(4−2α+αν)c(2−ν)/(4−2α+αν)
(
a

n

)2/(4−2α+αν)
+Bν/2δ(2−ν)/4

(
a

n

)1/2

+B
(
a

n

)2/(2+ν)
+
√
δτ

n
+
(
cτ

n

)1/(2−α)
+ Bτ

n
,

and α = 1, c = c2σ
(1−ν/2)(1+δ)p
n , σn = λ−1/(q+1)p

n . Once we obtain the convergence rate results

of the surrogate risk, the same conclusion can be reached for the 0-1 loss immediately by

applying our Theorem 3.4.3.
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B.3 Numerical Study: Nonlinear Boundary Examples

For the nonlinear boundary examples, we consider the following four scenarios with µ(X)

and t(X,A) defined as,

1. K = 2: µ(X) = 1 +X2
1 +X2

2 − 2X3 + 0.5X4 and t(X,A) = 4(0.7−X2
1 −X2

2 )(2A− 3);

2. K = 3: µ(X) = 2 + 2X1 + X2 + 0.5X3 and t(X,A) = 4∑3
i=1 I (g(X) ∈ (bi−1, bi]) (2−

|A− i|), where g(X) = −3−X2
1 +2 exp{X2}+(X3−0.6X4)2 +X3

5 +exp{X2
6}, b0 = −∞,

b1 = 0, b2 = 1.3 and b3 =∞;

3. K = 5: µ(X) = 2 + 2X1 + X2 + 0.5X3 and t(X,A) = 4∑5
i=1 I (g(X) ∈ (bi−1, bi]) (2−

|A− i|), where g(X) = −3−X2
1 +2 exp{X2}+(X3−0.6X4)2 +X3

5 +exp{X2
6}, b0 = −∞,

b1 = −0.4, b2 = 0.3, b3 = 1.1, b4 = 2.1 and b5 =∞;

4. K = 7: µ(X) = 2 + 2X1 + X2 + 0.5X3 and t(X,A) = 4∑7
i=1 I (g(X) ∈ (bi−1, bi]) (2−

|A− i|), where g(X) = −3−X2
1 +2 exp{X2}+(X3−0.6X4)2 +X3

5 , b0 = −∞, b1 = −0.7,

b2 = −0.2, b3 = 0.4, b4 = 1, b5 = 1.8, b6 = 2.8 and b7 =∞.

Similar to the linear boundary cases, we have a symmetric reward-treatment curve in each

scenario. We repeat the simulation 50 times with the tuning parameters ranging in the same

domain.

From the results (see Table 2 in the original chapter), none of the method performs well

when the sample size is small because the true boundary function has a complex structure.

When n becomes large, GOWL with the Gaussian kernel outperforms PLS-l1 in all cases

due to PLS-l1’s wrong model specification. GOWL with the Gaussian kernel shows better

performance than OWL with the same kernel in terms of both accuracy and value function

error. For OWL, we find that the estimated optimal treatments are often the same as the

actually assigned ones when σn takes large values. This situation becomes more severe when

the treatment has seven categories. In addition, when K = 7, we find that obtaining a low

value function MSE becomes challenging even for GOWL with the Gaussian kernel. This
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may be due to the difficulty of the ITR detection for the ordinal treatments under nonlinear

learning. Finally, we would like to note that the monotonic property of the intercept vectors

b holds in all simulated cases above.

So far, our focus has been on examples with parallel boundaries. We would like to point

out that the proposed GOWL could also work well when the parallel assumption of the true

boundaries does not hold. Under these circumstances, one should consider using nonlinear

learning techniques hence the estimated boundaries would be flexible enough to approach the

underlying true boundaries. To illustrate the idea with a 2-dimensional graph, we use a case

with n = 300, p = 2 and K = 3 and follow the previous settings to simulate X and A. At this

time, we have the Q-function generated by Q(X,A,D∗(X)) = 2 +X1 + 0.5X2− 2|A−D∗(X)|

where D∗(·), the optimal treatment rule, is defined as, D∗(X) = 1 if (X1 + 1)2 + (X2 + 1)2 < 1;

D∗(X) = 2 if X1 +X2 > 2/3; D∗(X) = 3 otherwise.

Different from what were discussed in the previous examples, the current boundary set

consists of a straight line and a one-fourth of a circle. Using GOWL-Gaussian with the same

tuning range as in Section 5.2, we plot the estimated boundaries (dashed curves) as well

as the true boundaries (solid curves) in Figure B.1. The results show that the estimated

ITR could still capture the underlying pattern of the optimal ITR well since the RKHS with

the Gaussian kernel is very flexible. We repeat the simulations for 50 times and the average

testing misclassification rate is 5.05%, which illustrates GOWL’s competitive prediction

ability under the cases of complex boundaries.
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Figure B.1: Illustrating plot for the example with the true boundaries containing a linear
line and a nonlinear curve. The solid curves indicate the true boundaries and the dashed
curves represent the estimated boundaries by GOWL-Gaussian in one simulation. The
points correspond to the observations in the test set with the color representing the optimal
treatment: red-1, green-2 and blue-3.
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APPENDIX C: IDENTIFYING HETEROGENEOUS EFFECT USING
LATENT SUPERVISED CLUSTERING

Adjustment of Algorithm 1: Quadratic approximation

Algorithm 2 Line-search procedure to find an optimal step-size
The the iteration t of Algorithm 1, perform the following steps:

1. Inputs: (β̂(t), γ̂(t)), and an estimate of Lf .

2. Outputs: (β(t+1), γ(t+1)).

3. Set Lt := βLf for some β ∈ (0, 1) (e.g., β = 1/4).

4. For ik = 1, 2, · · · , imax, perform:

(a) If Lt ≥ Lf , set Lt = Lf .
(b) Compute a trial point β̃(t+1) from β̃(t+1) = prox(λ/Lt)·g

(
β̂(t) − 1

Lt
∇βf(β̂(t), γ̂(t))

)
,

γ̃(t+1) = γ̂(t) − 1
Lt
∇γf(β̂(t), γ̂(t)).

(c) Evaluate

QLt(β̃(t+1), γ̃(t+1)) = f(β̂(t), γ̂(t)) +∇f(β̂(t), γ̂(t))T
(
(β̃(t+1), γ̃(t+1))

−(β̂(t), γ̂(t))
)

+ Lt
2 ‖(β̃

(t+1), γ̃(t+1))− (β̂(t), γ̂(t))‖2
2.

(d) If f(β̃(t+1), γ̃(t+1)) ≤ QLt(β̃(t+1), γ̃(t+1)) or Lt ≥ Lf , then terminate the line-search.
Otherwise, set Lt := 2Lt and repeat from (a).

5. End line-search and return β(t+1) := β̃(t+1) and γ(t+1) := γ̃(t+1).

Proof of Theorem 4.3.1 The proof of this theorem is slightly adapted the result in

Schmidt et al. (2011). Using (Schmidt et al., 2011, Proposition 2) with et = 0, we have

Fn(ζ(t+1))− F ∗ ≤ 2Lf
(t+ 1)2

(
‖ζ0 − ζ∗‖+Rt

)2
,

where Rt =
√

2√
Lf

(
2∑t−1

j=0 j
√
εj +

√∑t−1
j=0 j

2εj
)
. This is indeed the bound (4.8). Now, we con-

sider εt = c
(t+1)5 . Using the well-known zeta function, we have∑t−1

j=0(j+1)√εj = ∑t−1
j=0

√
c

(j+1)1.5 ≤
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∑∞
j=0

√
c

(j+1)1.5 ≤ 2.62
√
c. Similarly, ∑t−1

j=0(j + 1)2εj = ∑t−1
j=0

c
(j+1)3 ≤

∑∞
j=0

c
(j+1)3 ≤ 1.203c.

Hence, we can upper bound Rt as Rt ≤ 10c√
Lf

as long as c ≥ 1. By upper bounding (4.8) as

Fn(ζ(t+1)) − F ∗ ≤ 2Lf
(t+1)2

(
‖ζ0 − ζ∗‖+ 10c√

Lf

)2
≤ ε, we get t + 1 ≥

√
2Lf√
ε
‖ζ(0) − ζ∗‖ + 10

√
2c√
ε
,

which gives a bound for tmax in the theorem by rounding the right-hand side. �

Proof of Lemma 4.3.1 It is obvious to write ρτ (r) = τrI(r ≥ 0) − (1 − τ)rI(r < 0)

as ρτ (r) = (τ − 0.5)r + 0.5|r|. Since the absolute function s(r) = |r| can be written

as s(r) = max{r(u1 − u2) | u1 + u2 = 1, u1 ≥ 0, u2 ≥ 0}. We consider the function

p(u) = u1 ln(u1) +u2 ln(u2) + ln(2) defined on a two dimensional standard simplex ∆2 = {u ∈

R2 | u1+u2 = 1, u1 ≥ 0, u2 ≥ 0}. Now, we consider s(r; η) = maxu{r(u1−u2)−ηp(u) | u ∈ ∆}.

Since p(u) ≥ 0, it is clear that

s(r; η) ≤ s(r) ≤ s(r; η) + ηmax{p(u) | u ∈ ∆2} = s(r; η) + η ln(2).

Using this bound, we can show that the function ρτ (r) = (τ − 0.5)r + 0.5s(r) can be

approximated by ρτ (τ ; η) = (τ − 0.5)r + 0.5s(r; η) as ρτ (τ ; η) ≤ ρτ (τ) ≤ ρτ (τ ; η) + η ln(2).

Since fn(ζ; η) 4= ∑n
i=1 ρτ (yi(xTi βi + zTi γ); η), summing up the above inequality from i = 1 to

n, we obtain the bound (4.9).

Next, we note that the function s(·; η) is the marginal of a strictly convex function for any

η > 0 on ∆. Hence, by the classical Danskin theorem Boyd and Vandenberghe (2004), ρτ (·; η)

is convex and is differentiable. By solving this maximization problem with two variables

u1, u2 directly, we obtain s(r; η) = η ln(er/η + e−r/η). By a few elementary calculations, we

can show that |d
2ρτ (r;η)
dr2 | ≤ 1

η
. Using the definition fn(ζ; η) 4= ∑n

i=1 ρτ (yi(xTi βi + zTi γ); η) of

fn, we can show that ‖∇2fn(ζ; η)‖ ≤ ‖X̃‖2

η
= λmax(X̃T X̃)

η
. Hence, fn has the Lipschitz gradient

with the Lipschitz constant Lfn = λmax(X̃T X̃)
η

. �

Proof of Theorem 4.3.2 Since ∇fn(·; η) is Lipschitz continuous with the Lipschitz con-

stant Lfn = Lf
η

and Lf := λmax(X̃T X̃), similar to the proof of (Schmidt et al., 2011,
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Proposition 2), we obtain

Fn(ζ(t+1); η) ≤Fn(ζ; η) + εt + Lfn(ζ(t+1) − ζ̂(t))T (ζ − ζ̂(t)) + Lfn
2 ‖ζ

(t+1) − ζ̂(t)‖2

+ Lfne
T
t (ζ − ζ̂(t)),

where et is a vector satisfying ‖et‖2 ≤ 2εt
Lfn

. Note that the proximity function p(u) =

u1 ln(u1) + u2 ln(u2) + ln(2) is strongly convex with the parameter µp = 1 in the `1-norm.

Since ‖ · ‖1 ≥ ‖ · ‖2, p(·) is also strongly convex in the `2-norm with the same parameter

µp = 1. Using this property, we can apply (Tran-Dinh, 2016, Lemma 2) to obtain the following

estimate

Fn(ζ(t+1); ηt+1) ≤ (1− ξt)Fn(ζ(t); ηt) + Fn(ζ∗) + εt+
ξ2
tLf

2ηt+1
[‖ζ̃(t+1) − ζ∗‖2 − ‖ζ̃(t) − ζ∗‖2] + ξt

√
2Lf εt

√
ηt+1

‖ζ̃(t) − ζ∗‖+ Ωt,
(C.1)

where ξt = 1
τt

and ζ̃(t) = 1
ξt

(ζ̂(t) − (1− ξt)ζ(t)). Here, the quantity Ωt = (1− ξt)(ηt − ηt+1)Dρ

for the Logit-type loss and Ωt = 0 for the Huber loss. By the proof of (Schmidt et al., 2011,

Proposition 2), we can bound ‖ζ̃(t) − ζ∗‖ as

‖ζ̃(t) − ζ∗‖ ≤ ‖ζ(0) − ζ∗‖+ 2
t−1∑
j=0

√2εj
ξj
√
Lfn

+
2

t−1∑
j=0

εj
Lfnξ

2
j

1/2

.

Using Lfn = Lf
ηt+1

, we define κt := 1√
Lf

∑t−1
j=0

√
2ηj+1εj

ξj
and κ̂t := 1

Lf

∑t−1
j=0

ηj+1εj
ξ2
j

. Then, we have

‖ζ̃(t) − ζ∗‖ ≤ ‖ζ(0) − ζ∗‖ + 2κt +
√

2κ̂t. Substituting this into (C.1) and rearranging the

result, we get

ηt+1
Lfξ

2
t

(
Fn(ζ(t+1); ηt+1)− Fn(ζ∗)

)
+ 1

2‖ζ̃
(t+1) − ζ∗‖2 ≤ ηt+1(1− ξt)

Lfξ
2
t

(
Fn(ζ(t); ηt)− Fn(ζ∗)

)
+

1
2‖ζ̃

(t) − ζ∗‖2 + ηt+1εt
Lfξ

2
t

+
√

2ηt+1εt
ξt
√
Lf

(
‖ζ(0) − ζ∗‖+ 2κt +

√
2κ̂t
)

+ ηt+1Ωt

Lfξ
2
t

.
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Now, using the definitions of κt and κ̂t, and noting that both sequences {κt} and {κ̂t} are

increasing, we can show that ∑t−1
j=0

√
2ηj+1εj

ξj
√
Lf

(2κj +
√

2κ̂j) ≤ (2κt +
√

2κ̂t)
∑t−1
j=0

√
2ηj+1εj

ξj
√
Lf

=

2κ2
t + κt

√
2κ̂t. Summing up the above inequality from j = 0 to j = t − 1, and using this

estimate we obtain

ηt
Lfξ

2
t−1

(
Fn(ζ(t); ηt)− Fn(ζ∗)

)
+ 1

2‖ζ̃
(t) − ζ∗‖2 ≤1

2‖ζ̃
(0) − ζ∗‖2 + κ̂t + ‖ζ(0) − ζ∗‖κt+

2κ2
t + κt

√
2κ̂t + Ω̂t.

Here, Ω̂t := η1Dρ
Lf

+∑t−1
j=1

ηj+1Ωj
Lf ξ

2
j

= η1Dρ
Lf

+ Dρ
Lf

∑t−1
j=1

ηj+1(1−ξj)(ηj−ηj+1)
ξ2
j

. Dropping the nonnegative

term 1
2‖ζ̃

(t) − ζ∗‖2, using ζ̃(0) = ζ(0), and defining Rt := κ̂t + ‖ζ(0) − ζ∗‖κt + 2κ2
t + κt

√
2κ̂t,

the last inequality leads to

Fn(ζ(t); ηt)− Fn(ζ∗) ≤ Lf
τ 2
t−1ηt

(1
2‖ζ

(0) − ζ∗‖2 +Rt

)
. (C.2)

Now, we consider the condition ηt+1(1−ξt)
ξ2
t

= ηt
ξ2
t−1

. Using this condition, ξt = 1
τt
, and ηt+1 = τtηt

τt+1

we have (τt−1)τ2
t

τt+1 = τ 2
t−1, which leads to τ 3

t − τ 2
t − τ 2

t−1τt − τ 2
t−1 = 0. Hence, τt+1 is the solution

of the cubic equation τ 3 − τ 2 − τ 2
t τ − τ 2

t = 0. Moreover, one can show that t+2
2 ≤ τt ≤ t+ 1,

and ηt ≤ 2η1
t+1 . In this case, we have 1

τ2
t−1ηt

≤ 1
tη1

for t ≥ 1. Next, let us choose εt = c
(t+1)4 for

some positive constant c ≥ 1, we bound κt and κ̂t as follows:

κt := 1√
Lf

∑t−1
j=0

√
2ηj+1εj

ξj
≤

√
2√
Lf

∑t−1
j=0

√
(j + 1)εj =

√
2c√
Lf

∑t−1
j=0

1
(
√
j+1)3 ≤ 2.62

√
2c√

Lf

κ̂t := 1
Lf

∑t−1
j=0

ηj+1εj
ξ2
j
≤ 1

Lf

∑t−1
j=0(j + 1)εj ≤ c

Lf

∑t−1
j=0

1
(j+1)3 ≤ 1.203c

Lf
.
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Hence, we can bound Rt as Rt ≤ R̄c := 1.9
√
Lf c

η1
‖ζ(0) − ζ∗‖ + 35c

2η1
. One the other hand, we

estimate Ω̂t as follows

Ω̂t = η1Dρ

Lf
+ Dρ

Lf

t−1∑
j=1

ηj+1(1− ξj)(ηj − ηj+1)
ξ2
j

= η1Dρ

Lf
+ Dρ

Lf

t−1∑
j=1

ηj(ηj − ηj+1)τ2
j−1

= η1Dρ

Lf
+ Dρ

Lf

t−1∑
j=1

η2
j τ

2
j−1

τj + 1 ≤
η1Dρ

Lf
+ Dρ

Lf

t−1∑
j=1

4η2
1j

2

(j + 1)2(j + 2) ≤
η1Dρ(1 + 4η1 ln(t+ 1))

Lf
.

Using the bound (4.9), we can show that Fn(ζ(t)) ≤ Fn(ζ(t); ηt)+ηtnDρ ≤ Fn(ζ(t); ηt)+ 2η1nDρ
t+1 .

Combining these two estimates, (C.2), and then using 1
τ2
t−1ηt

≤ 1
tη1

for t ≥ 1, we obtain

Fn(ζ(t+1))− Fn(ζ∗) ≤ 1
(t+ 1)

(
Lf
2η1
‖ζ(0) − ζ∗‖2 + R̄c + Γt

)
+ 2nη1Dρ

(t+ 2) ,

which leads to the estimation (4.11), where Γt = 0 if we choose the Huber loss, and

Γt := Dρ(1+4η1 ln(t+1))
2 if we choose the Logit-type loss. The remaining part of the theorem is a

direct consequence of (4.11). �
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